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ABSTRACT

Federated Learning (FL) has emerged as the tool of choice for training deep mod-
els over heterogeneous and decentralized datasets. As a reflection of the experi-
ences from different clients, severe class imbalance issues are observed in real-
world FL problems. Moreover, there exists a drastic mismatch between the im-
balances from the local and global perspectives, i.e. a local majority class can be
the minority of the population. Additionally, the privacy requirement of FL poses
an extra challenge, as one should handle class imbalance without identifying the
minority class. In this paper we propose a novel agnostic constrained learning
formulation to tackle the class imbalance problem in FL without requiring fur-
ther information beyond the standard FL objective. A meta algorithm, CLIMB, is
designed to solve the target optimization problem, with its convergence property
analyzed under certain oracle assumptions. Through an extensive empirical study
over various data heterogeneity and class imbalance configurations, we showcase
that CLIMB considerably improves the performance in the minority class without
compromising the overall accuracy of the classifier, which significantly outper-
forms previous arts. In fact, we observe the greatest performance boost in the
most difficult scenario where every client only holds data from one class. The
code can be found here.

1 INTRODUCTION

Class imbalance is ubiquitous in real world supervised learning problems. Examples span from
medical applications (Lee & Shin, 2020; Roy et al., 2019; Choudhury et al., 2019), fraud detection
(Yang et al., 2019; Chan et al., 1999), to consumer based applications (Wang et al., 2021b; Wu et al.,
2020; Long et al., 2020). In these scenarios, data belonging to a subset of classes constitute a great
proportion of the population while data from the minority classes, generated by uncommon events,
are scarce (He & Garcia, 2009). Having a non-uniform number of samples per class deteriorates the
performance of the classifier in the minority class (Huang et al., 2016), resulting in low training and
testing accuracy. More importantly, unintended consequences of mistreating the minority class can
be catastrophic (Van Hulse et al., 2007) if the problem is not handled appropriately.

From the perspectives of data heterogeneity and privacy, the issue of class imbalance is even more
significant in the setting of Federated Learning (FL). Due to the heterogeneity of the local data
distributions, there can be a significant mismatch between the local and global imbalance, i.e. the
class that is a minority locally can actually be a majority class globally. Moreover, for the purpose
of privacy protection in FL, one should tackle the class-imbalance problem in an agnostic manner,
i.e. the proposed algorithms should not require the minority class to be identified.

In the centralized training setting, techniques like balanced sampling, loss re-weighting, and gra-
dient tuning have achieved many successes (Johnson & Khoshgoftaar, 2019). However, due to the
extra difficulty of handling the class imbalance problem in FL, previous arts that rely on the ex-
plicit identification of the minority class do not directly apply. While research along this line is
quite limited, a commonly used heuristic is to estimate the portion of a class using the norm of the
gradient per class. When used as proxies, these quantities are then utilized to reweight the losses

1

https://github.com/shenzebang/Federated-Learning-Pytorch


Published as a conference paper at ICLR 2022

corresponding to different classes (Wang et al., 2021a; Yang et al., 2020). A key drawback of (Wang
et al., 2021a) is that a subset of the client’s local dataset needs to be shared, which is not ideal for
privacy preserving purposes. Moreover, the effectiveness of such approaches degrades when there
is a notable mismatch between the local imbalance and the global imbalance (Wang et al., 2021a).

In this work, we target the most difficult yet possibly most interesting setting in FL, where there is
a significant mismatch between the local and global imbalance. Concretely, on certain clients, a mi-
nority class from a global perspective is in the majority locally. Practitioners often encounters such
a mismatch due to the highly heterogeneous data configuration in FL and the principle of locality
(Wang et al., 2021a). For example, when the local data are produced by a minority user, the corre-
sponding minority data could occupy a large portion of the local distribution. In this scenario, due
to the scarceness of the minority data from a global perspective, the corresponding underrepresented
client will usually experience poor service quality from the trained model, giving rise to potentially
severe fairness issue.

To overcome the aforementioned challenges, we propose a constrained learning formulation to han-
dle the class imbalance issue in FL while accounting for both heterogeneity and privacy. In brief, we
impose constraints on the standard FL formulation so that the empirical loss on every client should
not overly exceed the average empirical loss. Such constraints are shown to force the classifier to
account for all classes equally and hence mitigate the detrimental effect of class imbalance, under
a type of heterogeneous data configuration that captures the mismatch between the local and global
imbalance. The advantages of our formulation are threefold: First, in contrast to previous arts which
usually rely on some heuristics to reweight the loss functions for different classses, our approach
is principled, yielding a simple optimization interpretation. Second, unlike existing methods, our
formulation requires no additional information compared to the original FL formulation and it treats
data from different classes agnostically, and hence is less likely to leak the private information of
the clients. Third, from our extensive empirical study, our formulation can significantly improve the
testing accuracy on the minority class, without compromising the overall performance.

Contribution. We summarize our contributions as follows.
1. Problem Formulation: To address the challenge of class imbalance in FL with data hetero-
geneity, we propose a novel constrained FL formulation with explicit enforcement on the similarity
between the local empirical losses. Using only information from the standard FL objective, our
approach is completely agnostic to class distribution of the client data and its proxies, as opposed to
the existing literature (which mostly violate privacy requirements of FL).
2. Meta-Algorithm: We solve our constrained optimization problem via a primal-dual approach.
For a fixed dual variable, the corresponding Lagrangian function enjoys a similar structure as the
standard FL loss, but with non-uniform weights on the local objectives. Accordingly, we propose
an efficient (meta-) algorithm called CLIMB that can use any FL optimization method as a subrou-
tine, with nearly negligible communication overhead. Furthermore, we analyze the convergence
properties of CLIMB under certain oracle assumptions.
3. Accuracy Improvement in the minority class: On benchmark datasets, CLIMB with Fed-Avg
as base solver achieves significant enhancement of the accuracy in the minority class without com-
promising the overall accuracy under various data heterogeneity and class imbalance scenarios.

2 RELATED WORKS

Class Imbalance in Centralized Setting. In the centralized learning setting, the number of samples
per class is known. We categorize existing solutions that exploit such information as follows.
Balanced sampling. In order to balance the data used for gradient calculation, the most common
approaches are either to under sample from the majority classes (Liu et al., 2008), or to augment
the minority class (Chawla et al., 2002; Guo & Viktor, 2004). Both methods seek to generate an
artificial uniform distribution of data (Buda et al., 2018; Pouyanfar et al., 2018).
Loss reweighting. Methods in this category focus on re-weighting the loss functions for different
classes, with extra emphases on the mistakes made in the minority class (Cui et al., 2019; Ling &
Sheng, 2008; Sun et al., 2007; Wang et al., 2016). There also exist works like (Lin et al., 2017) that
adjust the scale of the loss sample-wise, without exploiting the global data distribution.
Gradient tuning. In the context of neural networks, some other works focus on tuning the gradient
per class (Anand et al., 1993) showing faster rates of convergence in the class imbalance setting.
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To do this, the gradient is reshaped in order to have an equal magnitude when projected to all the
gradients per class, while keeping the same norm as the original gradient.
Class Imbalance in Federated Learning. Combating with the issue of class imbalance is more
challenging in FL since the data composition in such a setting is generally unknown and the minor-
ity classes are often difficult to identify Li et al. (2020); Wang et al. (2020b). While research in this
direction are quite limited, to the best of our knowledge, we classify them into the following two
classes based on whether a proxy of the data composition is explicitly built.
(i) A common strategy in existing methods is to explicitly build proxies of the data composition
based on some heuristics. These proxies are dynamically adjusted during the learning procedure
and allow the aforementioned three techniques, balanced sampling, loss re-weighting and gradient
tuning, to be utilized in the FL setting: Wang et al. (2021a) suggests that there exists a propor-
tional relation between the magnitude of the gradients the corresponds to the last layer of the neural
network and the sample quantity. Based on such observation, the proposed the Ratio-Loss,
a class-wise re-weighted version of the standard cross entropy loss. We note that to define the
Ratio-Loss, one needs to collect a subset of client data as “auxiliary data”, which may not be
ideal in the setting of FL. On the same vein, Yang et al. (2020) argues that the gradient per class can
be used as a proxy to infer the imbalances in the distributions of the clients, and thus clients should
be selected according to how uniform the magnitude of gradient per class is. We also notice the
work Astraea which introduces extra virtual components called mediators between the FL server
and clients (Duan et al., 2019). The mediator is assumed to have access to the local data distribu-
tions of the clients so that client rescheduling and data augmentation can be carried out accordingly.
Through the prepossessing on the mediator, the gradients communicated to the server are made bal-
anced class-wise. However, when privacy is taken into consideration, methods like Astraea may
not be appropriate as in essence it is directly built on the global data distribution.
(ii) Without explicitly constructing an estimation of the data composition, there are works that resort
to techniques like active learning and reinforcement learning to implicitly learn the data composi-
tion as the optimization progresses. Works along this research line usually rely on client selection
to mitigate the effects of class imbalances. In (Goetz et al., 2019), to address the class imbalance
problem, there will a higher probability to sampling clients that posses the global minority class.
Other works, leverage client selection as a multi-armed bandit problem, and design a client selec-
tion policy to balance the gradients (Xia et al., 2020). Other arts leverage Q-learning techniques to
select clients in order to minimize the overall loss Wang et al. (2020a). However, we believe in the
most practical setting of FL, clients that are available per communication round is incoercible and
hence these strategies have limited applicability.
Comparison with Previous Works. Our method significantly differs from the above strategies in
the following ways: (1) Our method requires no knowledge of the data composition, nor any proxy
of such information. Consequently, our approach is agnostic to the minority class and better pre-
serves clients’ privacy. Such a property draws clear distinction between our work and the works
listed in class (i) above. (2) As will be more clear in the following section, we only perform client-
wise re-weighting as opposed to the class-wise re-weighting schemes used in previous works, which
further emphasize the agnostic nature of our approach. (3) In contrast to the methods in class (ii)
above, our approach does not require active client selection, enjoying a broader applicability in the
most practical and interesting settings.

