
Supplementary Material for
Learning with Muscles: Benefits for Data-Efficiency and

Robustness in Anthropomorphic Tasks

A Muscle model
In this section, the implementations of the muscle models for demoa and MuJoCo are described. The
demoa model approximates biological muscles with more physiological detail and accuracy, whereas
the simpler MuJoCo model allows the simulation of rudimentary muscular properties at minimal
computational cost, rendering it usable for machine learning.

A.1 Muscle model in Mujoco
Even though the MuJoCo simulator includes the capability of simulating muscles, it requires the
explicit definition of tendon insertion points and wrapping surfaces for each model. We, therefore,
use our own muscle implementation for the MuJoCo experiments, that does not contain tendons. As
a direct consequence, the muscle-fiber length is uniquely determined by the joint angle.

In the following, we describe activation dynamics, definitions of muscle-fiber length and velocity, the
computation of the resulting torque and the parametrization.

Muscle-tendon-unit Each controllable joint of the MuJoCo model is actuated by two monoarticular
muscles and we do not compute tendon length. We assume that:

lMTU = lCE, (1)

where lMTU is the length of the entire muscle-tendon-unit and lCE is the length of the muscle fiber,
or contractile element. We define muscle-fiber length and velocity by a linear equation [1, 2, 3]:

lCE,i = mi φj + lref,i (2)

l̇CE,i = mi φ̇j , (3)

where φj is the joint angle, mi and lref,i are computed from user-defined parameters, and i ∈ {1, 2},
as we assume two antagonistic muscles per joint. The parameter mi acts as a constant moment arm
in our model, see Eq. 6.

Activation dynamics The evolution of muscle activity obeys the following first-order ordinary
differential equation:

ȧ(t) =
1

∆ta
(u(t)− a(t)), (4)

where u(t) is a control signal.

Muscle force Given the previous quantities, the muscle force is computed by:

Fi =
[
FL(lCE,i) FV(vscale l̇CE,i)ai + FP(lCE,i)

]
Fmax, (5)

where vscale is a scaling parameter to adjust in which region of the force-velocity (FV)-curve typical
fiber velocities operate. We can then compute the resulting joint torque:

τ = −(m1 F1 +m2 F2). (6)

The functions FL, FV and FP are given by MuJoCo internal functions that phenomenologically
model experimental data and are applied to normalized muscle lengths and velocities, see MuJoCo
documentation [4] and Fig. 1.

Parametrization As the there is a one-to-one mapping of joint angle to muscle lengths in our
model, we can determine the required parameters mi and lref,i, if a mapping of lmin to φmin and lmax

to φmax is specified (assuming lmax to be the maximal muscle-fiber length lCE). Inserting them into

1

0.6 0.8 1.0 1.2 1.4 1.6

lCE/lCE,opt

0.00

0.25

0.50

0.75

1.00

1.25

F
/
F

m
a
x

FL
FP
FL+FP

−1.0 −0.5 0.0 0.5 1.0

l̇CE/vmax

FV

Figure 1: Force-length (FL) and force-velocity (FV) relationships and passive force (FP) used in
MuJoCo [4]. We use the same phenomenological functions in our own MuJoCo muscle model. While
FL and FV get scaled by the current muscle activity a, FP does not (see Eq. 5).

Table 1: Parameters for the MuJoCo muscle morphology.

(a) Muscle parameters

Parameter Value
lmax 1.05
lmin 0.95
φmax π/2 [rad]
φmax -π/2 [rad]
∆ta 0.01 [s]
vscale 0.5

(b) Maximum isometric force

Task Value
ArmMuJoCo 295 [N]
Biped 5000 [N]

Eq. 1 and solving the resulting system of equations gives:

m1 =
lmax − lmin

φmax − φmin + ε
(7)

lref1 = lmin −m1 φmin (8)

m2 =
lmax − lmin

φmin − φmax + ε
(9)

lref2 = lmin −m2 φmax (10)
(11)

All in all, φmin, φmax, lmin, lmax and Fmax are required to be specified. The constant ε = 0.01
ensures numerical stability. We use the same parametrization for each MuJoCo task, see Table 1.

The maximum and minimum joint angles were chosen to allow for a large range of motion. They
do not constitute hard limits, but the passive elastic force FP will increase strongly when reaching
them. The maximum and minimum fiber lengths are identical to the MuJoCo default values. As we
want to study the benefits of muscular properties in learning, we chose the time and velocity scales
∆ta = 0.01 and vscale = 0.5 to be large enough to produce noticeable effects, such as low-pass
filtering and self-stabilization properties, across all performed tasks. To determine maximum muscle
forces, we trained muscle-actuator policies for a chosen maximum force value, after which we
adjusted maximum torque-actuator forces to be identical or slightly larger to the maximally observed
muscle forces in the final task policies. We repeated this procedure with different force values until
good performance could be observed for both morphologies, see Suppl. E.1 for an evaluation across
different force values. All other MuJoCo internal parameters related to muscle modeling are kept to
their default values.

In practice, we implement the muscle model in Cython [5], interfacing with OpenAI gym [6], which
achieves similar execution speed to native MuJoCo.

2

A.2 Muscle model in demoa
The muscle model implemented in demoa [7] includes additionally visco-elastic, passive tendon char-
acteristics and muscle routing as joint angle-dependent lever arms to account for many physiological
details. In the following, we describe the activation and contraction dynamics of the muscle model,
as well as the tendon characteristics and the nonlinear lever arms.

Activation dynamics The muscles are activated with the learned and optimized control signal u,
which is nonlinearly transformed into an activation signal. The activity a is following a first-order
differential equation of normalized calcium ion concentration γ as introduced by Hatze [8] and
simplified by Rockenfeller et al. [9, 10]:

γ̇(t) = MH(u(t)− γ(t)) (12)

and a nonlinear mapping onto the muscles activity

a(t) =
a0 +$

1 +$
, (13)

with $(γ(t), lCE(t)) = (γ(t) ·ρ(lCE))
ν and ρ(lCE) = $opt · lCE

lopt
= γc ·ρ0 · lCE

lopt
. The parameter values

are chosen muscle non-specifically and are given in the description of the models (see [11, 12]).

Muscle-tendon-unit The predicted forces are modeled using Hill-type muscle models [13] includ-
ing four spring-damper components (see Fig. 2): The contractile element (CE) models the active
force production of biological muscle fibers, including the nonlinear force-length and nonlinear
force-velocity relation. The parallel elastic element (PEE) models the passive connective tissue in
the muscle belly and is arranged in parallel to the CE. The visco-elastic properties of the tendons
are modeled using a serial elastic element (SEE) and a serial damping element (SDE). All in all, the
governing model dependencies for all muscles i = 1, ..., n are:

l̇CE,i = fCE(lCE,i, lMTU,i, l̇MTU,i, ai) (14)
ȧi = fa(ai, ui, lCE,i) (15)

fMTU,i = fMTU,i(lMTU,i, l̇MTU,i, lCE,i, ai) , (16)

where the first differential equation (Eq. 14) denotes the contraction dynamics which models the
velocity l̇CE of the contractile element. This contraction velocity is dependent on the current CE
length lCE, the length and contraction velocity of the muscle-tendon unit lMTU and l̇MTU respectively,
and the activity a. The latter is modeled by the activation dynamics (see Eq. 12,13,15). Finally, a
force fMTU,i for each muscle is produced which is translated into joint torques.

Nonlinear lever arms To translate the force into joint torques, the muscle path around the joints
is routed via deflection ellipses in demoa [14]. If the length of the half-axises of all ellipses are set
to zero, this approach can be simplified to the more commonly used fixed via-point approach for
muscle routing. Based on the resulting moment arms of the muscles, the force fMTU is translated to
generalized torques acting on the degrees of freedom of the system.

