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Abstract

Generalizable implicit neural representation (INR) enables a single continuous func-1

tion, i.e., a coordinate-based neural network, to represent multiple data instances2

by modulating its weights or intermediate features using latent codes. However,3

the expressive power of the state-of-the-art modulation is limited due to its inability4

to localize and capture fine-grained details of data entities such as specific pixels5

and rays. To address this issue, we propose a novel framework for generalizable6

INR that combines a transformer encoder with a locality-aware INR decoder. The7

transformer encoder predicts a set of latent tokens from a data instance to encode8

local information into each latent token. The locality-aware INR decoder extracts a9

modulation vector by selectively aggregating the latent tokens via cross-attention10

for a coordinate input and then predicts the output by progressively decoding with11

coarse-to-fine modulation through multiple frequency bandwidths. The selective12

token aggregation and the multi-band feature modulation enable us to learn locality-13

aware representation in spatial and spectral aspects, respectively. Our framework14

significantly outperforms previous generalizable INRs and validates the usefulness15

of the locality-aware latents for downstream tasks such as image generation.16

1 Introduction17
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Figure 1: Learning curves of PSNRs dur-
ing training on ImageNette 178×178.

Recent advances in generalizable implicit neural represen-18

tation (INR) enable a single coordinate-based multi-layer19

perceptron (MLP) to represent multiple data instances as a20

continuous function. Instead of per-sample training of indi-21

vidual coordinate-based MLPs, generalizable INR extracts22

latent codes of data instances [13, 14, 40] to modulate23

the weights or intermediate features of the shared MLP24

model [8, 11, 19, 35]. However, despite the advances in25

previous approaches, their performance is still insufficient26

compared with individual training of INRs per sample.27

We postulate that the expressive power of generalizable28

INR is limited by the inability to exploit the locality-aware29

latent representation of data. The locality of data entities30

has been a significant inductive bias [3] for modeling the31

representations of complex data, such as images, multi-views, or graphs. However, previous ap-32

proaches prevent the latent codes from learning the locality of data. For example, when latent codes33

modulate the intermediate features [11, 12] or weight matrices [8, 19, 35] of an INR decoder, the34

modulation methods do not specify the location of input coordinates to exploit the latent codes. Thus,35
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the latent codes encode the global information in whole coordinates without capturing the local36

relationship between data entities, such as specific pixels.37

To address this issue, we propose a novel framework for locality-aware generalizable INR to localize38

and control the fine-grained details of data. Given a data instance, our Transformer [37] encoder first39

extracts a set of latent tokens, while analyzing relevant local information of data into different latent40

tokens. Especially, our locality-aware INR decoder can guide the Transformer encoder to encapsulate41

the local information into each latent token and exploit the latents to predict the fine-grained details42

of outputs effectively. Specifically, given an input coordinate, our INR decoder selectively aggregates43

the spatially local information in the latent tokens and extracts a modulation vector. Then, the44

modulation vector is decomposed into multiple bandwidths of frequency features to amplify the45

high-frequency information in the modulation vector. Finally, our multi-band feature modulation46

progressively composes the intermediate features of the INR decoder using a coarse-to-fine approach47

in a frequency domain, while encouraging the INR decoder to effectively capture the high-frequency48

details in the outputs. We conduct extensive experiments to demonstrate the outperformance and49

efficacy of our locality-aware generalizable INR on benchmarks as shown in Figure 1. In addition,50

our locality-aware latents can also be utilized for downstream tasks such as image synthesis.51

Our main contributions can be summarized as follows: 1) We propose an effective framework for52

generalizable INR with a Transformer encoder and locality-aware INR decoder. 2) The proposed INR53

decoder with selective token aggregation and multi-band feature modulation can effectively capture54

the local information to predict the fine-grained data details. 3) The extensive experiments validate55

the efficacy of our framework and show its applications to a downstream image generation task.56

