
Supplementary Material

A Omitted Proofs from Section 2

A.1 Proof of Claim 2.3

Proof. The proof of Claim 2.3 is obtained via the following calculation, using the definition of
Hermite tensor (Definition 2.2). We will use i, j for indexes in [d].

√
k!Hk(Bx)i1,...,ik

=
∑

Partitions P of [k]
into sets of size 1 and 2

⊗
{a,b}∈P

(−Iia,ib)
⊗

{c}∈P

(Bx)ic

=
∑

Partitions P of [k]
into sets of size 1 and 2

⊗
{a,b}∈P

(−(BIBT )ia,ib)
⊗

{c}∈P

(Bx)ic

=
∑

Partitions P of [k]
into sets of size 1 and 2

⊗
{a,b}∈P

−

 n∑
ja,jb=1

Bia,jaIja,jbB
⊺
jb,ib

 ⊗
{c}∈P

 n∑
jc=1

Bic,jcxjc


=

∑
Partitions P of [k]

into sets of size 1 and 2

n∑
j1,...,jk=1

⊗
{a,b}∈P

(
Bia,ja(−Ija,jb)B

⊺
jb,ib

) ⊗
{c}∈P

(Bic,jcxjc)

=
∑

Partitions P of [k]
into sets of size 1 and 2

n∑
j1,...,jk=1

⊗
l∈[k]

Bil,jl

⊗
{a,b}∈P

(−Ija,jb)
⊗

{c}∈P

xjc

=

n∑
j1,...,jk=1

⊗
l∈[k]

Bil,jl

∑
Partitions P of [k]

into sets of size 1 and 2

⊗
{a,b}∈P

(−Ija,jb)
⊗

{c}∈P

xjc

=

n∑
j1,...,jk=1

⊗
l∈[k]

Bil,jl

√
k!Hk(x)j1,...,jk

=
√
k!

n∑
j1,...,jk=1

(B⊗k)i1,...,ik,j1,...,jkHk(x)j1,··· ,jk ,

where the fourth and fifth equalities follow from the fact that P is a partition of [k], so changing
the order of summation and multiplication gives exactly

∑n
j1,...,jk=1 and

⊗
l∈[k] Bil,jl . The seventh

equality follows from the definition of the Hermite tensor. The above is equivalent to Hk(Bx) =
B⊗kHk(x). This completes the proof.

B Omitted Proofs from Section 3

B.1 Omitted Proofs from Section 3.1

B.1.1 Proof of Lemma 3.2

Proof. We construct the truncated distribution A′ as follows. We first sample x ∼ A, then we reject
x unless ∥x∥2 ≤ B. Let A′ be the distribution of the samples we get from this process.
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First notice that to bound the total variation distance,

Ex∼A[∥x∥d2] ≤Ex∼Nm
[∥x∥d2] + νEx∼Nm

[∥x∥2d2 ]1/2

=Et∼χ2(m)[t
d/2] + νEt∼χ2(m)[t

d]1/2

=2d/2
Γ((d+m)/2)

Γ(m/2)
+ 2d/2

√
Γ((2d+m)/2)

Γ(m/2)
ν

≤c2

(
2d/2

√
Γ(d+m/2)

Γ(m/2)

)
,

where c2 is a universal constant. Using Markov’s inequality and union bound, we have

Prx∼A[x ̸∈ Bm(B)] ≤ c2

(
2d/2

√
Γ(d+m/2)

Γ(m/2)

)
B−d .

By the definition of A′, we have that dTV(A,A′) = c2

(
2d/2

√
Γ(d+m/2)
Γ(m/2)

)
B−d.

Then it only remains to verify ∥Ex∼A′ [Hk(x)] − Ex∼Nm
[Hk(x)]∥2 for any k < d. It is

immediate that ∥Ex∼A′ [Hk(x)] − Ex∼Nm
[Hk(x)]∥2 = 0 for k = 0. Therefore, we only consider

1 ≤ k < d. We first look at ∥Ex∼A[Hk(x)] − Ex∼Nm [Hk(x)]∥2. Suppose ∥Ex∼A[Hk(x)] −
Ex∼Nm [Hk(x)]∥2 > ν, then it is easy to see that the polynomial

f =

〈
Ex∼A[Hk(x)]−Ex∼Nm

[Hk(x)]

∥Ex∼A[Hk(x)]−Ex∼Nm [Hk(x)]∥2
,Hk(x)

〉

satisfies the requirement, that f is at most degree-d, Ex∼Nm [f(x)2] = 1 and |Ex∼A[f(x)] −
Ex∼Nm

[f(x)]| > ν . Contradiction, thus ∥Ex∼A[Hk(x)] − Ex∼Nm
[Hk(x)]∥2 ≤ ν. Then to

bound ∥Ex∼A′ [Hk(x)]−Ex∼A[Hk(x)]∥2, let α = Prx∼A[x ̸∈ Bm(B)],

∥Ex∼A′ [Hk(x)]−Ex∼A[Hk(x)]∥2

=

∥∥∥∥ 1

1− α
Ex∼A[Hk(x)1(x ∈ Bm(B))]−Ex∼A[Hk(x)]

∥∥∥∥
2

=

∥∥∥∥ α

1− α
Ex∼A[Hk(x)]−

1

1− α
Ex∼A[Hk(x)1(x /∈ Bm(B))]

∥∥∥∥
2

≤ 1

1− α
∥Ex∼A[Hk(x)1(x ̸∈ Bm(B))]∥2 +

α

1− α
∥Ex∼A[Hk(x)]∥2

≤ 1

1− α
∥Ex∼A[Hk(x)1(x ̸∈ Bm(B))]∥2 +

α

1− α
ν ,

where the last inequality follows from ∥Ex∼A[Hk(x)] − Ex∼Nm
[Hk(x)]∥2 ≤ ν and

Ex∼Nm [Hk(x)] = 0 for any k > 0. Since Bd ≥ c1

(
2d/2

√
Γ(d+m/2)
Γ(m/2)

)
(c1 is at least a suffi-

ciently large universal constant), we have α ≥ c2

(
2d/2

√
Γ(d+m/2)
Γ(m/2)

)
B−d ≥ 1/2. Also, we have

Bd ≥ c1

(
2d/2

√
Γ(d+m/2)
Γ(m/2)

)
implies B2 ≥ m. Then using Jensen’s inequality and Fact 3.5, we
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have

∥Ex∼A[Hk(x)1(x ̸∈ Bm(B))]∥2
≤Ex∼A[∥Hk(x)∥21(x ̸∈ Bm(B))]

≤Ex∼A[2
O(k) max(1, ∥x∥k2)1(x ̸∈ Bm(B))]

≤2O(k)Ex∼A[∥x∥k21(x ̸∈ Bm(B))]

≤2O(k)

∫ ∞

0

Pr[∥x∥2 ≥ u ∧ x ̸∈ Bm(B)]duk

≤2O(k)

∫ ∞

0

(
2d/2

√
Γ(d+m/2)

Γ(m/2)

)
min(B−d, u−d)duk

≤2O(k)

(
2d/2

√
Γ(d+m/2)

Γ(m/2)

)(∫ B

0

B−dduk +

∫ ∞

B

u−dduk

)

≤2O(k)

(
2d/2

√
Γ(d+m/2)

Γ(m/2)

)
B−(d−k) .

