
Supplementary Materials for:
Learning Quadruped Locomotion Using

Differentiable Simulation

Anonymous Author(s)
Affiliation
Address
email

1 Double Integrator1

A double integrator system is characterized by its position and velocity. The control input u directly2

controls the acceleration of the system. For a fair comparison, we formulate the problem as a3

discrete-time finite-horizon optimal control problem. The discrete-time state space representation of4

a double integrator is5

xk+1 = Axk +Buk

where A =

[
1 dt
0 1

]
and B =

[
d2t/2
dt

]
. Here, dt is the simulation time step. The objective is to6

minimize a quadratic loss function7

J = xT
NQfxN +

N−1∑
k=0

(xT
kQxk + uT

kRuk)

Q = Qf =

[
1 0
0 1

]
, R = [1].

This is a discrete-time finite-horizon Linear–Quadratic Regulator problem, where the optimal con-8

trol law can be found using dynamic programming9

u∗
k = −(R+BTPk+1B)−1BTPk+1Axk, k = 0, 1, · · · , N − 1,

where PN = Qf and Pk can be found from the Riccati recursion.10

2 Experimental Setup11

Simulation Setup: We develop our own differentiable simulation using PyTorch and CUDA. Our12

differentiable simulator allows for both forward propagation of the robot dynamics and backpropa-13

gation of the policy gradient. Additionally, we run IsaacGym alongside our differentiable simulation14

and use it to align the robot state resulting from our simplified robot dynamics. IsaacGym simulates15

the whole-body dynamics and complicated contacts between the robot and its environment. Both16

simulations are parallelized on GPU. We used a discretized simulation time step of 0.002 s and a17

control frequency of 100Hz.18

Observation and Action: The policy observation includes random commands (cmdrand) for the19

reference velocity, sinusoidal and cosinusoidal representations of gait phases, the base velocity20

(vWB), the base orientation (qWB), the angular velocity (ωB), motor position deviations from21

default (q − qdefault), and a projected gravity vector (gprojected). The policy action δq is the desired22

joint position offset from the default joint position.23

Submitted to the 8th Conference on Robot Learning (CoRL 2024). Do not distribute.

Observation Dimension Action Dimension
cmdrand 3

δq 12

sin(gait phase) 4
cos(gait phase) 4

vWB 3
qWB 4
ωB 3

q − qdefault 12
gprojected 3

Table 1: Policy observation and action for quadruped locomotion.

3 Foot Trajectory Planning24

We use the foot position loss ∥pfoot−pref
foot∥2 to provide a learning signal for the swing legs. This loss25

term is critical for the swing leg since it contains information about the motor position. Following26

prior works [1, 2], the swing leg trajectory can be computed by fitting a quadratic polynomial over27

the lift-off plift
foot, mid-air pair

foot, and landing position pland
foot of each foot, where the lift-off position is28

the foot location at the beginning of the swing phase, the landing position pland
foot is calculated using29

the Raibert Heuristics [3], which is expressed as the following function30

pland
foot = phip

foot + vCoMTstance/2

where Tstance is the expected time the foot will spend on the ground, phip
foot is the location on the ground31

beneath the robot’s hip, vCoM is the body velocity projected on the xy-plane. The desired contact32

state of each leg. e.g., swing or stance, is determined via a gait generator. The gait is modulated by33

a phase variable ϕ ∈ [0, 2π]. The phase is defined through a dynamic function ϕt+1 = ϕt +2πf∆t,34

where f is the stepping frequency. We can design different locomotion patterns by adapting the35

stepping frequency f and the phase difference between each leg.36

4 On the Importance of Non-differentiable Terminal Penalty37

We highlight one important benefit of RL compared to differentiable simulation: RL can signifi-38

cantly enhance its robustness by directly optimizing through non-differentiable rewards or penalties.39

Specifically, we use a non-differentiable value p = 200 to penalize the robot when the robot experi-40

ences termination during training, e.g., falling on the ground or lifting its legs above its body.41

r(xt,ut) =

{
−l(xt,ut)− p if termination
−l(xt,ut) otherwise.

Fig. 1 shows a study of using non-differentiable terminal penalty for both RL and differentiable42

simulation. The results show that adding a final penalty can greatly affect how well RL works.43

Without a penalty, RL might get trapped in a local minimum. However, with a large penalty at the44

end, RL can achieve better task rewards as well as more robust control performance. This is because45

RL optimizes a discounted return, which estimates “how good” it is to be in a given state. RL uses46

a state-value function to encode this information47

Vπ(s) = E[G|S0 = s] = E

[∞∑
t=0

γtRt+1|S0 = s

]
.

