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ABSTRACT

Despite the popularity of multi-agent reinforcement learning (RL) in simulated
and two-player applications, its success in messy real-world applications has been
limited. A key challenge lies in its generalizability across problem variations, a
common necessity for many real-world problems. Contextual reinforcement learn-
ing (CRL) formalizes learning policies that generalize across problem variations.
However, the lack of standardized benchmarks for multi-agent CRL has hindered
progress in the field. Such benchmarks are desired to be based on real-world
applications to naturally capture the many open challenges of real-world prob-
lems that affect generalization. To bridge this gap, we propose IntersectionZoo,
a comprehensive benchmark suite for multi-agent CRL through the real-world
application of cooperative eco-driving in urban road networks. The task of coop-
erative eco-driving is to control a fleet of vehicles to reduce fleet-level vehicular
emissions. By grounding IntersectionZoo in a real-world application, we naturally
capture real-world problem characteristics, such as partial observability and multi-
ple competing objectives. IntersectionZoo is built on data-informed simulations
of 16,334 signalized intersections derived from 10 major US cities, modeled in
an open-source industry-grade microscopic traffic simulator. By modeling factors
affecting vehicular exhaust emissions (e.g., temperature, road conditions, travel
demand), IntersectionZoo provides one million data-driven traffic scenarios. Using
these traffic scenarios, we benchmark popular multi-agent RL and human-like
driving algorithms and demonstrate that the popular multi-agent RL algorithms
struggle to generalize in CRL settings. Code and documentation are available at
https://github.com/mit-wu-lab/IntersectionZoo.

1 INTRODUCTION

Having demonstrated impressive performance in simulated multi-agent applications such as Star-
craft (Samvelyan et al., 2019), RL holds potential for various multi-agent real-world applications
including autonomous driving (Kiran et al., 2021), robotic warehousing (Bahrpeyma & Reichelt,
2022), and traffic control (Wu et al., 2021). However, compared to simulated applications, the success
of RL in real-world applications has been rather limited (Dulac-Arnold et al., 2021). A key challenge
lies in making RL algorithms generalize across problem variations, such as when weather conditions
change in autonomous driving. Problem variations are common in real-world applications but may
not be designed to be explicitly assessed in simulated applications (Kirk et al., 2021).

Moreover, there are many open challenges that affect the generalization of RL algorithms in real-world
multi-agent problems, such as the effect of complex multi-agent dynamics with aleatory uncertainty
and partial observability of states and problem variations, optimizing multiple objectives over long
horizons and strict physical constraints. This makes the generalization in multi-agent RL a class of
problems rather than one problem as it encapsulates many open challenges (Kirk et al., 2021).
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From an algorithmic point of view, CRL formalizes learning policies that generalize across problem
variations, aiming to learn robust, transferable, and adaptable policies (Benjamins et al., 2022). CRL
aims to find a policy that can solve a set of (not too different) Markov Decision Processes (MDPs),
each posing a problem variation and defined by a variation context vector drawn from a context
distribution. This MDP set is referred to as a Contextual MDP (CMDP) (Hallak et al., 2015).

Thus, benchmarking CRL algorithms with real-world applications and the corresponding context
distributions could move the needle on the successful use of RL for real-world applications by
identifying the many open challenges that affect generalization and measuring progress. However,
we observe such efforts are hindered by the lack of standardized multi-agent CRL benchmarks,
especially those that are based on real-world applications and that model realistic context distribu-
tions. Simulated benchmarks often address only a subset of real-world challenges and lack realistic
complexity. Benchmarks based on real-world applications but not actual context distributions still
remain partially simulated, adopting a subset of the same limitations. While some multi-agent
RL benchmarks can be improvised for CRL benchmarking, this only superficially addresses the
underlying problem (Cobbe et al., 2020), lacks desired properties of a CRL benchmark (Kirk et al.,
2021) and may lead to conflicting evaluation protocols (Whiteson et al., 2011; Jayawardana et al.,
2022). Benchmarks that neglect these properties risk a ceiling effect and fail to incentivize further
algorithmic improvements (Ellis et al., 2024; Yu et al., 2022; Hu et al., 2021).

Figure 1: Cooperative eco-driving at sig-
nalized intersections where the controlled
vehicles (CVs) are operated by an RL pol-
icy (or policies) to minimize the fleet-wise
emissions that include both CVs and human-
driven vehicles (HDVs). CVs implicitly
control HDVs through car-following dy-
namics and form locally cooperative teams
for better system control.

To fill this gap, we present IntersectionZoo, a compre-
hensive multi-agent CRL benchmark suite based on
the real-world application of cooperative eco-driving
at signalized intersections (Figure 1). Cooperative
eco-driving encodes several open challenges that af-
fect generalization in multi-agent CRL, making it well
suited for the purpose. IntersectionZoo is built on data-
informed context distributions defined by 16,334 signal-
ized intersections in 10 major cities across the United
States. By identifying factors affecting vehicular emis-
sion (e.g., temperature), IntersectionZoo models nearly
one million traffic MDPs on these intersections. De-
signed with input from domain experts, these MDPs
are structured as CMDPs that interface with standard
multi-agent interfaces in a highly configurable, fast-to-
simulate open-source framework.

IntersectionZoo differs from existing CRL benchmarks
on multiple fronts. Contrary to standard autonomous
driving benchmarks centered on ego-vehicle control (Li
et al., 2022), eco-driving tackles a mixed-motive multi-
agent control problem. It is designed based on a well-
studied real-world application with known factors that
affect generalization (Mintsis et al., 2020; Chen et al.,
2022). IntersectionZoo is built on ten CMDPs with
data-driven context distributions and also provides the
capability to procedurally generate CMDPs. The con-
text distributions of CMDPs are comprehensive, covering variations in states, observations, rewards
(with multiple objective terms), and transition dynamics. Last, IntersectionZoo by design supports
both independent and identically distributed (IID) and out-of-distribution (OOD) evaluation protocols.
We also interface IntersectionZoo with RLLib (Liang et al., 2018) for ease of benchmarking.

Broader Societal Impact: Limited familiarity among RL researchers with real-world physical
systems has inhibited the development of RL algorithms addressing challenges in these domains.
IntersectionZoo bridges this gap by decoupling the modeling complexity of real-world tasks from the
experimental process, allowing researchers to focus on algorithmic advancements. This approach, in
turn, holds the potential to improve eco-driving, which is known for its impact on climate change
mitigation goals (Barkenbus, 2010), with the automotive industry actively pursuing robust eco-driving
controllers. This aligns with the growing interest in application-driven research in machine learning,
promising a mutually beneficial outcome for all communities involved (Rolnick et al., 2024).
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Remark 1: With CRL, we focus on intra-task generalization, which means we train and test on
environments stemming from the same task (e.g., eco-driving). A related parallel direction is inter-task
generalization, training generally capable agents. In this work, we do not focus on that.