Plug it back gives

∥Ex∼A′ [Hk(x)]−Ex∼A[Hk(x)]∥2 ≤ 2O(k)

(
2d/2

√
Γ(d+m/2)

Γ(m/2)

)
B−(d−k) + ν .

This completes the proof.

B.1.2 Proof of Lemma 3.3

Proof. Noting that Ex∼PA′
V
[f(x)] = Ex∼PA′

V
[f≤ℓ(x)] +Ex∼PA′

V
[f>ℓ(x)], we will show that

Ex∼PA′
V
[f≤ℓ(x)] =

〈∑ℓ

k=0
⟨Ak,Hk(⟨v1,x⟩, . . . , ⟨vm,x⟩)⟩, f≤ℓ

〉
Nn

.

Notice that f≤ℓ is a polynomial of degree-ℓ. Let b1, · · · ,bn be an orthonormal basis, where
b1 = v1, . . . ,bm = vm. Then degree-ℓ polynomials are spanned by polynomials of the form∏n

i=1⟨bi,x⟩qi , where
∑n

i=1 qi ≤ ℓ. Therefore, it suffices to show that for any
∑n

i=1 qi ≤ ℓ,

Ex∼PA′
V

[∏n

i=1
⟨bi,x⟩qi

]
=
〈∑ℓ

k=0
⟨Ak,Hk(⟨v1,x⟩, . . . , ⟨vm,x⟩)⟩,

∏n

i=1
⟨bi,x⟩qi

〉
Nn

,

which is equivalent to show that for any
∑m

i=1 qi ≤ ℓ,

Ex∼PA′
V

[∏m

i=1
⟨vi,x⟩qi

]
=
〈∑ℓ

k=0
⟨Ak,Hk(⟨v1,x⟩, . . . , ⟨vm,x⟩)⟩,

∏m

i=1
⟨vi,x⟩qi

〉
Nm

,

which is the same as for any q =
∑m

i=1 qi ≤ ℓ, Ey∼A′ [Hq(y)] =∑ℓ
k=0 Ey∼Nm [⟨Ak,Hk(y)⟩Hq(y)]. One can see that the above holds from the definition of

Ak and the orthornomal property of Hermite Tensors. Therefore, by Claim 2.3, we have that

Ex∼PA′
V
[f≤ℓ(x)] =

〈∑ℓ

k=0
⟨Ak,Hk(⟨v1,x⟩, . . . , ⟨vm,x⟩)⟩, f≤ℓ

〉
Nn

=
〈∑ℓ

k=0
⟨Ak,Hk(V

⊺x)⟩, f≤ℓ
〉
Nn

=
〈∑ℓ

k=0
⟨V⊗kAk,Hk(x)⟩, f≤ℓ

〉
Nn

=
〈∑ℓ

k=0
⟨V⊗kAk,Hk(x)⟩,

∑ℓ

k=0
⟨Tk,Hk(x)⟩

〉
Nn

=
∑ℓ

k=0
⟨V⊗kAk,Tk⟩ ,

where the last equality uses the orthonormal property of Hermite tensors. This completes the proof.
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B.1.3 Proof of Fact 3.5

Proof. For a degree-k tensor A, we use Aπ to denote the matrix that Aπ
i1,··· ,ik = Aπ(i1,··· ,ik).

Notice ∥A∥2 = ∥Aπ∥2. Then from the definition of Hermite tensor, we have

H(x) =
1√
k!

⌊k/2⌋∑
t=0

∑
Permutation π of [k]

1

2tt!(k − 2t)!

(
(−I)⊗tx⊗(k−2t)

)π
.

This implies,
∥Hk(x)]∥2

=

∥∥∥∥∥∥ 1√
k!

⌊k/2⌋∑
t=0

∑
Permutation π of [k]

1

2tt!(k − 2t)!

(
(−I)⊗tx⊗(k−2t)

)π∥∥∥∥∥∥
2

≤
⌊k/2⌋∑
t=1

√
k!

2tt!(k − 2t)!
max(∥I⊗t∥2∥x∥k−2t

2 , 1)

=

⌊k/2⌋∑
t=1

√
k!

2tt!(k − 2t)!
max(mt∥x∥k−2t

2 , 1)

=max(∥x∥k2 , 1)
⌊k/2⌋∑
t=1

√
k!

2tt!(k − 2t)!
.

One can see the denominator is minimized when t = k/2−O(
√
k). Then it follows that the sum is

at most 2O(k) max(∥x∥k2 , 1).

B.1.4 Proof of Fact 3.6

Proof. We will need the following fact for the proof.

Fact B.1 ([Kra04]). Let hk be the k-th normalized Hermite polynomial. Then
maxt∈R h2

k(t)e
−t2/2 = O(k−1/6).

First note that using Lemma 2.3, we have for any orthogonal B ∈ Rm×m,
∥Hk(x)∥2 = ∥B⊗kHk(x)∥2 = ∥Hk(Bx)∥2 .

By taking the appropriate B, we can always have Bx = ∥x∥2e1. Therefore, wlog, we can assume
x = te1 for some t ∈ R.

Notice that for any entry Hk(x)i1,··· ,ik , let jℓ for ℓ ∈ 1, · · · ,m be the number of times ℓ appears
in i1, · · · , ik. Note that

∑
ℓ jℓ = k. To bound the norm of Hk(x) notice

Hk(x)i1,··· ,ik =

(
k

j1, · · · , jm

)−1/2 m∏
ℓ=1

hjℓ(xℓ) .