State of the system Using a musculoskeletal model with a Hill-type muscle model, as described
in this section, increases the number of state variables because two additional differential equations
need to be solved for each included muscle. The entire state vector x can therefore be formulated as:

x ∈ R2nmusc+2nθ = {γi, lCE,i, θj , θ̇j} (17)

where θ and θ̇ represent the generalized joint angle coordinates and their respective velocities, and
nmusc and nθ denote the number of muscles and the number of joints, respectively.

B Experimental details and hyperparameters
In this section, we describe algorithm implementation details while also reporting additional settings
that were used to obtain previously shown results, as well as used hyperparameters. The section is
divided such that experiment details are shown with the control algorithm that was used to generate
the results.

3

SDECE
CE

lMTU

PEE

l lSEE

SEE

Figure 2: The muscle model in demoa is modeled as lumped Hill-type muscle model (figure adapted
from Haeufle et al. [13]).

B.1 Optimal Control (OC)
In the optimal control case, we used the covariance matrix adaptation evolution strategy (CMA-ES)
[15] to find the control policy u(k). As mentioned in the main paper, we chose the same population
size and number of generations for both actuator morphologies to allow for a fair comparison, even
though the number of decision variables nu is always larger in the muscle-actuated case. In all cases,
if not otherwise mentioned, we use a fixed population size of 36 and a fixed number of generations
of 100 while varying the control resolution c. If the control resolution is refined, this correlates to
an increase in the number of decision variables nu, however, we specifically did not change the
population size or generation number because we wanted to compare the data-efficiency and learning
with limited resources for the chosen actuators. The temporal control resolution c was typically varied
for c = {0.05, 0.15, 0.3} s. The upper bound of these control resolutions (c = 0.3 s) corresponds to
a triphasic control pattern for a typical movement duration of 0.9 s as it was selected in the smooth
point-reaching and squatting task. This selection of c was inspired by biological experiments, where it
was shown that triphasic patterns occur in muscle surface electromyograms in typical point-reaching
movements (e.g. see [16, 17]). The main hyperparameter of the CMA-ES algorithm σ was set to the
default value of 0.2 if not otherwise stated.

B.2 Model Predictive Control MPC
We employed a warm start procedure using the CMA-ES optimizer and afterwards started the MPC
routine with a local optimizer BOBYQA [18] (part of the standard python optimization package
NLOPT). As temporal control resolution in this closed-loop setting, we chose a very fine resolution of
c = 0.01 s, similar to the RL setup. This allows counteracting perturbations. The prediction horizon
was varied between tpred = {0.2, 0.3, 0.4, 0.5} s as shown in the result section of the main paper.

B.3 Reinforcement Learning (RL)
We use the RL algorithm MPO [19], implemented in TonicRL [20]. Hyperparameters were optimized
with a simplified in-house CEM optimizer. All RL experiments are averaged over 8 random seeds
except for the hyperparameter optimization, which would have been computationally intractable.
Each experimental run was computed with 1 NVIDIA V100 GPU and 20 CPUs of varying speed and
type. We use a fixed control resolution of c = 0.01 s for all RL experiments.

B.3.1 Experimental details
We give further experimental details in this section.

Data-efficiency For the point-reaching experiments, we used the hyperparameters that were found
in the meta-optimization (see Fig. 6) for both morphologies. For the hopping task, we used default
MPO parameters. The updated learning curves with optimized parameters, as well as additional
results on hyperparameters and maximum force settings can be found in Suppl. E.

Hyperparameter optimization We optimized the performance of both actuator morphologies in
the precise point-reaching task in MuJoCo (see Fig. 5). For each iteration, Nsets sets of random
parameters are drawn from fixed normal and log-normal distributions. For each of these sets, the
task performance is evaluated after Ttrain environment interactions, where Ttrain is chosen such
that a noticeable increase in performance can be observed with both actuator morphologies. After
each iteration, Melite elite parameter sets are chosen and the mean and standard deviation of each
parameter-generating distribution is updated by fitting a (log-)normal distribution to the Melite elite
sets with maximum-likelihood estimation. See Table 2 for exact specifications. The meta-optimization
for hopping can be found in Fig. 6.

4

Table 2: Settings for the hyperparameter search.

(a) Precise point-reaching

Parameter Value
Nsets 50
Ttrain 2× 106

Melite 10

(b) Hopping

Parameter Value
Nsets 20
Ttrain 5× 106

Melite 10

(c) Initial distributions

Parameter Distribution Bounds
lra truncated log-normal [2.5× 10−4, 3× 10−2]
lrc truncated log-normal [0.5× 10−2, 10−1]
lrd truncated log-normal [0.5× 10−2, 1]
clipa truncated log-normal [10−7, 10−4]
clipc truncated log-normal [10−7, 10−4]

In the experiments, we only used truncated log-normal distributions to generate parameters. The
samples were clipped to the bounds given in Table 2 and initial mean and standard deviation were
chosen to lie inside the bounded interval. More precisely, we defined log(µ) = (a + b)/2 and
log(σ) = (b − a)/4, where a and b are the chosen bounds. The chosen parameters were the actor
learning rate lra, the critic learning rate lrc, the learning rate of the dual optimizer lrd, the gradient
clipping threshold for the actor clipa and the critic clipa.

Robustness point-reaching We trained policies with both morphologies in precise point-reaching
for 1.5 × 107 iterations. The best performing policies were then evaluated for the perturbation
experiments. For dynamic load, the mass of the hand is increased by 1.5 kg to simulate an object. For
chaotic load, a ball with radius 0.12 m and a density of 1000 kg/m3 is attached to a cable of length
0.6 m, that is connected to the hand. We sample 10 random goals from the training distribution and
visualize three trajectories such that there are no overlapping paths. All 10 goals are shown in Fig. 4.

Robustness hopping We trained policies for both morphologies for hopping with the hyperparam-
eters obtained in Fig. 6 and for 1.5× 107 iterations. We then record 100 evaluation episodes where
random forces drawn from Fi ∼ N (·|0, σF) are applied with a probability of p = 0.05 to the hip,
knee and ankle joints and to the pelvis position and rotation. Center of mass trajectories are shown
for an interval of 15 s in the main manuscript, black vertical bars mark episode resets due to extreme
angles of the biped, which would cause it to fall to the ground. The performance for each perturbation
level is divided by the unperturbed performance for each morphology to yield a relative performance
comparison.

B.3.2 Hyperparameters
The hyperparameters for all RL tasks were set to the best performing runs in the shown hyperparameter
optimization. They best trained policies were then used for the perturbation experiments.

C Models
We give detailed descriptions of the used models in this section. See Table 4 for more information
about the MuJoCo models.

C.1 Arm
The Arm model consists of two segments connected with hinge joints moving against gravity. The
ArmDemoa [11] is freely available using the multi-body software demoa [7]. In the muscle-actuated
case, six muscles were included, modeled as Hill-Type muscles (A.2). Here, two monoarticular
muscles, each for the shoulder and elbow joint, and two biarticular muscles acting on both joints
are included. The segments are modeled as rigid bodies, and the dynamics are solved using the
Euler-Lagrange equation. In the torque-actuated case, each joint is driven by one torque actuator. For
more details on the demoa model, we refer to the Technical Report [11]. The variant ArmMuJoCo
was derived from an implementation of Arm26 included in MuJoCo [4], it was modified to yield a

5

Table 3: RL parameters for MPO in TonicRL for the different tasks. Non-reported values are left to
their default setting in TonicRL [20]. Common MPO settings are equal for all experiments.