2 PRELIMINARIES

2.1 CONTEXTUAL REINFORCEMENT LEARNING

CRL formalizes the notion of solving a collection of tasks, each stemming from the same problem
(e.g., eco-driving). A collection of tasks is formalized using CMDPs (Hallak et al., 2015). We utilize
the formalism from Ghosh et al. (2021). Accordingly, a CMDP M is an MDP with a state space of the
form s = (s′, c) where s′ is the state and c defines the context for the state s′. The context c is fixed
within an episode (e.g., a fixed random seed). Given an initial context distribution ρ(c), the initial
state distribution of a CMDP is defined by ρ(s) = ρ(c)ρ(s′|c). Then, given a context c, the CMDP
M is restricted to an MDP Mc and is called a context-MDP. In other words, the CMDP manifests as
a collection of context-MDPs1. Note that context c is not always visible to the agents (e.g., a random
seed). Then, a CMDP becomes a Contextual Partially Observable MDP (CPOMDP) (Kirk et al.,
2021).

We seek to find a policy π∗ that maximizes the overall expected return across all context-MDPs where
R(π,Mc) is the expected return of policy π on context-MDP Mc,

π∗ = max
π

[
Ec∼ρ(c)[R (π, Mc)]

]
. (1)

In multi-agent CRL, each context-MDP Mc manifests as a multi-agent control problem. Further,
these multi-agent control problems are often partially observable. This is also the case with coop-
erative eco-driving. Then, we leverage a Decentralized Partial Observable MDP (Dec-POMDP)
formulation (Bernstein et al., 2002) following previous work (Yan et al., 2022) to define each
context-MDP.

2.2 COOPERATIVE MULIT-AGENT ECO-DRIVING

Optimizing eco-driving across a full-traffic network is ideal but is impractical in large cities like Los
Angeles, with nearly 5000 signalized intersections, and remains an open optimization challenge (Qadri
et al., 2020). A common approach is to decompose the network into individual intersections for
separate optimizations (Yang et al., 2016; Jayawardana et al., 2024; Yang et al., 2020) while reg-
ulating intersection throughput to prevent traffic spill-back due to possible increased throughput.
Therefore, it is often assumed that vehicle flow is not at saturation, allowing for reasonable throughput
improvements. We adopt the same modeling assumption.

The default objective of cooperative eco-driving at individual signalized intersections is to minimize
the total exhaust emissions of a fleet of vehicles (both CVs and HDVs) while having a minimal impact
on individual travel time. At a given time t, the number of CVs is ktCV , and HDVs is ktHDV such
that ktCV + ktHDV = nt where nt is the total number of vehicles in the fleet. Then, we control the
longitudinal accelerations of all CVs decentrally using a learned policy to optimize,

min J =

n∑
i=1

Ti∑
t=0

E (ai(t), vi(t)) + λTi. (2)

Here, Ti denotes the travel time of vehicle i and time t is a discretized time with increments of δ
(usually 0.5 seconds). The vehicular exhaust emission function is denoted by E(·), which takes speed
vi(t) and acceleration ai(t) of vehicle i at time t and outputs a vehicular emission amount (usually
the amount of carbon dioxide). λ is the trade-off hyperparameter. We seek to optimize J subject to
hard constraints of ensuring vehicle safety, connectivity via vehicle-to-vehicle and vehicle-to-traffic
signal communication, and soft constraints of vehicle kinematics, control realism, traffic safety at the
fleet level (e.g., minimum time to collision across all vehicles), and passenger comfort.

1Here, by MDP we generally refer to any form of MDPs such as Partially Observable MDPs, etc.
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What affects generalization in cooperative eco-driving: Eco-driving is a complex multi-agent
control problem involving both CVs and uncontrolled HDVs where HDVs can introduce uncertainty
in CV planning. Adding to the complexity is the required CV coordination. Based on the environment,
there can be hundreds of vehicles at an intersection and each vehicle affects the flow of traffic. Further,
generalization is naturally required across many factors — such as intersection topology, atmospheric
conditions, eco-driving adoption level, and traffic flow rates — defining high-dimensional context
distributions. Each CV control relies on a partially observed state of its surroundings and a partially
observed context vector. Optimization objectives are multi-fold, with many competing objectives
optimized over long horizons. Hard constraints such as vehicle safety have to be satisfied. These
challenges individually and collectively shape the generalization capacity of CRL algorithms.

3 RELATED WORK

In Table 1, we present our assessment of several known single-agent, multi-agent, and CRL bench-
marks, focusing on eleven key properties desired for CRL benchmarking (Kirk et al., 2021; Cobbe
et al., 2020; Benjamins et al., 2022). We aim to identify whether they satisfy the given properties or
whether repurposing or improvising the current benchmark could be used to satisfy the properties.

Realistic task column assesses if a benchmark is based on real-world tasks. Many benchmarks focus
on video games (Cobbe et al., 2020; Machado et al., 2018), strategy games (Wang et al., 2021b),
grid worlds (Chevalier-Boisvert et al., 2023), or simple control tasks (Benjamins et al., 2022), which
lack real-world complexity. This limitation can lead to exploitable structures (Mohan et al., 2024) or
hinder algorithmic advancements (Ellis et al., 2024; Yu et al., 2022; Hu et al., 2021). For instance, in
the SMAC benchmark, a policy based only on the timestep can achieve notable win rates (Ellis et al.,
2024). Some work involves more realistic robotics tasks (James et al., 2020; Yu et al., 2020), but they
often use tightly constrained context features like limited friction levels.

Data-driven context distribution checks if benchmarks provide real-world context distributions,
while native CRL support assesses if a benchmark is primarily designed to support CRL. Except
for MetaDrive (Li et al., 2022) and SMACv2 (Ellis et al., 2023), most native CRL benchmarks
focus on single-agent CRL. MetaDrive is a close second to IntersectionZoo but lacks data-driven
context distributions for CMDPs, limiting its ability to capture real-world complexity. Moreover,
the initializable context distributions column checks if a benchmark facilitates initializing arbitrary
user-defined context distributions. IntersectionZoo facilitates using both additional real-world context
distributions (e.g., intersections of other cities) as well as procedurally generating contexts based on
user-specified context feature distributions.

Typically, there are two types of features defining the context distribution and thereby describing
the context of a context-MDP: observed context features and unobserved context features. The
key difference is whether these features are explicitly visible to the agent. Observed features are
directly visible factors of variations, such as lane length in eco-driving. Unobserved features are
mostly used for random variations such as those that arise from procedural content generation
(PCG) (Cobbe et al., 2020) and are not explicitly visible to the agent (e.g., HDV aggressiveness).
Both observed and unobserved features are desired for CRL benchmarking (Kirk et al., 2021). This
enables systematic targeted evaluations of generalization such as systematicity (generalization using
systematic recombination of known knowledge) and productivity (generalization beyond seen training
data) (Hupkes et al., 2020) with non-trivial tasks.

Varying S,O, T ,R refers to variations in states (S), observations (O) , transitions (T ) , and rewards
(R). In IntersectionZoo, the variations in environments stem from states (e.g., single vs. multiple lane
driving), observations (e.g., diverse vehicle sensor capabilities), rewards (e.g., the trade-off between
travel time and emission reduction), and dynamics (e.g., vehicle behavior changes due to varying
traffic signal timings). Multiple forms of variations enable diversity and provide more avenues for
targeted evaluations of generalizations (Li et al., 2022). While benchmarks like CARL (Benjamins
et al., 2022) and MDP Playground (Rajan et al., 2023) are categorized to consist of all forms of
variations, they lack evaluation protocols spanning all these variations or consist of multiple tasks
without including all variations in each task.

