
A Impact Statement884

In an era dominated by over-parameterized models, designing resource-aware AI models is becoming885

increasingly important, especially for time-consuming tasks like medical segmentation. Our insights886

into model efficiency training have the potential to broaden the application of deep neural networks887

in this area. Overall, this work advances our fundamental understanding of dynamic sparse training888

and offers future perspectives for scalable and efficient AI models. We do not anticipate any negative889

societal impacts resulting from this research.890

B Appendix.891

B.1 Related Work892

B.1.1 3D Medical Image Segmentation893

Convolutional neural networks (CNNs) have become the dominant architecture for 3D medical894

image segmentation in recent years (e.g. 3D UNet [Çiçek et al., 2016], UNet++ [Zhou et al., 2018],895

UNet3+ [Huang et al., 2020], PaNN [Zhou et al., 2019] and nnUNet [Isensee et al., 2021]), due896

to their ability to capture local and weight-sharing dependencies [d’Ascoli et al., 2021, Dai et al.,897

2021]. However, some recent methods have attempted to incorporate transformer modules into CNNs898

(e.g. CoTr [Xie et al., 2021], TransBTS [Wang et al., 2021]), or use pure transformer architectures899

(e.g. ConvIt [Karimi et al., 2021], nnFormer [Zhou et al., 2021], Swin UNet [Cao et al., 2021]), in900

order to capture long-range dependencies. These transformer-based approaches often require large901

amounts of training data, longer training times, or specialized training techniques, and can also be902

computationally expensive. Most recently, a novel architecture called Mamba Gu and Dao [2023] has903

shown potential for computational efficiency as a State Space model in handling long sequences and904

has been applied to medical image segmentation tasks Ruan and Xiang [2024], Xing et al. [2024],905

Wang et al. [2024]. However, it has led to underwhelming performance compared to state-of-the-art906

convolutional models. In this paper, we propose an alternative method for efficiently incorporating907

3D contextual information using a restricted depth-shift strategy in 3D convolutions, and further908

improving performance through adaptive multi-scale feature fusion.909

B.1.2 Feature Fusion in Medical Image Segmentation910

Multi-scale feature fusion is a crucial technique in medical image segmentation that allows a model911

to detect objects across a range of scales, while also recovering spatial information that is lost during912

pooling [Wang et al., 2022, Xie et al., 2021]. However, effectively representing and processing913

multi-scale hierarchy features can be challenging, and simply summing them up without distinction914

can lead to semantic gaps and degraded performance [Wang et al., 2022, Tan et al., 2020]. To address915

this issue, various approaches have been proposed, including adding learnable operations to reduce916

the gap with residuals [Ibtehaz and Rahman, 2020], attention blocks [Oktay et al., 2018]. More917

recently, UNet++ [Zhou et al., 2018] and its variants [Li et al., 2020, Huang et al., 2020, Jha et al.,918

2019] have adapted the gating signal to dense nesting levels, taking into account as many feature919

levels as possible. NAS-UNet [Weng et al., 2019] tries to automatically search for better feature fusion920

topology. While these methods have achieved better performance, they can also incur significant921

computational and information redundancy. Dynamic convolution [Su et al., 2020, Chen et al., 2020]922

utilizes coefficient prediction or attention modules to dynamically aggregate convolution kernels,923

thereby reducing computation costs. In our paper, we propose an intuitive approach to optimizing924

multi-scale feature fusion, which enables selective leveraging of sparse feature representations from925

fine-grained to semantic levels through the proposed dynamic sparse feature fusion mechanism.926

B.1.3 Sparse Training927

Recently, sparse training techniques have shown the possibility of training an efficient network with928

sparse connections that match (or even outperform) the performance of dense counterparts with lower929

computational cost [Mocanu et al., 2018, Liu et al., 2021b]. Beginning with [Mocanu et al., 2016], it930

has been demonstrated that initializing a static sparse network without optimizing its topology during931

training can also yield comparable performance in certain situations [Lee et al., 2018, Tanaka et al.,932

2020, Wang et al., 2019]. However, Dynamic Sparse Training (DST), also known as sparse training933
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Algorithm 1 The Training Process of Dynamic Sparse Feature Fusion (DSFF)
Require: Dataset X with label Y; feature sparsity S; backbone fΘ(.); Output Module: fout; Total

training epochs: T ;
evolution period: ∆T ; connection updating number: fdecay (∆T ;α, T ) = α

2

(
1 + cos

(
∆Tπ
T

))
,

α represents the number of updated connections during the initial topology update, which is set
to 1/2; Loss function: L(.); fusion operation: F j,i(·) with convolution kernels θj,i, where the
numbers of input and output channel are Cj,i

in , Cj,i
out.