2 Related Work57

Implicit neural representations (INRs). INRs use neural networks to represent complex data58

such as audio, images, and 3D scenes, as continuous functions. Especially, incorporating Fourier59

features [24, 36], periodic activations [31], or multi-grid features [25] significantly improves the60

performance of INRs. Despite its broad applications [1, 6, 10, 32, 34], INRs commonly require61

separate training of MLPs to represent each data instance. Thus, individual training of INRs per62

sample does not learn common representations in multiple data instances.63

Generalizable INRs. Previous approaches focus on two major components for generalizable INRs;64

latent feature extraction and modulation methods. Auto-decoding [23, 26] computes a latent vector65

per data instance and concatenates it with the input of a coordinate-based MLP. Given input data,66

gradient-based meta-learning [4, 11, 12] adapts a shared latent vector using a few update steps to67

scale and shift the intermediate activations of the MLP. Learned Init [35] also uses gradient-based68

meta-learning but adapts whole weights of the shared MLP. Although auto-decoding and gradient-69

based meta-learning are agnostic to the types of data, their training is unstable on complex and70

large-scale datasets. TransINR [8] employs the Transformer [37] as a hypernetwork to predict latent71

vectors to modulate the weights of the shared MLP. In addition, Instance Pattern Composers [19]72

have demonstrated that modulating the weights of the second MLP layer is enough to achieve high73

performance of generalizable INRs. Our framework also employs the Transformer encoder, but74

focuses on extracting locality-aware latent features for the high performance of generalizable INR.75

Leveraging Locality of Data for INRs Local information in data has been utilized for efficient76

modeling of INRs, since local relationships between data entities are widely used for effective process77

of complex data [3]. Given an input coordinate, the coordinate-based MLP only uses latent vectors78

nearby the coordinate, after a CNN encoder extracts a 2D grid feature map of an image for super-79

resolution [7] and reconstruction [22]. Recently, Spatial Functa [4] also demonstrates that leveraging80

the locality of data enables INRs to be utilized for downstream tasks such as image recognition and81

generation. Local information in 3D coordinates has also been effective for scene modeling using82

3D feature grids [18] or the part segmentation [17] of a 3D object. However, previous approaches83

assume explicit grid structures of latents tailored to a specific data type. Since we do not predefine a84

specific relationship between latent features, our framework is flexible to learn and encode the local85

information of both grid coordinates in images and non-grid coordinates in light fields.86
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Figure 2: Overview of our framework for locality-aware generalizable INR. Given a data instance,
Transformer encoder extracts its localized latents. Then, the locality-aware INR decoder uses selective
token aggregation and multi-band feature modulation to predict the output for the input coordinate.

3 Methods87

We propose a novel framework for locality-aware generalizable INR which consists of a Transformer88

encoder to localize the information in data into latent tokens and a locality-aware INR decoder to89

exploit the localized latents and predict outputs. First, we formulate how generalizable INR enables a90

single coordinate-based neural network to represent multiple data instances as a continuous function91

by modulating its weights or features. Then, after we introduce the Transformer encoder to extract a92

set of latent tokens from input data instances, we explain the details of the locality-aware INR decoder,93

where selective token selection aggregates the spatially local information for an input coordinate via94

cross-attention; multi-band feature modulation leverages a different range of frequency bandwidths95

to progressively decode the local information using coarse-to-fine modulation in the spectral domain.96

3.1 Generalizable Implicit Neural Representation97

Given a set of data instances X = {x(n)}Nn=1, each data instance x(n) = {(v(n)
i ,y

(n)
i )}Mn

i=1 comprises98

Mn pairs of an input coordinate v
(n)
i ∈ Rdin and the corresponding output feature y

(n)
i ∈ Rdout .99

Conventional approaches [24, 31, 36] adopt individual coordinate-based MLPs to train and memorize100

each data instance x(n). Thus, the coordinate-based MLP cannot be reused and generalized to101

represent other data instances, requiring per-sample optimization of MLPs for unseen data instances.102

A generalizable INR uses a single coordinate-based MLP as a shared INR decoder Fθ : Rdin → Rdout103

to represent multiple data instances as a continuous function. Generalizable INR [8, 11, 12, 19, 26]104

extracts the R number of latent codes Z(n) = {z(n)k ∈ Rd}Rk=1 from a data instance x(n). Then,105

the latents are used for the INR decoder to represent a data instance x(n) as y(n)
i = Fθ(v

(n)
i ;Z(n)),106

while updating the parameters θ and latents Z(n) to minimize the errors over X :107

min
θ,Z(n)

