Under review as a conference paper at ICLR 2021

A APPENDIX

A.1 QUALITATIVE ANALYSIS

Weakly Supervised Neuro-Symbolic Module Network

[GenBERT

Num. of Passage Entities: Date(10), Number(9)

1. Query: how many times did a game between the patriots versus colts result in the exact same scores?, Ans: 2

D, N = Entity-Attention(‘how many times’) // D, N are the attention distribution over date
and number entities

D1, N1 = Entity-Attention(‘did a game between the patriots versus colts result in the exact
same scores’, (D, N))

‘Number’, ‘Count’ = EntType-Operator-Selector(*how many times’, Query)

Answer 2 = Count(N1)

Predicted AnsType: Decoded
Decoder output: 2

Span extracted: “colts”
Answer =2

2. Query: how many people in chennai, in terms of percent population, are not hindu?, Ans:
Num. of Passage Entities: Date(2), Number(26)

19.3

D, N = Entity-Attention(*how many people in chennai, in terms of percent population’)
D1, N1 = Entity-Attention(‘are not hindu’, (D, N))

‘Number’, ‘Negate’ = EntType-Operator-Selector(’are not hindu’, Query)

1 = Count(N)

{80.7} = Sample-Arbitrary-Arguments(N1, 1)

Answer = 19.3 = Negate({80.7})

Predicted AnsType: Decoded
Decoder output: 19.3

Span extracted: “80.7”
Answer = 19.3

3. Query: how many more percent of the population was male than female?, Ans: 0.4
Num. of P: Entities: Date(4), Number(29)

D, N = Entity-Attention(*how many’)

D1, N1 = Entity-Attention(‘more percent of the population was male’, (D, N))
D2, N2 = Entity-Attention(‘than female’, (D, N))

‘Number’, ‘Difference’” = EntType-Operator-Selector("how many’, Query)
50.2 = Sample-1-Argument(N1)

49.8 = Sample-2-Argument(N2)

Answer = 0.4 = Difference({50.2, 49.8})

Predicted AnsType: Decoded
Decoder output: 3.2

Span extracted: “49.8”
Answer = 3.2

Num. of Passage Entities: Date(0), Number(25)

4. Query: how many more, in percent population of aigle were between 0 and 9 years old than are 90 and older?, Ans: 9.8

D, N = Entity-Attention(*how many more’)

D1, N1 = Entity-Attention(‘in percent population of aigle were between 0 and 9 years old’,
(D, N))

D2, N2 = Entity-Attention(‘than are 90 and older’, (D, N))

‘Number’, ‘Difference’ = EntType-Operator-Selector(‘how many more’, Query)

10.7 = Sample-1-Argument(N1)

0.9 = Sample-1-Argument(N2)

Answer = 9.8 = Difference({10.7, 0.9})

Predicted AnsType: Decoded
Decoder output: 1.7

Span extracted: “0.9”
Answer = 1.7

Num. of Passage Entities: Date(3), Number(17)

5. Query: going into the 1994 playoffs, how many years had it been since the suns had last reached the playoffs?, Ans: 3

D, N = Entity-Attention(‘going into the 1994 playoffs : how many years’)

D1, N1 = Entity-Attention(‘had it been since the suns had last reached the playoffs’, (D, N))
‘Date’, ‘Difference’ = EntType-Operator-Selector(‘going into the 1994 playoffs : how many
years’, Query)

{1991, 1994} = Sample-2-Argument(D)

Answer = 3 = Difference({1991, 1994})

Predicted AnsType: Decoded
Decoder output: 7
Span extracted:*“1991”

Answer =7

Ans: 3

Num. of P Entities: Date(3), Number(12)

6. Query: how many more points did the cats have in the fifth game of the AA championship playoffs compared to st. paul saints?,

D, N = Entity-Attention(*how many’)

D1, N1 = Entity-Attention(‘more points did the cats have in the fifth game of the AA cham-
pionship playoffs’, (D, N))

D2, N2 = Entity-Attention(‘compared to the st. paul saints’, (D, N))

‘Number’, ‘Difference’ = EntType-Operator-Selector(‘how many’, Query)

5.0 = Sample-1-Argument(N1)

2.0 = Sample-1-Argument(N2)

Answer = 3.0 = Difference({5.0, 2.0})

Predicted AnsType: Decoded
Decoder output: 3

Answer =3

7. Query: how many total troops were there in the battle?, Ans: 40000
Num. of Passage Entities: Date(1), Number(3)

D, N = Entity-Attention(*how many total troops’)

D1, N1 = Entity-Attention(‘were there in the battle’, (D, N))