1: Mj,i ← random initialize masks for all levels and stages, satisfying that ∥Mj,i∥0 equals (1−
S)× Cj,i

in × Cj,i
out

2: for t = 1 to T do
3: Sample a batch It, Yt ∼ X ,Y
4: Generate multi-scaled features:

(
x0,1,x0,2, . . . ,x0,L

)
= fΘ(It)

5: for each stage j = 1 to L− 1 do
6: for each level i = 1 to L− j do
7: if i = 1 then
8: xj,i = F j,i([xj−1,1,U(xj−1,2)])
9: else

10: xj,i = F j,i([D(xj−1,i−1),xj−1,i,U(xj−1,i+1)])
11: end if
12: end for
13: end for
14: lt = 4/7L(fout

(
xL−1,1

)
, Yi) + 2/7L(fout

(
xL−2,2

)
,D(Yi)) +

1/7L(fout
(
xL−3,3

)
,D(D(Yi)))

15: if (t mod ∆T ) == 0 then
16: for each stage j = 1 to L− 1 do
17: for each level i = 1 to L− j do
18: u = (Cj,i

in × Cj,i
out)fdecay (t;α, T ) (1− S)

19: IS ← importance score (L1-norm of corresponding kernel) for activated each feature
connection

20: Iactivate = RandomK(Iinactivate, u)
21: Iinactivate = ArgTopK (−IS, u)
22: Mj,i ← Update Mj,i using Iinactivate and Iactivate
23: end for
24: end for
25: else
26: Training the E2ENet using SGD optimizer
27: end if
28: end for

with dynamic sparsity [Mocanu et al., 2018], offers a different approach by jointly optimizing the934

sparse topology and weights during the training process starting from a sparse network [Liu et al.,935

2021a, 2022, Evci et al., 2020, Jayakumar et al., 2020, Mostafa and Wang, 2019, Yuan et al., 2021].936

This allows the model’s sparse connections to gradually evolve in a prune-and-grow scheme, leading937

to improved performance compared to naively training a static sparse network [Liu et al., 2021c,938

Xiao et al., 2022]. In contrast to prior methods that aim to find sparse networks that can match the939

performance of corresponding dense networks, we aim to leverage DST to adaptively fuse multi-scale940

features in a computationally efficient manner for 3D medical image segmentation.941

B.2 Algorithm942

B.3 Datasets and Experiment Setup943

AMOS-CT: The Abdominal Multi-Organ Segmentation Challenge (AMOS) [Ji et al., 2022] task944

1 consists of 500 computerized tomography (CT) cases, including 200 scans for training, 100 for945

validation, and 200 for testing. These cases have been collected from a diverse patient population and946
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include annotations of 15 organs. The scans are from multiple centers, vendors, modalities, phases,947

and diseases.948

BTCV: The Beyond the Cranial Vault (BTCV) abdomen challenge dataset 4 consists of 30 CT scan949

images for training and 20 for testing. These images have been annotated by interpreters under the950

supervision of radiologists, and include labels for 13 organs.951

BraTS: The Brain Tumor Segmentation Challenge in the Medical Segmentation Decathlon (MSD)952

[Antonelli et al., 2022, Simpson et al., 2019] consists of 484 MRI images from 19 different institutions.953

These images contain three different tumor regions of interest (ROIs): edema (ED), non-enhancing954

tumor (NET) and enhancing tumor (ET). The goal of the challenge is to segment these ROIs in the955

images accurately.956

B.4 Implementation Details957

In our work, we utilized the PyTorch toolkit [Paszke et al., 2019] on an NVIDIA A100 GPU for all958

our experimental evaluations. We also used the nnUNet codebase [Isensee et al., 2021] to pre-process959

data before training our proposed E2ENet model. For the AMOS dataset, we used the nnUNet960

codebase as the benchmark implementation.961

For training, we use the stochastic gradient descent (SGD) optimizer with an initial learning rate of962