1

NMn

N∑
n=1

Mn∑
i=1

∥∥∥y(n)
i − Fθ(v

(n)
i ;Z(n))

∥∥∥2
2
. (1)

We remark that each previous approach employs a different number of latent codes to modulate108

a coordinate-based MLP. For example, a single latent vector (R = 1) is commonly extracted to109

modulate intermediate features of the MLP [11, 12, 26], while a multitude of latents (R > 1) are110

used to modulate its weights [8, 19, 35]. While we modulate the features of MLP, we extract a set of111

latent codes to localize the information of data to leverage the locality-awareness for latent features.112
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3.2 Transformer Encoder113

Our framework employs a Transformer encoder [37] to extract a set of latents Z(n) for each data114

instance x(n) as shown in Figure 2. After a data instance, such as an image or multi-view images,115

is patchified into a sequence of data tokens, we concatenate the patchified tokens into a sequence116

of R learnable tokens as the encoder input. Then, the Transformer encoder extracts a set of latent117

tokens, where each latent token corresponds to an input learnable token. Note that our encoder118

does not predefine a relationship between latent tokens, since a self-attention in Transformer is a119

permutation-equivariant operation. Thus, whether a data instance is represented on a grid or non-grid120

coordinate, our framework is flexible to encode various types of data into latent tokens, while learning121

the local relationships of latent tokens during training.122

3.3 Locality-Aware Decoder for Implicit Neural Representations123

We propose the locality-aware INR decoder in Figure 2 to leverage the local information of data for124

effective generalizable INR. Our INR decoder comprises two primary components: i) Selective token125

aggregation via cross attention extracts a modulation vector for an input coordinate to aggregate126

spatially local information from latent tokens. ii) Multi-band feature modulation decomposes the127

modulation vector into multiple bandwidths of frequency features to amplify the high-frequency128

features and effectively predict the details of outputs.129

3.3.1 Selective Token Aggregation via Cross-Attention130

We remark that encoding locality-aware latent tokens is not straightforward since the self-attentions in131

Transformer do not guarantee a specific relationship between tokens. Thus, the properties of the latent132

tokens are determined by a modulation method for generalizable INR to exploit the extracted latents.133

For example, given an input coordinate v and latent tokens {z1, ..., zR}, a straightforward method can134

use Instance Pattern Composers [19] to construct a modulation weight Wm = [z1, ..., zR]
⊤ ∈ RR×din135

and extract a modulation vector mv = Wmv = [z⊤1 v, ..., z
⊤
Rv]

⊤ ∈ RR. However, the latent tokens136

cannot encode the local information of data, since each latent token equally influences each channel137

of the modulation vector regardless of the coordinate locations (see Section 4.3).138

Our selective token aggregation employs cross-attention to aggregate the spatially local latents139

nearby the input coordinate, while guiding the latents to be locality-aware. Given a set of latent140

tokens Z(n) = {z(n)k }Rk=1 and a coordinate v
(n)
i , a modulation feature vector m(n)

vi ∈ Rd shifts the141

intermediate features of an INR decoder to predict the output, where d is the dimensionality of hidden142

layers in the INR decoder. For the brevity of notation, we omit the superscript n and subscript i.143

Frequency features We first transform an input coordinate v = (v1, · · · , vdin) ∈ Rdin into fre-144

quency features using sinusoidal positional encoding [31, 36]. We define the Fourier features145

γσ(v) ∈ RdF with bandwidth σ > 1 and feature dimensionality dF as146

γσ(v) = [cos(πωjvi), sin(πωjvi) : i = 1, · · · , din, j = 0, · · · , n− 1] (2)

where n = dF
2din

. A frequency ωj = σj/(n−1) is evenly distributed between 1 and σ on a log-scale.147