3 FEDERATED LEARNING WITH EMPIRICAL LOSS CONSTRAINTS

We consider the problem of multi-class classification. Let x ∈ X ⊆ Rd be the input and use
y ∈ Y = {1, . . . , C} to denote the target label, where C is the total number of classes. In the
context of FL, we assume to have N clients, each of which posses its own private data distribution
pi(x, y). Here, pi(x, y) is a joint probability distribution of the input x and the output label y. One
can decompose pi(x, y) as pi(x, y) = p(x|y)pi(y), where p(x|y) is the conditional distribution of
the input x given class y and pi(y) is the marginal distribution of class y on client i. We assume that
the conditional distribution p(x|y) is identical on all devices, but the marginal distribution pi(y) can
vary significantly due to the heterogeneity of the data configuration.

LetH = {φ : X ×Θ→ RC} be a family of parameterized predictors with parameter θ ∈ Θ ⊆ RQ.
Let ` : RC ×Y → R+ be the loss function, then the local objective function of client i is defined as

fi(θ) = E(x,y)∼pi [`(φ(x, θ), y)]. (1)
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For multi-class classification, ` is often chosen to be the cross entropy loss. In the standard formu-
lation of FL, the goal is to minimize the global average of local objectives

min
θ∈Θ

f̄(θ) :=
1

N

N∑
i=1

fi(θ). (2)

While it is well known that, in the presence of class imbalance, the above vanilla formulation will
produce models that perform poorly on the minority data, we consider the following configuration
of heterogeneous local class distributions in order to make a quantitative analysis of such a phe-
nomenon for a concrete class imbalance setting. More importantly, such a setting will also motivate
our constrained FL formulation. We emphasize that the following setting is just used as a motivating
example to showcase our claims, and our results apply generally to any FL setting.

Motivating Example. Let u be the uniform distribution over the classes, i.e. for y ∼ u, Pr(y =
c) = 1

C ,∀c ∈ Y and let δc be the Dirac distribution of class c. We assume for some small but fixed
α ∈ [0, 1], the local class distribution of the client i is a mixture of the uniform distribution over all
classes and the Dirac distribution of a fixed class ci, i.e. pi = αu+ (1−α)δci . We use Nc to denote
the number clients with ci = c. Note that in the limit setting when α = 0, the aforementioned
configuration captures the most heterogeneous setting: clients only have data from a single class.
We consider an extreme case of class imbalance under the above configuration. Without loss of
generality, we consider the binary classification problem, i.e. C = 2, and we assume class 1 to be
the minority class with N1 = 1. We define gi(θ) := Ex∼p(x|y=i)[`(φ(x, θ), i)] as the loss of the
predictor φ(·, θ) on the data with y = i. We can calculate that

f̄(θ) =

(
α

2
+

1− α
N

)
g1(θ) +

(
α

2
+

(1− α)(N − 1)

N

)
g2(θ). (3)

Clearly, when α, the portion of data with uniform label distribution, is small, e.g. α = 0, and N , the
total number of clients, is large, the loss of the predictor on class 1 has negligible weight, which often
leads to the poor performance on the minority class in the trained classifier as the majority classes
dominate the gradient. Moreover, observe that when α is small, there is a significant mismatch
between the local and global class imbalance: the global minority class 1 is in the majority on
the corresponding client locally. Such phenomenon is pertinent to the FL setting due to the data
heterogeneity and poses a great challenge for tackling the issue of class imbalance in FL.

3.1 CONSTRAINED FL FORMULATION

In our work, to address the class imbalance challenge, we propose to minimize the following con-
strained FL (CFL) formulation

P ∗ε = min
θ∈Θ

f̄(θ) :=
1

N

N∑
i=1

fi(θ) (CFL)

s.t. fi(θ)− f̄(θ) ≤ ε, ∀i ∈ [1, . . . , N ].

Here, ε is a tolerance constant that controls the enforced closeness in the training loss among clients,
and we emphasize the dependence of the optimal value P ∗ε on ε by encoding it in the subscript. As a
motivation, we show that the constraint in our formulation (CFL) can be translated to a constraint on
the performance of the minority class, under the above class imbalance setting: Consider the setting
where the tolerance constant is very small, i.e. ε is close to zero. WLOG, we assume that the first
device is the one that has ci = 1. Recall the definition of gi above Eq.(3). One can compute that

f1(θ)− f̄(θ) =
(1− α)(N − 1)

N
(g1(θ)− g2(θ)) ≤ ε⇐⇒ g1(θ)− g2(θ) ≤ Nε

(1− α)(N − 1)
.

Therefore, our formulation (CFL) enjoys a clear class-balancing interpretation in the highly hetero-
geneous setting when α is small and N is large. Note that this is achieved without the identification
of the minority class and server collects no additional information compared to the vanilla FL.

While the above nice interpretation of the proposed constraint may not hold exactly for general class
imbalance settings, in spirit, we want the resulting classifier from our algorithm to perform similarly
on every class, or in other words to account for the minority class and majority class equally. In the
following section, we discuss how to solve the proposed formulation by alternating the primal and
dual updates of an equivalent Lagrangian formulation.
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Algorithm 1 CLIMB: CLass IMBalance Federated Learning
1: Input: initial model θ0, a subroutine ClientUpdate, dual step size ηD, maximum round T ;
2: Initialize the dual variables λ = [0, . . . , 0];
3: for t = 1, 2, . . . , T do
4: Compute weights: ∀i ∈ [N ], wi = 1 + λi − λ̄, with λ̄ = 1

N

∑N
i=1 λi;

5: Primal Update: θt+1 ← ClientUpdate({wi}Ni=1, θ
t);

6: Dual Update: ∀i ∈ [N ], λi ← [λi + ηD(fi(θ
t+1)− f̄(θt+1)− ε)]+, with f̄ = 1

N

∑N
i=1 fi;

7: end for
8: Output: model θT+1

3.2 ALGORITHM CONSTRUCTION

In order to solve problem (CFL), we resort to the method of Lagrange multipliers. By introducing
the dual variables λ = [λ1, . . . , λN ] ∈ RN+ , we define the Lagrangian function as,

L(θ,λ) =
1

N

N∑
i=1

fi(θ) + λi

fi(θ)− 1

N

N∑
j=1

fj(θ)− ε

 (4)

=
1

N

N∑
i=1

(1 + λi − λ̄)fi(θ)− λiε, with λ̄ =
1

N

N∑
i=1

λi. (5)

With this in hand, we can construct a lower bound of the above constrained optimization problem
using the Lagrangian L(θ,λ) as follows:

D∗ε = max
λ∈RN

+

min
θ∈Θ
L(θ,λ) ≤ min

θ∈Θ
max
λ∈RN

+

L(θ,λ) = P ∗ε ,

where we often refer to D∗ε as the dual problem. To solve the dual problem, we propose CLIMB, a
method described in Algorithm 1, which is discussed in detail as follows.
CLIMB proceeds by alternatingly optimizing over the primal variable θ and the dual variable λ.
Primal Update. For a fixed λ, the minimization of Lwith respect to θ is equivalent to a re-weighted
version of the standard unconstrained FL objective (2):

min
θ∈Θ
L(θ,λ)⇐⇒ min

θ∈Θ

1

N

N∑
i=1

(1 + λi − λ̄)fi(θ). (6)

Importantly, this simple and canonical form allows us to perform the update on θ using any FL
solver as the base optimizer. For flexibility, we do not explicitly choose the base optimizer in our
algorithm description, but refer to the update on θ as the subroutine ClientUpdate({wi}Ni=1, θ

t) →
θt+1. Such a subroutine takes the non-uniform weights {wi}Ni=1 on the local objectives and the
current consensus model θt as inputs, and returns an updated model θt+1. Note that every call to
ClientUpdate may consists of multiple communication rounds.
Dual Update. Once we have obtained the new consensus model θt+1, we perform dual update on λ
by taking a single dual ascent step of the following equivalent objective (given some fixed θ),

max
λ∈RN

+

L(θ,λ)⇐⇒ max
λ∈RN

+

1

N

N∑
i=1

λi

fi(θ)− 1

N

N∑
j=1

fj(θ)− ε

 . (7)

To evaluate the gradient of L with respect to λ, we need to first broadcast the consensus model
θt+1 and then aggregate the function values f(θt+1). Since the broadcast model can be used for
the next round of primal update, the only overhead of CLIMB compared to the standard FL solver
ClientUpdate, is to transmit the functional value, which is negligible.

Remark 3.1 We emphasize that CLIMB can be implemented in a privacy-preserving manner: A
client can carry out its update locally given the access to the global average of the dual variables λ̄
and the global average of the loss functions f̄(θ). These quantities can be computed via the standard
FL technique of Homomorphic Encryption without revealing the exact value of the dual variable λi
and local loss fi(θ) to the server, as elaborated in Appendix D.
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3.3 THEORETICAL GUARANTEES

Based on the recent progress in constrained learning (Chamon et al., 2021), we show that under mild
regularity conditions, the duality gap between the dual problem D∗ε and the primal problem P ∗ε can
be controlled by some quantity that describes the capability of the parametric function classH.

Assumption 3.1 The loss function ` in the definition of the local objective (1) is L-Lipschitz,
i.e.‖`(x, ·)− `(z, ·)‖ ≤ L‖x− z‖, and bounded by B.

Assumption 3.2 The conditional distribution p(x|y) is non-atomic for all y ∈ RC .

While usually the local data distribution is discrete, we can always augment it by randomly per-
turbing the data points with white noise, this is often used as data augmentation in vision tasks.

Assumption 3.3 There exists a convex hypothesis class Ĥ such that H ⊆ Ĥ, and there exists a
constant ξ > 0 such that ∀φ̂ ∈ Ĥ, there exists θ ∈ Θ such that supx∈X ‖φ̂(x)− φ(x, θ)‖ ≤ ξ.

A simple strategy to construct Ĥ is to take the convex hull of H. When H is sufficiently rich, ξ can
be expected to be small. Notice that this bound can be decreased by increasing the richness of the
function classH. All the proofs can be found in the Appendix.

Theorem 3.1 (Near Zero Duality Gap) Under Assumptions 3.1, 3.2,3.3, and the Contrained Fed-
erated Learning problem is feasible in Ĥ with constraint ε−2Lξ, the Constrained Federated Learn-
ing problem has near zero-duality gap,

P ∗ε −D∗ε ≤ (2|λ∗ε−2Lξ|1 + 1)Lξ, (8)

where λ∗ε−2Lξ is the optimal dual variable associated with the Constrained Federated Learning
problem (CFL) with constraints ε− 2Lξ over the space of functions Ĥ.

Theorem 3.1 establishes an upper bound on the duality gap of the Constrained Federated Learning
Problem CFL. The gap depends on the Lipschitz constant of the loss function L, the richness of the
function class ξ, and the optimal dual variable of a more restrictive problem. Note that we required
the Constrained Federated Learning problem to be feasible for constraint ε− 2Lξ. In the case of the
cross-entropy loss, as long as ε− 2Lξ > 0, this can be satisfied by a classifier that assigns a uniform
label for every sample, as each individual loss will be equal to each other.
Since the minimization of the Lagrangian function L is non-convex, to show the convergence of
CLIMB, we need an additional oracle assumption as follows.

Assumption 3.4 (Approximate Solution) For every dual variable λ ∈ RN+ , and precision δ > 0
there exists an oracle approximate solution θλ such that L(θλ,λ) ≤ minθ∈RQ L(θ,λ) + δ.

Theorem 3.2 (Convergence) Define the dual function d(λ) = minθ∈Θ L(θ,λ). Under Assump-
tions 3.1 to 3.4, for a fixed tolerance r > 0, the iterates generated by Algorithm 1 converge to a
neighborhood of the dual problem D∗ε in at most Tr = O(1/r) steps, i.e.,

d(λTr ) ≥ D∗ε − δ −
ηD
2
B2 − r, (9)

4 EXPERIMENTS

In this section, we evaluate our formulation (CFL) against the competitors on various FL scenarios
at the presence of class imbalance. Our results highlight the benefits of our approach especially
when the local data distributions are severely heterogeneous and there is a significant mismatch
between local and global imbalance. To ensure a fair comparison, we use Fed-Avg as the base
optimizer in the current experiment for all formulations: the standard FL objective in Eq.(2), the
proposed formulation in Eq.(CFL), Ratio-Loss (Wang et al., 2021a), and Focal-Loss (Lin
et al., 2017). We emphasize that the novelty of our work lies in the new constrained FL formulation
(CFL) and is orthogonal to how the formulation is solved. We now describe the datasets and models
used in our experiments with more details provided in Appendix A.
Datasets Three benchmark datasets are used in our experiments with the default train/test splits,
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Imbalance
ratio Dataset Level of

heterogeneity
Baseline
(Eq.(2))

CLIMB
(this work) Ratio-Loss Focal-Loss

ρ = 20

CIFAR10

1 minority class out of 10 total classes

α = 0.1
0.0532

(0.6754)
0.2080

(0.6829)
0.1140

(0.6727)
0.0450

(0.6445)

α = 0.2
0.137

(0.7121)
0.3230

(0.7121)
0.1790

(0.7037)
0.0430

(0.6914)
3 minority classes out of 10 total classes

α = 0.1
0

(0.5669)
0.2810

(0.6031)
0

(0.5746)
0

(0.6565)

α = 0.2
0.1279

(0.7098)
0.3240

(0.7167)
0.1790

(0.7054)
0.0552

(0.6905)

MNIST

1 minority class out of 10 total classes

α = 0.1
0.6889

(0.9375)
0.8552

(0.9556)
0.8472

(0.9544)
0.6186

(0.9278)

α = 0.2
0.7925

(0.9540)
0.8748

(0.9616)
0.8052

(0.9555)
0.7784

(0.9479)
3 minority classes out of 10 total classes

α = 0.1
0.3425

(0.8260)
0.6987

(0.9158)
0.4134

(0.8484)
0.1944

(0.7938)

α = 0.2
0.4720

(0.8596)
0.7290

(0.9153)
0.6717

(0.9063)
0.4602

(0.8654)

ρ =10

CIFAR10

1 minority class out of 10 total classes

α = 0.1
0.2058

(0.6841)
0.3629

(0.7041)
0.2164

(0.6839)
0.0414

(0.6543)

α = 0.2
0.1813

(0.7113)
0.3743

(0.7312)
0.2657

(0.7083)
0.1347

(0.6911)
3 minority classes out of 10 total classes

α = 0.1
0.0492

(0.5933)
0.2280

(0.6358)
0.0315

(0.5825)
0

(0.5548)

α = 0.2
0.1064

(0.6380)
0.2734

(0.6696)
0.0993

(0.6211)
0.0298

(0.5982)

MNIST

1 minority class out of 10 total classes

α = 0.1
0.8473

(0.9534)
0.9305

(0.9584)
0.8851

(0.9558)
0.8469

(0.9470)

α = 0.2
0.8962

(0.9634)
0.9239

(0.9657)
0.8798

(0.9615)
0.8953

(0.9586)
3 minority classes out of 10 total classes

α = 0.1
0.6045

(0.8906)
0.8084

(0.9356)
0.6981

(0.9119)
0.4690

(0.8670)