(a) Point-reaching MPO (muscle)

Parameter Value

lra 3× 10−4

lrc 10−3

lrd 2× 10−2

clipa 4× 10−5

clipc 3× 10−5

batch size 100
return-normalizer No

(b) Point-reaching MPO (torque)

Parameter Value

lra 10−3

lrc 5× 10−3

lrd 8.2× 10−3

clipa 7× 10−6

clipc 10−6

batch size 100
return-normalizer No

(c) Hopping MPO (muscle and torque)

Parameter Value

lra 3× 10−4

lrc 3× 10−4

lrd 10−2

clipa None
clipc None
batch size 256
return-normalizer Yes

(d) Hopping perturbation (muscle)

Parameter Value

lra 9× 10−4

lrc 3× 10−3

lrd 10−2

clipa 10−5

clipc 3× 10−7

batch size 256
return-normalizer Yes

(e) Hopping perturbation (torque)

Parameter Value

lra 10−3

lrc 7× 10−4

lrd 2× 10−2

clipa 2× 10−5

clipc 10−6

batch size 256
return-normalizer Yes

(f) Common MPO settings

Parameter Value

buffer size 106

steps before batches 5× 104

steps between batches 50
number of batches 50
n-step return 3
n parallel 20
n sequential 10

6

Table 4: State information for all MuJoCo environments. The elements actuator lengths
and velocities are directly derived from MuJoCo internal attributes actuator_length and
actuator_velocity and keep the two morphologies as consistent as possible.

model observations
ArmMuJoCo (muscle) joint positions, joint velocities, muscle positions, muscle velocities,

muscle forces, muscle activities, goal position, hand position
ArmMuJoCo (torque) joint positions, joint velocities, actuator positions, actuator velocities,

actuator forces, goal position, hand position
Biped (muscle) joint positions, joint velocities, muscle lengths, muscle velocities,

muscle forces, muscle activities, head position, pelvis position, torso
angle, scaled COM-velocity

Biped (torque) joint positions, joint velocities, actuator lengths, actuator velocities,
actuator forces, head position, pelvis position, torso angle, scaled
COM-velocity

torque-variant similar to [21]. We additionally created a muscle-variant consisting of 2 muscles per
joint. The maximum torques for the torque actuators were matched to the highest achieved torques
by the trained muscle policies for both versions independently.

C.2 Biped
We converted the geometrical model of an OpenSim bipedal human without arms [22] for use in
MuJoCo. The model, consisting of 7 controllable joints (lower back, hip, knee, ankle) moves in a
2D-plane. Each joint is actuated by two antagonistic muscles or one idealized torque actuator. During
execution, we only allow control signals for one leg, the actions for the other leg are kept identical
to the first one. This incentivizes symmetric hopping motions, even though both legs can still move
differently due to differing initial configurations or external forces. The maximum torques for the
torque actuators were matched to the highest achieved torques by the trained muscle policies.

C.3 FullBody
For the squatting and high-jumping task, we used the FullBody (allmin) model [12] which is freely
available using the multi-body software demoa [7]. It consists of two legs and an upper body with a
skeletal geometry similar to humans and moves in 3D. The ankle, knee and hip joints, as well as a
lumbar and a cervical spine joint are controllable (8 controllable joints). The model also consists
of two arms with their respective joints, however, these joints were not controlled in this study. In
total, 14 joints are modeled with 20 degrees of freedom. Each controllable joint was either actuated
by two muscles (A.2) set up in an agonistic-antagonistic setup (muscle-actuated case) or by one
idealized torque actuator (torque-actuated case). The maximum allowed torques were matched to
the highest torques that occurred in the optimization in the muscle-actuated case to allow for a fair
comparison. Only monoarticular muscles (spanning one joint) were used. Furthermore, we reduced
the number of control inputs nu for this study by using symmetrical control signals for the left and
right legs. Additional to the torques generated by the actuators, also joint limitations are modeled as
linear one-sided spring-damper elements. We refer to the Technical Report [12] for more details.

D Tasks
We chose movement objectives which represent both, robotic challenges and naturally observed
movements of humans.

Smooth point-reaching (OC/MPC) This task encourages smooth point-reaching. Therefore, the
objective minimizes the L2-error between the desired angle endpoint and the desired joint angle
velocity, as well as penalizing the angle jerk to ensure a smooth motion. The objective for smooth
point-reaching is given by:

ε =
ωi

Si
(θi − θdesi)2 +

ωi

Si
(θ̇i − θ̇desi)2 +

...
θ
2
, (18)

where θi denotes the joint angle, θ̇i the joint angle velocity and the last term
...
θ penalizes the angle

jerk to ensure a smooth motion. ωi and Si are weighting and scaling parameters, respectively. Their
values (shoulder and elbow) are given in Table 5. The scaling parameters were chosen based on

7

Table 5: Parameters for cost functions of OC/MPC tasks.

(a) Scaling parameters

parameter value

Sθ,sh 2.45 [rad]
Sθ,elb 2.45 [rad]
Sθ,hip 1.92 [rad]
Sθ,knee 2.11 [rad]
Sθ,ank 1.05 [rad]
Sθ,ls 0.52 [rad]
Sθ,cs 1.05 [rad]
Sθ̇,sh 18.7 [rad/s]
Sθ̇,elb 27.9 [rad/s]
Sθ̇,hip 14.1 [rad/s]
Sθ̇,knee 28.4 [rad/s]
Sθ̇,ank 12.6 [rad/s]
Sθ̇,ls 5.2 [rad/s]
Sθ̇,cs 10.4 [rad/s]

(b) Weighting parameters

parameter value

ωθ,sh 2
ωθ,elb 2
ωθ,hip 2
ωθ,knee 2
ωθ,ank 2
ωθ,ls 2
ωθ,cs 2
ωθ̇,sh 1
ωθ̇,elb 1
ωθ̇,hip 1
ωθ̇,knee 1
ωθ̇,ank 1
ωθ̇,ls 1
ωθ̇,cs 1

measured upper limits for human joint angular velocity [23] and human joint angle limits (Table 2 in
[12]). The desired angle θdesi is set to 90◦ for both the shoulder (sh) and the elbow (elb) joint, as this
requires a large motion. The movement duration in this task was set to 0.9 s.

Precise point-reaching (RL) We employ a similar reward function to [24]:

r = −λ1(d− log(d+ ε2))− λ2

N

∑
a2i − 2, (19)

where d is the Euclidean distance between end effector and target position, ε = 10−4 prevents
numerical instabilities, λ1 = 0.1 and λ2 = 10−4. A smaller distance d increases the overall reward,
but in contrast to the usual Euclidean distance, the log-term increases rewards for very small distances
even further, incentivizing precision. The episode does not terminate until a time limit of 1000 steps
elapses.

Fast point-reaching (RL) This task is identical to the previous one, but, in addition to the time
limit, the episode also terminates if the distance between end effector and target position is below 5
cm, which incentivizes reaching speed over precision.

Hitting a ball with a high velocity (OC/MPC) A ball with a mass of 250 g is dropped in front of
the arm model and the controller learns to hit the ball with a high velocity by optimizing the following
objective:

ε = −max żball, (20)
where żball denotes the ball-velocity in z-direction (direction of gravity).