Therefore,

∥Hk(x)∥22 =
∑

i1,··· ,ik

(
k

j1, · · · , jm

)−1
(

m∏
ℓ=1

hjℓ(xℓ)

)2

=
∑

j1,··· ,jm such that
∑

ℓ jℓ=k

(
m∏
ℓ=1

hjℓ(xℓ)

)2

≤
∑

j1,··· ,jm such that
∑

ℓ jℓ=k

m∏
ℓ=1

O(exp(x2
ℓ/2))

≤2O(m)

(
k +m− 1

m− 1

)
exp(∥x∥22/2) ,

where the first inequality follows from Fact B.1. Then we can take square root on both sides which
gives what we want.
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B.1.5 Proof of Lemma 3.7

Proof. Notice that

EV∼U(On,m)[∥(V⊺)⊗kT∥a2 ] =EV∼U(On,m)[∥(V⊺)⊗ak/2Ta/2∥22]

=EV∼U(On,m)[⟨V⊗ak/2(V⊺)⊗ak/2,T⊗a⟩]

=⟨EV∼U(On,m)[V
⊗ak/2(V⊺)⊗ak/2],T⊗a⟩

≤∥EV∼U(On,m)[V
⊗ak/2(V⊺)⊗ak/2]∥2∥T∥a2 .

Therefore, it suffices to bound the spectral norm ∥EV∼U(On,m)[V
⊗ak/2(V⊺)⊗ak/2]∥2.

Let A = EV∼U(On,m)[V
⊗ak/2(V⊺)⊗ak/2], T0 be the eigenvector associated with the largest

absolute eigenvalue, and let u = argmaxu∈Sn−1 |⟨T0,u
⊗ak/2⟩|. Then

∥A∥2 =|⟨AT0,u
⊗ak/2⟩|/|⟨T0,u

⊗ak/2⟩|
=|⟨T0,Au⊗ak/2⟩|/|⟨T0,u

⊗ak/2⟩|
=|⟨T0,EV∼U(On,m)[(VV⊺u)⊗ak/2]⟩|/|⟨T0,u

⊗ak/2⟩|

=|EV∼U(On,m)[⟨T0, (VV⊺u)⊗ak/2⟩]|/|⟨T0,u
⊗ak/2⟩|

≤EV∼U(On,m)[|⟨T0, (VV⊺u)⊗ak/2⟩|]/|⟨T0,u
⊗ak/2⟩|

≤EV∼U(On,m)[∥(VV⊺u)⊗ak/2∥2|⟨T0,u
⊗ak/2⟩|]/|⟨T0,u

⊗ak/2⟩|

=EV∼U(On,m)[∥(VV⊺u)⊗ak/2∥2]

=EV∼U(On,m)

[
∥V⊺u∥ak/22

]
,

where we use u = argmaxu∈Sn−1 |⟨T0,u
⊗ak/2⟩| in the second inequality. Using Lemma 3.8, and

plug everything back, we get

EV∼U(On,m)[∥(V⊺)⊗kT∥a2 ] ≤ EV∼U(On,m)

[
∥V⊺u∥ak/22

]
∥T∥a2 .

B.1.6 Proof of Lemma 3.8

Proof. To bound EV⊺∼U(On,m)[∥Vu∥k2 ], by symmetry, we can instead consider V =

[e1, e2, · · · , em]⊺ and u ∼ U(Sn−1). Then we have that

Eu∼U(Sn−1)

[
∥Vu∥k2

]
=Eu∼U(Sn−1)

[
(∥Vu∥2/∥u∥2)k

]
= Eu∼U(Sn−1)

[(
∥Vu∥22/∥u∥22

)k/2]
=Et∼Beta(m

2 ,n−m
2 )

[
tk/2

]
,

where the last equation follows from the standard fact that if X ∼ χ2
d1

and Y ∼ χ2
d2

are independent
then X

X+Y ∼ Beta(d1/2, d2/2). By Stirling’s formula, we can bound Et∼Beta(m
2 ,n−m

2 )
[
tk/2

]
as

follows:

Et∼Beta(m
2 ,n−m

2 )

[
tk/2

]
=

1

B
(
m
2 ,

n−m
2

) ∫ 1

t=0

t(
k+m

2 −1)(1− t)(
n−m

2 −1)dt

=
B
(
k+m
2 , n−m

2

)
B
(
m
2 ,

n−m
2

) = Θ

(
Γ
(
k+m
2

)
Γ
(
n
2

)
Γ
(
k+n
2

)
Γ
(
m
2

)) .
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B.1.7 Proof of Corollary 3.9

Proof. We will discuss by cases. We first consider the case where both n and m are even integers.
For k ≤ nc, by definition of Γ function, we have that

EV∼U(On,m)[∥V⊺u∥k2 ] =Θ

(
Γ
(
k+m
2

)
Γ
(
n
2

)
Γ
(
k+n
2

)
Γ
(
m
2

))

=Θ

( (
n
2 − 1

) (
n
2 − 2

)
· · ·
(
m
2

)(
k+n
2 − 1

) (
k+n
2 − 2

)
· · ·
(
k+m
2

))

=Θ

((
k+m
2 − 1

) (
k+m
2 − 2

)
· · ·
(
m
2

)(
k+n
2 − 1

) (
k+n
2 − 2

)
· · ·
(
n
2

) )

≤O

((
k +m

k + n

)k/2
)

=O(2k/2n−(1−c)k/2) . (2)

For k ≥ nc, we have that

EV∼U(On,m)[∥V⊺u∥k2 ] = Θ

(
Γ
(
k+m
2

)
Γ
(
n
2

)
Γ
(
k+n
2

)
Γ
(
m
2

))

=Θ

( (
n
2 − 1

) (
n
2 − 2

)
· · ·
(
m
2

)(
nc+n

2 − 1
) (

nc+n
2 − 2

)
· · ·
(
nc+m

2

) × (
nc+n

2 − 1
) (

nc+n
2 − 2

)
· · ·
(
nc+m

2

)(
k+n
2 − 1

) (
k+n
2 − 2

)
· · ·
(
k+m
2

) )

=O(2n
c/2n−(1−c)nc/2)O

((
nc + n

k + n

)(n−m)/2
)

=exp(−Ω(nc))O

((
nc + n

k + n

)(n−m)/2
)

, (3)

where the third equation follows from equation (2) by taking k = nc.

For the case where n is even and m is odd, note that Γ(x + 1/2) = Θ(
√
xΓ(x)) by Stirling

approximation, we have that

EV∼U(On,m)[∥V⊺u∥k2 ] = Θ

(
Γ
(
k+m
2

)
Γ
(
n
2

)
Γ
(
k+n
2

)
Γ
(
m
2

)) = Θ

( √
mΓ

(
k+m−1

2

)
Γ
(
n
2

)
√
k +mΓ

(
k+n
2

)
Γ
(
m−1
2 )
)) .

For k ≤ nc, by equation 2, we have that

EV∼U(On,m)[∥V⊺u∥k2 ] = Θ

( √
mΓ

(
k+m+1

2

)
Γ
(
n
2

)
√
k +mΓ

(
k+n
2

)
Γ
(
m+1
2 )
)) = O

(
2k/2n−(1−c)k/2

)
.