‘Number’, ‘Sum’ = EntType-Operator-Selector("how many total troops’, Query)
2 = Count(N1)

{10000.0, 30000.0} = Sample-Arbitrary-Arguments(N1, 2)

Answer = 40000.0 = Sum({10000.0, 30000.0})

Predicted AnsType: Decoded
Decoder output: 100000

Answer = 100000

13

Span extracted: “4 - 1 in the fifth game”

Span extracted: “10000 korean troops”

Under review as a conference paper at ICLR 2021

Weakly Supervised Neuro-Symbolic Module Network [NMN-num [GenBERT
8. Query: how many field goals did sebastian janikowski and kris brown both score each? Ans: 2
Num. of Passage Entities: Date(0), Number(9)
D, N = Entity-Attention(*how many field goals’) P1 = Find-Passage-Attention() Predicted AnsType: Decoded
D1, N1 = Entity-Attention(‘did sebastian janikowski and | P2 = Filter-Passage-Attention(P1) Decoder output: 2
kris brown both score each’, (D, N))
‘Number’, ‘Count’ = EntType-Operator-Selector(‘how | 2 = Passage-Attn-To-Count(P2) Span extracted: “33 - yard”
many field goals’, Query)
Answer = 2.0 = Count(N1) Answer =2 Answer =2

9. Query: how many years was between the oil crisis and the energy crisis? Ans: 6
Num. of Passage Entities: Date(19), Number(14)

DI, N1 = Entity-Attention(‘was between the oil crisis and | year-diffs € R*° v/ generated ex- | Predicted AnsType: Decoded

the energy crisis’) haustive output space of all differ-
ences)
D, N = Entity-Attention(*how many years’, D1, N1) P1 = Find-Passage-Attention() Decoder output: 3

‘Date’, ‘Difference’ = EntType-Operator-Selector(‘how | 6 = Year-Difference(P1, year-diffs) Span extracted: “1973”
many years’, Query)
{1973, 1979} = Sample-2-Argument(D) Answer = 6.0 Answer =3
Answer = 6.0 = Difference({1973, 1979})

10. Query: how many yards was the longest touchdown pass? Ans: 40
Num. of Passage Entities: Date(0), Number(5)

D, N = Entity-Attention(‘how many yards was the’) P1 = Find-Passage-Attention() Predicted AnsType: Extract-Span
D1, N1 = Entity-Attention(‘longest touchdown pass’, (D, | NI = Find-Passage-Number(P1) Decoder output: 43

N))

‘Number’, ‘Sum’ = EntType-Operator-Selector(*how many 40 = Find-Max-Num(N1) Span extracted: “40”

yards was the’, Query)

1 = Count(N) Answer = 40 Answer = 40

{40.0} = Sample-Arbitrary-Argument(N, 1)
Answer = 40.0 = Sum({40.0})

Table 4: Example questions from DROP-num along with predictions of the Proposed model WNSMN
and the best performing versions of the NMN-num and GenBERT baselines from Table|l| Detailed
elaborations of outputs of these three models below:

(1) WNSMN first parses the dependency structure in the query into a program-form. Next, for each
step of the program, it generates an attention distribution over the date and number entities. Entity-
Attention refers to that learnt entity-specific cross attention described in §2.1.1. It then performs
the discrete reasoning by sampling an operation and specific entity-arguments, in order to reach the
answer. EntType-Operator-Selector refers to the Entity-Type and Operator Predictor in Operator
Sampling Network and Sample-*-Argument refers to the Argument Sampling Network described in
42.1.2. Sum/Difference/Logical-Not are some of the discrete operations that are executed to get the
answer. In some of the cases, (e.g., Query 3.) despite wrong parsing the model was able to predict
the correct operation even though the root clause did not have sufficient information. In Query 10.,
the correct operation is Max, but WNSMN reaches the right answer by sampling only the maximum
number entity through the Sample-Arbitrary-Argument network and then applying a spurious Sum
operation on it.

(i1) On the other hand, the steps of the program generated by NMN-nrum first compute or further
filter attention distribution over the passage or entities which are then fed into the learnable modules
(Passage-Attn-To-Count, Year-Difference) that predict the answer. In order to do so, it needs to
precompute all possible outputs of numerical operations that generate new numbers for e.g. year-diffs
in Example 9. Because of the relatively poorer performance of NMN-num, its outputs are only
reported for the last 3 instances, which were cherrypicked based on NMN-num’s predictions.

(iii) GenBERT first predicts whether the answer should be decoded or extracted from passage span
and accordingly uses the Decoder output or extracted span as the answer. By design, the modular
networks provide a more interpretable output than the monolithic encoder-decoder model GenBERT.