α = 0.2
0.7272

(0.9190)
0.8195

(0.9392)
0.7663

(0.9320)
0.6961

(0.9099)

Table 1: The minority class testing accuracy and the overall testing accuracy (the quantity in the
parentheses) after 5000 communication rounds. If there are multiple minority classes, we report
the worst of them. Here N , the number of devices, is 500. The base FL solver is Fed-Avg with
partial-participation: 100 devices participate in every communication round.

which are MNIST (LeCun et al., 1998), CIFAR10 (Krizhevsky et al., 2009) and Fashion-MNIST
(Xiao et al., 2017). The results on the last dataset are deferred to the appendix due to space limitation.
Heterogeneity. We generate heterogeneity in the local data distributions according to the strategy
from (Karimireddy et al., 2020; Hsu et al., 2019): Let α ∈ [0, 1] be some constant that determines
the level of heterogeneity. For a fixed α, we divide the dataset among N = 100 (moderate) or
N = 500 (massive) clients as follows: for we allocate to each client a portion of α i.i.d. data and
the remaining portion of (1 − α) by sorting according to label. In our appendix, we also consider
the Dirichlet type heterogeneous data allocation scheme which is wildly used in the literature of
Federated Learning, for example (Hsu et al., 2019; Acar et al., 2020).
Data Imbalance. We simulate the phenomenon of class imbalance by removing data belong to
the minority classes: Observe that the datasets included in our experiments both have 10 perfectly
balanced classes. For the minority class(es), we retain only 1/ρ portion of the corresponding data.
Here, ρ ≥ 1 the ratio between the numbers of data in the majority class and in the minority class
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and is termed the imbalance ratio. For example, when there are 3 minority classes with ρ = 10,
90% of the data belong to classes 0, 1, 2 (without loss of generality) are manually removed. In our
experiments, we consider the setting of 1 or 3 minority classes and we take ρ = 5, 10, 20.
Models We follow the choice of model architectures in (Acar et al., 2020; McMahan et al., 2017).
Specifically, we use a 2 hidden layer fully-connected neural network for MNIST, where the numbers
of neurons are (128, 128). For CIFAR10, we use a CNN model consisting of 2 convolutional layers
with 64 5 × 5 filters followed by 2 fully connected layers with 394 and 192 neurons. We note that
higher testing accuracy on the included datasets can be obtain by using models with high capacity,
but is orthogonal to our research.

4.1 RESULTS SUMMARY

To evaluate the effectiveness of an approach against the challenge of class imbalance, one needs to
take into consideration both the performance on the minority class(es) and the average performance
on all the classes. We report both quantities after sufficient communication rounds (5000 rounds
for CIFAR10 and 1000 rounds for MNIST) under various experiment settings in Tables 1 and 2.
In every cell of these tables, the quantity above denote the minority class testing accuracy and the
quantity in the parentheses is the average performance on all the classes. We also considered the
case where there are multiple minority classes and we report the worst accuracy among the minority
classes. Our approach outperforms previous arts in all cases, often by a large margin.
Imbalance Ratio and Number of Minority Classes. The imbalance ratio ρ and the number of
minority classes are two important quantities to measure the difficulty of a class imbalance problem.
Under all the included choices, CLIMB consistently beats previous arts in both minority class testing
accuracy and average performance on all the classes. Therefore, we conclude that CLIMB is able
to boost the performance on the minority class without compromising the performance on the other
classes. This is a rare merit when addressing the class imbalance problem. In fact, methods like
Ratio-Lossis able to improve the testing accuracy on the minority class, but it also sacrifices the
performance on the rest classes, leading to an inferior average testing accuracy.
Level of Heterogeneity. We test the performance of CLIMB under different levels of heterogene-
ity and observe that CLIMB outperforms the included methods considerably in all settings. It has
the biggest advantage over the competitors in the most heterogeneous setting, α = 0. There are
situations that existing methods completely fail in the minority class with less than 10% accuracy,
but CLIMB is still able to correctly classify most of the minority data, e.g. see Table 2→ ρ = 5→
MNIST→ 3 minority classes→ α = 0.
Moderate vs. Large Number of Devices An important goal of FL is to exploit the computational
resources of the IoT devices. Hence, the scalability to a large number of devices is a critical prop-
erty of an FL method. We hence test CLIMB on both moderate (N = 100, see Table 2) and massive
devices (N = 500, see Table 1) settings. To make things more practical, we instantiate the sub-
routine ClientUpdate using Fed-Avg with the partial-participation scheme in the massive device
setting. Specifically, 100 devices participate model training after every Fed-Avg global communica-
tion round. We clearly observe the advantage of CLIMB in all of these setups.

CONCLUSION

In this paper we proposed a novel agnostic constrained learning formulation to tackle the problem
of class imbalance in the Federated Learning setting. By introducing constraints in the learning
procedure we enforced the performance to be similar in all clients, thus accounting for the class
imbalances. In terms of privacy protection, our formulation requires no further information than
the standard FL objective to be collected in the server and it never estimates the data composition
as opposed to all previous approaches. Moreover, compared with previous arts which are usually
heuristic based, our approach is principled as it is purely optimization based and can be efficiently
solved via the proposed meta-algorithm CLIMB, yielding major practical benefits. Our extensive
empirical study showcases the superiority of proposed constrained formulation over previous arts.
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Imbalance
ratio Dataset Level of

heterogeneity
Baseline
(Eq.(2))

CLIMB
(this work) Ratio-Loss Focal-Loss

ρ = 10

CIFAR10

1 minority class out of 10 total classes

α = 0.0
0.0229

(0.5734)
0.5575

(0.6076)
0

(0.4836)
0

(0.4205)

α = 0.1
0.2753

(0.7143)
0.5054

(0.7246)
0.2929

(0.6951)
0.2284

(0.6860)

α = 0.2
0.2988
0.7348

0.4689
(0.7511)

0.3825
(0.7329)

0.2618
0.7249

3 minority classes out of 10 total classes

α = 0.0
0.0402

(0.5534)
0.2756

(0.5598)
0

(0.4678)
0

(0.4527)

α = 0.1
0.1316

(0.6189)
0.3399

(0.6637)
0.0690
(0.615)

0.0408
(0.5976)

α = 0.2
0.2566

(0.6659)
0.3292

(0.6983)
0.1916

(0.6504)
0.1213

(0.6346)

MNIST

1 minority class out of 10 total classes

α = 0.0
0.3092

(0.8630)
0.9175

(0.9341)
0.4650

(0.8630)
0.3078

(0.8556)

α = 0.1
0.8597

(0.9586)
0.9428

(0.9675)
0.9189

(0.9648)
0.8348

(0.9529)

α = 0.2
0.8750

(0.9640)
0.9377

(0.9715)
0.9283

(0.9706)
0.8882

(0.9631)
3 minority classes out of 10 total classes

α = 0.0
0.0153

(0.7133)
0.8029

(0.9115)
0.0631
0.7222

0.0717
0.7401

α = 0.1
0.7263

(0.9189)
0.8828

(0.9522)
0.7870

(0.9341)
0.6674

(0.9069)

α = 0.2
0.7950

(0.9352)
0.8004

(0.9416)
0.7801

(0.9364)
0.7785

(0.9274)

ρ =5

CIFAR10

1 minority class out of 10 total classes

α = 0.0
0.2892

(0.6382)
0.5987

(0.6468)
0.0942

(0.5506)
0.1491

(0.5631)

α = 0.1
0.4101

(0.7186)
0.6075

(0.7351)
0.4011

(0.7008)
0.3558

(0.6994)

α = 0.2
0.5335

(0.7536)
0.6063

(0.7556)
0.5054

(0.7427)
0.4359

(0.7380)
3 minority classes out of 10 total classes

α = 0.0
0.0313

(0.4742)
0.3813

(0.5639)
0.0512

(0.5108)
0

(0.4514)

α = 0.1
0.5135

(0.6636)
0.6420

(0.6977)
0.4600

(0.6632)
0.4213

(0.6384)

α = 0.2
0.5251

(0.6960)
0.6328

(0.7202)
0.5751

(0.6883)
0.5311

(0.6749)

MNIST

1 minority class out of 10 total classes

α = 0.0
0.7245

(0.8953)
0.9154

(0.9224)
0.8020

(0.9016)
0.7429

(0.8992)

α = 0.1
0.9378

(0.9666)
0.9582

(0.9693)
0.9286

(0.9651)
0.9408

(0.9624)