For k ≥ nc, by equation 3, we have that

EV∼U(On,m)[∥V⊺u∥k2 ] = Θ

( √
mΓ

(
k+m−1

2

)
Γ
(
n
2

)
√
k +mΓ

(
k+n
2

)
Γ
(
m−1
2 )
))

= exp(−Ω(nc))O

((
nc + n

k + n

)(n−m+1)/2
)

≤ exp(−Ω(nc))O

((
nc + n

k + n

)(n−m)/2
)

.

For the case where n is odd and m is even, by Stirling approximation, we have that

EV∼U(On,m)[∥V⊺u∥k2 ] = Θ

(
Γ
(
k+m
2

)
Γ
(
n
2

)
Γ
(
k+n
2

)
Γ
(
m
2

)) = Θ

(√
k + nΓ

(
k+m
2

)
Γ
(
n+1
2

)
√
nΓ
(
k+n+1

2

)
Γ
(
m
2 )
) )

.
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For k ≤ nc, by equation 2, we have that

EV∼U(On,m)[∥V⊺u∥k2 ] = Θ

(√
k + nΓ

(
k+m
2

)
Γ
(
n+1
2

)
√
nΓ
(
k+n+1

2

)
Γ
(
m
2 )
) )

= O

(√
k + n

n
2k/2(n+ 1)−(1−c)k/2

)
= O

(
2k/2n−(1−c)k/2

)
.

For k ≥ nc, by equation 3, we have that

EV∼U(On,m)[∥V⊺u∥k2 ] = Θ

(√
k + nΓ

(
k+m
2

)
Γ
(
n+1
2

)
√
nΓ
(
k+n+1

2

)
Γ
(
m
2 )
) )

= exp(−Ω(nc)O

(√
k + n

n

(
nc + n+ 1

k + n+ 1

)(n−m+1)/2
)

≤ exp(−Ω(nc))O

((
nc + n

k + n

)(n−m)/2
)

.

For the case where both n and m are odd integers, by Stirling approximation, we have that

EV∼U(On,m)[∥V⊺u∥k2 ] = Θ

(
Γ
(
k+m
2

)
Γ
(
n
2

)
Γ
(
k+n
2

)
Γ
(
m
2

)) = Θ

( √
m(k + n)Γ

(
k+m−1

2

)
Γ
(
n+1
2

)√
n(k +m)Γ

(
k+n+1

2

)
Γ
(
m−1
2 )
)) .

For k ≤ nc, by equation 2, we have that

EV∼U(On,m)[∥V⊺u∥k2 ] = Θ

( √
m(k + n)Γ

(
k+m−1

2

)
Γ
(
n+1
2

)√
n(k +m)Γ

(
k+n+1

2

)
Γ
(
m−1
2 )
))

= O

(√
m(k + n)

n(k +m)
2k/2(n+ 1)−(1−c)k/2

)
= O

(
2k/2n−(1−c)k/2

)
.

For k ≥ nc, by equation 3, we have that

EV∼U(On,m)[∥V⊺u∥k2 ] = Θ

( √
m(k + n)Γ

(
k+m−1

2

)
Γ
(
n+1
2

)√
n(k +m)Γ

(
k+n+1

2

)
Γ
(
m−1
2 )
))

= exp(−Ω(nc)O

(√
m(k + n)

n(k +m)

(
nc + n+ 1

k + n+ 1

)(n−m+2)/2
)

≤ exp(−Ω(nc))O

((
nc + n

k + n

)(n−m)/2
)

.

B.1.8 Proof of Lemma 3.10

Proof. As we have discussed, we will consider three ranges of k. However, for some technical
reasons and the ease of calculations, we will additionally break the second range into two ranges.
We can write

ℓ∑
k=1

|⟨Ak, (V
⊺)⊗kTk⟩| =

d−1∑
k=1

|⟨Ak, (V
⊺)⊗kTk⟩|+

nλ∑
k=d

|⟨Ak, (V
⊺)⊗kTk⟩|

+

T∑
k=nλ+1

|⟨Ak, (V
⊺)⊗kTk⟩|+

ℓ∑
k=T+1

|⟨Ak, (V
⊺)⊗kTk⟩| ,
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where T is a value we will later specify. To analyze each |⟨Ak, (V
⊺)⊗kTk⟩|, recall that

|⟨Ak, (V
⊺)⊗kTk⟩| ≤ ∥Ak∥2∥(V⊺)⊗kTk∥2, where Ak = Ex∼A′ [Hk(x)] is a constant (not de-

pending on the randomness of V). For ∥(V⊺)⊗kTk∥2, we can show it is small by bounding its a-th
moment for even a using Lemma 3.7 which says

EV∼U(On,m)[∥(V⊺)⊗kT∥a2 ] ≤ EV∼U(On,m)

[
∥V⊺u∥ak/22

]
∥T∥a2 ,

for some unit vector u ∈ Sn−1. We will apply this strategy on the four different ranges of k. We
start by picking the following parameters (the sufficiently close here only depends on c):

• We require d,m ≤ nλ/ log n;

• B = nα where α < (1− λ)/8 is sufficiently close;

• T = nβ where β > (1− λ)/4 is sufficiently close;

• We let λ3 > λ2 > λ1 > λ to be sufficiently close (the difference between these quantities
will be a sufficient small constant fraction of c);

• We let β3 > β2 > β1 > β to be sufficiently close (the difference between these quantities
will be a sufficient small constant fraction of c).

WLOG, we will assume λ ≥ 8c. Suppose λ ≥ 8c is not true, then we can simply consider a new
pair λ′, c′, where λ′ = λ+4c and c′ = c/2. Notice that (1−λ)/8− c = (1−λ′)/8− c′, therefore,
the SQ lower bound in the statement remains unchange. For convenience, we let ζ = (1−λ)/8− c.
WLOG, we can assume 1 < d, d < nλ, nλ < T and T < ℓ for each case, because otherwise, our
upper bounds still bounds the value of

∑ℓ
k=1 |⟨Ak, (V

⊺)⊗kTk⟩|. We also always assume n is at
least a sufficiently large integer depending on (1− λ)/8− ζ. In order to apply Lemma 3.2, we need

to first check that B satisfies the condition that Bd ≥ c1

(
2d/2

√
Γ(d+m/2)
Γ(m/2)

)
, where c1 is at least a

sufficiently large universal constant.