A.2 IMPLEMENTATION & PSEUDO-CODE

The source-code and models pertaining to this work would be open-sourced on acceptance of this
work. A detailed pseudo-code of the WNSMN algorithm is provided below.

14

Under review as a conference paper at ICLR 2021

Algorithm 1: WNSMN Algorithm

Input: (Query (q), Passage (p)) =z
Output (or Supervision): Answer(y) € R

Preprocessing:
[numq, nums, ..., numy] = Num = Extract-Numbers(p) // Number and Date
[dateq, dates, . .., datep] = Date = Extract-Dates(p) // Entity and Passage Mentions

Inference:
[(g1,7ref1), ... (qk,refr), ... (q,refi)] = Program = Query-Parsing(q)

for step (qx,refr) € Program do
(Apum Tnumy (Adate pnum) < Entity-Attention(qy. p. re fr, Num, Date) §2.1.1
end for

Lrum - rdate - Eptity-Inductive-Bias(A™"", Adate) Equation

auxr auxr

— dat
ACaua: - EZ;L:T + £aauze

q; = Query Span Argument of Last Step // Program Arguments and Stacked Attention
ref; = Reference Argument of Last Step // Map over Entities for Last Step
Jrum — {nnum|k c Tefl}, Tdate - {ndate‘k c Tefl}

Operators = {op1, 0ps, ..., opg1 } = Operator-Predictor(q;, q) // Operator and EntityType
EntTypes = {typey, typea, ..., typex1 } = Entity-Type-Predictor(q;, q) // Sampling

Actions = {} // Action Sampling for each Operator
for op, type € (Operators, EntTypes) do
if type is Number then
T — T’num
else if type is Date then
T = Tdate
end if
if op is diff then
if |re fi|== 2 then
argl ={argly, argls, ..., arglys} = Sample-1-Argument(7p)
arg2 ={arg2y, arg2s, ..., arg2ys } = Sample-1-Argument(77)
args ={(al,a2)| (al,a2) € (argl,arg2)}
else if |re fi|== 1 then
args ={argy, args, .. ., argge } = Sample-2-Argument(7)

end if
else if op is count then

args = {county, counts, ..., countys } = Count-Network(} ;)
else

args ={arg, args, ..., argy2} = Sample-Arbitrary-Argument(> ;T
end if

probs = {(pt¥P¢ x p°P x p)|p € p®9} € R¥2 //p’s refer to the corresponding probabilities
answers = {Execute-Discrete-Operation(type, op, arg)| arg € args} € R*2

actions = {(prob, answer)| prob € probs, answer € answers}

Actions = Actions U actions

end for
Training:
for i € {1,-.-,NIML +NRL}d0
for (z,y) e Ddo
A(x) +— Actions sampled for input(z) // Using above Algorithm
R(z,a,y) «— Exact Match Reward for action « for instance = with gold answer y
if ¢ S NIML then
(0,9) +— nelzZSX JIME over (A, R) + mq%n Lawe J™E from Equation
else
(0, 9) «— HGI%X JRE over (A, R) + mdzn Loz JEL from Equation
end if
end for
end for

I5

Under review as a conference paper at ICLR 2021

A.3 QUALITATIVE INSPECTION OF WNSMN PREDICTIONS

Good Action: Action Resulting in exact match with gold answer

Correct Action: Action Manually annotated to be correct

Number of test instances (DROP-num Test) 5800
Number of instances with atleast 1 good action 4868
Number of instances with more than 1 good action 2533
Average number of good actions (where there is atleast 1 good action) 1.5

Average number of good actions (where there is more than 1 good action) 2.25
Number of instances where the top-1 action is good action 2956

Number of instances where top-1 is the only good action

2335 (79% of 2956)

Number of instances with possibility of top-1 action being spuriously good

620 (21% of 2956)

Number of instances manually annotated (out of possible cases of spurious top-1
action)

334 (out of 620)

Number of instances where top-1 action is found to be spurious

28 (8.4% of 334)

Avg Ratio of Probability of Top Action and Maximum Probability of all other

4.4e+11

spuriously good actions (if any)

Table 5: Analysis of the predictions of WNSMN on DROP-num Test

Generic Observations/Notes

e Note: When the model selects a single number in the Argument Sampling network and the
Operator sampled is not of type count, we forcefully consider the operation as a NO-OP. For
example sum/min/max over a single number or date is treated as NO-OP.

e One potential source of spuriously correct answer is the neural ‘counter’ module which can
predict numbers in [1, 10]. However, out of the cases where atleast one of the top-50 actions
is a good action we observe that the model is able to learn when the answer is directly
present as an entity or can be obtained through (non count) operations over other entities and
when it cannot be obtained directly from the passage but needs to aggregate (i.e., count) over
multiple entities. Table[§]below gives some examples of hard instances where the WNSMN
Top-1 prediction was found to be correct.