0.01, which is gradually decreased through a “poly” decay schedule. The optimizer is configured963

with a momentum of 0.99 and a weight decay of 3× 10−5. The maximum number of training epochs964

is 1000, with 250 iterations per epoch. For the loss function, we combine both cross-entropy loss and965

Dice loss as in [Isensee et al., 2021]. To improve performance, various data augmentation techniques966

such as random rotation, scaling, flipping, adding Gaussian noise, blurring, adjusting brightness and967

contrast, simulating low resolution, and Gamma transformation are used before training.968

We employ a 5-fold cross-validation strategy on the training set for all experiments, selecting the final969

model from each fold and simply averaging their outputs for the final segmentation predictions. In970

the testing stage, we employ the sliding window strategy, where the window sizes are equal to the971

size of the training patches. Additionally, post-processing methods outlined in [Isensee et al., 2022]972

are applied for the AMOS-CT dataset during the testing phase.973

B.5 The Architecture974

The backbone generates a total of L = 6 multi-scale feature levels, each with a specified number of975

channels: [c1, c2, c3, c4, c5, c6] = [48, 96, 192, 320, 320, 320]. At each level of feature generation,976

there are two convolution layers with a kernel size of (1, 3, 3), followed by instance normalization977

and the application of leaky ReLU activation. The down-sampling ratios for each level are as follows:978

((1, 2, 2), (2, 2, 2), (2, 2, 2), (2, 2, 2), (2, 2, 2), (2, 2, 2), (2, 2, 2)).979

B.6 Evaluation Metrics980

B.6.1 Mean Dice Similarity Coefficient981

To assess the quality of the segmentation results, we use the mean Dice similarity coefficient (mDice),982

which is a widely used metric in medical image segmentation. The mDice is calculated as follows:983

mDice =
1

N

N∑
j=1

2|yj · ŷj |
(|yj |+ |ŷj |)

, (3)

where N is the number of classes, · is the pointwise multiplication, yj and ŷj represent the ground984

truth and predicted masks of the j-th class, respectively, which are encoded in one-hot format.985
2|yj ·ŷj |

(|yj |+|ŷj |) is the Dice of j-th class, which measures the overlap between the predicted and ground986

truth segmentation masks for that class.987

4https://www.synapse.org/#!Synapse:syn3193805/wiki/89480

22



B.6.2 Number of Parameters988

The size of the network can be estimated by summing the number of non-zero parameters (Params),989

which includes the parameters of activated sparse feature connections (kernels) and parameters of the990

backbone. The calculation is given by the following equation:991

Params = ∥Θ∥0 +
L−1∑
j=1

L−j∑
i=1

Cj,i
in∑

cin=1

Cj,i
out∑

cout=1

Mj,i
cin,cout

∥θj,icin,cout
∥0. (4)

Here, Θ is the parameter from backbone, L is the total number of feature levels, Mj,i is a matrix of992

size Cj,i
in ×Cj,i

out, and Mj,i
cin,cout

indicates whether the kernel θj,icin,cout
connecting the cin-th input and993

cout-th output feature map exist or not. The L0 norm ∥θj,icin,cout
∥0 provides the number of non-zero994

entries of θj,icin,cout
.995

B.6.3 Float Point Operations996

Floating point operations (FLOPs) is a commonly used metric to compare the computational cost of a997

sparse model to that of a dense counterpart [Hoefler et al., 2021] 5. In our comparison, it is calculated998

by counting the number of multiplications and additions performed in only one forward pass of the999

inference process without considering postprocessing. The inference FLOPs are estimated layer by1000

layer and depend on the sparsity level of the network. For each convolution or transposed convolution1001

layer, the inference FLOPs is calculated as follows:1002

FLOPsconv = (2KdKhKwCin(1− S) + 1)× CoutHWD, (5)

where Kd, Kh and Kw are the kernel sizes in depth, height and width; S is the feature sparsity level,1003

for layers that are not part of the DSFF mechanism, S = 0 is used; Cin and Cout are the numbers of1004

input feature and output feature; H , W and D are the height, width and depth of output features. For1005

each fully connected layer, the inference FLOPs is calculated as follows:1006

FLOPsfc = (2Cin(1− S) + 1)× Cout. (6)