α = 0.2
0.9448

(0.9711)
0.9670

(0.9734)
0.9561

(0.9733)
0.9481

(0.9686)
3 minority classes out of 10 total classes

α = 0.0
0.0160

(0.7722)
0.8744

(0.9137)
0

(0.7370)
0.0544

(0.7826)

α = 0.1
0.8294

(0.9422)
0.9217

(0.9606)
0.8520

(0.9501)
0.7987

(0.9361)

α = 0.2
0.8557

(0.9536)
0.8818

(0.9595)
0.8730

(0.9536)
0.8321

(0.9442)

Table 2: The minority class testing accuracy and the overall testing accuracy (the quantity in the
parentheses) after sufficiently many communication rounds. If there are multiple minority classes,
we report the worst of them. Here N , the number of devices, is 100. The base FL solver is Fed-Avg
with full-participation: all devices participate in every communication round.
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A ADDITIONAL DETAILS OF THE EXPERIMENTS

A.1 CHOICE OF HYPERPARAMETERS

Implementation of ClientUpdate. As discussed in Section 3.2 and Algorithm 1, the subroutine
ClientUpdate needs to be instantiated in order to carry out the actual computation of CLIMB. While
in principle one can choose ClientUpdate to be any existing FL solver, in our paper we use Fed-Avg.
Specifically, in every call to ClientUpdate, we run Fed-Avg with 5 communication rounds. In the
moderate device setting, i.e. N = 100, all devices participate the training procedure in every round,
while in the massive device setting, i.e. N = 500, we randomly (without replacement) select 100
devices to participate in training.

After receiving the most recent consensus model, each device takes 25 local SGD steps, each of
which uses 20% of the local data as a minibatch. The step size is set to 0.05 uniformly in all
experiments, which is selected by grid searching in the set {0.1, 0.05, 0.02} to ensure the fastest
convergence rate but without diverging.

To ensure a fair comparison, in all the included competing formulations, we adopt the same setting
for the base FL solver. The only difference is that we set the step size of Fed-Avg in Focal-Loss
and Ratio-Loss to be 0.1, which gives better performance than the choice of 0.05 for these two
formulations.

Choice of the dual learning rate ηD and the tolerance parameter ε. We choose ηD to be 0.1 for
all experiments on CIFAR10 and 2 for all experiments on MNIST. Just like the optimization of any
other min-max problems, the dual step size is critical to the stability of the training. We made these
choices by grid searching in the set {4, 2, 1, 0.5, 0.1, 0.05} to ensure the fastest convergence rate but
without diverging.
We choose the tolerance parameter ε to be 0.1 for all experiments on CIFAR10 and 0.01 for all
experiments on MNIST. We made these choices by grid searching in the set {1, 0.1, 0.01, 0.001} to
ensure the fastest convergence rate but without diverging.

A.2 DEEP LEARNING TRAINING TECHNIQUES

Training the deep neural network is known to be tricky. We list all the techniques we used in our
experiments to ensure the reproducibility of our results.

• Data augmentation. For all the experiments on CIFAR10, we use random horizontal flip
and random crop with size 32 and padding 4 to transform the minibatch used in each SGD
step. For MNIST, no data augmentation is used.

• Weight decay. For all experiments, we use weight decay with parameter 0.001.

• Gradient clipping. We use gradient clipping for all experiment setup with maximum gra-
dient norm set to 5.

B ADDITIONAL EXPERIMENTS

B.1 DIRICHLET HETEROGENEITY

To showcase that CLIMB enjoys a superior performance over previous arts beyond the “sort and al-
locate” type heterogeneity setting (the one used in our experiment section), we conduct experiments
where the heterogeneity of the client data distributions are generated according to a Dirichlet distri-
bution (Yurochkin et al., 2019). Such a choice of heterogeneity generating process is widely used
in the literature of Federated Learning, for example (Hsu et al., 2019; Acar et al., 2020). Our im-
plementation of the Dirichlet distribution exactly follows the implementation of (Acar et al., 2020),
which is available in the Github repository https://github.com/alpemreacar/FedDyn.
In Figure 3, we plot the clients’ data composition under the Dirichlet type heterogeneity, which
is very different from the “sort and allocate” type heterogeneity setting used in our experiments.
We conduct experiments under this drastically different type of heterogeneity to showcase that our
approach has clear advantages under a broad settings.
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Imbalance
ratio Dataset Level of

heterogeneity
Baseline
(Eq.(2))

CLIMB
(this work) Ratio-Loss Focal-Loss

ρ = 10

CIFAR10

1 minority class out of 10 total classes

Dirichlet (0.3) 0.1967
(0.7512)

0.3745
(0.7739)

0.1446
(0.7471)

0.0237
(0.7278)

Dirichlet (10.0) 0.1938
(0.7690)

0.2773
(0.7739)

0.2071
(0.7715)

0.1250
0.7606

3 minority classes out of 10 total classes

Dirichlet (0.3) 0.1729
(0.6795)

0.3359
(0.7045)

0.1991
(0.6621)

0.0
(0.6287)

Dirichlet (10.0) 0.1154
(0.6611)

0.2886
(0.7119)

0.1621
(0.6695)

0.0980
0.6522

Fashion-MNIST

1 minority class out of 10 total classes

Dirichlet (0.3) 0.2921
(0.8710)

0.4960
(0.8799)

03977.
(0.8614)

0.2112
(0.8499)

Dirichlet (10.0) 0.2890
(0.8666)

0.4662
(0.8842)

0.3968
(0.8760)

0.2067
(0.8562)

3 minority classes out of 10 total classes

Dirichlet (0.3) 0.2303
(0.7625)

0.5657
(0.8437)

0.098
(0.7294)

0.0
(0.6899)

Dirichlet (10.0) 0.2441
(0.7579)

0.5920
(0.8521)

0.2464
(0.7994)

0.1241
(0.7280)

Table 3: Performance of CLIMB under the Dirichlet type heterogeneity. The minority class testing
accuracy and the overall testing accuracy (the quantity in the parentheses) after sufficiently many
communication rounds. If there are multiple minority classes, we report the worst of them. Here N ,
the number of devices, is 100. The base FL solver is Fed-Avg with full-participation: all devices
participate in every communication round.

In Table 3, we report the results in the highly heterogeneous, i.e. Dirichlet distribution with parame-
ter 0.3 (see Figure ) and moderate heterogeneous (Dirichlet(10.0)) settings, on the CIFAR10 dataset.
We can observe that CLIMB has clear advantages in terms of both the minority class accuracy and
the overall accuracy.

Moreover, as suggested by the reviewer, we include a new dataset Fashion-MNIST (Xiao et al.,
2017) in Table 3. Similar to MNIST, Fashion-MNIST consists of a training set of 60,000 examples
and a test set of 10,000 examples. Each example is a 28x28 grayscale image, associated with a label
from 10 classes. For Fashion-MNIST, we did not perform data augmentation and we use the same
NN training technique as described in section A. In terms of hyperparameter setting, we retain the
choice for CIFAR10, with the only difference that the dual learning rate for CLIMBis increased from
0.1 to 0.3.

B.2 PERFORMANCE OF CLIMB UNDER VARIOUS HETEROGENEOUS LEVELS

As suggested by the reviewer, we perform the ablation study on α, the parameter that controls the
heterogeneity level. We focus on the results of the CIFAR10 dataset with the imbalance ratio ρ set to
10. We can observe CLIMB has the biggest advantage in the most heterogeneous setting when α is
close to 0. The performance difference between CLIMB gradually decays as α increases and when
α = 0.5, the Ratio-Loss proposed by (Wang et al., 2021a) outperforms CLIMB. Consequently,
CLIMB is suitable in the highly heterogeneous setting which is usually encountered in practical
settings.

