a H~ W N

Supplementary Materials for:
Learning Quadruped Locomotion Using

Differentiable Simulation

Anonymous Author(s)
Affiliation
Address

email

1 Double Integrator

A double integrator system is characterized by its position and velocity. The control input u directly
controls the acceleration of the system. For a fair comparison, we formulate the problem as a
discrete-time finite-horizon optimal control problem. The discrete-time state space representation of
a double integrator is

Tyl = Az + Buy,

2
where A = {(1) Lﬂ and B = [d&éﬂ Here, d; is the simulation time step. The objective is to

minimize a quadratic loss function

2

J=ayQrrn + Y (x} Quy + uf Ruk)
0

@=0r=| §| =10

b
Il

This is a discrete-time finite-horizon Linear—Quadratic Regulator problem, where the optimal con-
trol law can be found using dynamic programming

up = —(R+ BTPk+1B)7lBTPk+1Axk,’ k=0,1,---,N —1,

where Py = @y and P can be found from the Riccati recursion.

2 Experimental Setup

Simulation Setup: We develop our own differentiable simulation using PyTorch and CUDA. Our
differentiable simulator allows for both forward propagation of the robot dynamics and backpropa-
gation of the policy gradient. Additionally, we run IsaacGym alongside our differentiable simulation
and use it to align the robot state resulting from our simplified robot dynamics. IsaacGym simulates
the whole-body dynamics and complicated contacts between the robot and its environment. Both
simulations are parallelized on GPU. We used a discretized simulation time step of 0.002s and a
control frequency of 100 Hz.

Observation and Action: The policy observation includes random commands (cmd,,,q) for the
reference velocity, sinusoidal and cosinusoidal representations of gait phases, the base velocity
(v), the base orientation (qw p), the angular velocity (wg), motor position deviations from
default (q — Qgefaulc), and a projected gravity vector (€projected)- The policy action dq is the desired
joint position offset from the default joint position.

Submitted to the 8th Conference on Robot Learning (CoRL 2024). Do not distribute.

25
26
27
28
29
30

31
32
33
34
35
36

37

38
39
40
41

42
43
44
45
46
47

48
49
50
51

Observation Dimension | Action | Dimension
emd and 3
sin(gait phase)
cos(gait phase)

<
3
sy
[SS] IR Y RTINS I N

IS

A — Ydefault
projected

w2

Table 1: Policy observation and action for quadruped locomotion.

3 Foot Trajectory Planning

We use the foot position 10ss ||Proot — PT, [|* to provide a learning signal for the swing legs. This loss
term is critical for the swing leg since it contains information about the motor position. Following
prior works [1, 2], the swing leg trajectory can be computed by fitting a quadratic polynomial over
the lift-off plift | mid-air pa" , and landing position pi29 of each foot, where the lift-off position is
the foot location at the beginning of the swing phase, the landing position plf‘;‘(‘f is calculated using
the Raibert Heuristics [3], which is expressed as the following function

land __ __ hip CoM
Pfoot = Proot +tv TSlanC&/ 2

where Tnce 1S the expected time the foot will spend on the ground, p?é{’)t is the location on the ground
beneath the robot’s hip, v©°M is the body velocity projected on the zy-plane. The desired contact
state of each leg. e.g., swing or stance, is determined via a gait generator. The gait is modulated by
a phase variable ¢ € [0, 27]. The phase is defined through a dynamic function ¢y 1 = ¢; + 27 f At,
where f is the stepping frequency. We can design different locomotion patterns by adapting the
stepping frequency f and the phase difference between each leg.

4 On the Importance of Non-differentiable Terminal Penalty

We highlight one important benefit of RL compared to differentiable simulation: RL can signifi-
cantly enhance its robustness by directly optimizing through non-differentiable rewards or penalties.
Specifically, we use a non-differentiable value p = 200 to penalize the robot when the robot experi-
ences termination during training, e.g., falling on the ground or lifting its legs above its body.

r(xq, uy) = —l(x¢,u;) —p if termination
A —1(x¢,uy) otherwise.

Fig. 1 shows a study of using non-differentiable terminal penalty for both RL and differentiable
simulation. The results show that adding a final penalty can greatly affect how well RL works.
Without a penalty, RL might get trapped in a local minimum. However, with a large penalty at the
end, RL can achieve better task rewards as well as more robust control performance. This is because
RL optimizes a discounted return, which estimates “how good” it is to be in a given state. RL uses
a state-value function to encode this information

Vi(s) = E[G|So = 5] = E

Z’tht+1|SO = 8‘| .

t=0

On the other hand, a terminal penalty has no impact on differentiable simulation since the gradient
of a constant value is equal to zero, and we do not leverage a state value function. As a result,
differentiable simulation requires well-defined continuous functions, e.g., a potential function or
control barrier functions for robust control.

