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Fusion of quantum-mechanical and experimental data for phase diagram calculation
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Computational materials design aims to predict
novelmaterials with desired properties, such as duc-
tility and corrosion resistance, for industrial applica-
tions. Phase diagrams play a crucial role inmaterials
design as they serve asmaps that reveal which phase
is stable under specific temperature, pressure, and
concentration. Artificial intelligence algorithms ac-
celerate quantummechanical calculations, enabling
the construction of phase diagrams with ab initio ac-
curacy. However, computational errors can affect
the predicted phase stability regions and should be
properly accounted for. Moreover, systematic er-
rors in quantum mechanical approximations—such
as those arising from the decomposition of the wave
function into a product of independent one-electron
wave functions in density functional theory—can be
corrected by learning from available experimental
data. In this work, we develop a Bayesian frame-
work for phase diagram construction that fuses den-
sity functional theory and experimental data. A
schematic illustration of the framework is shown in
Figure 1.
The framework starts with fitting of a Moment

Tensor Potential [3] to the Density Functional The-
ory computations. Configurations for training the
Moment Tensor Potential are actively selected using
the maxvol algorithm [1], which has been demon-
strated to sufficiently reduce the training dataset
while maintaining the same accuracy as passively
trained interatomic potentials.
The obtained interatomic potential is utilized in

our previously developed Bayesian learning algo-
rithm for phase diagram construction [2]. The al-
gorithm is based on Gaussian process regression,
which not only reconstructs the free energy from the
computational data, but also propagates the statisti-
cal uncertainty in the data to the uncertainty of the
free energy and, subsequently, to the phase bound-
aries. The algorithm accepts various data as input
includingmelting points, ensemble-averaged poten-
tial energy and concentration, and results of phonon
calculations. Our method is further equipped with
an active learning algorithm that can suggest new
points for molecular dynamics calculations to re-
duce the uncertainty in the phase diagram predic-
tion in the most effective way.
We demonstrate the application of our Bayesian

learning algorithm to the phase diagram of K-Na
across its entire range in temperature-concentration
coordinates in Figure 2. The resulting diagram is
extrapolated for N → ∞ in the system, and phase
transition curves are presented with a 2-sigma con-

fidence interval, which is on the order of 2K. We
also include the available experimental data in Fig-
ure 2. Most features of our phase diagram quanti-
tatively agree with experimental studies, although
the resulting phase transition curves are shifted
by nearly 20K. This observed temperature shift
is known for Density Functional Theory compu-
tations with Perdew-Burke-Ernzerhof functionals,
which typically underpredict melting points by 100-
300K.
We extend the Bayesian algorithm to explicitly

learn the dependence of free energy on a small num-
ber of selected interatomic potential parameters.
This allows us to find the optimal interatomic poten-
tial parameters for which the predicted phase transi-
tion curves agree with experimental data. Thanks to
the Bayesian nature of the algorithm, these parame-
ters are optimized while accounting for uncertainty
in both the predicted and experimental data.
We validate our algorithmon the unary Ti system,

which features two transition points: the HCP-BCC
and BCC-liquid phase transitions. We train the mo-
ment tensor potential on density functional theory
data and reconstruct the free energies in the limit
N → ∞ with uncertainty for the HCP, BCC, and liq-
uid phases, as shown by dashed lines in Figure 3. We
obtain THCP-BCC = 1329 ± 5K and Tmelt = 1696 ± 2K
which significantly differ from the experimental val-
ues T

exp
HCP-BCC = 1155K and T

exp
melt = 1941K, high-

lighting the need for experimental correction of the
interatomic potential. To address this, we extend
our Bayesian algorithm to learn the dependence of
free energy on two parameters that scale the basis
functions in the interatomic potential. By optimiz-
ing these parameters, we obtain the corrected phase
transition temperatures THCP-BCC = 1155 ± 10K and
Tmelt = 1941 ± 4K which agree with experimental
values (see Figure 3).
In summary, in this work we developed a

framework to incorporate experimental data into
a Bayesian algorithm for phase diagram construc-
tion and validated it on the unary Ti system
which features HCP-BCC and BCC-liquid transition
points. The framework is readily extendable to two-
component phase diagrams and can be furthermod-
ified to incorporate other thermodynamic data mea-
sured in experiments.

Related work
The most widely used practical approach is CAL-

PHAD [8, 9], in which free energies are fitted with
polynomial-like functions, primarily using experi-
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Fig. 1: Framework for phase diagram construction that incorporates experimental data into the learning pro-
cess. First, a moment tensor potential is trained automatically via active learning [1]. Then, melting point
calculations, phonon computations, and molecular dynamics simulations are performed using the trained
potential and fed into a Gaussian process regression algorithm. The Gaussian process predicts free energies
for each phase and constructs a final phase diagramwith associated uncertainties which are further reduced
through an active learning algorithm [2]. The predicted free energies depend on a selected set of interatomic
potential parameters which are further optimized to reproduce experimental values.

Fig. 2: K–Na phase diagram with a two-sigma con-
fidence interval extrapolated for N → ∞. Ex-
perimental data are taken from Ott [4], MacDon-
ald [5], Kean [6], and Rossen [7]. Most features of
thephasediagramquantitatively agreewith exper-
imental studies, although the resulting phase tran-
sition curves are shifted by nearly 20K.

mental data. Further advancements in the CAL-
PHAD method incorporate density functional the-
ory data into the algorithm, integrate data from var-
ious sources, and include uncertainty quantification
[10, 11, 12].
Correction of the embedded atom model inter-

atomic potential to reproduce the melting point
based on Gibbs-Duhem integration was proposed in
[13] and later extended by Mendelev to account for
the HCP-BCC transition temperature in unary tita-
nium [14].
Several machine-learning interatomic potentials

have been constructed for the titanium system [15,
16, 17], although, to our knowledge, none have been

demonstrated to accurately reproduce the HCP-BCC
and BCC-liquid transition temperatures.

Fig. 3: Free energies of HCP, BCC and liquid phases
of Titanium system. Free energies before ex-
perimental correction are shown as dashed lines,
while those after correction are represented by
solid lines. Phase transition temperatures for
HCP-BCC andBCC-liqiud after correction coincide
with experimental values T exp

HCP-BCC = 1155K and
T
exp
melt = 1941K.
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