Based on the Fourier features, we define the frequency feature extraction hF(·) as148

hF(v;σ,W,b) = ReLU (Wγσ(v) + b) , (3)

where W ∈ Rd×dF and b ∈ Rd are trainable parameters for frequency features, d denotes the149

dimensionality of hidden layers in the INR decoder.150

Selective token selection via cross-attention To predict corresponding output y to the coordinate151

v, we adopt a cross-attention to extract a modulation feature vector mv ∈ Rd based on the latent152

tokens Z = {zk}Rk=1. We first extract the frequency features of the coordinate v in Eq (3) as the153

query of the cross-attention as154

qv := hF(v;σq,Wq,bq), (4)
where Wq ∈ Rd×dF and bq ∈ Rd are trainable parameters, and σq is the bandwidth for query155

frequency features. The cross-attention in Figure 2 enables the query to select latent tokens, aggregate156

its local information, and extract the modulation feature vector mv for the input coordinate:157

mv := MultiHeadAttention(Query = qv,Key = Z,Value = Z). (5)
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An intuitive implementation for selective token aggregation can employ hard attention to select only158

one latent token for each coordinate. However, in our primitive experiment, using hard attention leads159

to unstable training and a latent collapse problem that selects only few latent tokens. Meanwhile,160

multi-head attentions encourage each latent token to easily learn the locality in data instances.161

3.3.2 Multi-Band Feature Modulation in the Spectral Domain162

After the selective token aggregation extracts a modulation vector mv, we use multi-band feature163

modulation to effectively predict the details of outputs. Although Fourier features [24, 36] reduce164

the spectral bias [2, 28] of neural networks, adopting a simple stack of MLPs to INRs still suffers165

from capturing the high-frequency data details. To address this issue, we use a different range of166

frequency bandwidths to decompose the modulation vector into multiple frequency features in the167

spectral domain. Then, our multi-band feature modulation uses the multiple frequency features to168

progressively decode the intermediate features, while encouraging a deeper MLP path to learn higher169

frequency features. Note that the coarse-to-fine approach in the spectral domain is analogous to the170

locally hierarchical approach in the spatial domain [21, 29, 39] to capture the data details.171

Extracting multiple modulation features with different frequency bandwidths We extract L172

level of modulation features m
(1)
v , · · · ,m(L)

v from mv using different bandwidths of frequency173

features. Given L frequency bandwidths as σ1 ≥ σ2 ≥ · · · ≥ σL ≥ σq, we use Eq (3) to extract the174

ℓ-th level of frequency features of an input coordinate v as175

(hF)
(ℓ)
v := hF(v;σℓ,W

(ℓ)
F ,b

(ℓ)
F ) = ReLU

(
W

(ℓ)
F γσℓ

(v) + b
(ℓ)
F

)
, (6)

where W
(ℓ)
F and b

(ℓ)
F are trainable parameters and shared across data instances. Then, the ℓ-th176

modulation vector m(ℓ)
v is extracted from the modulation vector mv as177

m(ℓ)
v := ReLU

(
(hF)

(ℓ)
v +W(ℓ)

m mv + b(ℓ)
m

)
, (7)

with a trainable weight W(ℓ)
m and bias b(ℓ)

m . Considering that ReLU cutoffs the values below zero, we178

assume that m(ℓ)
v filters out the information of mv based on the ℓ-th frequency patterns of (hF)

(ℓ)
v .179

Multi-band feature modulation After decomposing a modulation vector into multiple features with180

different frequency bandwidths, we progressively compose the L modulation features by applying181

a stack of nonlinear operations with a fully-connected layer and ReLU activation. Starting with182

h
(1)
v = m

(1)
v , we compute the ℓ-th hidden features h(ℓ)

v for ℓ = 2, · · · , L as183

h̃(ℓ)
v := m(ℓ)

v + h(ℓ−1)
v and h(ℓ)

v := ReLU(W(ℓ)h̃(ℓ)
v + b(ℓ)), (8)

where W(ℓ) ∈ Rd×d and b(ℓ) ∈ Rd are trainable weights and biases of the INR decoder. h̃
(ℓ)
v184

denotes the ℓ-th pre-activation of INR decoder for coordinate v. Note that the modulation features185

with high-frequency bandwidth can be processed by more nonlinear operations than the features with186

lower frequency bandwidths, considering that high-frequency features contain more complex signals.187

Finally, the output ŷ is predicted using all intermediate hidden features of the INR decoder as188

ŷ :=

L∑
ℓ=1

f
(ℓ)
out (h

(ℓ)
v ), (9)

where f (ℓ)
out : Rd → Rdout are a linear projection into the output space. Although utilizing only h