Multiple objectives can bring another form of variation in CMDPs and are common in real-world
problems. It thus manifests as another axis of targeted evaluation of generalization. While existing
multi-objective RL benchmarks overlook generalization challenges (Felten et al., 2024), addressing
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Table 1: Comparison of IntersectionZoo to related benchmarks. Benchmarks are rated based on
whether they satisfy (✔), somewhat satisfy (●), or do not satisfy (✘) a given desired property.
‘Context’ is abbreviated as ‘ctxt.’ for formatting.
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MDP Playground
(Rajan et al., 2023) ✘ ✘ ✔ ✔ ✘ ✔ ✘ ✘ ✘ ✘ ✘

bsuite (Osband et al., 2020) ✘ ✘ ✔ ✘ ● ✘ ✘ ✘ ✘ ✘ ✘
Revisiting ALE
(Machado et al., 2018) ✘ ✘ ● ● ✘ ✘ ✘ ✘ ✘ ✘ ✘

CARL (Benjamins et al., 2022) ✘ ✘ ✔ ✘ ✔ ✔ ✘ ✔ ✔ ✘ ✔
Procgen (Cobbe et al., 2020) ✘ ✘ ✘ ✔ ✘ ● ✘ ✔ ✘ ✘ ✔
Alchemy (Wang et al., 2021b) ✘ ✘ ✘ ✔ ✘ ✔ ✘ ✔ ● ✘ ✔
Meta-World (Yu et al., 2020) ● ✘ ✔ ● ✔ ✔ ✔ ✔ ● ✘ ✔
RL Bench (James et al., 2020) ● ✘ ✔ ✔ ✔ ✔ ✘ ✔ ✔ ✘ ✔
Minigrid
(Chevalier-Boisvert et al., 2023) ✘ ✘ ✔ ✔ ✘ ● ✘ ✘ ● ✘ ✔

NetHack (Küttler et al., 2020) ✘ ✘ ✘ ✔ ✘ ✔ ● ✔ ✔ ✘ ✔
MiniHack (Samvelyan et al., 2021) ✘ ✘ ✔ ✔ ✔ ✔ ● ✔ ✔ ✘ ✔
Particle Env (Lowe et al., 2017) ✘ ✔ ● ✔ ✘ ✔ ✘ ✔ ● ✘ ✘
SMACv2 (Samvelyan et al., 2019)
(Ellis et al., 2023) ✘ ✔ ✔ ✔ ✔ ● ✘ ✔ ● ✘ ✔

Google Football
(Kurach et al., 2020) ✔ ✔ ✔ ✔ ✘ ✘ ✘ ✘ ✘ ✘ ✘

Flow (Wu et al., 2021) ● ✔ ✔ ✔ ✔ ✔ ✘ ✔ ● ✘ ✘
Nocturne (Vinitsky et al., 2022) ✔ ✔ ✔ ● ✘ ✔ ● ✔ ✔ ✘ ✘
MetaDrive (Li et al., 2022) ✔ ✔ ✔ ✔ ✔ ● ✘ ✔ ✔ ✘ ✔
SMARTS (Zhou et al., 2021) ✔ ✔ ✔ ● ● ✔ ● ✔ ● ✘ ✘
RESCO (Ault & Sharon, 2021) ✔ ✔ ✔ ✘ ✘ ● ● ● ● ✔ ✘

IntersectionZoo (ours) ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

this gap is acknowledged as needed (Kirk et al., 2021). Nocturne (Vinitsky et al., 2022), Flow (Wu
et al., 2021) and SMAC (Ellis et al., 2023; Samvelyan et al., 2019) can be improvised for this purpose
but lack native support. IntersectionZoo naturally frames a multi-objective optimization problem,
prioritizing emission reduction with less impact on vehicle travel time. Further sub-objectives can
incorporate passenger comfort, kinematic realism, and traffic level safety (Appendix A.6).

IID and OOD testing are commonly used as evaluation protocols of generalization. IID evaluation
assumes training and testing context sets are drawn from the same distribution. Benchmarks such as
Procgen (Cobbe et al., 2020) or NetHack (Küttler et al., 2020) employ this scheme, where the training
seeds can be sampled uniformly at random from the full distribution, and the full distribution can be
used for testing. OOD evaluation does not assume the same distribution for training and testing and
requires domain generalization (Wang et al., 2022). IntersectionZoo models 10 different CMDPs
based on 10 US cities, each with a different intersection distribution. Hence, OOD evaluation can be
performed by training on one CMDP and testing on another. Similarly, IID testing can be performed
by train/test split within a CMDP.

4 INTERSECTIONZOO

Designing a CRL benchmark suite based on a real-world task is challenging. Identifying the factors
of variations requires domain knowledge and expert opinion, and data-driven modeling is required
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Figure 2: A schematic overview of IntersectionZoo divided into three architectural layers.

to model them realistically without artificially making the problem easy or hard. For example, it
is known that eco-driving in short lanes is hard (Jayawardana et al., 2024), and hence, a context
distribution that may have superficially many short lanes could make the problem harder than it
is. In the following sections, we provide details of how we construct IntersectionZoo with the
help of domain experts. We refer the reader to Appendix A.9 for more detials on release notes of
IntersectionZoo including license details.

4.1 DEFINING INTERSECTIONZOO SCENARIOS FOR CONSTRUCTING CMDPS

In IntersectionZoo eco-driving CMDPs are formulated as a collection of traffic context-MDPs. Each
traffic scenario is a basis for a context-MDP. A traffic scenario manifests as a combination of a set of
eco-driving factor values that have a known effect on emission benefits at signalized intersections.
These factors are related to intersection topology, human driver behavior, vehicle characteristics,
traffic flow, and atmospheric conditions.

Figure 3: Left: The signalized inter-
section in the intersection of Bosworth
Street and Diamond Street in Salt Lake
City, Utah. Right: The reconstructed
intersection in simulation.

Concretely, an intersection is first defined by factors such
as lane lengths, lane counts, road grades, turn lane config-
uration, and speed limit of each approach. Then, vehicle
type, age, and fuel type distributions are used with ap-
propriate traffic flow rates and HDV behaviors to define
a realistic traffic flow. Each intersection scenario is fur-
ther assigned representative atmospheric temperature and
humidity values based on the season. Further scenario
variations can be achieved by changing the eco-driving
adoption level (0%-100%). We follow this procedure for
every intersection, and the resultant traffic scenarios are
the basis for the context-MDPs of each city.

Figure 2 illustrates the overall process: the factors we con-
sider and how they are leveraged to build intersections,
traffic scenarios, and, subsequently, CMDPs. In the traffic
scenario modeling layer, we first build data-driven simula-
tion environments of signalized intersections. We use Open Street Maps (OSM) (Haklay & Weber,
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2008) data and follow guidelines provided by Qu et al. (2022). Intersection lane lengths, lane counts,
turn lane configurations, and speed limits are extracted from OSM. Road grades are taken from US
geological surveys (Survey). An example instance of a reconstructed intersection is given in Figure 3.
More details are given in Appendix A.1 regarding all ten cities and the feature distributions.