B.6.4 Performance Trade-Off Score1007

The accuracy-efficiency trade-offs could be further analyzed, from comparing resource requirements1008

to describing holistic behaviours (including mDice, Params and inference FLOPs) for the 3D image1009

segmentation methods. To quantify these trade-offs, we introduce the Performance Trade-Off (PT)1010

score, which is defined as follows:1011

PT = α1
mDice

mDicemax
+ α2(

Paramsmin

Params
+

FLOPsmin

FLOPs
), (7)

where α1 and α2 are weighting factors, which control the trade-off between accuracy performance and1012

resource requirements, and mDicemax, Paramsmin, and FLOPsmin denote the highest mDice1013

score, the smallest number of parameters, and the lowest inference FLOPs among the compared1014

methods for a specific dataset, respectively. The term mDice
mDicemax

measures the segmentation accuracy,1015

while Paramsmin

Params + FLOPsmin

FLOPs measures the resource cost.1016

In most cases, we consider both segmentation accuracy and resource cost to be equally important,1017

thus we set α1 = 1 and α2 = 1/2 in the following experiments. However, we also explore the impact1018

of different choices of α1 and α2, as detailed in Section ??. The PT score serves as a valuable metric1019

for evaluating the trade-offs between segmentation accuracy and efficiency.1020
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Table 9: Quantitative comparisons (class-wise Dice (%) ↑, mDice(%)↑, Params(M)↓, inference
FLOPs(G)↓, PT score↑ and mNSD(%)↑) of segmentation performance on the validation set of
AMOS-CT dataset. Bold indicates the best and underline indicates the second best. Note: Spl:
spleen, RKid: right kidney, LKid: left kidney, Gall: gallbladder, Eso: esophagus, Liv: liver, Sto:
stomach, Aor: aorta IVC: inferior vena cava, Pan: pancreas, RAG: right adrenal gland, LAG: left
adrenal gland, Duo: duodenum, Bla: bladder, Pro/Uth: prostate/uterus. The class-wise Dice, mDice
and mNSD results of baselines, except for nnUNet, are collected from the [Ji et al., 2022]. † indicates
the results without postprocessing that are collected from the AMOS website. ‡ denotes the results
with postprocessing that are reproduced by us. ∗ indicates the results with postprocessing.

Methods Spl RKid LKid Gall Eso Liv Sto Aor IVC Pan RAG LAG Duo Bla Pro/Uth mDice Params FLOPs 3 PT score mNSD
CoTr 91.1 87.2 86.4 60.5 80.9 91.6 80.1 93.7 87.7 76.3 73.7 71.7 68.0 67.4 40.8 77.1 41.87 1510.53 1.07 64.2

nnFormer 95.9 93.5 94.8 78.5 81.1 95.9 89.4 94.2 88.2 85.0 75.0 75.9 78.5 83.9 74.6 85.6 150.14 1343.65 1.12 74.2
UNETR 92.7 88.5 90.6 66.5 73.3 94.1 78.7 91.4 84.0 74.5 68.2 65.3 62.4 77.4 67.5 78.3 93.02 391.03 1.41 61.5

Swin UNETR 95.5 93.8 94.5 77.3 83.0 96.0 88.9 94.7 89.6 84.9 77.2 78.3 78.6 85.8 77.4 86.4 62.83 1562.99 1.14 75.3
VNet 94.2 91.9 92.7 70.2 79.0 94.7 84.8 93.0 87.4 80.5 72.6 73.2 71.7 77.0 66.6 82.0 45.65 1737.57 1.10 67.9

nnUNet† 97.1 96.4 96.2 83.2 87.5 97.6 92.2 96.0 92.5 88.6 81.2 81.7 85.0 90.5 85.0 90.0 30.76 1067.89 1.30 82.1
nnUNet‡ 97.1 97.0 97.1 86.6 87.7 97.9 92.4 96.0 92.7 88.8 81.6 82.1 85.0 90.6 85.2 90.5 30.76 1067.89 1.31 83.0