We first note that since

(i)
(

Γ(d/2+m/2)
Γ(m/2)

)
n−ζd < 2,

(ii) ζ ≤ (1− λ)/8,

(iii) Γ(d/2+m/2)
Γ(m/2) ≥ 2−O(d)

√
Γ(d+m/2)
Γ(m/2) ,

(iv) n is at least a sufficiently large integer depending on (1− λ)/8− ζ, and

(v) α < (1− λ)/8 is sufficiently close depending on (1− λ)/8− ζ,

we have
√

Γ(d+m/2)
Γ(m/2) B−d ≤ 2O(d)n−(α−ζ) ≤ log−1 n. Given n is sufficiently large, B satisfies the

condition in Lemma 3.2. This implies the following bound on total variation distance:

dTV(A,A′) ≤ O

(
2d/2

√
Γ(d+m/2)

Γ(m/2)

)
B−d ≤

(
Γ(d/2 +m/2)

Γ(m/2)

)
n−ζd .

We now bound the summation
∑ℓ

k=1 |⟨Ak, (V
⊺)⊗kTk⟩| as follows:

•
∑d−1

k=1 |⟨Ak, (V
⊺)⊗kTk⟩| is small with high probability: Since

(√
Γ(d+m/2)
Γ(m/2)

)
n−ζd < 2, ζ ≤

(1 − λ)/8 and B = nα, where α is sufficiently close to (1 − λ)/8 and the parameters satisfies

the condition Bd ≥ 6
(
2d/2

√
Γ(d+m/2)
Γ(m/2)

)
in Lemma 3.2. Since k < d, by Lemma 3.2, we
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have ∥Ak∥2 = 2O(k)
(
2d/2

√
Γ(d+m/2)
Γ(m/2)

)
B−(d−k) + ν. Let a be the largest even number that

ak/2 ≤ nλ, where d = o(nλ) implies a ≥ 2. Then using Lemma 3.7 and Lemma 3.8, we have

EV∼U(On,m)[∥(V⊺)⊗kTk∥a2 ] =EV∼U(On,m)

[
∥V⊺u∥ak/22

]
∥Tk∥a2

≤EV∼U(On,m)

[
∥V⊺u∥ak/22

]
=O(2ak/4n−(1−λ)ak/4)

=O(n−(1−λ1)ak/4) .

Using Markov’s Inequality, this implies the tail bound

Pr[∥(V⊺)⊗kTk∥2 ≥ n−(1−λ2)k/4] ≤ 2−Ω(cnλ) = 2−nΩ(c)

.

Therefore, we have
d−1∑
k=1

|⟨Ak, (V
⊺)⊗kTk⟩| ≤

d−1∑
k=1

∥Ak∥2∥(V⊺)⊗kTk∥2

≤
d−1∑
k=1

n−(1−λ2)k/4

(
2O(k)

(
2d/2

√
Γ(d+m/2)

Γ(m/2)

)
B−(d−k) + ν

)

≤(1 + o(1))

(
2d/2

√
Γ(d+m/2)

Γ(m/2)
B−d + ν

)

=(1 + o(1))

(
2d/2

√
Γ(d+m/2)

Γ(m/2)
n−αd + ν

)
,

except with probability 2−nΩ(c)

, where the equation above follows from B = nα =
o(n(1−λ)/8) = o(n(1−λ2)/4).

•
∑nλ

k=d |⟨Ak, (V
⊺)⊗kTk⟩| is small with high probability: In the previous case, we have argued

Bd ≥ 6
(
2d/2

√
Γ(d+m/2)
Γ(m/2)

)
. This implies that B2 ≥ m. Therefore, combining Fact 3.5 with the

fact that A′ is bounded inside Bm(B), we have that

∥Ak∥2 = ∥Ex∼A′ [Hk(x)]−Ex∼Nm
[Hk(x)]∥2 = ∥Ex∼A′ [Hk(x)]∥2 ≤ 2O(k)Bk .

Let a be the largest even number that ak/2 ≤ nλ, where d = o(nλ) implies a ≥ 2. The using the
same argument gives

EV∼U(On,m)[∥(V⊺)⊗kTk∥a2 ] =O(n−(1−λ1)ak/4) .

Using Markov’s Inequality, this implies the tail bound

Pr[∥(V⊺)⊗kTk∥2 ≥ n−(1−λ2)k/4] ≤ 2−Ω(cnλ) = 2−nΩ(c)

.

Therefore, we have

nλ∑
k=d

|⟨Ak, (V
⊺)⊗kTk⟩| ≤

nλ∑
k=d

∥Ak∥2∥(V⊺)⊗kTk∥2

≤
nλ∑
k=d

n−(1−λ2)k/42O(k)Bk

=2O(d)n−((1−λ2)/4−α)d

=n−((1−λ3)/4−α)d ,

except with probability 2−nΩ(c)

(the first equality above follows from B = nα = o(n(1−λ)/8) =
o(n(1−λ2)/4)).
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•
∑T

k=nλ+1 |⟨Ak, (V
⊺)⊗kTk⟩| is small with high probability: We can WLOG assume nλ < T ,

because otherwise, this term is 0. Same as the above case, we have

∥Ak∥2 = ∥Ex∼A′ [Hk(x)]−Ex∼Nm [Hk(x)]∥2 = ∥Ex∼A′ [Hk(x)]∥2 ≤ 2O(k)Bk .

Then let a be the largest even number that ak/2 ≤ T , where k ≤ T implies a ≥ 2. Since
ak/2 ≤ nβ and m ≤ nλ < T = nβ , the same argument implies

EV∼U(On,m)[∥(V⊺)⊗kTk∥a2 ] =O(n−(1−β1)ak/4) ,

and implies the tail bound

Pr[∥(V⊺)⊗kTk∥2 ≥ n−(1−β2)k/4] ≤ 2−Ω(cT ) = 2−nΩ(c)

.

Given nλ < T = nβ and β > (1− λ)/4 is sufficiently close, we have (1− β3)/4 is at least 1/6,
therefore,

T∑
k=nλ+1

|⟨Ak, (V
⊺)⊗kTk⟩| ≤

T∑
k=nλ+1

∥Ak∥2∥(V⊺)⊗kTk∥2

≤
T∑

k=nλ+1

n−(1−β2)k/42O(k)Bk

=n−(1−β2)n
λ/42O(nλ)Bnλ

=n−(1−β3)n
λ/4Bnλ

=n−((1−β3)/4−α)d logn

=n−d ,

except with probability 2−nΩ(c)

, where the first equation above follows from B = nα =
o(n1/8) = o(n(1−β2)/4), the third equation follows from nλ ≥ d log n and the last equation
follows from the assumption that n is at least a sufficiently large integer and (1 − β3)/4 − α ≥
1/6− 1/8).