To model the vehicle arrival process, we use the Annual Average Daily Traffic data
(AADT) (Huntsinger, 2022) released by the Departments of Transportation of each state/city. To
differentiate the inflows between peak and off-peak hours, we use recommended conversion rates (Pre-
cisiontraffic, 2014). To model realistic vehicle arrival processes to intersections, we also model
one-hop nearby intersections as illustrated in Figure 4.

For traffic signal timing, we exhaustively search through the fixed-time traffic signal timing plans (Thu-
nig et al., 2019) and find the optimal plan. We source vehicle age, fuel type, and vehicle type
distributions from the openly available MOVES databases (epa) and data from US National Centers
for Environmental Information (for Environmental Information) is used for atmospheric condition
modeling with temperature and humidity changes.

To model HDV behavior, we use the Intelligent Driver Model (IDM) (Treiber et al., 2000) and
calibrate it using the guidelines from Zhang & Sun (2022) with real-world arterial driving data from
CitySim (Zheng et al., 2022) (See Appendix A.2 for details). While IDM controls the longitudi-
nal acceleration of HDVs, lane changes are performed using standard rule-based lane changing
model (Erdmann, 2014).

Figure 4: For each intersec-
tion, default nearby intersec-
tions are added for realistic
vehicle arrival processes sub-
jected to nearby traffic signals.

In the CMDP modeling layer, we use the modeled traffic scenarios
and organize them based on the city to create 10 CMDPs. All traffic
scenarios are configured for use in the open-source agent-based
traffic simulator SUMO (Lopez et al., 2018). A key requirement for
capturing the effect of traffic scenarios on vehicle exhaust emission
is a rich emission function. For this purpose, we integrate a suite
of comprehensive and fast neural emission models (Sanchez et al.,
2022) that replicate the industry-standard Motor Vehicle Emission
Simulator (MOVES) (epa). Finally, the user configuration layer
exposes the CMDPs that can be used by researchers for training
CRL algorithms. We provide RLLib-based training by default and
also enable flexibility with custom implementations.

A note on simulation realism: Autonomous driving benchmarks
often prioritize the realistic rendering of traffic scenarios, aiming to
train closed-loop policies from sensory inputs like perception inputs
to navigate the ego-vehicle. However, in cooperative eco-driving,
we use a 2D simulator that generates vectorized representations of

vehicle states, isolating the challenge of generalization in CRL over feature extraction. Given that
CRL often requires many samples during training, fast simulations are also an essential requirement
that we achieve through simplified rendering.

4.2 DEFINING CONTEXT-MDPS

Here, we provide an overview of the context-MDP definition we use in IntersectionZoo and refer the
reader to Appendix A.4 for more specific details. In cooperative eco-driving, each traffic scenario
manifests as a partially observable multi-agent control problem. Then, we leverage Decentralized
Partial Observable MDP (Dec-POMDP) formulation (Bernstein et al., 2002) following previous
work (Yan et al., 2022) to define each context-MDP. For each CV, state, action, and reward are defined
as follows.

State Space: The design of the observed state of a vehicle is mainly based on the capabilities of
existing sensor technologies. The observed state of a CV includes its own status, status of neighboring
vehicles (leader and follower on all immediate nearby lanes), and status of the immediate traffic
signal timing. Further, we provide a selected set of observed features based on the feasibility of
obtaining them in the real world by the CV as observed context of the underlying environment.

Action Space: Longitudinal acceleration of each CV. Standard rule-based controller is used (Erdmann,
2014) for lane changing, focusing IntersectionZoo on the continuous control aspect of eco-driving.
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Multi-objective Reward Function: The reward rti for each CV i at time t is defined in Equation 10
inspired by Jayawardana et al. (2024). Here, nt is the vehicle fleet size, vit is the velocity, and eit is the
CO2 emissions of vehicle i at time t. Hyperparameters include, η = [0, 1], α, β, and τ . The indicator
function 1vi

t<τ indicates whether the vehicle is stopped, while the term eit encourages low emissions.
The velocity term captures the effect on travel time. Users can configure the parameter η to either
get a fleet-based reward, agent-based reward, or a combination of both. All such formulations are
acceptable.

rit = η
1

nt

nt∑
j=1

(vjt + α1vj
t<τ + βejt ) + (1− η)(vit + α1vi

t<τ + βeit). (3)

Appendix A.6 details additional sub-objectives in IntersectionZoo to enhance fleet-level traffic safety,
passenger comfort, and kinematic realism. IntersectionZoo ensures vehicle safety and actuator limits
via pre-defined rule-based checks when used with the default objective.

5 EVALUATIONS IN INTERSECTIONZOO

5.1 EVALUATION PROTOCOLS

By default, IntersectionZoo provide interfaces for train/test split evaluations to measure generalization,
which is often used with zero-shot policy transfer (Harrison et al., 2019; Higgins et al., 2017; Kirk
et al., 2021). This means we train policies on one subset of context MDPs and test on another subset
of context MDPs. This includes both IID and OOD evaluation protocols. Hence, OOD evaluation can
be performed by training in one city (train CMDP) and testing in another city (test CMDP). Similarly,
IID testing can be performed by train/test split of context-MDPs within a given city.

5.2 BASELINES

IDM: IntersectionZoo provides calibrated Intelligent Driver Models using real-world human driving
data (Appendix A.2) as a human driving baseline for benchmarking the performance of an eco-driving
CRL policy. The goal here is to capture how much emission reduction can be obtained from driving
differently than humans usually do (Jayawardana & Wu, 2022; Jayawardana et al., 2024).

GLOSA: IntersectionZoo provides an implementation of commercially used state-of-the-art GLOSA
eco-driving controller (Katsaros et al., 2011) for performance comparison. This is a heuristical
approach for eco-driving that has been implemented by popular car companies such as Audi (aud).
The core idea of GLOSA is simple – avoid idling by gliding to the intersection while the signal is red.
The basic GLOSA controllers do not account for the impact of nearby vehicles when deciding the
gliding deceleration for each ego agent, which may make it sub-optimal when vehicle inflow is high.

5.3 EVALUATION METRICS

Individual metrics: We assess the performance of a policy using the average vehicular exhaust
emission per vehicle and the intersection throughput of each intersection. Refer to Appendix A.7 for
more details on the definitions of these metrics.