(L)
v is189

also an option to predict outputs, skip connections of all intermediate features into the output layer190

enhances the robustness of training to the hyperparameter choices.191

4 Experiments192

We conduct extensive experiments to demonstrate the effectiveness of our locality-aware generalizable193

INR on image reconstruction and novel view synthesis. In addition, we conduct in-depth analysis194

to validate the efficacy of our selective token aggregation and multi-band feature modulation to195
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Figure 3: Reconstructed images of FFHQ with 512×512 resolution by TransINR [8] (left), IPC [19]
(middle), and our locality-aware generalizable INR (right).

localize the information of data to capture fined-grained details. We also show that our locality-aware196

latents can be utilized for image generation by training a generative model on the extracted latents.197

Our implementation and experimental settings are based on the official codes of Instance Pattern198

Composers [19] for a fair comparison. We attach the implementation details to Appendix.199

4.1 Image Reconstruction200

We follow the protocols in previous studies [8, 19, 35] to evaluate our framework on image reconstruc-201

tion of CelebA, FFHQ, and ImageNette with 178×178 resolution. Our framework also outperforms202

previous approaches on high-resolution images with 256×256, 512×512, and 1024×1024 resolutions203

of FFHQ. We compare our framework with Learned Init [35], TransINR [8], and IPC [19]. The204

Transformer encoder predicts R = 256 latent tokens, while the INR decoder uses din = 2, dout = 3,205

d = 256 dimensionality of hidden features, σq = 16 and (σ1, σ2) = (128, 32) bandwidths.206

Table 1: PSNRs of reconstructed images of
178×178 CelebA, FFHQ, and ImageNette.

CelebA FFHQ ImageNette
Learned Init [35] 30.37 - 27.07
TransINR 33.33 33.66 29.77
IPC 35.93 37.18 38.46
Ours 50.74 43.32 46.10

178×178 Image Reconstruction Table 1207

shows that our generalizable INR significantly208

outperforms previous methods by a large mar-209

gin. We remark that TransINR, IPC, and our210

framework use the same capacity of the Trans-211

former encoder, latent tokens, and INR de-212

coder except for the modulation methods. Thus,213

the results imply that our locality-aware INR214

decoder with selective token aggregation and215

multi-band feature modulation is effective to216

capture local information of data and fine-grained details for high-quality image reconstruction.217

Table 2: PSNRs on the reconstructed FFHQ with
256×256, 512×512, and 1024×1024 resolutions.

256×256 512×512 1024×1024
TransINR 30.96 29.35 -
IPC [19] 34.68 31.58 28.68
Ours 39.88 35.43 31.94

High-Resolution Image Reconstruction We218

further evaluate our framework on the re-219

construction of FFHQ images with 256×256,220

512×512, 1024×1024 resolutions to demon-221

strate our effectiveness to capture fine-grained222

data details in Table 2. Although the perfor-223

mance increases as the MLP dimensionality d224

and the number of latents R increases, we use225

the same experimental setting with 178×178 im-226

age reconstruction to validate the efficacy of our framework. Our framework consistently achieves227

higher PSNRs than TransINR and IPC for all resolutions. Figure 3 also shows that TransINR and228

IPC cannot reconstruct the fine-grained details of a 512×512 image, but our framework provides a229

high-quality result of reconstructed images. The results demonstrate that leveraging the locality of230

data is crucial for generalizable INR to model complex and high-resolution data.231
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Figure 4: (a) PSNRs on novel view synthesis of ShapeNet Chairs, Cars, and Lamps according to the
number of support views (1-5 views). (b) Examples of novel view synthesis with 4 support views.