True Reasoning Model Prediction Count

negate a passage entity i.e., 100 - num- | the model was able to select negate of the correct entity | 34

ber as the top action.

min/max of a set of passage entities the model instead directly sampled the correct mini- | 11
mum/maximum entity as a single argument and then
applied NO-OP operation over it.

select one of the passage entities the model was able to select the right entity and apply | 18
NO-OP on it as the top action.

count over passage entities the model was able to put count as the top action and the | 88
spurious actions came much lower with almost epsilon
probability

difference over passage entities (the | the model was able to put difference as the top action | 89

same answer could be spuriously ob- | and the spurious actions came much lower with almost

tained by other non-difference opera- | epsilon probability

tions over unrelated entites)

difference over passage entities (the | the model was able to put difference over the correct | 66

same answer could be spuriously ob-
tained by difference over other unrelated
entities)

arguments as the top action

Table 6: Case Study of the 306 instances manually annotated as Correct out of 334 instances

16

Under review as a conference paper at ICLR 2021

True Reasoning Model Prediction Count

difference of dates/months count over years 4

sum(numberl, count([number2]) count over numbers 1

difference between entities sum over two arguments (both arguments | 1
wrong)

difference between entities difference over two arguments (both arguments | 1
wrong)

difference between entities count over entities 1

difference between entities sum over arguments (one correct) (correct action | 2
was taken in one of the other top-5 beams)

question is vague/incomplete/could not be an- | count or difference 2

swered manually

counting over text spans (Very rare type of ques- | wrong operator 2

tion, only 2 found out of 334)

miscelleneous wrong operator 7

miscelleneous correct operator wrong arguments (one correct) | 2

miscelleneous correct operator wrong arguments (all wrong) 5

Table 7: Case Study of the 28 instances manually annotated as Wrong out of 334 instances.

Question

Relevant Passage Excerpt

Model Prediction Analysis

How many printing had Green
Mansions gone through by
1919?

“W. H. Hudson which went through nine
printings by 1919 and sold over 20,000
copies.... ”

Model was able to rank the operation sum([9.0]) highest. the
count-number operator had near-epsilon probability, indicat-
ing that indeed it did not find any indication of the answer
being 9 by counting entities over the passage. This is despite
the fact that most of the "how many” type questions need
counting.

The Steelers finished their
1995 season having lost how
many games difference to the
number of games they had
won?

“In 1995, the Steelers overcame a 3-4
start (including a 20-16 upset loss to the
expansion 1995 Jacksonville Jaguars sea-
son) to win eight of their final nine games
and finished with an record, the second-
best in the AFC”.

Model had to avoid distracting numbers (3,4) and (20,16) to
understand that the correct operation is difference of (9-8)

How many more field goals
did Longwell boot over
Kasay?

“26-yard field goal by kicker Ryan Long-
well ... Carolina got a field goal with op-
posing kicker John Kasay. ... Vikings
would respond with another Longwell
field goal (a 22-yard FG) ... Longwell
booted the game-winning 19-yard field
goal ”

Question needed counting of certain events and none of these
appeared as numbers. Model was able to apply count over
number entities correctly

How many delegates were
women from both the Bolshe-
vik delegates and the Socialist
Revolutionary delegates?

“Of these mandatory candidates, only
one Bolshevik and seven Socialist Rev-
olutionary delegates were women.”

Model was able to apply sum on the correct numbers, even
though many of the “how many” type questions need count-
ing

How many years in a row did
the GDP growth fall into nega-
tives?

“Growth dropped to 0.3% in 1997, -2.3%
in 1998, and -0.5% in 1999.”

Model had to understand which numbers are “negative”. It
also needed to understand to count the two events instead of
taking difference of the years

At it’s lowest average surface
temperature in February, how
many degrees C warmer is it in
May?

“The average surface water temperature
is 26-28 C in February and 29 C in May.”

Passage had distrative unrelated numbers in the proximity but
the model was able to select the lowest temperature out of
(26,28) and then take difference of (29-26)

How many years ibefore the
blockade was the Uqair confer-
ence taken place?

“Ibn Saud imposed a trade blockade
against Kuwait for 14 years from 1923
until 1937... At the Uqair conference in
1922,...”