Composite metric: We introduce effective emission benefits as a composite metric that aggregates
the individual metrics across multiple intersection approaches for method ranking. A crucial cri-
terion for evaluating the performance of an eco-driving policy is to ensure that it does not reduce
intersection throughput, as detailed in Section 2.2. Effective emission benefits quantify the emis-
sion improvements across intersection approaches while considering only approaches where both
emissions and throughput show positive gains. For any approach where throughput or emissions
deteriorate compared to the IDM controller, the policy reverts to human-like driving at that approach
using IDM, resulting in zero benefits for both metrics. Formally, we define the effective emission per
vehicle eaπ for an approach a ∈ A under policy π as,

eaπ =

{
eaπ if Na ≥ 0 & Ea ≥ 0

eaidm otherwise
(4)
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where Ea and Na denote the two individual metrics: emission benefit percentage and throughput
benefit percentage as described in Appendix A.7, respectively. Then, the metric effective emission
benefit is defined as a percentage improvement,

E(%) = 100 · (
∑
a∈A

eaidm −
∑
a∈A

eaπ)/
∑
a∈A

eaidm (5)

6 INTERSECTIONZOO BENCHMARKING

In this section, we benchmark popular RL algorithms used in multi-agent control with three objectives.
First, we aim to show current MARL methods do not appear to easily solve the CRL problem in
IntersectionZoo CMDPs and hence indicate that IntersectionZoo provides reasonable room for future
CRL algorithmic improvements. Second, while each CMDP is not fully solved, we show that some
context-MDPs in both Atlanta and SLC CMDPs are solved by these algorithms, indicating that
IntersectionZoo design is reasonably tuned and MARL methods can learn and perform up to a certain
extent. Third, we aim to show example use cases of IntersectionZoo and demonstrate how it can be
used to perform targeted evaluations of generalizations - an aspect that has not been focused on by
previous benchmarks.

Considering their success in many cooperative multi-agent problems (Yu et al., 2022), we employ
PPO (Schulman et al., 2017), DDPG (Silver et al., 2014), multi-agent PPO (MAPPO) and DDPG
(MADDPG) with a centralized critic (Yu et al., 2022; Lowe et al., 2017), and graph convolution
networks (GCRL) for explicit cooperation modeling in multi-agent RL (Jiang et al., 2020). GLOSA
baseline controller is also used for comparison. All performance benefits are given relative to the
IDM controller. According to our benchmarking goals, we mainly assess their IID generalization
capacity but briefly test two more forms of targeted evaluations of generalizations: systematicity and
productivity, to demonstrate the use of IntersectionZoo. Due to the space limitation, the systematicity
and productivity analysis is given in Appendix B.4. We illustrate the emission benefits at the
level of intersection incoming approaches instead of the intersection for a better understanding and
visualization of the benefit distributions.

Method Atlanta effective emission benefits (↑) SLC effective emission benefits (↑)
GLOSA 2.30% 0.95%

PPO 0.47% 0.05%
DDPG 2.84% 2.95%

MAPPO 1.11% 0.61%
GCRL 0.0% 0.0%

MADDPG 4.47% 0.0%

Table 2: Effective emission benefits of different methods across Atlanta and Salt Lake City(SLC)
CMDPs. All percentages are given relative to human-like driving baselines given by IDM policy.
Bolded values indicate performances better than the GLOSA baseline.

We assess how well the MARL algorithms can generalize when the training and testing CMDPs are
the same (in-distribution generalization). For this, we leverage Atlanta CMDP (621 intersections) and
Salt Lake City (SLC) CMDP (282 intersections) under summer temperature and humidity, with 1/3rd
of vehicles being CVs. Following the IID evaluation protocol, we train and evaluate on the same
CMDP. The results are given in Table 2 for effective emission benefits. As can be seen, most of the
algorithms achieve positive emission benefits overall2. DDPG and MADDPG in Atlanta and DDPG
in SLC perform better than the GLOSA controller, indicating that MARL can, in fact, learn better
policies than simple rule-based methods. These results serve to validate one of our objectives of
benchmarking - the IntersectionZoo context-MDP definitions (e.g., reward and observation functions)
are reasonable, and MARL methods can learn to improve the emissions.

However, while the effective emission benefits are positive for most MARL methods, some context-
MDPs are not solved in each CMDP. Emission benefit histograms given in Figure 5 for Atlanta further

2We typically do not expect significantly high effective emission benefits percentages based on eco-driving
literature. However, when done at a large scale, these emission reductions still result in large CO2 reductions.
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(a) Benefit histogram of PPO policy (b) Benefit histogram of DDPG policy

(c) Benefit histogram of MAPPO policy (d) Benefit histogram of GCRL policy

(e) Benefit histogram of MADDPG policy (f) Benefit histogram of GLOSA policy

Figure 5: Emission benefit histograms of Atlanta under different RL algorithms with in-distribution
testing. Percentages are relative to the IDM baseline. Large y-axis counts are truncated for clarity.
The total approach count refers to the total number of intersection approaches. The spikes at 0% are
in part due to the zeroing of emissions benefits for any scenarios where throughput is reduced.

illustrate the benefit distributions. The SLC histogram is given in Appendix Section B.3. This serves
as evidence of the fact that current MARL methods do not appear to easily solve the CRL problem in
IntersectionZoo CMDPs and hence indicate that IntersectionZoo provides reasonable room for future
CRL algorithmic improvements.

We also show example use cases of IntersectionZoo when used for targeted evaluations of general-
izations - an aspect neglected by most existing benchmarks. We test systematicity and productivity
of generalization (Kirk et al., 2021; Hupkes et al., 2020). Due to the space limitations, we refer the
reader to Appendix Section B.4 for more details of this analysis and results.

7 CONCLUSION

In this work, we propose IntersectionZoo, a comprehensive multi-agent CRL benchmark suite based
on the real-world application of cooperative eco-driving. Using IntersectionZoo, we benchmark
multi-agent RL, rule-baed, and human-like driving algorithms and demonstrate that the popular
multi-agent RL algorithms struggle to effectively generalize in CRL settings. A current limitation of
the benchmark is it can be primarily used to benchmark only continuous control algorithms. However,
IntersectionZoo provides discrete lane-changing control for interested users. Further, despite our
best efforts to create realistic traffic scenarios, the provided scenarios may have variations from their
real-world counterparts due to inevitable data errors and missing data. Overall, IntersectionZoo
aims to advance generalization in multi-agent RL research by providing a rich benchmark suite that
naturally captures many of the real-world problem characteristics that affect generalization.
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A APPENDIX A - ADDITIONAL DETAILS

A.1 DETAILS OF INTERSECTIONZOO CMDP CONTEXT DISTRIBUTIONS

IntersectionZoo provides 10 CMDPs based on 10 major metropolitan cities across the United States.
In Table 3, we list the ten cities we consider and the number of intersections considered for building
these CMDPs in each city. In Figure 8, we present the spatial distributions of the intersections
considered in building the IntersectionZoo across the ten cities.

City Intersection Count
Atlanta 621
Boston 917
Chicago 2864

Dallas Fort Worth 1570
Houston 1014

Los Angeles 4276
Salt Lake City 282

New York Manhattan 2586
San Francisco 1209

Seattle 995
Total 16,334

Table 3: Intersection count distribution within the ten cities.

In Figure 6, we provide a comparison of feature distributions of the incoming approaches of intersec-
tions of the ten cities. The y-axis is the percentage, while each x-axis is the respective feature range.
Lane length is measured in meters, speed limit is in meters per second, vehicle inflows are vehicles
per hour, and road grade is in percent grade. Phase count denotes how many different traffic signal
phases are applicable for a given incoming approach. The signal time ratio denotes the ratio between
approach-related phase times and total cycle time.