•
∑ℓ

k=T+1 |⟨Ak, (V
⊺)⊗kTk⟩| is small with high probability: Combining Fact 3.6 with the fact

that A′ is bounded inside Bm(B), we have that

∥Ak∥2 =∥Ex∼A′ [Hk(x)]−Ex∼Nm [Hk(x)]∥2 = ∥Ex∼A′ [Hk(x)]∥2

≤2O(m)

(
k +m− 1

m− 1

)1/2

exp(B2/4) .

We take a = 2. Note that ak/2 > T = nβ , applying Lemma 3.7 and Lemma 3.8 yields

EV∼U(On,m)[∥(V⊺)⊗kTk∥a2 ] =EV∼U(On,m)

[
∥V⊺u∥ak/22

]
∥Tk∥a2

=EV∼U(On,m)

[
∥V⊺u∥ak/22

]
=exp(−Ω(nβ))O

((
nβ + n

k + n

)(n−m)/2
)

.

Applying Markov’s inequality yields the tail bound

Pr

[
∥(V⊺)⊗kTk∥2 ≥ 2−Ω(nβ)O

((
nβ + n

k + n

)(n−m)/4
)]

≤ 2−Ω(nβ) = 2−Ω(n(1−λ)/4)) = 2−nΩ(c)

.
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Therefore, we have

ℓ∑
k=T+1

|⟨Ak, (V
⊺)⊗kTk⟩|

≤
∞∑

k=T+1

|⟨Ak, (V
⊺)⊗kTk⟩| ≤

∞∑
k=T+1

∥Ak∥2∥(V⊺)⊗kTk∥2

≤
∞∑

k=T+1

2O(m)

(
k +m− 1

m− 1

)1/2

exp(B2/4)2−Ω(nβ)O

((
nβ + n

k + n

)(n−m)/4
)

≤
∞∑

k=T

2−Ω(nβ)

(
k +m

T +m

)m/2(
T + n

k + n

)n/8

,

where the last inequality follows from our choice of parameters. Therefore, we have that

ℓ∑
k=T+1

|⟨Ak, (V
⊺)⊗kTk⟩| ≤

∞∑
k=T

2−Ω(nβ)

(
1 +

k − T

T +m

)m/2(
1 +

k − T

T + n

)−n/8

≤
∞∑

k=T

2−Ω(nβ)

(
1 +

k − T

T + n

)(m/2)(2n/T )(
1 +

k − T

T + n

)−n/8

≤
∞∑

k=T

2−Ω(nβ)

(
1 +

k − T

T + n

)−n/8+n1+γ−β

≤
∞∑

k=T

2−Ω(nβ)

(
T + n

k + n

)n/16

≤2−Ω(nβ)

∫ ∞

k=T−1

(
T + n

k + n

)n/16

dk

=
2−Ω(nβ)(T + n− 1)(1 + 1/(T + n− 1))n/16

n/16− 1

=2−Ω(nβ) ,

except with probability 2−nΩ(c)

.

Adding the three cases above together, we get for any d,m ≤ nλ/ log n, ζ = (1− λ)/8− c where
c > 0 and n is at least a sufficiently small constant depending on c,

ℓ∑
k=1

|⟨Ak, (V
⊺)⊗kTk⟩|

≤(1 + o(1))

(
2d/2

√
Γ(d+m/2)

Γ(m/2)
n−αd + ν

)
+ n−((1−λ3)/4−α)d + n−d + 2−Ω(nβ)

≤
(
Γ(d/2 +m/2)

Γ(m/2)

)
n−ζd + (1 + o(1))ν

=

(
Γ(d/2 +m/2)

Γ(m/2)

)
n−((1−λ)/8−c)d + (1 + o(1))ν ,

except with probability 2−nΩ(c)

, where the second from the last inequality above follows from
Γ(d/2+m/2)

Γ(m/2) ≥ 2−O(d)
√

Γ(d+m/2)
Γ(m/2) .
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B.2 Omitted Proofs from Section 3.2

B.2.1 Proof of Lemma 3.11

Proof. Notice that the distribution D is a symmetric distribution. Thus, if we can show that for
x ∼ D the distribution ∥x∥22 is a continuous distribution, then D is also a continuous distribution.
Note that the distribution D can be thought of as generated by the following process. To generate
x ∼ D, we first sample t ∼ A′, x′ ∼ Nn−m. Let u1, · · · ,un−m be an orthonormal basis that
spans the orthogonal complement of span(V). We let x =

∑m
i=1 tivi +

∑d−1
i=1 xiui. Noting that

∥x∥22 = ∥t∥22 + ∥x′∥22, its distribution is the convolution sum of the distribution of ∥t∥22 and the
χ2
n−m distribution, which is continuous. Thus, as argued above, D is a continuous distribution.

It remains to argue that χ2(D,Nn) = On(1). We use Dr2 to denote the distribution of
∥x∥22 above and Pr2 to denote its pdf. We use Sn−1(rSn−1) to denote the surface area of the
n-dimensional sphere rSn−1 with radius r. Then the pdf function of D is

D(x) = Pr2(∥x∥22)/Sn−1(∥x∥2Sn−1) .

Similarly, the pdf function of Nn is

Nn(x) = χ2
n(∥x∥22)/Sn−1(∥x∥2Sn−1) .

Then we have

1 + χ2(D,Nn) =

∫
Rn

D(x)2

Nn(x)
dx

=

∫
Rn

Pr2(∥x∥22)2

χ2
n(∥x∥22)Sn−1(∥x∥2Sn−1)

dx

=

∫ ∞

0

∫
rSn−1

Pr2(∥x∥22)2

χ2
n(∥x∥22)Sn−1(∥x∥2Sn−1)

dxdr

=

∫ ∞

0

Pr2(r
2)2

χ2
n(r

2)
dr

=

∫ ∞

0

Pr2(r)
2

2
√
rχ2

n(r)
dr .

Thus, it remains to show that
∫∞
0

Pr2 (r)
2

2
√
rχ2

n(r)
dr = On(1).

We will first give a pointwise upper bound on Pr2 . Notice that Dr2 is the convolution sum of
D∥t∥2

2
and the χ2

n−m distribution, where ∥t∥22 is inside [0, n2] since A is supported on Bm−1(n).
Thus, we can write

Pr2(r) =

∫ n2

0

P∥t∥2
2
(s)χ2

n−m(r − s)ds ≤ max
s∈[r−n2,r]

χ2
n−m(s) .