Passage had other distracting unrelated numbers in the prox-
imity but the model was able to select the correct difference
operation

Table 8: Manual Analysis of a few hard instances (with Question and Relevant Passage Excerpt)

where WNSMN top-1 prediction was found to be correct

A.4 BACKGROUND: NUMERICAL REASONING OVER TEXT

The most generic form of Numerical reasoning over text (NRoT) is probably encompassed by the
machine reading comprehension (MRC) framework (as in Dua et al.|(2019)), where given a long
passage context, ¢, the model needs to answer a query ¢, which can involve generating a numerical
or textual answer or selecting a numerical quantity or span of text from the passage or query. The
distinguishing factor from general RC is the need to perform some numerical computation using the
entities and numbers in the passage to reach the goal.

17

Under review as a conference paper at ICLR 2021

Discrete/symbolic reasoning in NRoT: In the early NRoT datasets Hosseini et al.| (2014); Roy &
Roth|(2015); Koncel-Kedziorski et al. (2016) which deal with simpler math word problems with a
small context and few number entities, symbolic techniques to apply discrete operations were quite
popular. However, as the space of operations grow or the question or the context becomes more
open-ended these techniques fail to generalize. Incorporating explicit reasoning in neural models as
discrete operations requires handling non-differentiable components in the network which leads to
optimization challenges.

Discrete reasoning using RL: Recently Deep Reinforcement Learning (DRL) has been employed in
various neural symbolic models to handle discrete reasoning, but mostly in simpler tasks like KBQA,
Table-QA, or Text-to-SQL |[Zhong et al.| (2017);|Liang et al.| (2018;2017);|Saha et al. (2019); |Ansari
et al. (2019); Neelakantan et al. (2017). Such tasks can be handled by well-defined components
or modules, with well structured function-prototypes (i.e., function arguments can be of specific
variable-types e.g., KB entities or relations or Table row/column/cell values), which can be executed
entirely as a symbolic process. On the other hand, MRC needs more generalized frameworks of
modular networks involving fuzzy forms of reasoning, which can be achieved by learning to execute
the query over a sequence of learnable neural modules, as explored in |Gupta et al. (2020). This was
inspired by the Neural Modular Networks which have proved quite promising for tasks requiring
similar fuzzy reasoning like Visual QA |Andreas et al. (2016} [2015).

SoTA models on DROP: While the current leaderboard-topping models already showcase quite
superior performance on the reasoning based RC task, it needs closer inspection to understand
whether the problem has been indeed fully solved.

Pre-trained Language Models: On one hand, the large scale pretrained language models |Geva
et al.|(2020) use Transformer encoder-decoder (with pretrained BERT) to emulate the input-output
behavior, decoding digit-by-digit for numeric and token-by-token for span based answers. However
such models perform poorly when only trained on DROP and need additional synthetic dataset
of numeric expressions and DROP-like numeric textual problems, each augmented with the gold
numeric expression form.

Reasoning-free Hybrid Models: On the other hand, a class of hybrid neural models have also gained
SoTA status on DROP by explicitly handling the different types of numerical computations in the
standard extractive QA pipeline. Most of the models in this genre, like NumNet (Ran et al.|(2019)),
NAQANet (Dua et al. (2019)), NABERT+(Kinley & Lin/(2019)), MTMSN (Hu et al.|(2019)) and
NeRd (Chen et al.[(2020)) do not actually treat it as a reasoning task; instead they precompute an
exhaustive enumeration of all possible outcomes of numerical and logical operations (e.g., sum/diff,
negate, count, max/min) and augment the training data with knowledge of the query-type (depending
on reasoning-type) and all the numerical expression that leads to the correct answer. This reduces
the question-answering task to simply learning a multi-type answer predictor to classify into the
reasoning-type and directly predict the numerical expression, thus alleviating the need for rationalizing
the inference or handling any (non-differentiable) discrete operation in the optimization. Some of
the initial models in this genre are NAQANet(Dua et al. (2019) and NumNet (Ran et al.| (2019))
which are respectively numerically aware enhancements of QANet(Yu et al. (2018)) and the Graph
Neural Networks. These were followed by BERT-based models, NABERT and NABERT+(Kinley’
& Lin|(2019)), i.e. a BERT version of the former, enhanced with standard numbers and expression
templates for constraining numerical expressions. MTMSN Hu et al.|(2019) models a specialized
multi-type answer predictor designed to support specific answer types (e.g., count/negation/add/sub)
with supervision of the arithmetic expressions that lead to the gold answer, for each type.

Modular Networks for Reasoning: NMN (Gupta et al., 2020) is the first model to address the QA task
through explicit reasoning by learning to execute the query as a specialized program over learnable
modules tailored to handle different types of numerical and logical operations. However, to do so, it
further needs to augment the training data with annotation of the gold program and gold program
execution i.e. the exact discrete operation and numerical expression (i.e., the numerical operation and
operands) that leads to the correct answer for e.g., the supervision of the gold numerical expression in
Figure[I is SUM(23, 26, 42). This is usually obtained through manual inspection of the data through
regex based pattern matching and heuristics applied on the query language. However, because of
the abundance of templatized queries in DROP this pattern matching is infact quite effective and
noise-free, resulting in the annotations acting as strong supervision.