Squatting (OC/MPC) The objective for squatting is given by:

ε =
ωi

Si
(θi − θdesi)2 +

ωi

Si
(θ̇i − θ̇desi)2, (21)

where θi denotes the joint angle, θ̇i the joint angle velocity. ωi and Si are weighting and scaling
parameters, respectively. Their values are given in Table 5. The scaling parameters were chosen
based on measured upper limits for human joint angular velocity [23] and human joint angle limits
(Table 2 in [12]). The movement duration in this task was set to 0.9 s. This squatting objective is
taken from [25], where the desired hip θdeshp , knee θdeskn and ankle θdesan joint angle are defined to be:

θdesan = −20◦,

θdeskn = sin−1(−Ls

Lt
· sin(θdesan))− θdesan − θan,0,

θdeshp = −θdeskn − θdesan .

8

High-Jumping (OC/MPC) The objective for the high-jumping is taken from [26] and maximizes
the position and velocity of the centre of mass of the human body model at the time of lift-off tl.
Additionally, we slightly expanded this objective to account for the three-dimensionality of our
jumping model by penalizing deviations of the centre of mass in the x and y-direction:

ε = zcom(tl) +
ż2com(tl)

2g
− |(xcom(tl)− 0)| − |(ycom(tl)− 0)|. (22)

Note, that zcom denotes the centre of mass position (CoM) in z-direction (direction of gravity). The
model is initialized to start from a squatting position in this task.

Hopping (RL) We developed a reward function that is able to induce hopping in different leg-driven
systems and can be applied independently of the actuator morphology. We did not obtain good results
with height-based rewards or the gym hopper [6] reward function. The reward for hopping is given
by:

r = exp(max{0, v̂COM
z })− 1, (23)

where vCOM
z is the z-velocity of the center of mass. The transformation v̂ = min{10, 100 v} adjusts

the sensitivity of the reward function while also preventing numerical overflows of the exponential
function. Crucially, large positive velocities are weighted much more strongly than small or negative
velocities, driving the system to maximum height periodic hopping. The second term prevents positive
rewards for velocities close to zero, as exp(0) = 1. We additionally use regularizing cost terms:

rreg = ralive − λ1 raction − λ2 rjoint, (24)

where λ1 = 10−4, λ2 = 10−3, ralive is 1 if the episode does not terminate and 0 otherwise,
raction =

∑
a2i /N punishes large actions and rjoint punishes joint angles close to the limits of the

system. Specifically:

rjoint =


−1, if |qmax,i − qi| < 0.1

−1, if |qmin,i − qi| < 0.1

0, otherwise.
(25)

Finally, we terminate the episode after the lapse of a time limit of 1000 iterations, or if different parts
of the model are very close to the ground, as this indicates a fall. The termination conditions are:

hskull < 0.3 [m]

hpelvis < 0.2 [m]

htibial < 0.3 [m]

htibiar < 0.3 [m]

θtorso > 1.22 [rad]

θtorso < −0.88 [rad],

where h is the height of the respective body part and θtorso marks the torso angle deviation from the
upright position.

E Additional experiments (RL)
E.1 Maximum force variation
Although the maximum force of the actuators is not freely adjustable in real systems, it is trivial
to do so in simulation and has a strong influence on performance. We, therefore, used the biped
parameters resulting from our hyperparameter optimization and recorded learning curves for the
hopping task for both actuator morphologies for different maximum actuator forces. For each setting,
we set the maximum isometric force for all muscle actuators to a certain value, trained the systems to
convergence, and then recorded the torque values occurring at each controllable joint during execution
of the hopping behavior. We then trained torque-actuator policies while setting τmax to the previously
observed maximum values for each individual joint. The results are shown in Fig. 3. Even though
singular torque-driven runs are able to outperform all muscle-driven runs at the end of training, this
not only takes a considerable number of learning iterations, but also comes at the cost of strong
learning instabilities. Looking at the learned behaviors, the torque-driven policies tend to jump very
high, but violate the allowed torso-angles at the peak due to their unstable explorative policies. No
periodic hopping could be observed. The muscle-driven policies, on the other hand, achieve periodic
hopping, even though the apex hopping height is smaller.

9

muscle torque

0.0 0.5 1.0 1.5

steps ×107

0

5000

10000

15000

ho
p-

re
tu

rn

Fmax = 3000 N

0.0 0.5 1.0 1.5

steps ×107

Fmax = 9000 N

0.0 0.5 1.0 1.5

steps ×107

Fmax = 12000 N

Figure 3: Hopping performance for different actuator strengths. Hyperparameters are optimized
for hopping with a maximum muscle strengh of Fmax = 5000 N as used in the previous hopping
experiment. The maximum isometric muscle force is set to different values and the policies are
trained for the task. Afterwards, the maximum used torques for the learned behaviors are recorded for
each joint and set to identical values for the torque actuator. Muscle-actuators lead to more consistent
performance and yield periodic hopping. Torque-actuators yield unstable policies that manage to
jump very high once, but terminate the episode due to falls.

E.2 Additional goals for point-reaching with perturbations
We show ten random arm goals for precise point-reaching with perturbations that were not present
during training in Fig. 4.

E.3 Additional hyperparameter variations
We show the relative performance of all runs of the hyperparameter searches in polar coordinates for
precise point-reaching and hopping for both actuator morphologies (Fig. 5 and Fig. 6). The angles
mark the specified hyperparameter (see Suppl. B.3.1 for definitions), while the radius marks the
chosen value in log10-coordinates. The top row marks performance with muscle-actuators, the middle
row with torque-actuators and the bottom row shows histograms of returns for both morphologies
at different iterations. For point-reaching, muscle morphology leads to a return distribution that is
centered around the top-performing parameter sets, with almost no badly performing sets left at
iteration 7. In contrast, for torque-morphology a large number of runs is still distributed at low return
values. For hopping, a much harder task, muscle-morphology quickly leads to a large number of runs
at the top-performance level, while some badly performing parameter sets remain even at iteration
5. For torque-morphology, a large peak can be observed for returns close to 0, as most sampled
parameter sets do not achieve any kind of hopping. Only at iteration 7, a few singular well-performing
runs appear, that strongly outperform even the best muscle-driven run. This was to be expected, as
any muscle-actuator behavior can in principle be replicated by torque actuators, given that the policy
is able to learn it. Muscle actuators, on the other hand, are restricted to trajectory-dependent output.

E.4 Additional actuator models
Similar to Peng et al. [27], we present more actuator models that are widely used in robotics. We
consider the ideal torque actuator to be neutral in its properties—only executing exactly what it was
told. In contrast, a PD-controller [28] embeds additional knowledge about position control elements
and error propagation dynamics. For the RL experiments, we use an identical PD formulation to
Peng et al. [27]:

u(t) = kp (q̂(t)− q(t)) + kd (ˆ̇q − q̇), (26)

with the joint angles q, the joint velocities q̇, the desired position q̂ and the desired velocity ˆ̇q. We also
set ˆ̇q = 0, similar to [27]. We tuned the PD-controller by hand to achieve good step-wise trajectory
tracking, see Fig. 7. We also ensured that it remains stable for faster position changes.

As a second additional actuator, we implemented a low-pass filtered torque actuator. The control
signal is filtered according to the simplified muscle activation dynamics in the MuJoCo muscle model

10

0.50

0.75
ha

nd
-y

[m
]

muscle - dynamic load muscle - chaotic load

−0.2 0.0 0.2 0.4

hand - x [m]

0.50

0.75

ha
nd

-y
[m

]

torque - dynamic load

−0.2 0.0 0.2 0.4

hand - x [m]

torque - chaotic load

Figure 4: Trajectories for dynamic (1.5 kg weight) and chaotic (attached ball) load. Left: The
torque actuator handles the dynamic load case slightly better than the muscle actuator for all goals,
especially compared to the goals in grey, brown and purple. Right: The muscle-actuator performs very
well for all chaotic load goals, except for a small deviation from the end-point. The torque actuator
exhibits strong instabilities. The respective goal positions are marked as circles, the unperturbed
baseline for each goal is shown with a dashed line, the perturbed trajectories with slightly transparent
solid lines.