Plugging the pointwise upper bound back, we get

1 + χ2(D,Nn) ≤
∫ ∞

0

(
maxs∈[r−n2,r] χ

2
n−m(s)

)2
2
√
rχ2

n(r)
dr

= On(1)

∫ ∞

0

(
maxs∈[r−n2,r] s

(n−m)/2−1e−s/2
)2

rn/2−1/2e−r/2
dr

= On(1)

∫ ∞

0

maxs∈[r−n2,r] s
n−m−2e−s

rn/2−1/2e−r/2
dr

≤ On(1)

∫ ∞

0

rn/2−m−3/2e−r/2en
2

dr

= On(1)

∫ ∞

0

rn/2−m−3/2e−r/2dr

= On(1)Γ(n/2−m− 1/2) = On(1) .

This completes the proof.
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C Omitted Details on Applications

In this section, we provide additional context on our applications and provide the proofs of Theo-
rems 1.8 and 1.10.

C.1 Proof of Theorem 1.8

Proof. This is a direct application of Theorem 1.5. We will let the one-dimensional moment-
matching distribution be the distribution in Fact 1.7. Then any SQ algorithm distinguishing between

• A standard Gaussian; and

• The distribution PA
v for v ∼ U(Sn−1), where A = αN (µ, 1) + (1 − α)E and µ =

10cdα
−1/d,

with at least 2/3 probability must require either a query of tolerance at most Od(n
−((1−λ)/8−c)d)

or 2n
Ω(1)

many queries. This proves the SQ lower bound for the NGCA testing problem. However,
it is not clear if there is a simple and optimal reduction from list-decodable Gaussian estimation to
the hypothesis testing problem. Therefore, we will need to directly prove an SQ lower bound for the
search problem.

Consider the following adversary for the search problem. The adversary will let X = PA
v for

v ∼ U(Sn−1) be the input distribution, and whenever possible, the adversary will answer a query
with Ex∼Nn

[f(x)]. Given that the algorithm asks less than 2n
Ω(1)

queries, as we have shown in the
proof of Theorem 1.5, with 1 − o(1) probability, the adversary can always answer Ex∼Nn

[f(x)].
In such case, the algorithm will be left with 1 − o(1) probability mess over v ∼ U(Sn−1) that are
equally likely.

Then we argue that no hypothesis can be close to more than 2−Ω(n) probability mass. This can
be done by upper bounding the surface area of a spherical cap on a n-dimensional sphere, where
the sphere is unit radius and the polar angle of the cap is a sufficiently small constant Φ. Note that
the surface area of such a cap is Θ

(
Isin2 Φ

(
n−1
2 , 1

2

))
Sn−1(Sn−1), where I is the incomplete beta

function and Sn−1(Sn−1) is the surface area of the n dimensional unit sphere. Thus, it suffices to
show that Isin2 Φ

(
n−1
2 , 1

2

)
= 2−Ω(n). Notice that, by its definition, we have

Isin2 Φ

(
n− 1

2
,
1

2

)
=

∫ sin2 Φ

0
t(n−3)/2(1− t)−1/2dt

B
(
n−1
2 , 1

2

)
=

∫ sin2 Φ

0
t(n−3)/2(1− t)−1/2dt

B
(
n−1
2 , 1

) B
(
n−1
2 , 1

)
B
(
n−1
2 , 1

2

)
≤ O(1)

∫ sin2 Φ

0
t(n−3)/2(1− t)0dt

B
(
n−1
2 , 1

)
= O(1)Isin2 Φ

(
n− 1

2
, 1

)
= O(1)(sin2 Φ)(n−1)/2 = 2−Ω(n) .

Given that no hypothesis can be close to more than 2−Ω(n) probability mass, the only way to have
any constant probability of success would be to return 2Ω(n) many hypotheses. This completes the
proof.

C.2 Proof of Lemma 1.9

Proof. We will take E to be the distribution with density E(t) = N (t) +1(t ∈ [−1, 1])p(t), where
p is a polynomial function that we truncate between [−1, 1]. In order to satisfy our requirements, it
will suffice to have |p(t)| ≤ 1/10 for all t ∈ [−1, 1] and for each integer 0 ≤ i ≤ d,

Et∼A[t
i] = (1− αd)Et∼E [t

i] = (1− αd)Et∼N [ti] + (1− αd)

∫ 1

−1

P (t)tidt = Et∼N [ti] .
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The second requirement is equivalently stated as follows: for each such i,∫ 1

−1

P (t)tidt =
αd

1− αd
Et∼N [ti] .

In order to satisfy these requirements, we need the following fact from [DK23].

Fact C.1 (Lemma 8.18 in [DK23]). Let C > 0 and m ∈ Z+. For any a0, a1, · · · , am ∈ R, there
exists a unique degree at most m polynomial p : R → R such that for each integer 0 ≤ t ≤ k we
have that ∫ C

−C

p(x)xtdx = at .

Furthermore, for each x ∈ [−C,C] we have that |p(x)| ≤ Om(maxo≤t≤m atC
−t−1).

We apply the fact and take C = 1. This implies that there is such a polynomial with |p(x)| ≤
1/10 for sufficiently small αd depending only on d.

C.3 Proof of Theorem 1.10

We provide a more detailed statement of Theorem 1.10 here.

Theorem C.2 (SQ Lower Bound for AC Detection). There exists a function f : (0, 1/2) → N
that limα→0 f(α) = ∞ and satisfies the following. For any sufficiently small α ∈ (0, 1/2), any
SQ algorithm that has access to a distribution that is either (i) a standard Gaussian; or (ii) a
distribution that has at least α probability mass in a (n − 1)-dimensional subspace V ⊂ Rn, and
distinguishes the two cases with success probability at least 2/3, either requires a query with error
at most Oα(n

−f(α)), or uses at least 2n
Ω(1)

many queries.

Proof of Theorem C.2. This is a direct application of Theorem 1.5. We will let the one-dimensional
moment-matching distribution be the distribution in Lemma 1.9, where we will take d only depends
on α to be the largest integer such that αd in Lemma 1.9 satisfies αd ≥ α. Notice that d → ∞ as
α → 0. Taking f(α) = d/32, it follows that any algorithm distinguishing between

• A standard Gaussian; and

• The distribution PA
v for v ∼ U(Sn−1), where A is the moment-matching distribution in

Lemma 1.9,

with at least 2/3 probability must require either a query of tolerance at most Od(n
−d/32) =

Oα(n
−f(α)) or 2n

Ω(1)

many queries. Notice that the distribution PA
v has at least α probability mass

resides inside the orthogonal complement of span(v), which is a (n − 1)-dimensional subspace.
Therefore, any SQ algorithm for solving the AC detection solves the hypothesis testing problem
above. This completes the proof.

C.4 Proof of Theorem 1.13

Let G′
s,θ be the probability measure obtained by rescaling G′

s,θ such that the total measure is one.
We first show the following fact.