On the other hand, a terminal penalty has no impact on differentiable simulation since the gradient48

of a constant value is equal to zero, and we do not leverage a state value function. As a result,49

differentiable simulation requires well-defined continuous functions, e.g., a potential function or50

control barrier functions for robust control.51

2

Figure 1: A comparison of non-differentiable terminal penalty for policy training. Using a non-
differentiable terminal penalty, PPO can achieve robust control performance, e.g., longer episode
length. We use 1024 robots for simulation.

5 Ablation Study52

We conducted an ablation study to investigate the significance of the proposed state alignment mech-53

anism. In our implementation, we use the state from IsaacGym to align the robot state within our54

simplified rigid-body differentiable simulation. To assess the impact of state alignment, we per-55

formed experiments where we removed the state alignment and compared the resulting learning56

curves to those obtained with state alignment. The results are presented in Figure 2. The results57

indicate that without state alignment, the robot fails to learn any useful walking skills.58

Figure 2: Ablation study for state alignment using IsaacGym.

6 Hyperparameters59

Parameter Value
learning rate 0.001
discount factor γ 0.95
GAE-λ 0.95
learning epoch 10
policy network MLP [256, 256]
value network MLP [256, 256]
clip range 0.2
entropy coefficient 0.002
number of epoch 10

Table 2: PPO hyperparameters.

3

Parameter Value
learning rate 0.001
policy network MLP [256, 256]
gradient decay factor α 0.9

Table 3: Hyperparameters for policy training using differentiable simulation.

7 Related Work60

We provide more details about related work in legged locomotion.61

Model-free Reinforcement Learning: Deep reinforcement learning has emerged as a dominant62

approach for developing control policies in legged locomotion [4, 5, 6, 7]. Recently, an important63

advancement in this area has been the introduction of IsaacGym [8], which is a GPU-accelerated64

simulator. IsaacGym can dramatically reduce the time required for dynamics simulation and pol-65

icy training, enabling robots to learn to walk on flat ground in minutes [9]. This advancement66

has significantly accelerated the pace of research in legged locomotion, opening new avenues to67

address increasingly complex challenges [2, 10, 11, 12, 13]. Despite demonstrating strong perfor-68

mance, RL encounters challenges in scenarios where data generalization is slow, particularly with69

high-dimensional inputs. This limitation becomes evident as researchers start tackling vision-based70

problems, which inherently involve high-dimensional data. A common strategy involves a two-stage71

training process [13, 14, 6, 15, 7, 10]. First, a state-based RL policy—referred to as the teacher—is72

trained without the use of image data. Subsequently, this policy is used to guide the training of a stu-73

dent policy, which incorporates images as inputs. The requirement of combining RL with imitation74

learning highlights some fundamental challenges in RL and the need to investigate these challenges.75

Differentiable Simulation: Differentiable simulation has recently gained momentum thanks to the76

development of differentiable physics simulators [16, 17, 18] and flexible automatic differentia-77

tion tools like Jax, DiffTaichi, Pytorch [19, 20, 21]. In principle, policy training through differen-78

tiable simulation allows for better convergence by replacing the zeroth-order gradient estimation of79

a stochastic objective with a more accurate estimate based on first-order gradients [22]. However,80

challenges such as the noisy optimization landscape and issues of exploding or vanishing gradients81

in long-horizon tasks render first-order gradient methods less effective. Several approaches have82

been developed to tackle these challenges. For instance, SHAC [23] addresses the gradient issue by83

truncating trajectories into several smaller segments, which helps manage exploding or vanishing84

gradients. Another notable example is DiffMimic [24], which focuses on mimicking motion trajec-85

tories for physically simulated characters. They show that differentiable simulation is a promising86

direction for improving sample efficiency. However, the capability of differentiable simulation to87

substantially speed up policy learning in contact-rich scenarios with physical interactions, as well88

as their practical applicability to real-world situations, such as quadruped locomotion, remains a89

significant challenge in robotics.90

References91

[1] Y. Yang, T. Zhang, E. Coumans, J. Tan, and B. Boots. Fast and efficient locomotion via learned92

gait transitions. In Conference on Robot Learning, pages 773–783. PMLR, 2022.93

[2] Y. Yang, G. Shi, X. Meng, W. Yu, T. Zhang, J. Tan, and B. Boots. Cajun: Continuous adaptive94

jumping using a learned centroidal controller. arXiv preprint arXiv:2306.09557, 2023.95

[3] M. H. Raibert. Legged robots that balance. MIT press, 1986.96

[4] J. Hwangbo, J. Lee, A. Dosovitskiy, D. Bellicoso, V. Tsounis, V. Koltun, and M. Hutter. Learn-97

ing agile and dynamic motor skills for legged robots. Science Robotics, 4(26):eaau5872, 2019.98