Based on our traffic scenario modeling efforts, IntersectionZoo provides more than one million traffic
scenarios. As a high-level breakdown, for all 16,334 intersections, we enable modeling four seasons
as changes in temperature and humidity, four main eco-driving adoption levels (10%, 20%, 50%,
75%, and 100%), two traffic hours (peak and off-peak), two-vehicle engine technologies (electric vs.
internal combustion engine) summing up to more than 1 million traffic scenarios.

In Figure 7, we illustrate some representative intersection topologies reconstructed in IntersectionZoo.

A.2 MODELING HUMAN-DRIVEN VEHICLES

For the foreseeable future, human-driven vehicles will remain prevalent. To model human drivers
in our simulations, we use the Intelligent Driver Model (IDM) (Treiber et al., 2000). IDM is a
widely accepted car-following model that can produce realistic traffic waves. IDM calculates a
vehicle’s acceleration using Equation 6, with desired velocity v0, space headway s0, time headway T ,
maximum acceleration α, and comfortable braking deceleration β. The velocity difference with the
leading vehicle is denoted as ∆v(t), and δ is a constant.

a(t) = α

[
1−

(
v(t)

v0

)δ

−
(
s∗(v(t),∆v(t)

s(t)

)2
]

(6)

s∗(v(t),∆v(t)) = s0 +max

(
0, v(t)T +

v(t)∆v(t)

2
√
αβ

)
(7)

For simulation accuracy, precise calibration of parameters v0, s0, T , α, and β is crucial. Different
regions may exhibit varying driving behaviors, such as American drivers versus British drivers. Thus,
calibrating the IDM parameters is critical for accurate human driver modeling.
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Figure 6: Comparison of context feature distributions of the incoming approaches of the ten cities.
The y-axis is the percentage, while each x-axis is the respective feature range.

Our IDM model calibration goals are threefold. We aim to align it with real-world human driving
behavior at US signalized intersections, tailoring the five IDM parameters for human-like trajectories.
We also need separate IDM models for distinct vehicle types (e.g., cars, buses, trucks) due to their
influence on driving style. Lastly, we aim to establish a range of IDM models reflecting diverse driver
behaviors and aggressiveness as observed in real-world driving.

For this purpose, we employ Bayesian inference and Gaussian process-based approach proposed by
Zhang & Sun (2022) and leverage real-world arterial driving data from CitySim (Zheng et al., 2022).
For ∀(t, d) ∈ {(t, d)}t0+(T−1)∆t,D

t=t0,d=1 where d represents the index for each driver d ∈ {1, · · · , D} and
t represents the timestamp, we have,

ln(θ) ∼ N (µ0,Σ0) ∈ R5 (8a)
ln (σϵ) ∼ N (µϵ, σ1) ∈ R (8b)

v
(t+∆t)
d | i(t)d , θ

i.i.d.∼ N
(
FIDM

(
i
(t)
d ; θ

)
, (σϵ∆t)

2
)
∈ R (8c)

Here, θ = [v0, s0, T, α, β] ∈ R5 is the IDM model parameters where N (µ, σ) represents a Gaussian
distribution with a mean of µ and standard deviation of σ. Independent and identically distributed is
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Figure 7: Left: a snapshot of the real-world intersection. Middle: the reconstructed intersection
topology in SUMO. Right: the full network around the ego-intersection with one-hop nearby intersec-
tions added for realistic vehicle arrival processes subjected to nearby traffic signals. IntersectionZoo
covers many of the diverse intersection topologies as briefly illustrated here.

indicated by i.i.d. Furthemore, we denote the inputs at time t as a vector i(t)d = [s
(t)
d , v

(t)
d ,∆v

(t)
d ],∀t ∈

{t0, · · · , t0 + (T − 1)∆t} where s
(t)
d is the headway, v(t)d is the velocity and ∆v

(t)
d is the relative

velocity of driver d and its leading vehicle at time t. We further define a function FIDM (·) that
updates the ego vehicle’s speed at t+∆t using Equation 6 and Equation 9 where ∆t is the step size.

v(t+∆t) = v(t) + a(t)∆t (9)

The formulation in Equations 8 generates a population-level joint distribution of IDM parameters. As
vehicle type influences driving behavior, we build distinct joint distributions for each vehicle type.
This requires separate human-driving trajectory datasets for every vehicle type.

CitySim (Zheng et al., 2022) is a drone-based vehicle trajectory dataset that provides vehicle trajec-
tories along arterial roads, but it lacks explicit vehicle type labels. Therefore, we use the bounding
box length of vehicles to distinguish cars from buses and trucks. While this identifies cars, it does
not allow us to differentiate between trucks and buses. Thus, we assume a common IDM parameter
distribution for trucks and buses. This is reasonable as both are heavy-weight vehicles with similar
behavior at signalized intersections. After modeling these joint distributions, we utilize them to
sample human drivers for the micro-simulations.
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Figure 8: The distributions of the intersections considered in building the IntersectionZoo across the
ten cities.

A.3 EMISSION MODELS AND THEIR BEHAVIOR

A key requirement for capturing the effect of traffic scenarios on vehicle exhaust emission is a rich
emission function. For this purpose, we integrate a suite of comprehensive and fast neural emission
models (Sanchez et al., 2022) that replicate the industry-standard Motor Vehicle Emission Simulator
(MOVES) (epa). For more details on how these neural surrogate emission models are built, we refer
the readers to Sanchez et al. (Sanchez et al., 2022).

In Figure 9, we present a visual illustration of the emission landscape of some of these emission
models when the vehicle’s instantaneous acceleration and velocity are changed. We present these
details for interested users as the objective of the CRL problem is specified by these emission models’
behaviors. While different vehicle models under different conditions demonstrate varying emission
quantities for a given velocity and acceleration, a few observations are generally common among
them. First, decelerating under any velocity is preferred. This is consistent with the design of the
GLOSA controller, which adopts a gliding behavior when the signal is red. Second, the higher the
acceleration, the more the emission with higher velocity and higher acceleration pairs may result in
the highest emissions.
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Figure 9: Emission landscapes of neural surrogate emission models. The figure depicts several
randomly chosen contour plots depicting emission landscapes from various vehicle models operating
under different conditions. Each plot title should be interpreted as vehicle manufacture year/ fuel
type/ vehicle type/ temperature/ humidity/ road grade. Temperature is in Celsius, and humidity is the
relative percentage, and the road grade is in degrees.

A.4 DEFINING CONTEXT MDPS

State Space: The design of the observed state of a vehicle is mainly based on the capabilities of
existing sensor technologies. The observed state includes the speed of the ego-vehicle, relative
distance to the traffic signal, traffic signal state (red, green, or yellow) for the current phase, time
remaining in the current phase, time remaining until the traffic signal turns green for the second and
third cycle, vehicle location (i.e., a flag indicating whether the vehicle is approaching the intersection,
at the intersection, or exiting the intersection), index of the vehicle’s current lane, vehicle’s intention
to turn right, left, or go straight at the upcoming intersection, and for the follower and the leader
vehicles on the same lane, adjacent right lane, and left lane of the ego-vehicle: speed, relative distance,
turn signals status (turning right, left, or none).