B.3 CONVERGENCE CURVE

We plot the convergence curves for the minority testing accuracy and overall testing accuracy under
different levels of heterogeneity settings on the CIFAR10 dataset in Figure 1. We can observe that
CLIMB has clear advantages on both results in the included settings
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Imbalance
ratio Dataset Level of

heterogeneity
Baseline
(Eq.(2))

CLIMB
(this work) Ratio-Loss Focal-Loss

ρ = 10 CIFAR10

1 minority class out of 10 total classes

α = 0.0
0.0229

(0.5734)
0.5575

(0.6076)
0

(0.4836)
0

(0.4205)

α = 0.1
0.2753

(0.7143)
0.5054

(0.7246)
0.2929

(0.6951)
0.2284

(0.6860)

α = 0.2
0.2988
0.7348

0.4689
(0.7511)

0.3825
(0.7329)

0.2618
(0.7249)

α = 0.3
0.3357

(0.7511)
0.4425

(0.7544)
0.4312

(0.7534)
0.3304

(0.7455)

α = 0.4
0.3652

(0.7610)
0.4046

(0.7634)
0.3948

(0.7627)
0.3239

0.(7526)

α = 0.5
0.4127

(0.7714)
0.4369

(0.7774)
0.5015

(0.7734)
0.3289

(0.7639)

Table 4: Ablation study on α. The minority class testing accuracy and the overall testing accuracy
(the quantity in the parentheses) after sufficiently many communication rounds. If there are multiple
minority classes, we report the worst of them. Here N , the number of devices, is 100. The base FL
solver is Fed-Avg with full-participation: all devices participate in every communication round.
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Figure 1: Convergence curve. The experiment setup follows the one in Table 2.

B.4 PERFORMANCE OF FEDPD

We report the results of using FedPD (Zhang et al., 2020) which is equivalent to FedDyn (Acar et al.,
2020) as base FL solver to solve the standard FL objective (2). We observe that while FedPD is more
efficient than FedAvg at the early stage of the training, but is less stable than FedAvg and we hence
pick FedAvg to be the base FL solver for CLIMB. Our implementation of FedPD follows exactly
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Figure 2: Convergence curve. The experiment setup follows the one in Table 2.

the code of the original implementation by Acar et al. (2020) and the hyperparameter η of FedPD is
set to 10 which gives the best performance in our experience.
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C PROOFS

C.1 PROOF OF THEOREM 3.1

Lemma C.1 The non-parametric problem has zero duality gap, i.e.

D̂∗ε = max
λ∈RN

+

min
φ̂∈Ĥ
L(φ, λ) = min

φ̂∈Ĥ
max
λ∈RN

+

L(φ, λ) = P̂ ∗ε . (10)

Proof C.1 This proof follows the lines of (Ribeiro, 2012; Chamon et al., 2021), which exploits the
fact that the perturbation set of the primal problem is convex by the Lyapunov convexity theorem
(Tardella, 1990), and connects the Supporting Hyperplane Theorem (Bertsekas, 2009) with the dual
problem.

To begin with, recall that the dual problem D̂∗ε is a relaxation of the primal problem P̂ ∗ε , and thus it
is always a lower bound, i.e. D̂∗ε ≤ P̂ ∗ε (Boyd & Vandenberghe, 2004; Bertsekas, 2009). In order to
show that zero duality holds, it then suffices to show that P̂ ∗ε ≤ D̂∗ε , in which case P̂ ∗ε = D̂∗ε by the
anti-symmetry property of the inequality.

To express problem CFL a in a more succinct way, we express the objective function as f̄(φ̂) =
1
N

∑N
k=1 fk(φ̂), and define the constraint function gi(φ̂) = fi(φ̂) − 1

N

∑N
k=1 fk(φ̂). We define the

perturbation set P of problem (Pφ) as follows,

P = {(p, c) ∈ RN+1, with c = [c1, . . . , cN ]
∣∣∃φ̂ ∈ Ĥ, f̄(φ) ≤ p, gi(φ) ≤ ci} (11)

Given Assumption 3.2, the perturbation set P is a convex set by (Chamon et al., 2021, Lemma 1).
Now note that the point [P̂ ∗ε , ε] does not belong to the interior of the perturbation set P . This is true
as, by definition P ∗ is the minimum p0 that satisfies the constraints ε in P . We can now leverage the
Supporting Hyperplane Theorem (Bertsekas, 2009, Proposition 1.5.1), to claim that there exists at
least one vector [v0,v] ∈ RN+1 such that,

v0p+ vT c ≥ v0P̂
∗
ε + vT ε,∀(p, c) ∈ P. (12)

First, note that for (12) to hold it is necessary that the vector [v0,v] ∈ RN+1 is non-negative in all
its components. If the supporting vector [v0,v] ∈ RN+1 could take negative values, then there is
a value for which the inequality is reversed, thus [v0,v] ∈ RN+1 are non-negative. Second, note
that the first element of the perturbation vector must be positive v0 > 0. As if v0 = 0, would imply
that [P̂ ∗ε , ε] is an interior point of P , and thus there exists a feasible point φ

′
with [P

′
, ε] such that

P
′
< P̂ ∗ε contradicting the definition of P̂ ∗ε . By defining v̄ = [v1/v0, . . . , vN/v0], we can rewrite

(12) as,

p+ v̄T (c− ε) ≥ P̂ ∗ε ,∀(p, c) ∈ P. (13)

It can now be seen that (13) is nothing but the non-parametric version of the Lagrangian of the
Federated Learning problem as stated in (5),

f̄(φ) +

N∑
i=1

v̄i(gi(φ)− ε) ≥ P̂ ∗ε ,∀φ̂ ∈ P. (14)

We can thus apply the minimum operator on the right hand for every v̂i as follows

minimum
φ∈P

f̄(φ) +

N∑
i=1

v̄i(gi(φ)− ε) ≥ P̂ ∗ε . (15)

Thus showing that strong duality holds as we showed that D̂∗ε ≥ P̂ ∗ε . �
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Proof C.2 (Theorem 3.1) Given thatH ⊆ Ĥ, and that the functional problem has zero duality gap
(i.e. P̂ ∗ε = D̂∗ε ) by Lemma C.1, we can write the following inequality,

P̂ ∗ε = D̂∗ε = max
λ∈RN

+

min
φ̂∈Ĥ
L(φ̂,λ) ≤ max

λ∈RN
+

min
θ∈Θ
L(θ,λ) ≤ D∗ε (16)

Now we need to obtain a bound between the parametric problem P ∗ε , and the functional version P̂ ∗ε
of the problem. To this end we define the set of feasible solutions of the problem CFL with respect to
the perturbation as follows,

Sε = {h : fi(h)− f̄(h) ≤ ε ∀i ∈ [1, . . . , N ], h(X )→ RC} (17)

We also define the set of optimal solutions of the non-parametric problem as follows,

{φ̂∗ε} = argmin
φ̂∈Ĥ

f̄(φ̂) (18)

s.t. fi(φ̂)− f̄(φ̂) ≤ ε, ∀i ∈ [1, . . . , N ].

Note that as {φ̂∗ε} are solutions to the problem CFL, they are feasible for constraint ε and thus
{φ̂∗} ∈ Sε ∩ Ĥ. Given that the problem is feasible with constraint ε − 2Lξ, we can now pick one
element of the set of optimal solutions, which we will denote φ̂∗ε−2Lξ, and obtain one parametric
function fromH which we will denote φ(θ̃ε−2Lξ, ·) ∈ H, θ̃ε−2Lξ ∈ Θ that satisfies

sup
x∈X
‖φ̂∗ε−2Lξ(x)− φ(x, θ̃ε−2Lξ)‖ ≤ ξ (19)

which exists by assumption 3.3. We know that as the loss function is Lipschitz continuous, and φ(θ̃, ·)
is close to φ̂ by construction (cf. (19)), thus the following holds

‖fi(φ̂∗ε−2Lξ)− fi(θ̃ε−2Lξ)‖ ≤ Lξ (20)

Using (20), we can show that θ̃ε−2Lξ is feasible for the Constrained Federated Learning problem.
Given that φ∗ε−2Lξ is feasible for the constrained federated learning problem (CFL) with constraint
ε− 2Lξ, then the constraint difference for each constraint i is bounded by,

fi(φ̂
∗
ε−2Lξ)− f̄(φ̂∗ε−2Lξ) ≤ ε− 2Lξ

fi(θ̃ε−2Lξ)− f̄(θ̃ε−2Lξ) +

(
fi(φ̂

∗
ε−2Lξ)− f̄(φ̂∗ε−2Lξ))− (fi(θ̃ε−2Lξ)− f̄(θ̃ε−2Lξ))

)
≤ ε− 2Lξ

fi(θ̃ε−2Lξ)− f̄(θ̃ε−2Lξ)− ‖fi(φ̂∗ε−2Lξ)− f̄(φ̂∗ε−2Lξ))− (fi(θ̃ε−2Lξ)− f̄(θ̃ε−2Lξ))‖ ≤ ε− 2Lξ

fi(θ̃ε−2Lξ)− f̄(θ̃ε−2Lξ)− 2Lξ ≤ ε− 2Lξ

(21)

where the last inequality holds as the loss function is L-Lipschitz by assumption (3.1), and φ(θ̃, ·)
satisfies (19). Hence, we can say that φ(θ̃ε−2Lξ, ·) ∈ Sε ∩ H, and thus φ(θ̃ε−2Lξ, ·) is a feasible
solution of the constrained federated learning problem with constraint ε. Now we can express the
value of the duality gap as follows,

P ∗ε ≥ D∗ε ≥ min
θ∈Θ
L(θ,λ) ≥ min

φ∈Ĥ
L(φ,λ) ∀λ ∈ RN+ . (22)

Where the previous inequality holds as H ∈ Ĥ by assumption 3.3. Now, given that there φ∗ε−2Lξ is
the solution to the constrained federated learning problem with constraint ε − 2Lξ, which attains
the value P̂ ∗ε−2Lξ and that the functional version of the problem has zero-duality gap by Lemma C.1,
defining the optimal dual variables as λ∗ε−2Lξ, it yields

P ∗ε ≥ D∗ε ≥ min
φ∈Ĥ
L(φ,λ∗ε−2Lξ) + 2Lξ|λ∗ε−2Lξ|1 − 2Lξ|λ∗ε−2Lξ|1 = P̂ ∗ε−2Lξ − 2Lξ|λ∗ε−2Lξ|1.