E2ENet∗ (s=0.7) 97.1 96.9 97.1 86.0 87.6 97.9 92.3 95.7 92.3 89.0 81.5 82.4 84.9 90.3 83.8 90.3 11.23 969.32 1.54 82.7
E2ENet∗ (s=0.8) 97.1 96.9 97.0 85.2 87.5 97.9 92.3 95.7 92.3 89.0 81.3 82.1 84.6 90.1 84.8 90.3 9.44 778.74 1.65 82.5
E2ENet∗ (s=0.9) 96.7 96.9 97.0 84.2 87.0 97.7 92.2 95.6 92.0 88.6 81.0 81.8 84.0 89.9 83.8 89.9 7.64 492.29 1.89 81.8
E2ENet (s=0.7) 97.1 96.6 96.5 83.4 87.6 97.5 92.3 95.8 92.3 89.0 81.4 82.3 84.9 90.3 83.8 90.1 11.23 969.32 1.54 82.3
E2ENet (s=0.8) 97.1 96.6 96.5 83.4 87.5 97.5 92.3 95.8 92.3 89.0 81.3 82.0 84.5 90.1 84.8 90.0 9.44 778.74 1.65 82.3
E2ENet (s=0.9) 96.7 95.4 96.4 82.6 86.9 97.4 92.2 95.6 92.0 88.6 80.9 81.7 84.0 89.9 83.8 89.6 7.64 492.29 1.88 81.4

E2ENet(static, s=0.9) 96.6 95.5 96.3 82.6 86.9 97.4 92.2 95.6 92.0 88.6 80.9 81.7 84.0 89.9 83.8 89.6 7.64 492.29 1.88 81.4
3 The inference FLOPs are calculated based on the patch sizes of 1× 128× 128× 128 without considering postprocessing cost.

B.7 More Experimental Results1021

B.7.1 Class-wise Dice of AMOS-CT1022

B.7.2 BTCV Challenge1023

We compare the performance of our E2ENet model to several baselines (CoTr [Xie et al., 2021],1024

RandomPatch [Tang et al., 2021], PaNN [Zhou et al., 2019], UNETR [Hatamizadeh et al., 2022],1025

and nnUNet [Isensee et al., 2021]) on the test set of BTCV challenge, and report class-wise Dice,1026

mDice, Params and inference FLOPs on the test set in Table 10. It is worth noting that nnUNet1027

is a strong performer that uses an automatic model configuration strategy to select and ensemble1028

two best of multiple U-Net models (2D, 3D and 3D cascade) based on cross-validation results. In1029

contrast, E2ENet is designed to be computationally and memory efficient, using a consistent 3D1030

network configuration. Swin UNETR [Tang et al., 2022] is among the best on the leaderboard for1031

this challenge. However, we do not include it in our comparison because it employs self-supervised1032

learning with extra data. This falls outside of our goal of trading off training efficiency and accuracy1033

without using extra data.1034

Our proposed E2ENet, a single 3D architecture without cascade, has achieved comparable perfor-1035

mance to nnUNet, with mDice of 88.3%. Additionally, it has a significantly smaller number of1036

parameters, 11.25 M, compared to other methods such as nnUNet (30.76 M), CoTr (41.87 M), and1037

UNETR (92.78 M).1038

B.7.3 Statistical significance of designed modules1039

Figure 7: The critical distance diagram on
the AMOS-CT validation dataset, with the
evaluation metric being mDice.

To demonstrate the advantages of individual modules,1040

we plot a critical distance diagram using the Nemenyi1041

post-hoc test with a p-value of 0.05 to establish the1042

statistical significance of our modules. In Figure 7,1043

the top line represents the axis along which the meth-1044

ods’ average ranks, and a lower value indicates better1045

performance. Methods joined by thick horizontal1046

black lines are considered not statistically different. From the diagram, we can clearly observe that1047

E2ENet with depth shift significantly outperforms E2ENet without depth shift. Additionally, the1048

incorporation of dynamic sparse feature fusion into E2ENet results in a substantial reduction in both1049