As mentioned earlier, IntersectionZoo has both observed features and unobserved PCG-based features
defining the context of a context-MDP. For users interested in conditioning the policies based on the
context, we provide observable context features that include eco-driving adoption level, signal timing
plan for the traffic signal phase relevant to the vehicle, atmospheric conditions such as temperature
and humidity, the fuel type (electric or internal combustion engine), and information about the
ego-vehicle’s current approach (number of lanes, lane length, speed limit). The decision on which
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features are available for conditioning is also based on the feasibility of implementing them in the
real world.

Action Space: Longitudinal acceleration of each CV. For lane changing, a standard rule-based
controller is used (Erdmann, 2014). This focuses IntersectionZoo on the continuous control aspect of
eco-driving.

Multi-objective Reward Function: The reward rti for each CV i at time t is defined in Equation 10
inspired by Jayawardana et al. (2024). Here, nt is the vehicle fleet size, vit is the velocity, and eit is
the CO2 emissions of vehicle i at time t. Hyperparameters include, η, α, β, and τ . The indicator
function 1vi

t<τ indicates whether the vehicle is stopped, while the term eit encourages low emissions.
The velocity term captures the effect on travel time. Users can configure the parameter η to either
get a fleet-based reward, agent-based reward, or a combination of both. All such formulations are
acceptable.

rit = η
1

nt

nt∑
j=1

(vjt + α1vj
t<τ + βejt ) + (1− η)(vit + α1vi

t<τ + βeit) (10)

Users can extend the above default objective with additional reward terms as explained in Section A.6.

A.5 DESIGN RATIONALE BEHIND REWARD FUNCTION AND OBSERVATION FUNCTION

Our decisions on reward function design and observation design have been shaped by existing eco-
driving literature and the existing sensor technologies to capture the state of a vehicle. Below we
detail some of the decision choices and reasons behind them.

Reward function: As often discussed in eco-driving literature, many studies use emission and
vehicle speed as the subterms of the objective function of the optimization methods (Jayawardana
& Wu, 2022; Wegener et al., 2021; Zhu et al., 2023; Jayawardana et al., 2024). The emission term
is a natural choice as the goal is to reduce the emission. The speed term is used as a shaped proxy
reward for throughput maximization, as throughput itself would be a sparse reward (that can only be
calculated at the end of the episode). Then, we introduce a term that penalizes stopping. This has
also previously been used in eco-driving literature Jayawardana & Wu (2022). In our case, the choice
to do this serves three purposes. First, based on the common emission model behaviors as explained
in Section 9, decelerating is often a preferred action to reduce emission with stopping, and idling
often emits more than decelerating. Therefore, it is preferred to encourage gliding behavior. This has
been the core design principle of the GLOSA controller, and our penalty term encourages gliding
to avoid idling. Second, if stopping is not penalized, methods could reward cheat by making the
controlled vehicles stop at the beginning of an incoming approach, blocking the other vehicles and
hence reducing emissions. With the stopping penalty term, we discourage these undesired behaviors.
Third, the gliding behavior encouraged by the stopping penalty term also results in a smoother vehicle
jerk, which could be more comfortable for the passengers. Therefore, we use these three terms in
the reward. Following previous eco-driving work (Jayawardana & Wu, 2022; Wegener et al., 2021;
Zhu et al., 2023; Jayawardana et al., 2024), we use a linear combination of these terms as the final
objective, where weight coefficients are found by setting the weights based on each term’s relative
scale and doing a hyperparameter search around the starting configuration.

Observation function: Our observation function features are designed with the requirement that they
should be available to the vehicle with the existing sensor technologies both onboard the vehicle and
based on roadside units (RSU). By design, we provide all features that are considered in previous
eco-driving literature. This is often the strategy adopted by existing benchmarking work based on
real-world applications Ault & Sharon (2021); Vinitsky et al. (2022). The rationale behind this
decision is to make sure that none of the essential features are missing from the observation, and if
some features are less important for solving the problem, a given method could learn to ignore them.
If required, as explained in Section A.8, users are allowed to perform observation shaping.

A.6 ADDITIONAL OBJECTIVES TERMS AND THEIR ENCODING SCHEMES

IntersectionZoo provides additional objective terms for users who wish to assess the effect of multiple
objectives on generalization.
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Passenger comfort: To accommodate passenger comfort, vehicles should maintain low accelerations
and decelerations. To encourage this behavior, a reward term is defined as the |at| where at is the
acceleration (or deceleration) of the vehicle at time t. When used with shared fleet-wise reward, the
mean of |at| across all vehicles is used.

Kinematic realism: Vehicles often cannot have high jerks (changes in accelerations in unit time) as
actuators have jerk limits. To account for this, IntersectionZoo provides jerk control as |at − at−1|
where at is the acceleration (or deceleration) of the vehicle at time t. When used with shared
fleet-wise reward, the mean jerk across all vehicles is used.

Fleet-level safety: While individual vehicle safety is ensured using pre-defined rule-based checks,
IntersectionZoo provide surrogate safety measures such as Time To Collision (TTC) to improve
traffic flow level safety. These surrogate safety measures are commonly used by traffic engineers to
measure the impact of new roadway interventions (Wang et al., 2021a).

Time to Collision (TTC) for a vehicle is measured as the time it would take for the vehicle to collide if
it were to continue moving along its current paths without any changes in speed or direction. Formally,
TTC = ∆d

∆v where ∆d is the relative distance and ∆v is the relative velocity. Both distance and
velocity are measured relative to the leading vehicle of the ego-vehicle. In using TTC for fleet-level
safety, we take the minimum TTC value across all vehicles at a given time step and share it with all
vehicles.

A.7 EVALUATION METRICS

To measure the generalization performance of a learned CRL policy, we leverage two metrics.

Average emission benefits: This measures the per vehicle per time step CO2 emissions in grams
based on the CRL policy and compares that with the human driving baseline. The lower the emissions,
the better. Percentage emission reduction is given as the benefit.

Average intersection throughput benefits: This measures the number of vehicles that cross the
intersection during an episode. We present it as the average throughput change percentage compared
to the human driving baseline.

In addition to the task-specific metrics, users may present the training stability, sample complexity,
and qualitative evaluations of the behavior of the agents through visualization as either supportive
metrics or main evaluation metrics depending on the goals of the benchmarking. Furthermore, if
additional objective terms such as passenger comfort and kinematic realism of vehicles are used in
the objective as explained in Section A.6, it is important to present relevant metrics that can capture
the effects of these objectives. As these metrics are often experimental purpose-specific, we do not
provide a default implementation and leave it to the users to define their custom metrics.

A.8 GUIDELINES FOR USING INTERSECTIONZOO

To standardize the use of IntersectionZoo, we provide the following guidelines.

• The environment comes with a default reward and observation function definitions. However,
users are allowed to perform reward and observation shaping.