18

Under review as a conference paper at ICLR 2021

However such a manual intensive process severely limits the overall model from scaling to more
general settings. This is especially true for some of the previous reasoning based models, NABERT+,
NumNet and MTMSN which perform better on than NMN (infact achieve SoTA performance) on the
full DROP dataset. But we do not consider them as our primary baselines, as, unlike NMN, these
models (Hu et al.|(2019); [Efrat et al.|(2019); Dua et al. (2019); Ran et al.|(2019)) do not have any
provision to learn in absence of the additional supervision generated through exhaustive enumeration
and manual inspection. (Gupta et al.,|2020) have been the first to train a modular network strong,
albeit a more fine-grained supervision for a fraction of training data, and auxiliary losses that allow
them to learn from the QA pairs alone. Consequently on a carefully-chosen subset of DROP, NMN
showcased better performance than NABERT and MTMSN, when strong supervision is available
only for partial training data.

Our work takes it further along the direction in two ways

e while NMN baseline can handle only 6 specific kinds of reasoning, for which they tailored
the program generation and gold reasoning annotation, our model works on the full DROP-
num, that involves more diverse kinds of reasoning or more open-ended questions, and
requires evaluating on a subset x7.5, larger by training on x4.5 larger training data.

e while NMN generalized poorly on the full DROP-num, especially when only one or more
types of supervision is removed, our model performs significantly better without any of
these types of supervision.

Together, NMN and GenBERT are some of the latest works in the two popular directions (reasoning
and language model based) for DROP that allow learning with partial no strong supervision and
hence act as primary baselines for our model.

Since in this work we are investigating how neural models can incorporate explicit reasoning, we
focus on only answering questions having numerical answer (DROP-num), where we believe the
effect of explicit reasoning is more directly observeable. This is backed up by the category-wise
performance comparison of reasoning-free language model GenBERT (reported in|Geva et al. (2020))
with other hybrid models (MTMSN and NABERT+) that exploit numerical computation required
in answering DROP questions. While, on DROP-num, there is an accuracy gap of 33% between
the GenBERT model and the hybrid models (when all are trained on DROP only), there is only a
2-3% performance gap on the subset having answers as single span, despite the latter also needing
reasoning. This evinces that the performance gap is indeed due to exploiting explicit reasoning under
such strong supervised settings.

A.4.1 LIMITATIONS OF NMN

The primary motivation behind our work comes from some of the limitations of the contemporary
neural module networks, NMN and the reasoning-free hybrid models MTMSN, NABERT+, NumNet,
NAQANet; specifically their dependence on the availability of various kinds of strong supervision.
For that we first describe the nature of programmatic decompositions of queries used in the modular
architectures in the closest comparable work of NMN.

NMN defined a program structure with modules like ‘find’, “filter’, ‘relocate’, ‘find-num’, ‘find-date’,
‘year-difference’, ‘max-num’, ‘min-num’, ‘compose-number’ etc., to handle a carefully chosen subset
of DROP showcasing only 6 types of reasoning, (i.e. Date-Difference, Count, Extract Number,
Number Compare). For e.g. for the query Which is the longest goal by Carpenter? the program
structure would be (MAX(FILTER(FIND(‘Carpenter’), ‘goal’)), where each of these operations are
learnable networks. However to facilitate learning of such specialized programs and the networks
corresponding to these modules, the model needs precomputation of the exhaustive output space
for different discrete operation and also various kinds of strong supervision signals pertaining to the
program generation and execution.

Precomputation of the Exhaustive Output-Space: For operations that generate a new number as its
output (e.g., sum/diff), the annotation enumerates the set of all possible outputs by computing over
all subsets of number or date entities in the passage. This simplifies the task by allowing the model
to directly learn to optimize the likelihood of the arithmetic expression that lead to the final answer,
without any need for handling discrete operations.

Program Supervision provides supervision of the query category out of the 6 reasoning categories, on
which their program induction grammar is tailored to. With this knowledge they can directly use the

19

Under review as a conference paper at ICLR 2021

category specific grammar to induce the program (for e.g. SUM(FILTER(FIND)) in Fig|[T). Further all
these models (NMN, MTMSN, NABERT+, NumNet, NAQANet) use the supervision of the query
category to understand whether the discrete operation is of type count or add/sub or max/min. which
includes the knowledge of the ‘gold’ discrete operation (i.e. count or max/min or add/sub) to perform.