5This is because current sparse training methods often use masks on dense weights to stimulate sparsity. This
is done because most deep learning hardware is optimized for dense matrix operations. As a result, using these
prototypes doesn’t accurately reflect the true memory and speed benefits of a truly sparse network [Hoefler et al.,
2021].
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Table 10: Quantitative comparisons of segmentation performance on BTCV test set. Note: Spl:
spleen, RKid: right kidney, LKid: left kidney, Gall: gallbladder, Eso: esophagus, Liv: liver, Sto:
stomach, Aor: aorta IVC: inferior vena cava, Veins: portal and splenic veins, Pan: pancreas, AG:
adrenal gland. The results (class-wise Dice and mDice) for these baselines are from [Hatamizadeh
et al., 2022]. + denotes that the training of UNETR+ is without using any extra data outside the
challenge. The results of nnUNet‡, E2ENet and Hausdorff Distance (HD)↓ of UNETR are from the
standard leaderboard of BTCV challenge, while the results of nnUNet are from the free leaderboard.

Methods Spl RKid LKid Gall Eso Liv Sto Aor IVC Veins Pan AG mDice Params FLOPs 1 PT score HD
CoTr 95.8 92.1 93.6 70.0 76.4 96.3 85.4 92.0 83.8 78.7 77.5 69.4 84.4 41.87 636.94 1.22 /

RandomPatch 96.3 91.2 92.1 74.9 76.0 96.2 87.0 88.9 84.6 78.6 76.2 71.2 84.4 / / / /
PaNN 96.6 92.7 95.2 73.2 79.1 97.3 89.1 91.4 85.0 80.5 80.2 65.2 85.4 / / / /

UNETR+ 96.8 92.4 94.1 75.0 76.6 97.1 91.3 89.0 84.7 78.8 76.7 74.1 85.6 92.79 164.91 1.53 23.4
nnUNet 97.2 91.8 95.8 75.3 84.1 97.7 92.2 92.9 88.1 83.2 85.2 77.8 88.4 31.18 416.73 1.38 15.6
nnUNet

‡
96.5 91.7 95.8 78.5 84.2 97.4 91.5 92.3 86.9 83.1 84.9 77.5 88.0 31.18 416.73 1.38 16.9

E2ENet (s = 0.7) 96.5 91.3 95.7 78.1 84.5 97.5 91.5 92.2 86.7 83.4 84.8 77.9 88.3 11.25 449.00 1.68 16.1
1 The inference FLOPs are calculated based on the patch sizes of 1× 96× 96× 96. The codes for RandomPatch and PaNN are not publicly available, so it is not possible for us to

determine their model size and inference FLOPs.

the number of FLOPs (from 23.90M to 11.23M) and parameters (from 3069.55G to 969.32G) while1050

maintaining comparable performance, without any significant performance degradation.1051

B.7.4 Qualitative Results1052

BTCV Challenge In Figure 8 (b), we present a qualitative comparison of our proposed E2ENet1053

method with nnUNet as a baseline model on the BTCV challenge. Our results demonstrate the1054

effectiveness of our proposed method in addressing some of the challenges of medical image1055

segmentation. For example, as shown in the first and third columns, our E2ENet method accurately1056

distinguishes the stomach from the background without over- or under-segmentation, which can1057

be difficult due to the low contrast in the image. In the second column, E2ENet performs well in1058

differentiating the stomach from the spleen. These examples suggest that our DSFF module can1059

effectively encode feature information for improved performance in medical image segmentation.1060
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Figure 8: Qualitative comparison of the proposed E2ENet and nnUNet on AMOS-CT and BTCV
challenges.

BraTS Challenge in MSD Figure 9 presents a qualitative comparison of our proposed E2ENet1061

method with the nnUNet on the BraTS challenge with highly variable shapes of the segmentation1062

targets. Based on the results of the baseline model, nnUNet, we observed that accurately distinguishing1063

the edema (ED) from the background is difficult, as the edema tends to have less smooth boundaries.1064

Our results suggest that E2ENet may have some potential to improve the distinguishability of the1065

edema boundaries, as evidenced by the relatively better segmentation results in the first, second,1066

and fourth columns. Moreover, E2ENet accurately differentiates the enhanced tumor (ET) from the1067
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Figure 9: Qualitative comparison of the proposed E2ENet and nnUNet on BraTS Challenge in MSD.

edema, as shown in the third column, which is a challenging task due to the similarity in appearance1068

between these two regions, and the dispersive distribution of ET. These findings suggest that E2ENet1069

is a promising method for accurately segmenting brain tumors in challenging scenarios.1070