4

[5] J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun, and M. Hutter. Learning quadrupedal locomo-99

tion over challenging terrain. Science robotics, 5(47):eabc5986, 2020.100

[6] T. Miki, J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun, and M. Hutter. Learning robust per-101

ceptive locomotion for quadrupedal robots in the wild. Science Robotics, 7(62):eabk2822,102

2022.103

[7] A. Kumar, Z. Fu, D. Pathak, and J. Malik. Rma: Rapid motor adaptation for legged robots.104

arXiv preprint arXiv:2107.04034, 2021.105

[8] V. Makoviychuk, L. Wawrzyniak, Y. Guo, M. Lu, K. Storey, M. Macklin, D. Hoeller, N. Rudin,106

A. Allshire, A. Handa, and G. State. Isaac gym: High performance gpu-based physics simula-107

tion for robot learning, 2021.108

[9] N. Rudin, D. Hoeller, P. Reist, and M. Hutter. Learning to walk in minutes using massively109

parallel deep reinforcement learning. In Conference on Robot Learning, pages 91–100. PMLR,110

2022.111

[10] A. Agarwal, A. Kumar, J. Malik, and D. Pathak. Legged locomotion in challenging terrains112

using egocentric vision. In Conference on Robot Learning, pages 403–415. PMLR, 2023.113

[11] Z. Fu, X. Cheng, and D. Pathak. Deep whole-body control: learning a unified policy for114

manipulation and locomotion. In Conference on Robot Learning, pages 138–149. PMLR,115

2023.116

[12] G. B. Margolis, G. Yang, K. Paigwar, T. Chen, and P. Agrawal. Rapid locomotion via rein-117

forcement learning. arXiv preprint arXiv:2205.02824, 2022.118

[13] Z. Zhuang, Z. Fu, J. Wang, C. Atkeson, S. Schwertfeger, C. Finn, and H. Zhao. Robot parkour119

learning. In Conference on Robot Learning (CoRL), 2023.120

[14] X. Cheng, K. Shi, A. Agarwal, and D. Pathak. Extreme parkour with legged robots. arXiv121

preprint arXiv:2309.14341, 2023.122

[15] D. Hoeller, N. Rudin, D. Sako, and M. Hutter. Anymal parkour: Learning agile navigation for123

quadrupedal robots. Science Robotics, 9(88):eadi7566, 2024.124

[16] C. D. Freeman, E. Frey, A. Raichuk, S. Girgin, I. Mordatch, and O. Bachem. Brax–a differen-125

tiable physics engine for large scale rigid body simulation. arXiv preprint arXiv:2106.13281,126

2021.127

[17] F. de Avila Belbute-Peres, K. Smith, K. Allen, J. Tenenbaum, and J. Z. Kolter. End-to-end128

differentiable physics for learning and control. Advances in neural information processing129

systems, 31, 2018.130

[18] T. Howell, S. Le Cleac’h, J. Bruedigam, Z. Kolter, M. Schwager, and Z. Manchester. Dojo: A131

differentiable simulator for robotics. arXiv preprint arXiv:2203.00806, 2022.132

[19] J. Bradbury, R. Frostig, P. Hawkins, M. J. Johnson, C. Leary, D. Maclaurin, G. Necula,133

A. Paszke, J. VanderPlas, S. Wanderman-Milne, and Q. Zhang. JAX: composable transfor-134

mations of Python+NumPy programs, 2018. URL http://github.com/google/jax.135

[20] Y. Hu, L. Anderson, T.-M. Li, Q. Sun, N. Carr, J. Ragan-Kelley, and F. Durand. Difftaichi:136

Differentiable programming for physical simulation. arXiv preprint arXiv:1910.00935, 2019.137

[21] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,138

N. Gimelshein, L. Antiga, et al. Pytorch: An imperative style, high-performance deep learning139

library. Advances in neural information processing systems, 32, 2019.140

5

http://github.com/google/jax

[22] H. J. Suh, M. Simchowitz, K. Zhang, and R. Tedrake. Do differentiable simulators give better141

policy gradients? In International Conference on Machine Learning, pages 20668–20696.142

PMLR, 2022.143

[23] J. Xu, V. Makoviychuk, Y. Narang, F. Ramos, W. Matusik, A. Garg, and M. Macklin. Accel-144

erated policy learning with parallel differentiable simulation. In International Conference on145

Learning Representations, 2021.146

[24] J. Ren, C. Yu, S. Chen, X. Ma, L. Pan, and Z. Liu. Diffmimic: Efficient motion mimicking147

with differentiable physics. 2023.148

6

	Double Integrator
	Experimental Setup
	Foot Trajectory Planning
	On the Importance of Non-differentiable Terminal Penalty
	Ablation Study
	Hyperparameters
	Related Work