Fact C.3. For any polynomial p of degree at most k that Et∼N (0,1)[p(t)
2] = 1, s that is at most a

sufficiently small universal constant, |Et∼G′
s,θ

[p(t)]−Et∼N (0,1)[p(t)]| = k!2O(k) exp(−Ω(1/s2)).

Proof. Using Fact 1.12, we have that the total measure of Gs,θ is 1 ± exp(−Ω(1/s2)). Therefore,
for the rescaled G′

s,θ, for any k ∈ N, s > 0 and all θ ∈ R,

|Et∼N (0,1)[t
k]−Et∼G′

s,θ
[tk]| = k! exp(−Ω(1/s2)) .

27



Then using the definition of Hermite polynomial,

Et∼N (0,1)[hk(t)]−Et∼G′
s,θ

[hk(t)] =
1√
k!

⌊k/2⌋∑
t=0

k!

2tt!(k − 2t)!

(
Et∼N (0,1)[t

k−2t]−Et∼G′
s,θ

[tk−2t]
)

≤
(
k! exp(−Ω(1/s2))

) ⌊k/2⌋∑
t=0

√
k!

2tt!(k − 2t)!
tk−2t .

Notice that the denominator is minimized when t = k/2 − O(
√
k). Then it follows that the sum

is at most k!2O(k) exp(−Ω(1/s2)). Now let p(t) =
∑k

i=0 wihi(t). Since Et∼N (0,1)[p(t)
2] = 1, it

must be ∥w∥2 = 1 and it follows that ∥w∥1 ≤
√
k. Therefore, we have

Et∼N (0,1)[p(t)]−Et∼G′
s,θ

[p(t)] ≤
k∑

i=0

|wi||Et∼N (0,1)[hk(t)]−Et∼G′
s,θ

[hk(t)]|

=k!2O(k) exp(−Ω(1/s2)) .

Now given Fact C.3, we can apply our main result Theorem 1.5. We will consider the following
distribution distinguishing problem. In both the null hypothesis case and the alternative hypothesis
case, the algorithm is given a joint distribution D of (x, y) over Rn×R. In the null hypothesis case,
we have x ∼ N (0, In) and y ∼ U([−1,+1]) independently. While in the alternative hypothesis
case, we have x ∼ N (0, In) and y = cos(2π(δ⟨w,x⟩ + ζ)) with noise ζ ∼ N (0, σ2) as in the
definition of learning periodic function. Notice that any SQ algorithm that can always returns a
hypothesis h such that E(x,y)∼D[(h(x)− y)2] = o(1) can also be easily used to distinguish the two
cases. Therefore to lower bound such SQ algorithms, it suffices for us to give an SQ lower bound
for this distribution distinguishing problem.

Notice that in the alternative hypothesis, the distribution of x condi-
tioned on any value of y is the hidden direction distribution PA

w where A is∫∞
−∞ fy(ζ)

1
2

(
G′

1/δ,
arccos (y)

2π −ζ
+G′

1/δ,
2π−arccos (y)

2π −ζ

)
dζ and fy : R → R is the PDF function of

distribution of ζ conditioned on y. Notice that this is a mixture of Gs,θ with s = 1/δ and different θ.
Thus applying Theorem 1.5 and Fact C.3 yields that any SQ algorithm for solving the distinguishing
problem, either requires a query of error at most Ok(n

−((1−λ)/8−β)k)+k!2O(k) exp(−Ω(1/s2)), or
at least 2n

Ω(β)

many queries for β > 0. Since k will have dependence on n, we will need to calculate
the constant factor in Ok(n

−((1−λ)/8−β)k) which depends on k. According to Proposition 3.1, plug
in the factor gives

√
k!n−((1−λ)/8−β)k + k!2O(k) exp(−Ω(1/s2)).

For convenience, let (1 − λ)/8 − β = γ. It only remains to choose the value of k and γ

so that k ≤ nλ, γ < (1 − λ)/8 and
√
k!n−γk + k!2O(k) exp(−Ω(δ2)) is minimized. We will

chose k = nc′′ and γ = c′′ for c′ < c′′ < min(2c, 1/10). Then the error tolerance here is√
k!n−γk + k!2O(k) exp(−Ω(δ2)) ≤ exp(−k) + exp(O(c′′(log n)nc′′) +O(nc′′)− Ω(n2c)) =

exp(−Ω(nc′′)) + exp(−Ω(n2c)) = exp(−nc′). The number of queries here is 2n
Ω(β)

=

2n
Ω((1−λ)/8−γ)

= 2n
Ω((1−c′′)/8−c′)

= 2n
Ω(1)

. This completes the proof.

C.5 SQ Lower Bounds as Information-Computation Tradeoffs

We note that both aforementioned results can be viewed as evidence of information-computation
tradeoffs for the application problems we discussed.

For the problem of list-decodable Gaussian mean estimation, the information-theoretically op-
timal error is Θ(log1/2(1/α)) and is achievable with poly(n/α) many samples ([DKS18]; see,
e.g., Corollary 5.9 and Proposition 5.11 of [DK23]). The best known algorithm for this problem
achieves ℓ2-error guarantee O(α−1/d) using sample complexity and run time (n/α)O(d) ([DKS18],
see Theorem 6.12 of [DK23]). Notice that in order to achieve error guarantee even sub-polynomial
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in 1/α, the above algorithm will need super-polynomial runtime and sample complexity. Informally
speaking, Theorem 1.8 shows that no SQ algorithm can perform list-decodable mean estimation
with a sub-exponential in nΩ(1) many queries, unless using queries of very small tolerance — that
would require at least super-polynomially many samples to simulate. Therefore, it can be viewed
as evidence supporting an inherent tradeoff between robustness and time/sample complexity for this
problem.

For the AC detection hypothesis testing problem, the information-theoretically optimal sample
complexity is O(n/α). To see this, note that if the input distribution is a standard Gaussian, then
any n samples will almost surely be linearly independent. On the other hand, suppose that the input
distribution has α probability mass in a subspace. Then with O(n/α) many samples, with high
probability, there will be a subset of n samples all coming from that subspace, which cannot be
linearly independent. However, our SQ lower bound suggests that no efficient algorithm can solve
the problem with even nω(1) samples where the ω(1) is w.r.t. α → 0. This suggests an inherent
tradeoff between the sample complexity and time complexity of the problem.

For the problem of learning periodic function, the SQ lower bound given by our result will be
larger than the algorithmic upper bound in [SZB21](with sample complexity O(n) and run-time
2O(n)). However, the algorithms in [SZB21] are based on LLL lattice-basis-reduction which is not
captured by the SQ framework, therefore this does not contradict our SQ lower bound result.

29