B.8 Convergence Analysis1071

In this section, we analyze the convergence behavior of E2ENet by examining the loss changes during1072

topology updating (kernel activation/deactivation epochs), comparing it with the best-performing1073

baseline nnUNet, and studying the impact of topology update frequency. From Figure 10, we observed1074

that the activation/deactivation of weights initially led to an increase in training loss. However, over1075

the long term, the training converged. Additionally, we compared the learning curve of E2ENet with1076

that of nnUNet and found that E2ENet converged even faster than nnUNet, as shown in the subplot in1077

Figure 11 (a). To account for the effect of the number of parameters, we scaled down nnUNet to have1078

a similar number of parameters as E2ENet and observed that it converged even more slowly than the1079

original nnUNet. We also studied the impact of topology update frequency. As shown in Figure 111080

(b), when the topology updating frequency is increased, the convergence speed may decrease slightly,1081

but the impact is not significant.1082

Figure 10: The learning curve of E2ENet on AMOS-CT, with green dotted vertical lines indicating
the epochs of weight activation and deactivation. The blue line represents the ratio of weight
deactivation/reactivation throughout the training process.

B.9 Organ Volume Statistics and Class-wise Results Visualization1083

In this section, we analyzed the relationship between organ volume and segmentation accuracy on the1084

AMOS-CT, BTCV, and BraTS challenges. The results, depicted in Figures 12, 13 and 14, showed1085

that small organs with relatively low segmentation accuracy. For the AMOS-CT challenge, RAG1086
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Figure 11: (a) Comparing the learning curve of E2ENet with that of nnUNet and scaled-down nnUNet
(referred to as nnUNet (-)); (b) Comparing the learning curve of E2ENet with different topology
update frequencies.

(a) (b) (c)

Figure 12: (a) The organ volume statistics of AMOS-CT training dataset. (b) Class-wise Dice of
nnUNet without postprocessing (visualization of Table 1). (c) Class-wise Dice differences between
E2ENet with feature sparsity 0.7 without postprocessing and nnUNet without postprocessing on
AMOS-CT validation dataset . The positive value means that E2ENet outperforms nnUNet, vice
versa.)

(a) (b) (c)

Figure 13: (a) The organ volume statistics of BTCV training dataset. (b) Class-wise Dice of nnUNet
(visualization of Table 10). Note that AG denotes the average of the right and left adrenal glands
(RAG and LAG). (c) Class-wise Dice differences between E2ENet with feature sparsity 0.7 and
nnUNet on BTCV test dataset. The positive value means that E2ENet outperforms nnUNet, vice
versa.

(right adrenal gland), LAG (left adrenal gland), Gall (gallbladder), and Eso (esophagus) are more1087

challenging to accurately segment. This may be due to the fact that smaller organ volumes provide1088

less visual information for the segmentation algorithm to work with. However, our proposed method,1089

E2ENet, also demonstrated comparable (or better) performance on these small organs, particularly1090

for the organ “LAG”, in which the Dice improved from 81.7% to 82.4%. On the BTCV challenge,1091

the Dice of “Gall”, which is considered to be the most challenging organ, improves from 75.3% to1092
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(a) (b) (c)

Figure 14: (a) The organ volume statistics of BraTS training dataset. (b) Class-wise Dice of nnUNet
(visualization of Table 2) (c) Class-wise Dice differences between E2ENet with feature sparsity 0.7
and nnUNet on 5-fold cross-validation of the training dataset. The positive value means that E2ENet
outperforms nnUNet, vice versa.

78.1% when using E2ENet compared to nnUNet. For the BraTs challenge, E2ENet demonstrates1093

the most significant improvement in the Dice score of the "ET" region, which is considered the most1094

challenging class, with an increase of 0.7%.1095

These results indicate that by applying the DSFF mechanism, E2ENet is able to effectively utilize1096

multi-scale information, potentially leading to improved performance in segmenting small organs.1097

It is important to note that other factors, such as the quality and resolution of the medical images,1098

as well as the complexity of the anatomy being imaged, may also impact the performance of the1099

segmentation algorithms. Future work could focus on further exploring the potential impact of these1100

factors on segmentation accuracy.1101
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