Query Attention Supervision provides information about the query segment to attend upon in each
step of the program, as the program argument for e.g. in Fig[I, ‘Carpenter’ and ‘goal’ in the 1st and
2nd step of the program.

Execution Supervision: For operations that select one or more of the number/date entities in the
passage, (for e.g. max/min), rule based techniques provide supervision of the subset of numbers or
dates entities from the passage, over which the operation is to be performed.

These annotations are heuristically generated through manual inspection and regular expression
based pattern matching of queries, thus limiting their applicability to a small subset of DROP only.
Furthermore, using a hand-crafted grammar to cater to the program generation for each of their
reasoning categories, hinders their generalizability to more open ended settings. While this kind of
annotation is feasible to get in DROP, this is clearly not the case with other futuristic datasets, with
more open-ended forms of query, thus calling for the need for other paradigms of learning that do not
require such manually intensive annotation effort.

A.4.2 PRETRAINING DATA FOR GENBERT

While GenBERT (Geva et al.| (2020)) greatly benefits from pre- oo

training on synthetic data, there are few notable aspects of how the | ®vrornn)
synthetic textual data was carefully designed to be similar to DROP.
The textual data was generated for the same two categories nfl and
history as DROP with similar vocabulary and involving the same
numerical operations over similar ranges of numbers (2-3 digit num-
bers for DROP and 2-4 digit numbers for synthetic textual data). The
intentional overlap between these two datasets is evident from the
t-SNE plots (in Figure 6) of the pretrained Sentence-Transformer
embedding of questions from DROP—num (bl.ue) gpd the Synthetic sure 6: t-SNE of questions
Textual Data (red). Further, while the generalizability of GenBERT . “ypap . Test and Syn-
was tested on add/sub operations frgm math yvord problems (MWP) o Textual Data used in
datasets ADD-SUB, SOP, SEQ, thqlr synthetlc textual data was 'al.so GenBERT models (TD and
generated using the same structure involving world state and entities Ny +TD)

and verb categories used by |Hosseini et al. (2014) to generate these

MWP datasets. Such bias limits mitigates the real challenges of

generalizability, limiting the true test of robustness of such language models for numerical reasoning.

A.5 QUERY PARSING: DETAILS
The Stanford Dependency parse tree of the query is organized into a program structure as follows

e Step 1) A node is constructed out of the subtrees rooted at each immediate child of the root,
the left-most node is called the root-clause

e Step 2) Traversing the nodes from left to right, an edge is added between the left-most to
every other node, and each of these are added as steps of the program with the node as the
query span argument of that step and the reference argument as the incoming edges from
past program steps

e Step 3) The terminal (leaf) nodes obtained in this manner are then further used to add a final
step of the program which is responsible for handling the discrete operation. The query-span
argument of this step is the root-clause, which often is indicative of the kind of discrete
reasoning to perform. The reference arguments of this step are the leaf nodes obtained from
Step 2).

Figure 7 provides some example queries similar to those in DROP along with their Dependency

Parse Tree and the Simplified Representation obtained by constructing the nodes and edges as in
Step 1) and 2) above, and the final program which is used by WNSMN. Note that in this simplified

20

Under review as a conference paper at ICLR 2021

Query Dependency Simplified Representation with Program
Parse Tree Merged Nodes & Edges
did\‘h
. X1=[How many years before WorldWar-II']
How many years how” ; ppen ow ey years X2 = ['did WorldWar-| happen', X1]

before WorldWar-II

yetrs WorldWar-|

Answer = DiscreteReasoning(‘How many

i - before WorldWar-II", X2
f\'d Wor’I7dWar ! DA Root Clause: ‘How many years before WorldWar-II’ years betore World¥yar)
appen many ore Terminal Node(s): ‘did WorldWar-I happen’
WorldWar-Il
' X1 = [‘After how many years’]
did . X2 = ['of WorldWar-I’. X1]
After how many years hovf/ \ appen After how X3 = ['did WorldWar-II hapen’, X1]
of WorldWar-I did ™ of ﬁorIdWar-l any year Answer = DiscreteReasoning(‘After how
WorldWar-Il happen? o yairs '\ Root Ciause: ‘Afte how many years many years', [X2, X3))
maﬁ{ WorldWar-l Terminal Node(s): ‘of WorldWarl’, ‘did WorldWar-Il happen’
How many years passed X1 =['How many years’]
passed between how/ b;ﬁ/een X2 = ['passed between WorldWar-I and

WorldWar-I and
WorldWar-11?

Y

POERY
years WorldWar-I and

Root Clause: ‘How many years’

passed between WorldWar-|
and WorldWar-11?