• A key requirement for assessing the performance is to ensure intersection throughput per
intersection is never reduced by the learned eco-driving policy as explained in Section 2.2. If,
for any intersection, the throughput is reduced (even if there are low emissions), its emission
and throughput benefits must be set to zero.

• We recommend presenting the performance histograms (as given in Section 6) apart from
presenting the average emission benefits over the intersection approaches of a given CMDP
to visualize the generalization capacity of algorithms. This would facilitate identifying
methods that overfit to a few specific intersections with dominating performances.

• The bounds on the controlled vehicle acceleration, minimum possible time to the vehicle in
front, minimum headway, and willingness to obey the speed limit rules should be respected.
These are set to constraint the actions based on vehicle actuator limits and to ensure safety.

23



Published as a conference paper at ICLR 2025

A.9 LICENSE DETAILS AND ACCESSIBILITY

Our code and the IntersectionZoo are released under the MIT License and are available at
https://github.com/mit-wu-lab/IntersectionZoo. The intersection datasets are also released under the
MIT License. All data used for creating traffic scenarios are based on publicly available open data.
SUMO traffic simulator is licensed under the EPL-2.0 with GPL v2 or later as a secondary license
option (refer to SUMO website for more details).
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B APPENDIX B - EXPERIMENTAL SETUP AND RESULTS

B.1 EXPERIMENTAL SETUP

All experiments are carried out using RLLib (Liang et al., 2018) with the default hyperparameter
configuration. All policies are trained as multi-task learning policies where the context to condition
the policy is as defined in Section A.4. We leverage 10 multiple workers in training the multi-task
learning policies. Experiments were carried out in a computing cluster with 20 CPUs and an NVidia
Volta V100 GPU with 32GB RAM. Each benchmarking run took roughly 24 hours in RLLib, with
5000 episodes (each with a horizon of 1000 steps with 50 warmups). We purposely ran each run for
large number of iterations to ensure no further training can improve the policies. Benchmarking runs
can be run for a shorter number of iterations, reducing computation times further.

B.2 NOTES ON EVALUATIONS

For the reported results in Section 6, for each algorithm, we train with four random seeds. We train
for 500 training iterations to ensure policies are well-converged. During the evaluation, we select the
best-performing policy based on the rewards, vehicle throughout, and emission reductions.

B.3 SALT LAKE CITY IN-DISTRIBUTION GENERALIZATION ANALYSIS

In this section, we demonstrate the emission benefit histograms of Salt Lake City CMDP with
different MARL methods. Figure 10 illustrates the results. As discussed in Section 6 for Atlanta
CMDP, SLC CMDP behaves similarly. While the effective emission benefits are positive for most
MARL methods, some context-MDPs are not solved, as can be seen from the histograms. This serves
as evidence of the fact that current MARL methods do not appear to easily solve the CRL problem in
IntersectionZoo CMDPs and hence indicate that IntersectionZoo provides reasonable room for future
CRL algorithmic improvements.

B.4 SYSTEMATICITY AND PRODUCTIVITY IN GENERALIZATION

Below, as an example use of IntersectionZoo, we assess two targeted evaluations of generalization
using IntersectionZoo, namely systematicity and productivity (Kirk et al., 2021).

Systematicity in generalization: Systematicity is generalization using systematic recombination of
known knowledge (Kirk et al., 2021; Hupkes et al., 2020). To test this ability of DDPG and PPO, we
leverage IntersectionZoo’s capability to procedurally generate context-MDPs. Following Kirk et al.
(2021), we first define a set of context features and their corresponding values as a set of uniform
distributions (per feature). Then, we train policies by sampling feature values from each distribution
to create context vectors. However, certain feature value combinations are never used during training.
During testing, we only use the feature value combinations that were not used in training. This tests
the algorithms’ ability to systematically combine known knowledge to generalize.

We define in Table 4, the feature distributions for training, and in Table 5, the feature distribution for
evaluation. During training, we sample intersections from Table 4 defined distribution but also not in
Table 5 defined distribution. During evaluations, we only sample intersections from Table 5 defined
distribution.

The resultant performance histogram is given in Figure 11a. While exact performance results are not
the core focus of this experiment but rather to show the use IntersectionZoo in performing an analysis
like this, we observe both DDPG and PPO fail to systematically generalize; baseline performs better
in most cases.

Productivity in generalization: Productivity is when the learned policies generalization beyond seen
training data (Kirk et al., 2021; Hupkes et al., 2020). To test this in PPO and DDPG, we perform an
OOD evaluation by using a policy trained on SLC CMDP with zero-shot transfer to Atlanta CMDP.
The resultant performance histogram is given in Figure 11b.

We would like to note that the primary focus of this experiment is not the exact performance results,
but rather demonstrating how IntersectionZoo can be effectively used to conduct such an analysis.
That said, even though the in-distribution performance analysis in Section 6 shows the DDPG policy
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(a) Benefit histogram of SLC with PPO policy (b) Benefit histogram of SLC with DDPG policy

(c) Benefit histogram of SLC with MAPPO policy (d) Benefit histogram of SLC with GCRL policy

(e) Benefit histogram of SLC with MADDPG policy (f) Benefit histogram of SLC with GLOSA policy

Figure 10: Emission benefit histograms of Salt Lake City (SLC) under different RL algorithms with
in-distribution testing. Percentages are relative to the IDM baseline. Large y-axis counts are truncated
for clarity. The total approach count refers to the total number of intersection approaches. The spikes
at 0% are in part due to the zeroing of emissions benefits for any scenarios where throughput is
reduced.

(a) Systematicity evaluation using procedurally gener-
ated intersections

(b) Productivity evaluation using policy transfer from
Salt Lake City to Atlanta

Figure 11: Performance histograms of PPO and DDPG in assessing systematicity and productivity in
generalization. All emission benefit percentages are measured relative to the human-driving baseline.
For y-axis counts that are large, we truncate them for better visualization and indicate the count on
the plot. The spikes at 0% are in part due to the aforementioned zeroing of emissions benefits for
any scenarios where throughput is reduced. The total approach count is also given in each plot for
reference, and the title indicates train CMDP → test CMDP.

trained on SLC CMDP seems to perform slightly better than the policy trained on Atlanta CMDP,
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Feature Value range
Lane setup (1,1), (1,2), (2,1), (2,2), (3,1), (3,2) - Format: (lane count, phase count)

Vehicle inflow [100, 600] vehicles per hour
Green phase time [20, 32] seconds
Red phase time [20, 32] seconds

Lane length [100, 775] meters
Speed limit [16, 20] m/s
Signal offset [1,3] seconds

Table 4: Feature distribution for training for systematicity

Feature Value range
Lane setup (2,2), (3,1) - Format: (lane count, phase count)

Vehicle inflow [400, 500] vehicles per hour
Green phase time [26, 29] seconds
Red phase time [26, 29] seconds

Lane length [325, 500] meters
Speed limit [17, 18] m/s
Signal offset [2, 3] seconds

Table 5: Feature distribution for evaluation of systematicity

after the transfer, both DDPG and PPO seem to perform poorly, further indicating the limitations of
existing RL algorithms when it comes to generalization across problem variations.
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