(23)
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We can now further compare the value of P̂ ∗ε−2Lξ, with f̄(θε−2Lξ) as follows,

P̂ ∗ε−2Lξ = P̂ ∗ε−2Lξ + f̄(θ̃ε−2Lξ)− f̄(θ̃ε−2Lξ) (24)

≥ f̄(θ̃ε−2Lξ)− ‖P̂ ∗ε−2Lξ − f̄(θε−2Lξ)‖ (25)

≥ P ∗ε − Lξ. (26)

Note that the last inequality holds by optimality, i.e. P ∗ε ≤ f̄(θ̃ε−2Lξ), given that θ̃ε−2Lξ is a feasible
point of the Constrained Learning Problem by (21). Combining (26) with (23) completes the proof.

C.2 COMMENTS ON THEOREM 3.1

The bound in Theorem 3.1 quantifies the distance between the Constrained Federated Learning
problem (CFL) and the dual problem D̂∗ε . This bound is controlled by two terms the approximation
bound and the perturbation bound. On the one hand, we have the approximation bound term given
by Lξ. This term is related to the distance between functions in the parametric and non-parametric
setting i.e. assumption (3.3). The approximation bound is linked to the fact that the Constrained
Federated Learning problem CFL has zero duality gap in the non-parametric domain φ ∈ Ĥ by
Lemma (C.1). Therefore, the value of the Constrained Federated Learning problem in the paramet-
ric case P̂ ∗ε should be at most Lξ away, given that the loss function ` is L-lipschitz by assumption
3.1. On the other hand, we have the perturbation bound, which is (2Lξ)‖λ∗ε−2Lξ‖. The important
part of this bound is the inclusion of the norm of the optimal dual variable of the perturbed problem
with constraints ε−2Lξ. This constant shows up given that we need to find a feasible solution of the
non-parametric problem. In order to relate the non-parametric and the parametric feasibility sets,
we perturb the non-parametric problem until we assure that the parametric function close to it is fea-
sible in the Constrained Federated Learning Problem CFL. Therefore, this constant ‖λ∗ε−2Lξ‖ can
be seen as the Lipschitz constant of the non-parametric Constrained Federated Learning problem
with respect to the perturbation, i.e.,

P̂ ∗ε−2Lξ − P̂ ∗ε ≤ ‖λ
∗
ε−2Lξ‖(ε− (ε− 2Lξ)) (27)

≤ ‖λ∗ε−2Lξ‖2Lξ. (28)

Note that as constraint ε− 2Lξ is smaller than ε, then P̂ ∗ε will be smaller or equal than P̂ ∗ε−2Lξ.

C.3 PROOF OF THEOREM 3.2

In order to prove Theorem 3.2, we will first provide the definition of supergradient, and then show
that evaluating the constraint slack for each minimizer θλ is a supergradient. Recall that the dual
function is a concave function given that it is a pointwise infimum of a family of affine functions of
λ (Boyd & Vandenberghe, 2004). The proof that follows is based on the δ-subgradient proof that
can be found in (Bertsekas, 2015).

Definition C.1 (δ-Supergradient) (Bertsekas, 2015) Given the concave dual function d(λ), and a
scalar δ > 0, we say that the vector g(λ) is a δ-supergradient of d(λ) at a point λ ∈ RN+ if

d(µ) ≤ d(λ) + g(λ)T (µ− λ) + δ, ∀µ ∈ RN . (29)

Lemma C.2 (Constraint Slack is a δ-Supergradient) For every dual variable λ, given the ap-
proximate minimizer θλ as in Assumption 3.4, then the constraint slacks,

[g(λ)]i = fi(θλ)− f̄(θλ)− ε (30)

are a δ-supergradient of the dual function at point λ, i.e.,

d(µ) ≤ d(λ) + g(λ)T (µ− λ) + δ, ∀µ ∈ RN (31)

Proof C.3 From Assumption 3.4 we can express the dual function at any given λ as follows,

L(θλ,λ) ≤ d(λ) + δ (32)
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We can then add and subtract the dual function at a given point µ as follows,
d(λ) ≥ L(θλ,λ) + d(µ)− d(µ)− δ (33)

Given that d(µ) is the minimum, we can upper bound the dual function by the value at L(θλ,µ) to
obtain,

d(λ) ≥ d(µ) + L(θλ,λ)− L(θλ,µ)− δ (34)

≥ d(µ) +
1

N

N∑
i=1

(fi(θλ)− f̄(θλ)− ε)(λi − µi)− δ, (35)

for all µ.

Proof C.4 (Theorem 3.2) The following proof is along the lines of other subgradient/supergradient
method proofs (Boyd & Mutapcic; Chamon & Ribeiro, 2020; Bertsekas, 2015). Let V k+1 be the
distance between λk+1 and λ∗,

V k+1 =
1

N
‖λk+1 − λ∗‖2 (36)

=
1

N

N∑
i=1

‖λk+1
i − λ∗i ‖2 (37)

We begin by expressing V k+1 in terms of the previous iteration as follows,

V k+1 =
1

N

N∑
i=1

‖[λki + ηD(fi(θ
k
λ)− f̄(θkλ)− ε]+ − λ∗i ‖2 (38)

≤ 1

N

N∑
i=1

‖λki + ηD(fi(θ
k
λ)− f̄(θkλ)− ε− λ∗i )‖2 (39)

≤ V k +
1

N

N∑
i=1

η2
D‖fi(θkλ)− f̄(θkλ)− ε‖2 + 2ηD(fi(θ

k
λ)− f̄(θkλ)− ε)(λki − λ∗i ), (40)

Given that ` is bounded by B by Assumption 3.1, we can bound the first term of the previous expres-
sion by NB2, and as λk ∈ Fk, then

V k+1 ≤ V k + η2
DB

2 + 2

N∑
i=1

ηD(fi(θ
k
λ)− f̄(θkλ)− ε)(λki − λ∗i ) (41)

We can now bound the previous inequality using the value of D∗ε as follows,

V k+1 ≤ V k + 2ηD(d(λk)−D∗ε + δ +
ηD
2
B2) (42)

Hence, by taking K steps the recursion can be expressed as,

V K ≤ V 0 +

K−1∑
k=0

2ηD(d(λk)−D∗ε + δ +
ηD
2
B2) (43)

Given a precision r > 0, we can set the stopping time Tr such that,

Tr = min{k | d(λk)−D∗ε + δ +
ηD
2
B2 > −r} (44)

Then, we can conclude that at stopping time Tr,

d(λTr ) ≥ D∗ε − δ −
ηD
2
B2 − r (45)

Notice that d(λTr ) ≤ D∗ for all dual variables λk. To conclude, notice that as V k ≥ 0, and for all
k ≤ Tα we can expresses (41) as,

0 ≤ V 0 − Tr2ηDr (46)

From where we can conclude that the stopping time is finite Tr ≤ V0

2ηDr
completing the proof.

�
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C.4 COMMENTS ON THEOREM 3.2

In Theorem 3.2 we show the convergence of the dual function d(λt) to the optimal solution of
the dual function, i.e. the dual problem D∗ε up to some error that depends on the capability of the
parametric function class ξ, the dual step size ηD, and the error r introduced by the optimization
oracle in Assumption 3.4. We can only obtain such a result since the dual function is potentially non-
smooth with respect to the dual variable, and hence we can only use the analysis in the literature
of sub-gradient optimization. Moreover, since we do not know the actual optimal value of the dual
problem, we cannot use the Polyak step size which leads to the dependence on the dual step size ηD
in our convergence result in (9). Given the non-convexity of the problem, we would require further
assumptions to strengthen our theoretical results to guarantee convergence in the primal variable.