WorldWar-Il', X1]
Answer = DiscreteReasoning(‘How many
years', [X2])

mafy WorldwWar-Il Terminal Node(s): ‘passed between WorldWar-1 and WorldWar-11?*
How many total yards ;‘d\) How many total yards> Cdid Carpenter kick X1 = [How many total yards’]
did Carpenter kick? kick X2 = ['did Carpenter kick’, X1]

yards, \
how'/ ma\ﬁy total Carpenter

Root Clause: ‘How many total yards’
Terminal Node(s): ‘did Carpenter kick’

Answer = DiscreteReasoning(‘How many
total yards’, [X2])

- goal
Which is the longest e \b X1 =[What is the longest field]
field goal by field Y What is the longest field goal by Carpenter X2 = ['goal by Carpenter’, X1]
3 N T N
Carpenter? what z*h\é |0ngest\%arpemer Root Clause: What is the longest field Answer = DiscreteReasoning(‘What is the

Terminal Node(s): ‘goal by Carpenter’

longest field’, [X2])

How much longer was o §
was WorldWar-| than londar \than X1= [‘HOW much longer] s
WorldWar-11? F v \W How much longer was WorldWar-1 than WorldWar-IT X2 = [was WorldWar-| than WorldWar-1I",
X1]
hy n'*) h | X "
0! ch WorldWar-1 WorldWar-II Root Clause: HU\’f/‘mUCh longer Answer = DiscreteReasoning(‘How much
Terminal Node(s): ‘was WorldWar-I than WorldWar-Il longer’, [X2])

How many were
immigrants were not immigfa/nts hot X1 = ['How many immigrants’]
women? g ¥] \n How many immigran X2 = ['were not women’, X1]

how mahy women Answer = DiscreteReasoning(‘How many

Root Clause: How many immigrants
Terminal Node(s): ‘were not women’

immigrants’, [X2])
Figure 7: Examples of Programs for WNSMN obtained from the Dependency Parse Tree of the
Query

representation of the parse tree the root-word of the original parse tree is absorbed in its immediate
succeeding child. Also we simplify the structure in order to limit the number of reference arguments
in any step of the program to 2, which in turn requires the number of terminal nodes (after step 2
of the above process) to be limited to 2. This is done in our left to right traversal by collapsing any
additional terminal node into a single node.

A.6 RL FRAMEWORK: DETAILS

In this section we discuss some additional details of the RL framework and tricks applied in the
objective function

Iterative ML Objective: In absence of supervision of the true discrete action that leads to the correct
answer, this iterative procedure fixes the policy parameters to search for the good actions (where
A9°°d = Lg : R(x,a) = 1}) and then optimizes the likelihood of the best one out of them. However,
the simple, conservative approach of defining the best action as the most likely one according to
the current policy can lead to local minima and overfitting issues, especially in our particularly
sparse and confounding reward setting. So we take a convex combination of a conservative and a
non-conservative selection that respectively pick the most and least likely action according to the
current policy out of A9°°¢ as best. Hyperparameter \ weighs these two parts of the objective and is
chosen to be quite low (1e~3), to serve the purpose of an epsilon-greedy exploration strategy without
diverging significantly from the current policy.

IML _ _ :
JIMED,9) =D (1=) max log Pyg(alz) + X min log Py (al)
Using Noisy Pseudo-Reward: In addition to using the REINFORCE objective to maximise the
likelihood of actions that lead to the correct answer, we can also obtain different noisy pseudo
rewards (€ {—1,41}) for the different modules that contribute towards the action sampling (i.e.

21

Under review as a conference paper at ICLR 2021

the operator and the entity-type and different argument sampler networks). Towards this end, we
define pseudo-reward for sampling an operator as the maximum of the reward obtained from all the
actions involving that operator. Similarly, we can also define reward for predicting the entity-type
(date or number) over which the discrete operation should be executed. Following the same idea,
we also obtain pseudo rewards for the different argument sampling modules. For e.g. if the most
likely operator (as selected by the Operator Sampler) is of type count and it gets a pseudo-reward
of +1, then, in that case, we can use the reward obtained by the different possible outputs of the
Counter network as a noisy pseudo-label supervision and subsequently add an explicit loss of negative
log-likelihood to the final objective for the Counter module. Similar pseudo-reward can be designed
for the Entity-Ranker module when the most likely operator sampled by the Operator Sampler
needs arbitrary number of arguments. Treating the pseudo-reward as a noisy label can lead to a
negative-log-likelihood based loss on output distribution from the Entity-Ranker, following the idea
that the correct entities should atleast be ranked high so as to get selected when sampling any arbitrary
number of entities.

22