4.2 Few-Shot Novel View Synthesis232

We evaluate our framework on novel view synthesis with the ShapeNet Chairs, Cars, and Lamps233

datasets to predict a rendered image of a 3D object under an unseen view. Given few views of an234

object with known camera poses, we employ a light field [32] for novel view synthesis. A light field235

does not use computationally intensive volume rendering [24] but directly predicts RGB colors for236

the input coordinate for rays with din = 6 using the Plücker coordinate system. Our INR decoder237

uses d = 256 and two levels of feature modulations with σq = 2 and (σ1, σ2) = (8, 4).238

Figure 4(a) shows that our framework outperforms IPC for novel view synthesis. Our framework239

shows competitive performance with IPC when only one support view is provided. However, the240

performance of our framework is consistently improved as the number of support views increases,241

while outperforming the results of IPC. Note that defining a local relationship between rays is not242

straightforward due to its non-grid property of the Plücker coordinate. Our Transformer encoder can243

learn the local relationship between rays to extract locality-aware latent tokens during training and244

achieve high performance. We analyze the learned locality of rays encoded in the extracted latents245

in Section 4.3. Figure 4(b) shows that our framework correctly predicts the colors and shapes of a246

novel view corresponding to the support views, although the predicted views are blurry due to the247

lack of training objectives with generative modeling. We expect that combining our framework with248

generative models [5, 38] to synthesize a photorealistic novel view is an interesting future work.249

4.3 In-Depth Analysis250

Learning Curves on ImageNette 178×178 Figure 1 juxtaposes the learning curves of our frame-251

work and previous approaches on ImageNette 178×178. Note that TransINR, IPC, and our framework252

use the same Transformer encoder to extract data latents, while adopting different modulation meth-253

ods. While the training speed of our framework is about 80% of the speed of IPC, we remark our254

framework achieves the test PSNR of 38.72 after 400 epochs of training, outperforming the PSNR255

of 38.46 achieved by IPC trained for 4000 epochs, hence resulting in 8× speed-up of training time.256

That is, our locality-aware latents enables generalizable INR to be both efficient and effective.257

Table 3: Ablation study on ImageNette
178×178 and FFHQ 256×256.

ImageNette FFHQ
Ours 37.46 38.01
w/o STA 34.54 34.52
w/o multiFM 33.90 33.65
IPC [19] 34.11 34.68

Selective token aggregation and multi-band feature mod-258

ulations We conduct an ablation study on ImageNette259

178×178 and FFHQ 256×256 to validate the effectiveness260

of the selective token aggregation and the multi-band feature261

modulation. We replace the multi-band feature modulations262

with a simple stack of MLPs (ours w/o multiFM), and the263

selective token aggregation with the weight modulation of264

IPC (ours w/o STA). If both two modules are replaced to-265

gether, the INR decoder becomes the same architectrure266

as IPC. We use single-head cross-attention for the selec-267

tive token aggregation to focus on the effect of two modules. Table 3 demonstrates that both268

the selective token aggregation and the multi-band feature modulation are required for the perfor-269

mance improvement, as there is no significant improvement when only one of the modules is used.270
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Figure 5: Visualization of differences between model predictions after replacing a latent token with
the zero vector, for IPC [19] and our framework.

Table 4: PSNRs of reconstructed
ImageNette 178×178 with various
frequency bandwidths.

(σ1, σ2) σq ImageNette
(128, 32) 16 37.46
(32, 128) 16 35.00

(128, 128) 16 35.30
(128, 32) 128 35.58
IPC (σ = 128) 34.11

Choices of frequency bandwidths Table 5 shows that the271

ordering of frequency bandwidths in Eq. (4) and Eq. (6) can272

affect the performance. We train our framework with two-level273

feature modulations on ImageNette 178×178 during 400 epochs274

with different settings of the bandwidths σ1, σ2, σq. Although275

our framework outperforms IPC regardless of the bandwidth276

settings, the best PSNR is achieved with σ1 ≥ σ2 ≥ σq. The277

results imply that selective token aggregation does not require278

high-frequency features, but the high-frequency features need to279

be processed by more nonlinear operations than lower-frequency280

features as discussed in Section 3.3.2.281

The role of extracted latent tokens Figure 5 shows that our framework encodes the local infor-282

mation of data into each latent token, while IPC cannot learn the locality in data coordinates. To283

visualize the information in each latent token, we randomly select a latent token to be replaced with284

the zero vector. Then, we visualize the difference between the model predictions with or without285

the replacement. Each latent token of our framework encapsulates the local information in different286

regions of images and light fields. However, the latent tokens of IPC cannot exploit the local informa-287

tion of data, while encoding the global information over whole coordinates. Note that our framework288

learns the structure of locality in light fields during training, although the structure of the Plücker289

coordinate system is not regular as the grid coordinates of images. Thus, our framework can learn the290

locality-aware latents of data for generalizable INR regardless of the types of coordinate systems.291

4.4 Generating INRs for Conditional Image Synthesis292

Table 5: Reconstructed PSNRs and FID of
generated images on ImageNet 256×256.