Eq. 4, which effectively act as a low-pass filter:

ȧ(t) =
1

∆t
(u(t)− a(t)), (27)

which gets approximated in practice as:

at+1 = at +
∆tsim
∆t

(u(t)− a(t)). (28)

The variable a(t) denotes the effective action that is applied to the underlying torque actuator, u(t)
is the control signal, ∆t is the time scale of the low-pass filter and ∆tsim is the time step of the
physics simulation, which is not to be confused with the control time step: ∆tcontrol = 2∆tsim for
the MuJoCo simulations. All actuator properties such as the muscle dynamics, the low-pass filter and
the PD controller are updated with the physics simulation time step, while the RL policy computes
new actions only with the control frequency.

We repeated the precise point-reaching task with ArmMuJoCo with muscle actuation, torque actuation,
PD actuation and two low-pass filter variants. The fast variant uses the time scale ∆t = 0.01, which
is the same as used in the muscle model and reacts very fast to new control signals. The slow variant
uses ∆t = 1 and produces a much stronger filtering effect. The results in Fig. 8 show that the muscle
actuator outperforms all other variants.

Individual runs are shown in the right column in order to obtain an accurate picture of the variance
across seeds for all actuators. Even when not considering the badly performing outliers, torque
actuation seems to present larger variance than muscle actuation. The PD-controller performs worse
than pure torque control for this task, which validates results by [29]: They found PD-controllers
to perform worse than torque control when learning behaviors from scratch as opposed to tracking
reference motions [27].

We noticed that, while the muscle only uses a maximum of ≈ 30 Nm during normal reaching, its
properties allow it to intermittently use larger torques when perturbations are applied. We therefore

11

lra

lrc

lrdclipa

clipc −6

−4

−2

0

iteration 1
lra

lrc

lrdclipa

clipc −6

−4

−2

0

iteration 2
lra

lrc

lrdclipa

clipc −6

−4

−2

0

iteration 7

lra

lrc

lrdclipa

clipc −6

−4

−2

0

lra

lrc

lrdclipa

clipc
−6

−4

−2

lra

lrc

lrdclipa

clipc −6

−4

−2

0.0

0.2

0.4

0.6

0.8

1.0

−1.0 −0.8 −0.6 −0.4

distance-return ×103

0

5

10

fr
eq

ue
nc

y

iteration 1

−1.0 −0.8 −0.6 −0.4

distance-return ×103

iteration 2

torque
muscle

−1.0 −0.8 −0.6 −0.4

distance-return ×103

iteration 7

Figure 5: Hyperparameter variation for precise point-reaching. Hyperparameters are optimized
following an iterative sampling scheme and individual runs train for 2 × 106 iterations. Fifty sets
of parameters are sampled randomly from pre-determined distributions, the final performance is
evaluated and used to adapt the sampling distributions for the next iteration. We record 7 iterations
which equals 350 runs in total. We optimize 5 parameters related to MPO. The angle of the radarplot
marks the parameter, the radius marks the value (in log10-coordinates). Top: Radarplot of parameters
for the muscle in precise point-reaching at iteration 1, 2 and 7. The color marks the achieved
performance of the parameter sample relative to the best achieved performance over all sampled
parameters. Middle: precise point-reaching torque. Bottom: Histogram of returns for all sets of
parameters at iterations 1, 2 and 7.

12

lra

lrc

lrdclipa

clipc −6

−4

−2

iteration 1
lra

lrc

lrdclipa

clipc −6

−4

−2

0

iteration 2
lra

lrc

lrdclipa

clipc −6

−4

−2

0

iteration 5

lra

lrc

lrdclipa

clipc −6

−4

−2

0

lra

lrc

lrdclipa

clipc
−6

−4

−2

0

lra

lrc

lrdclipa

clipc −6

−4

−2

0

0.0

0.2

0.4

0.6

0.8

1.0

0 2 4 6

hop-return ×103

0

10

fr
eq

ue
nc

y

0 2 4 6

hop-return ×103

0 2 4 6

hop-return ×103

Figure 6: Hyperparameter variation for hopping. Hyperparameters are optimized following an
iterative sampling scheme and individual runs train for 5× 106 iterations. Twenty sets of parameters
are sampled randomly from pre-determined distributions, the final performance is evaluated and
used to adapt the sampling distributions for the next iteration. We record 5 iterations which equals
100 runs in total. We optimize 5 parameters related to MPO. The angle of the radarplot marks the
parameter, the radius marks the value (in log10-coordinates). Top: Radarplot of parameters for the
muscle in the hopping task at iteration 1, 2 and 5. The color marks the achieved performance of the
parameter sample relative to the best achieved performance over all sampled parameters. Middle:
hopping torque. Bottom: Histogram of returns for all sets of parameters at iterations 1, 2 and 5.

13

0 20 40 60 80 100

time [s]

−2

−1

0

1

2

jo
in

ta
ng

le
[r

ad
]

shoulder

achieved
desired

0 20 40 60 80 100

time [s]

elbow

achieved
desired

-1 1

time [s]

0.00

0.25

0.50

0.75

1.00

si
gn

al

slow filter

filtered
control

-0.3 0.3

time [s]

fast filter

filtered
control

Figure 7: Top row: We tuned a PD-controller for ArmMuJoCo that is then used as an intermediate
control layer for an RL agent. We tuned the parameters by hand to achieve good joint angle control
over the workspace, shown in the figure for both joint angles. The slight mismatch in the shoulder
joint (left) is due to gravitational forces, which are not counteracted in the controller design. An RL
agent easily learns to compensate for this shift. Bottom row: We show two low-pass filtered torque
actuators for an exemplary step-signal. The fast-filter uses the same parameters as the activation
dynamics in the MuJoCo muscle model.

conduct a second series of experiments where we adjust the maximum allowed torque for all torque
actuators to the intermittent upper limit of the muscle, which is τmax = 60 Nm. New learning curves
were recorded for ArmMuJoCo point-reaching and are shown in Fig. 9. Generally, the performance
for the non-muscular actuators decreases with larger torque limits. Only the PD-controller seems to
exhibit smaller variance than in the small torque limit case.

E.5 Additional robustness experiments
In this section, we present evaluation of the robustness of the learned policies with a wide variety of
masses and additional actuators. The results are reported for two different maximum torque limits for
the non-muscle-based actuators, following the reasoning of Sec. E.4.

The variations are investigated for policies trained for point-reaching with ArmMuJoCo. All weights
are added as a chaotic load that is attached with a rope. The results can be seen in Fig. 10 and Fig. 11
for τmax = 30 Nm and τmax = 60 Nm respectively. We use masses varying from 1 to 4 kg in the
high force case, while they are halved in the other case. Even though the muscle actuator is the most
stable across all variations, the pure torque actuator variant performs quite well when large forces are
allowed. However, large torque limits also diminish the learning performance, as seen previously in
Fig. 9. The results suggest a trade-off between learning speed and robustness for the torque controller,
while the muscle actuator is able to leverage low forces during learning and automatically reacts to
perturbations with stronger forces. The PD-controller only outperforms raw torque control for the
large torque limit τmax = 60 Nm and a comparatively small perturbation mass of 1 kg, see Fig. 11
(second row, middle).