52

53
54
55
56
57
58

%)
=}
o
o

V\/WW 25 —
,Wm MAML 1 2
VNATEVF £ 75
~

~10.0
/ § ‘ ~12.5

—

gq
=

>f;
|

- —— diff (without terminal penalty)

—— diff (with terminal penalty)

S

Episode Length
=
——
£> i
§

ppo (without terminal penalty)

e

0 —— ppo (with terminal penalty)
i i _15.0 i I i L i
0 200 400 600 800 1000 0 200 400 600 800 1000
Iteration Iteration

Figure 1: A comparison of non-differentiable terminal penalty for policy training. Using a non-
differentiable terminal penalty, PPO can achieve robust control performance, e.g., longer episode
length. We use 1024 robots for simulation.

5 Ablation Study

We conducted an ablation study to investigate the significance of the proposed state alignment mech-
anism. In our implementation, we use the state from IsaacGym to align the robot state within our
simplified rigid-body differentiable simulation. To assess the impact of state alignment, we per-
formed experiments where we removed the state alignment and compared the resulting learning
curves to those obtained with state alignment. The results are presented in Figure 2. The results
indicate that without state alignment, the robot fails to learn any useful walking skills.

0 T T T T T
_10 -4
9
g 1 A N S R
z —20 [oA PRI T TH AT
~ 1 % you o Vg vy o !
i A vy HRETERER AT
L i ih AHEH
—-30 1 e A L ===-1) Hrrtiy
! ! —— (With) Alignment i ! ! f l |I:
:,".II -==' (Without) Alignment =} ! :I' ! ::
—40 iy [TH] P oy, Wyl I‘lll
0 200 400 600 800 1000
Iteration

Figure 2: Ablation study for state alignment using IsaacGym.

s9s. 6 Hyperparameters

Parameter Value
learning rate 0.001
discount factor ~y 0.95
GAE-)\ 0.95
learning epoch 10
policy network MLP [256, 256]
value network MLP [256, 256]
clip range 0.2
entropy coefficient 0.002
number of epoch 10

Table 2: PPO hyperparameters.

61

62
63
64
65
66
67
68
69
70
71
72
73
74
75

76
77
78
79
80

82
83
84
85
86
87
88
89
90

91

92
93

94
95

96

97
98

Parameter ‘ Value

learning rate 0.001
policy network MLP [256, 256]
gradient decay factor « 0.9

Table 3: Hyperparameters for policy training using differentiable simulation.

7 Related Work

We provide more details about related work in legged locomotion.

Model-free Reinforcement Learning: Deep reinforcement learning has emerged as a dominant
approach for developing control policies in legged locomotion [4, 5, 6, 7]. Recently, an important
advancement in this area has been the introduction of IsaacGym [8], which is a GPU-accelerated
simulator. IsaacGym can dramatically reduce the time required for dynamics simulation and pol-
icy training, enabling robots to learn to walk on flat ground in minutes [9]. This advancement
has significantly accelerated the pace of research in legged locomotion, opening new avenues to
address increasingly complex challenges [2, 10, 11, 12, 13]. Despite demonstrating strong perfor-
mance, RL encounters challenges in scenarios where data generalization is slow, particularly with
high-dimensional inputs. This limitation becomes evident as researchers start tackling vision-based
problems, which inherently involve high-dimensional data. A common strategy involves a two-stage
training process [13, 14, 6, 15, 7, 10]. First, a state-based RL policy—referred to as the teacher—is
trained without the use of image data. Subsequently, this policy is used to guide the training of a stu-
dent policy, which incorporates images as inputs. The requirement of combining RL with imitation
learning highlights some fundamental challenges in RL and the need to investigate these challenges.

Differentiable Simulation: Differentiable simulation has recently gained momentum thanks to the
development of differentiable physics simulators [16, 17, 18] and flexible automatic differentia-
tion tools like Jax, DiffTaichi, Pytorch [19, 20, 21]. In principle, policy training through differen-
tiable simulation allows for better convergence by replacing the zeroth-order gradient estimation of
a stochastic objective with a more accurate estimate based on first-order gradients [22]. However,
challenges such as the noisy optimization landscape and issues of exploding or vanishing gradients
in long-horizon tasks render first-order gradient methods less effective. Several approaches have
been developed to tackle these challenges. For instance, SHAC [23] addresses the gradient issue by
truncating trajectories into several smaller segments, which helps manage exploding or vanishing
gradients. Another notable example is DiffMimic [24], which focuses on mimicking motion trajec-
tories for physically simulated characters. They show that differentiable simulation is a promising
direction for improving sample efficiency. However, the capability of differentiable simulation to
substantially speed up policy learning in contact-rich scenarios with physical interactions, as well
as their practical applicability to real-world situations, such as quadruped locomotion, remains a
significant challenge in robotics.

References

[1] Y. Yang, T. Zhang, E. Coumans, J. Tan, and B. Boots. Fast and efficient locomotion via learned
gait transitions. In Conference on Robot Learning, pages 773-783. PMLR, 2022.

[2] Y. Yang, G. Shi, X. Meng, W. Yu, T. Zhang, J. Tan, and B. Boots. Cajun: Continuous adaptive
jumping using a learned centroidal controller. arXiv preprint arXiv:2306.09557, 2023.

[3] M. H. Raibert. Legged robots that balance. MIT press, 1986.