Latent Shape rPSNR FID
Ours 256×256 37.7 9.3
Spatial 16×16×256 37.2 11.7
Functa [4] 32×32×64 37.7 8.8
LDM [30] 64×64×3 27.4 3.6

We examine the potentials of the extracted latent to-293

kens to be utilized for a downstream task such as294

class-conditional image generation of ImageNet [9].295

Note that we cannot use the architecture of U-Net in296

conventional image diffusion models [4, 30], since297

our framework is not tailored to the 2D grid coordi-298

nate. Thus, we adopt a Transformer-based diffusion299

model [27, 15] to predict a set of latent tokens after300

corruping the latents by Gaussian noises. We train301

458M parameters of Transformers during 400 epochs302

to generate our locality-aware latent tokens. When we train a diffusion model to generate latent tokens303
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Figure 6: The examples of generated 256×256 images by generating latents of IPC (left) and ours
(right), trained on ImageNet.

of IPC in Figure 6, the generated images suffer from severe artifacts, because the prediction error of304

each latent token for IPC leads to the artifacts over all coordinates. Contrastively, the diffusion model305

for our locality-aware latents generates realistic images. In addition, although we do not conduct306

exhaustive hyperparamter search, the FID score of generated images achieves 9.3 with classifier-free307

guidance scale [16]. Thus, the results validate the potential applications of the local latents for308

INRs. Meanwhile, a few generated images may exhibit checkerboard artifacts, particularly in simple309

backgrounds. We leave the elaboration of diffusion models for INR latents as future work.310

4.5 Comparison with Overfitted INRs311

0 5 10 15 20 25 30
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25

30

35

40

45

50
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 (d
B)

Ours (no TTO)
Ours (TTO of latents)
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Figure 7: Comparison with individually
trained FFNets [36] per sample.

Figure 7 shows that our generalizable INR efficiently pro-312

vides meaningful INRs compared with individual training313

of INRs per sample. To evaluate the efficiency of our314

framework, we select ten images of FFHQ 256×256 and315

train randomly initialized FFNet [36] per sample using one316

NVIDIA V100 GPU. The individual training of FFNets317

requires over 10 seconds of optimization to achieve the318

same PSNRs of our framework, where our inference time319

is negligible. Moreover, when we apply the test-time320

optimization (TTO) only for the extracted latents, it con-321

sistently outperforms per-sample FFNets for 30 seconds322

while maintaining the structure of latents. When we con-323

sider the predicted INR as initialization and finetune all324

parameters of the INR decoder per each sample, our frame-325

work consistently outperforms the per-sampling training326

of INRs from random initialization. Thus, the results imply that leveraging generalizable INR is327

computationally efficient to model unseen data as INRs regardless of a TTO.328

5 Conclusion329

We have proposed an effective framework for generalizable INR with the Transformer encoder and330

locality-aware INR decoder. The Transformer encoder capture the locality of data entities and learn331

to encode the local information into different latent tokens. Our INR decoder selectively aggregates332

the locality-aware latent tokens to extract a modulation vector for a coordinate input and exploits333

the multiple bandwidths of frequency features to effectively predict the fine-grained data details.334

Experimental results demonstrate that our framework significantly outperforms previous generalizable335

INRs on image reconstruction and few-shot novel view synthesis. In addition, we have conducted the336

in-depth analysis to validate the effectiveness of our framework and shown that our locality-aware337

latent tokens for INRs can be utilized for downstream tasks such as image generation to provide338

realistic images. Considering that our framework can learn the locality in non-grid coordinates, such339

as the Plücker coordinate for rays, leveraging our generalizable INR to generate 3D objects or scenes340

is a worth exploration. Furthermore, we expect that elaborating on the architecture and techniques for341

diffusion models to effectively generate INRs is an interesting future work.342
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A Implementation Details463