E.6 MuJoCo simulation time step ablation
To assess the influence of simulation accuracy on the obtained results, we record additional muscle
and torque actuator learning curves with a much smaller simulation time step of ∆tsim = 0.001
instead of ∆tsim = 0.005. We additionally increase the frameskip of the simulation to achieve an
equal control time step of ∆tcontrol = 0.01 in both cases. The results are shown in Fig. 12. With

14

max torque = 30 Nm
muscle torque PD slow low-pass fast low-pass

−1.0

−0.8

−0.6

−0.4

di
st

an
ce

-r
et

ur
n

×103 mean over seeds individual runs

−1.0

−0.8

−0.6

−0.4

di
st

an
ce

-r
et

ur
n

×103

−1.0

−0.8

−0.6

−0.4

di
st

an
ce

-r
et

ur
n

×103

0.00 0.25 0.50 0.75 1.00 1.25

steps ×107

−1.0

−0.8

−0.6

−0.4

di
st

an
ce

-r
et

ur
n

×103

0.00 0.25 0.50 0.75 1.00 1.25

steps ×107

Figure 8: The muscle actuator outperforms all other considered actuator designs. We compare
the learning curves for muscle, torque, PD and two low-pass filter actuators in the precise point-
reaching task for ArmMuJoCo. Averages across random seeds and standard deviation are shown
in the left column, individual runs in the right column. The torque actuator and the low-pass filter
variants perform quite well, but their variance across seeds is larger than for the muscle, even when
outliers are not considered. The PD-controller seems to exhibit less variance than a pure torque-driven
approach, but the overall performance is worse. We recorded 8 random seeds for each actuator.

15

max torque = 60 Nm
muscle torque PD slow low-pass fast low-pass

−1.0

−0.8

−0.6

−0.4

di
st

an
ce

-r
et

ur
n

×103 mean over seeds individual runs

−1.0

−0.8

−0.6

−0.4

di
st

an
ce

-r
et

ur
n

×103

−1.0

−0.8

−0.6

−0.4

di
st

an
ce

-r
et

ur
n

×103

0.0 0.2 0.4 0.6 0.8 1.0 1.2

steps ×107

−1.0

−0.8

−0.6

−0.4

di
st

an
ce

-r
et

ur
n

×103

0.0 0.2 0.4 0.6 0.8 1.0 1.2

steps ×107

Figure 9: Torque actuators perform worse when the maximum allowed force is increased. We
repeat the experiment in Fig. 9, but allow the torque actuator to use a maximum torque of τmax =
60 Nm. This value is the maximum torque that the muscle actuator can output in perturbation
experiments, even though it is not reached during point-reaching under normal conditions. While
singular runs still perform well for the torque actuator variants and the PD controller achieves even
less variance across seeds than before, the overall performance suffers when increasing the maximum
force. We recorded 8 random seeds for each actuator.

16

max torque = 30 Nm

0.2

0.4

0.6

0.8

ha
nd

-y
(m

)

no mass

muscle

no mass

torque

no mass

PD

no mass

slow low-pass

no mass

fast low-pass

0.2

0.4

0.6

0.8

ha
nd

-y
(m

)

mass = 0.5 kg mass = 0.5 kg mass = 0.5 kg mass = 0.5 kg mass = 0.5 kg

0.2

0.4

0.6

0.8

ha
nd

-y
(m

)

mass = 1 kg mass = 1 kg mass = 1 kg mass = 1 kg mass = 1 kg

0.2

0.4

0.6

0.8

ha
nd

-y
(m

)

mass = 1.5 kg mass = 1.5 kg mass = 1.5 kg mass = 1.5 kg mass = 1.5 kg

0 1

hand-x (m)

0.2

0.4

0.6

0.8

ha
nd

-y
(m

)

mass = 2 kg

0 1

hand-x (m)

mass = 2 kg

0 1

hand-x (m)

mass = 2 kg

0 1

hand-x (m)

mass = 2 kg

0 1

hand-x (m)

mass = 2 kg

Figure 10: The muscle actuator is more robust for all considered masses than the alternative.
We conducted perturbation experiments for all actuator models during which chaotic loads of differing
masses were attached to the robot which were not present during training. The muscle actuator
performs well up to 1.5 kg, when deviations start to get bigger. It does not reliably reach the
goal for m = 2 kg. The torque actuator exhibits strong lateral oscillations for all masses and
slight undershooting of the goal position. The PD-controller oscillates less for small masses, but
undershoots the goals by a larger amount, as it was not tuned for this scenario. The low-pass filtered
actuators perform similar to the pure torque case. For each experiment we used the best performing
policy of each learning curve in Fig. 8 at the end of training. Ten goals were randomly chosen and
used for all experiments.

17

max torque = 60 Nm

0.2

0.4

0.6

0.8

ha
nd

-y
(m

)

no mass

muscle

no mass

torque

no mass

PD

no mass

slow low-pass

no mass

fast low-pass

0.2

0.4

0.6

0.8

ha
nd

-y
(m

)

mass = 1 kg mass = 1 kg mass = 1 kg mass = 1 kg mass = 1 kg

0.2

0.4

0.6

0.8

ha
nd

-y
(m

)

mass = 2 kg mass = 2 kg mass = 2 kg mass = 2 kg mass = 2 kg

0.2

0.4

0.6

0.8

ha
nd

-y
(m

)

mass = 3 kg mass = 3 kg mass = 3 kg mass = 3 kg mass = 3 kg

0 1

hand-x (m)

0.2

0.4

0.6

0.8

ha
nd

-y
(m

)

mass = 4 kg

0 1

hand-x (m)

mass = 4 kg

0 1

hand-x (m)

mass = 4 kg

0 1

hand-x (m)

mass = 4 kg

0 1

hand-x (m)

mass = 4 kg

Figure 11: Torque control is more robust with larger torque limits, but is still outperformed by
muscles. We repeat the experiment in Fig. 10 with a larger maximum torque limit of 60 Nm. All
torque-variants seem to perform better than in the low torque limit case. For m = 1 kg, the PD-
controller and the low-pass filter versions slightly outperform the pure torque actuator. Nevertheless,
the muscle reacts more robustly for all considered masses. For each experiment we used the best
performing policy of each learning curve in Fig. 9 at the end of training. The same ten goals as in
Fig. 10 were used.

18

max torque = 30 Nm

−1.0

−0.8

−0.6

−0.4
di

st
an

ce
-r

et
ur

n

×103 mean over seeds

∆tsim = 0.001

∆tsim = 0.005

individual runs

0 1 2 3 4 5 6

steps ×106

−1.0

−0.8

−0.6

−0.4

di
st

an
ce

-r
et

ur
n

×103

∆tsim = 0.001

∆tsim = 0.005

0 1 2 3 4 5 6

steps ×106

Figure 12: We present physical simulation time step ablations for ArmMuJoCo and precise point-
reaching. While the ∆tsim was varied, the frameskip parameter was adjusted to achieve the same
control time step ∆tcontrol = 0.01 in all cases. Top: With the exception of a single unlucky run,
the simulation time step does not seem to affect the performance of the muscle actuator in this task.
Bottom: Surprisingly, the torque actuator performs much worse with a smaller simulation time step.
As simulation accuracy increases with a smaller time step, we do not suspect this to be the result of
numerical instability. A setting of ∆tsim = 0.005 was used for the all other MuJoCo experiments.
We recorded 8 random seeds for each actuator.

the exception of one unlucky run, the muscle actuator performance seems to be unchanged under
the more accurate simulation setting. The torque actuator, in contrast, seems to perform worse. As
simulation accuracy increases with a smaller time step, we do not suspect this to be the result of
numerical instability. As this only reinforces prior results, we conclude that the improved muscle
actuator data-efficiency is not a result of numerical instability.