C.5 ERGODIC CONVERGENCE

In this section we will present an alternative proof of convergence. The proof here presented goes
along the lines of Chamon et al. (2021). We will prove an ergodic convergence of our algorithm that
is near optimal and near feasible. We will still rely in assumptions 3.1, 3.2, 3.3, and 3.4 but in this
case the result will not be a last iterate proof as in Theorem 3.2.

Theorem C.1 Under Assumptions 3.1, 3.2, 3.3, and 3.4 if there exists a feasible point of the Con-
strained Federated Learning problem CFL with constraint ε−β, β > 0, then the average of T steps
of Algorithm 1 verifies

1

T

T−1∑
t=0

f̄(θt) ≤ P ∗ε + δ +O(ηD) (47)

1

TN

T−1∑
t=0

fi(θt)− f̄(θt)− ε ≤ O
(

1

TηD

)
∀i ∈ [1, . . . , N ]. (48)

In Theorem C.1, we show sub-optimality and near feasibility in an ergodic average. Apart from
Assumptions 3.1, 3.2, 3.3, and 3.4, we require a strictly feasible point to exist. In the particular case
of the cross-entropy loss, this requirement can be satisfied by a classifier that outputs the uniform
distribution for all samples. This way, all losses will be equal. In (47), we show that the objective
function is sub-optimal, and this sub-optimality is controlled by the oracle constant δ from Assump-
tion 3.4, and the dual step size ηD. Note that the right hand side of (47) does not depend upon the
number of iterations T , this is due to the fact that we assume oracle queries. The near feasibility part
(48), is related to the fact that throughout the trajectory, the norm of the dual variables λ is bounded.
Therefore, at any given time λt is obtained by the summation of all the sub-gradient steps taken
up to time t. This corresponds to the summation of all constrained slackness (i.e. left hand side of
(48)).

Proof C.5 (Theorem C.1) We will start by proving sub-optimality of the average over the iterates.
To do so, we can begin with the summation of the objective function and relate it to the Lagrangian
as follows,

1

T

T∑
t=1

f̄(θt) =
1

T

T−1∑
t=0

L(θt,λt)−
1

T

T−1∑
t=0

N∑
i=1

λit
(fi(θ)− f̄(θ) + ε)

N
(49)

≤min
θ∈Θ

1

T

T−1∑
t=0

L(θt,λt) + ρ− 1

T

T−1∑
t=0

N∑
i=1

λit
(fi(θ)− f̄(θ) + ε)

N
(50)

≤D∗ε + ρ− 1

T

T−1∑
t=0

N∑
i=1

λit
(fi(θ)− f̄(θ) + ε)

N
(51)

≤P ∗ε + ρ− 1

T

T−1∑
t=0

N∑
i=1

λit
(fi(θ)− f̄(θ) + ε)

N
(52)

Where (50) holds by Assumption 3.4, inequality (51) holds since the dual problem is the maximum
over λ, and (52) holds since the dual problem is always a lower bound of the primal problem Boyd
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& Vandenberghe (2004). In order to complete the near optimality proof, we need to bound the last
term in the previous (52). To do so we express the squared norm of the iterates of λt as follows,

‖λT+1 − λ0‖2 =‖[λt + ηD
1

N
[f1(θt)− f̄(θt)− ε, . . . , fN (θt)− f̄(θt)− ε]]+ − λ0‖2 (53)

≤‖λt + ηD
1

N
[f1(θt)− f̄(θt)− ε, . . . , fN (θt)− f̄(θt)− ε]− λ0‖2 (54)

≤‖λt‖2 + 2ηD

N∑
i=1

λit
(fi(θ)− f̄(θ) + ε)

N
+
η2
D

N2

N∑
i=1

‖fi(θt)− f̄i(θt)− ε‖2

(55)

≤‖λt‖2 + 2ηD

N∑
i=1

λit
(fi(θ)− f̄(θ) + ε)

N
+
η2
D

N2
(N2B2) (56)

≤‖λ0‖2 + 2ηD

T−1∑
t=0

N∑
i=1

λit−1
(fi(θ)− f̄(θ) + ε)

N
+
η2
D2B2T

N
(57)

≤2ηD

T−1∑
t=0

N∑
i=1

λit
(fi(θ)− f̄(θ) + ε)

N
+
η2
D2B2T

N
(58)

Where (54) holds since the norm of the difference between two points is larger before projection
them to a convex set. Note that the initialization of the dual variable is done with the zero vector
i.e., λ0 = [0, . . . , 0] ∈ RN . Given that the norm is always positive, we can express the previous
inequality as

− 1

T

T−1∑
t=0

N∑
i=1

λit
(fi(θ)− f̄(θ) + ε)

N
≤ηDB

2

N
(59)

Substituting (59) into (52) completes the near optimality part of the proof.

To complete the near feasiblity part of the proof, note that as we require the problem to be strictly
feasible, then the norm of any of the optimal dual variables is finite i.e. ‖λ∗‖ < ∞,∀λ∗ ∈ Λ∗,
where Λ∗ = argmaxλ d(λ). We denote Λ∗ the set of optimal dual variables of the dual problem.
By applying the iterates of the Algorithm 1, at each coordinate i we obtain,

λiT ≥ λiT−1 + ηD
1

N
(fi(θT−1)− f̄(θT−1)− ε) (60)

≥ λi0 + ηD
1

N

T−1∑
t=0

(fi(θt)− f̄(θt)− ε) (61)

≥ ηD
1

N

T−1∑
t=0

(fi(θt)− f̄(θt)− ε) (62)

Therefore, by bounding the norm of the dual variable we obtain

1

TN

T−1∑
t=0

(fi(θt)− f̄(θt)− ε) ≤
λit+1

ηDT
≤ |λit+1 − λ∗i |+ λ∗i

ηDT
≤ (

B −D∗ε
β

+ ‖λ∗‖) 1

ηDT
(63)

where the last inequality holds by (Chamon et al., 2021, Lemma 6).

D PRIVACY-PRESERVING IMPLEMENTATION OF CLIMB

As pointed out by one of the reviewers, we acknowledge that a client corresponding to a large dual
variable is more likely to possess minority data. However, we emphasize that under the standard
federated learning paradigm, CLIMB can be implemented in a privacy-preserving manner: one
cannot recover the dual variables on the server side.
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To achieve this goal, first observe that the weight computing step and dual update step of CLIMB
(line 4 and line 6 of Algorithm 1 respectively) can be carried out locally as long as the client has
access to the global average dual variable λ̄ and the global average loss f̄(θt+1) since other terms
only involve local information. In order to compute these two terms on the server in a privacy-
preserving manner, one needs to address the following simplified problem:

Assuming that each client privately holds a quantity ai, how can we compute the
global average ā = 1

n

∑
i∈[n] ai without revealing the quatities ai’s to the server?

Assuming that there is a secret key that is available to the clients but not to the server, then with the
Homomorphic Encryption technique the clients can

1. encrypt the dual variable λi the and local loss fi(θt+1),
2. communicate them with the server to compute the average homomorphically (the server

cannot decrypt the individual contribution since it does not have the key),
3. receive the encrypted averages from the server and decrypt the received averages locally

using the secret key.

In this way, both the average dual variable and the global average loss can be computed without
being revealed to the server. The aforementioned scheme is often known as secure multi-party
computation and the secret key is usually implemented through a trusted 3rd party (for example see
the discussion on page 42 of the monograph Kairouz et al. (2019)).
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Dirichlet(0.3) Dirichlet(10.0)

Figure 3: Client data composition under the Dirichlet type heterogeneity with three minority classes
(Class Labels {1, 3, 5}) and Imbalance Ratio ρ = 10. The size of the dot represents the frequency of
the corresponding class in a simple client. The left figure is generated with hyperparameter 0.3, cor-
responding to a highly heterogeneous setting, while the right one is generated with hyperparameter
10, corresponding to a moderate setting. We follow the implementation from (Acar et al., 2020), in
which a Dirichlet prior is sampled for each client. One client at a time, we sample without replace-
ment according to each client’s prior. Once a class runs out of samples, the subsequent clients do
not own samples of that class.
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