[4] J. Hwangbo, J. Lee, A. Dosovitskiy, D. Bellicoso, V. Tsounis, V. Koltun, and M. Hutter. Learn-
ing agile and dynamic motor skills for legged robots. Science Robotics, 4(26):eaau5872, 2019.

99
100

101
102
103

104
105

106
107

109
110
111

112
113

114
115
116

117
118

119
120

121
122

123
124

125
126
127

128
129
130

131
132

133
134
135

139
140

[5] J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun, and M. Hutter. Learning quadrupedal locomo-
tion over challenging terrain. Science robotics, 5(47):eabc5986, 2020.

[6] T. Miki, J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun, and M. Hutter. Learning robust per-
ceptive locomotion for quadrupedal robots in the wild. Science Robotics, 7(62):eabk2822,
2022.

[7] A. Kumar, Z. Fu, D. Pathak, and J. Malik. Rma: Rapid motor adaptation for legged robots.
arXiv preprint arXiv:2107.04034, 2021.

[8] V. Makoviychuk, L. Wawrzyniak, Y. Guo, M. Lu, K. Storey, M. Macklin, D. Hoeller, N. Rudin,
A. Allshire, A. Handa, and G. State. Isaac gym: High performance gpu-based physics simula-
tion for robot learning, 2021.

[9] N. Rudin, D. Hoeller, P. Reist, and M. Hutter. Learning to walk in minutes using massively
parallel deep reinforcement learning. In Conference on Robot Learning, pages 91-100. PMLR,
2022.

[10] A. Agarwal, A. Kumar, J. Malik, and D. Pathak. Legged locomotion in challenging terrains
using egocentric vision. In Conference on Robot Learning, pages 403—415. PMLR, 2023.

[11] Z. Fu, X. Cheng, and D. Pathak. Deep whole-body control: learning a unified policy for
manipulation and locomotion. In Conference on Robot Learning, pages 138-149. PMLR,
2023.

[12] G. B. Margolis, G. Yang, K. Paigwar, T. Chen, and P. Agrawal. Rapid locomotion via rein-
forcement learning. arXiv preprint arXiv:2205.02824, 2022.

[13] Z.Zhuang, Z. Fu, J. Wang, C. Atkeson, S. Schwertfeger, C. Finn, and H. Zhao. Robot parkour
learning. In Conference on Robot Learning (CoRL), 2023.

[14] X. Cheng, K. Shi, A. Agarwal, and D. Pathak. Extreme parkour with legged robots. arXiv
preprint arXiv:2309.14341, 2023.

[15] D. Hoeller, N. Rudin, D. Sako, and M. Hutter. Anymal parkour: Learning agile navigation for
quadrupedal robots. Science Robotics, 9(88):eadi7566, 2024.

[16] C.D. Freeman, E. Frey, A. Raichuk, S. Girgin, I. Mordatch, and O. Bachem. Brax—a differen-
tiable physics engine for large scale rigid body simulation. arXiv preprint arXiv:2106.13281,
2021.

[17] F. de Avila Belbute-Peres, K. Smith, K. Allen, J. Tenenbaum, and J. Z. Kolter. End-to-end
differentiable physics for learning and control. Advances in neural information processing
systems, 31, 2018.

[18] T. Howell, S. Le Cleac’h, J. Bruedigam, Z. Kolter, M. Schwager, and Z. Manchester. Dojo: A
differentiable simulator for robotics. arXiv preprint arXiv:2203.00806, 2022.

[19] J. Bradbury, R. Frostig, P. Hawkins, M. J. Johnson, C. Leary, D. Maclaurin, G. Necula,
A. Paszke, J. VanderPlas, S. Wanderman-Milne, and Q. Zhang. JAX: composable transfor-
mations of Python+NumPy programs, 2018. URL http://github.com/google/jax.

[20] Y. Hu, L. Anderson, T.-M. Li, Q. Sun, N. Carr, J. Ragan-Kelley, and F. Durand. Difftaichi:
Differentiable programming for physical simulation. arXiv preprint arXiv:1910.00935, 2019.

[21] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, et al. Pytorch: An imperative style, high-performance deep learning
library. Advances in neural information processing systems, 32, 2019.

http://github.com/google/jax

141
142
143

144
145
146

147
148

[22] H.J. Suh, M. Simchowitz, K. Zhang, and R. Tedrake. Do differentiable simulators give better
policy gradients? In International Conference on Machine Learning, pages 20668—-20696.
PMLR, 2022.

[23] J. Xu, V. Makoviychuk, Y. Narang, F. Ramos, W. Matusik, A. Garg, and M. Macklin. Accel-
erated policy learning with parallel differentiable simulation. In International Conference on
Learning Representations, 2021.

[24] J. Ren, C. Yu, S. Chen, X. Ma, L. Pan, and Z. Liu. Diffmimic: Efficient motion mimicking
with differentiable physics. 2023.

	Double Integrator
	Experimental Setup
	Foot Trajectory Planning
	On the Importance of Non-differentiable Terminal Penalty
	Ablation Study
	Hyperparameters
	Related Work