F Additional experiments (OC/MPC)

F.1 Nonlinearity in muscle model

In our study, we conclude that the nonlinear muscle properties can be beneficial for learning in
terms of data-efficiency and robustness. To show-case the influence of individual properties, we
performed additional smooth point-reaching and squatting experiments. The four major properties
that differ between the torque actuator morphology and the muscle actuator morphology are the
nonlinear activation dynamics, the nonlinear force-length, the nonlinear force-velocity relation and
the nonlinear lever arms (see also Fig. 1 in the main paper). We switched each of these properties
separately off to test which nonlinear muscle property contributes the most to the beneficial behavior.
The results can be seen in Fig. 13. As shown in this figure, switching off the nonlinear force-
velocity relation (no Fv) has the strongest impact and leads to results that are even worse than the
torque actuator optimization. Additionally, the nonlinear activation dynamics (no actdyn) has some
influence on the performance of the data-efficiency results. With these results, we would like to give
a first indication that indeed the non-linearity of different muscle properties are beneficial for the
data-efficiency in learning anthropomorphic tasks.

19

0 50 100
0

2

·103

generations

co
st

pointreaching, c = 0.3 s

0 50 100
0

2

·103

generations

co
st

pointreaching, c = 0.15 s

0 20 40 60 80 100
0

2

·103

generations

co
st

pointreaching, c = 0.05 s

muscle torque no Fl const r no Fv no actdyn

Figure 13: Cost value for point-reaching while switching off different muscle properties. Plot-
ting the mean and standard deviation (shaded area) for 5 repeated runs for the two main actuator
morphologies (muscle in red, torque in blue). Additionally, different morphologies are tested where
muscle properties are switched off separately: We switched off the force-length relation (no Fl),
set moment arms to be constant (const r), switched off the force-velocity (no Fv) and excluded the
activation dynamics (no actdyn).

0 20 40 60 80 100
0

2

4

·103

generations

co
st

smooth point-reaching (OC)

torque, c = 0.05 s
torque, c = 0.15 s
torque, c = 0.3 s
muscle, c = 0.05 s
muscle, c = 0.15 s
muscle, c = 0.3 s
torque, pd

Figure 14: Cost value for smooth point-reaching with additional baseline using PD control for
torque actuator. Plotting the mean and standard deviation (shaded area) for 5 repeated runs for the
three main actuator morphologies (muscle in red, torque in blue, torque with PD controller in black).

F.2 Proportional-derivative torque control for learning
In the results presented in the main paper, we mainly compared the muscle actuator morphology to an
idealized torque actuator without embedding any additional knowledge, e.g. position control which is
typically used with a PD controller. Nevertheless, we consider the comparison with the PD control
action space as a valuable baseline comparison. Therefore, we performed additional experiments
for the smooth point-reaching task, where we added this additional baseline using PD control on
top of the torque actuator morphology. Similar to the RL experiments (E.4), we use an identical PD
formulation to Peng et al. [27]:

u(t) = kp (q̂(t)− q(t)) + kd (ˆ̇q − q̇), (29)

with the joint angles q, the joint velocities q̇, the desired position q̂ and the desired velocity ˆ̇q. We
also set ˆ̇q = 0, similar to [27] and our original cost function for smooth point-reaching (Eq. 18). In
contrast to the RL experiments where we directly learn the desired angles for the control signal u(t)
for PD controller, here, with OC, we instead learn the kp and kd parameters. We allow for changes
in these parameters every c = 0.3 s, whereas the control signal was updated continuously. Fig. 14
shows that the data-efficiency is slightly improved using a PD controller for the torque-actuated case
in the smooth point-reaching task but it does not reach the performance of the muscle actuator.

F.3 Additional robustness experiments
In this section, we present additional robustness experiments for perturbing the arm model in the
point-reaching task while adding unknown weights to the lower arm. In contrast to the main paper,
we do not only show the perturbation using 1 kg, but varied the unknown weight up until 5 kg in 1 kg
steps. The resulting angle trajectories are shown in Fig. 15. We see that both actuators are able to
counteract unknown perturbation weights with 1 kg. For larger weights, the perturbations result in

20

0 0.5

−100

0

100

Time [s]

A
ng

le
[d

eg
]

Muscle

wpert = 1 kg
wpert = 2 kg
wpert = 3 kg
wpert = 4 kg
wpert = 5 kg
reference sol

0 0.5

−100

0

100

Time [s]

A
ng

le
[d

eg
]

Torque

wpert = 1 kg
wpert = 2 kg
wpert = 3 kg
wpert = 4 kg
wpert = 5 kg
reference sol

Shoulder

Elbow

Shoulder

Elbow

Figure 15: Muscle morphology is more robust towards unknown weight perturbations. Plotting
the angle trajectories of the shoulder and elbow angle over time for the two actuator morphologies
(left: muscle, right: torque) while varying the unknown weight (between 1 and 5 kg in 1 kg steps).

overshoots in the elbow joint angle which can be corrected in the muscle-actuated case, whereas the
torque actuator struggles to counteract these perturbations. Summed up, the muscle morphology is
more robust towards perturbations for a wide range of different unknown weights.

21

References
[1] D. Kistemaker, A. J. Van Soest, and M. F. Bobbert. Is equilibrium point control feasible for

fast goal-directed single-joint movements? Journal of Neurophysiology, 95(5):2898–912, may
2006. ISSN 0022-3077. doi:10.1152/jn.00983.2005.

[2] H. Geyer and H. Herr. A muscle-reflex model that encodes principles of legged mechanics
produces human walking dynamics and muscle activities. IEEE Transactions on Neural
Systems and Rehabilitation Engineering, 18(3):263–73, jun 2010. ISSN 1558-0210. doi:
10.1109/TNSRE.2010.2047592.

[3] A. Bayer, S. Schmitt, M. Günther, and D. F. B. Haeufle. The influence of biophysical muscle
properties on simulating fast human arm movements. Computer Methods in Biomechanics and
Biomedical Engineering, 20(8):803–821, 2017. ISSN 1476-8259. doi:10.1080/10255842.2017.
1293663.

[4] E. Todorov, T. Erez, and Y. Tassa. MuJoCo: A physics engine for model-based control. In 2012
IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 5026–5033, Oct.
2012. doi:10.1109/IROS.2012.6386109.

[5] S. Behnel, R. Bradshaw, C. Citro, L. Dalcin, D. S. Seljebotn, and K. Smith. Cython: The best
of both worlds. Computing in Science & Engineering, 13(2):31–39, 2011.

[6] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W. Zaremba.
Openai gym, 2016.

[7] S. Schmitt. demoa-base: A Biophysics Simulator for Muscle-driven Motion, 2022. URL
https://doi.org/10.18419/darus-2550.

[8] H. Hatze. A myocybernetic control model of skeletal muscle. Biological cybernetics, 25(2):
103–119, 1977.

[9] R. Rockenfeller, M. Günther, S. Schmitt, and . Götz, Thomas. Comparative sensitivity analysis
of muscle activation dynamics. Computational and Mathematical Methods in Medicine, 2015:
1–16, 2015. doi:10.1155/2015/585409.

[10] R. Rockenfeller and M. Günther. Inter-filament spacing mediates calcium binding to troponin:
A simple geometric-mechanistic model explains the shift of force-length maxima with muscle
activation. Journal of Theoretical Biology, 454:240–252, 2018. ISSN 10958541. doi:10.1016/j.
jtbi.2018.06.009.

[11] I. Wochner and S. Schmitt. arm26: A Human Arm Model, 2022. URL https://doi.org/
10.18419/darus-2871.

[12] J. R. Walter, I. Wochner, M. Jacob, K. Stollenmaier, P. Lerge, and S. Schmitt. allmin: A Reduced
Human All-Body Model, 2022. URL https://doi.org/10.18419/darus-2982.

[13] D. F. B. Haeufle, M. Günther, A. Bayer, and S. Schmitt. Hill-type muscle model with serial
damping and eccentric force–velocity relation. Journal of biomechanics, 47(6):1531–1536,
2014.

[14] M. Hammer, M. Günther, D. F. B. Haeufle, and S. Schmitt. Tailoring anatomical muscle paths:
a sheath-like solution for muscle routing in musculoskeletal computer models. Mathematical
Biosciences, 311:68–81, 2019.

[15] N. Hansen, S. D. Müller, and P. Koumoutsakos. Reducing the time complexity of the derandom-
ized evolution strategy with covariance matrix adaptation (cma-es). Evolutionary computation,
11(1):1–18, 2003.

[16] M. M. Wierzbicka, A. W. Wiegner, and B. T. Shahani. Role of agonist and antagonist muscles
in fast arm movements in man. Experimental Brain Research, 63(2):331–340, 1986.

[17] D. A. Kistemaker, A. K. J. Van Soest, and M. F. Bobbert. Is equilibrium point control feasible
for fast goal-directed single-joint movements? Journal of Neurophysiology, 95(5):2898–2912,
2006.

[18] M. J. Powell. The bobyqa algorithm for bound constrained optimization without derivatives.
Cambridge NA Report NA2009/06, University of Cambridge, Cambridge, 26, 2009.

[19] A. Abdolmaleki, J. T. Springenberg, Y. Tassa, R. Munos, N. Heess, and M. Riedmiller. Maxi-
mum a posteriori policy optimisation. In International Conference on Learning Representations,

22

http://dx.doi.org/10.1152/jn.00983.2005
http://dx.doi.org/10.1109/TNSRE.2010.2047592
http://dx.doi.org/10.1109/TNSRE.2010.2047592
http://dx.doi.org/10.1080/10255842.2017.1293663
http://dx.doi.org/10.1080/10255842.2017.1293663
http://dx.doi.org/10.1109/IROS.2012.6386109
https://doi.org/10.18419/darus-2550
http://dx.doi.org/10.1155/2015/585409
http://dx.doi.org/10.1016/j.jtbi.2018.06.009
http://dx.doi.org/10.1016/j.jtbi.2018.06.009
https://doi.org/10.18419/darus-2871
https://doi.org/10.18419/darus-2871
https://doi.org/10.18419/darus-2982

2018. URL https://arxiv.org/abs/1806.06920.
[20] F. Pardo. Tonic: A deep reinforcement learning library for fast prototyping and benchmarking.

arXiv preprint arXiv:2011.07537, 2020.
[21] P. Schumacher, D. Häufle, D. Büchler, S. Schmitt, and G. Martius. Dep-rl: Embodied exploration

for reinforcement learning in overactuated and musculoskeletal systems, 2022. URL https:
//arxiv.org/abs/2206.00484.

[22] Ł. Kidziński, S. P. Mohanty, C. F. Ong, Z. Huang, S. Zhou, A. Pechenko, A. Stelmaszczyk,
P. Jarosik, M. Pavlov, S. Kolesnikov, et al. Learning to Run challenge solutions: Adapting
reinforcement learning methods for neuromusculoskeletal environments. In The NIPS’17
Competition: Building Intelligent Systems, 2018. URL http://arxiv.org/abs/1804.
00361.

[23] D. M. Jessop and M. T. Pain. Maximum velocities in flexion and extension actions for sport.
Journal of human kinetics, 50(1):37–44, 2016.

[24] D. F. Haeufle, I. Wochner, D. Holzmüller, D. Driess, M. Günther, and S. Schmitt. Muscles
reduce neuronal information load: quantification of control effort in biological vs. robotic
pointing and walking. Frontiers in Robotics and AI, 7:77, 2020.

[25] J. R. Walter, M. Günther, D. F. Haeufle, and S. Schmitt. A geometry-and muscle-based control
architecture for synthesising biological movement. Biological Cybernetics, 115(1):7–37, 2021.

[26] M. G. Pandy, F. E. Zajac, E. Sim, and W. S. Levine. An optimal control model for maximum-
height human jumping. Journal of Biomechanics, 23(12):1185–1198, 1990.

[27] X. B. Peng and M. van de Panne. Learning locomotion skills using deeprl: Does the choice
of action space matter? In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on
Computer Animation, pages 1–13, 2017.

[28] G. F. Franklin, J. D. Powell, and A. Emami-Naeini. Feedback Control of Dynamic Systems
(8th Edition) (What’s New in Engineering). Pearson, 2018. ISBN 0134685717. URL https:
//www.amazon.com/Feedback-Control-Dynamic-Systems-Engineering/
dp/0134685717?SubscriptionId=AKIAIOBINVZYXZQZ2U3A&tag=
chimbori05-20&linkCode=xm2&camp=2025&creative=165953&
creativeASIN=0134685717.

[29] D. Reda, T. Tao, and M. van de Panne. Learning to locomote: Understanding how environment
design matters for deep reinforcement learning. In Motion, Interaction and Games, MIG ’20,
New York, NY, USA, 2020. Association for Computing Machinery. ISBN 9781450381710. doi:
10.1145/3424636.3426907. URL https://doi.org/10.1145/3424636.3426907.

23

https://arxiv.org/abs/1806.06920
https://arxiv.org/abs/2206.00484
https://arxiv.org/abs/2206.00484
http://arxiv.org/abs/1804.00361
http://arxiv.org/abs/1804.00361
https://www.amazon.com/Feedback-Control-Dynamic-Systems-Engineering/dp/0134685717?SubscriptionId=AKIAIOBINVZYXZQZ2U3A&tag=chimbori05-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=0134685717
https://www.amazon.com/Feedback-Control-Dynamic-Systems-Engineering/dp/0134685717?SubscriptionId=AKIAIOBINVZYXZQZ2U3A&tag=chimbori05-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=0134685717
https://www.amazon.com/Feedback-Control-Dynamic-Systems-Engineering/dp/0134685717?SubscriptionId=AKIAIOBINVZYXZQZ2U3A&tag=chimbori05-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=0134685717
https://www.amazon.com/Feedback-Control-Dynamic-Systems-Engineering/dp/0134685717?SubscriptionId=AKIAIOBINVZYXZQZ2U3A&tag=chimbori05-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=0134685717
https://www.amazon.com/Feedback-Control-Dynamic-Systems-Engineering/dp/0134685717?SubscriptionId=AKIAIOBINVZYXZQZ2U3A&tag=chimbori05-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=0134685717
http://dx.doi.org/10.1145/3424636.3426907
http://dx.doi.org/10.1145/3424636.3426907
https://doi.org/10.1145/3424636.3426907

	Muscle model
	Muscle model in Mujoco
	Muscle model in demoa

	Experimental details and hyperparameters
	Optimal Control (OC)
	Model Predictive Control MPC
	Reinforcement Learning (RL)
	Experimental details
	Hyperparameters

	Models
	Arm
	Biped
	FullBody

	Tasks
	Additional experiments (RL)
	Maximum force variation
	Additional goals for point-reaching with perturbations
	Additional hyperparameter variations
	Additional actuator models
	Additional robustness experiments
	MuJoCo simulation time step ablation

	Additional experiments (OC/MPC)
	Nonlinearity in muscle model
	Proportional-derivative torque control for learning
	Additional robustness experiments