We describe the implementation details of our locality-aware generalizable INR with the Transformer464

encoder and locality-aware INR decoder. We implement our framework based on the official open-465

sourced implementation of IPC1 for a fair comparison. Our Transformer encoder comprises six466

blocks of self-attentions with 12 attention heads, where each head uses 64 dimensions of hidden467

features, and R = 256 latent tokens for all experiments. We use the Adam [20] optimizer with468

(β1, β2) = (0.9, 0.999) and constant learning rate of 0.0001. The batch size is 16 and 32 for image469

reconstruction and novel view synthesis, respectively.470

A.1 Image Reconstruction471

178×178 image reconstruction For the image reconstruction of CelebA, FFHQ, and ImageNette472

with 178×178 resolution, we use L = 2 level of modulation features for multi-band feature modu-473

lation of locality-aware INR decoder. The dimensionality of frequency features and hidden layers474

in the INR decoder is 256, where (σ1, σ2, σq) = (128, 32, 16). We represent a 178×178 resolution475

of the image as 400 tokens, where each token corresponds to a 9×9 size of the image patch with476

zero padding. We use a multi-head attention block with two attention heads for our selective token477

selection via cross-attention. Following the experimental setting of previous studies [8, 19], we train478

our framework on CelebA, FFHQ, and ImageNette during 300, 1000, and 4000 epochs, respectively.479

When we use four NVIDIA V100 GPUs, the training takes 5.5, 6.7, and 4.3 days, respectively.480

ImageNet 256×256 We use L = 2 level of feature modulation for the image reconstruction481

of ImageNet with 256×256 resolution. We use eight heads of selective token aggregation, 256482

dimensionality of frequency features and hidden layers of the INR decoder, and (σ1, σ2, σq) =483

(128, 32, 16). An image is represented as 256 tokens, where each token corresponds to a 16×16484

patch in the image. We use eight NVIDIA A100 GPUs to train our framework on ImageNet during485

20 epochs, where the training takes about 2.5 days.486

FFHQ 256×256, 512×512, and 1024×1024 Our framework for FFHQ 256×256 and 512×512487

uses L = 2 level of feature modulation with (σ1, σ2, σq) = (128, 32, 16). The size of each patch is 16488

and 32 for 256×256 and 512×512 resolutions, respectively, the number of latent tokens is R = 256,489

and the dimensionality of the INR decoder is dF = d = 256. Our selective token aggregation uses490

two and four heads of cross-attention for FFHQ 256×256 and 512×512, respectively. We randomly491

sample the 10% of coordinates to be decoded at each training step to increase the efficiency of492

training. We train our framework during 400 epochs, while the training takes about 1.5 days using493

four NVIDIA V100 GPUs for FFHQ with 256×256 and about 1.4 days using eight V100 GPUs for494

FFHQ with 512×512. For FFHQ 1024×1024, we use 48 patch size to represent an image as 484495

data tokens and L = 2 level of feature modulation with (σ1, σ2, σq) = (256, 64, 32). The training of496

400 epochs takes about 3.4 days using eight NVIDIA V100 GPUs.497

A.2 Novel View Synthesis498

We train our framework for the task of novel view synthesis on ShapeNet Cars, Chairs, and Lamps.499

Given a few known camera views as support views of a 3D object, our framework predicts a light500

field of the 3D object to predict unseen camera views. For a fair comparison, we use the same splits of501

train-valid samples with previous studies of generalizable INR [8, 19, 35]. While each rendered view502

has the 128×128 resolution of an image, we patchify each rendered image into 256 tokens with 8×8503

size of patches. We use the Plücker coordinate to represent a ray for a pixel as an embedding with six504

dimensions and concatenate the ray embedding into each pixel along the channel dimension. Since505

our INR decoder estimates a light field of a 3D object, the INR decoder has six input channels din = 6506

for a ray coordinate and three output channels dout = 3 for a RGB pixel. Our INR decoder uses L = 2507

level of feature modulation with (σ1, σ2, σq) = (8, 4, 2). We use dF = d = 256 dimensionality of508

the frequency features and hidden features of the INR decoder. We use 1000 training epochs for509

ShapeNet Cars and Chairs, while using 500 epochs for ShapeNet Lamps.510

1https://github.com/kakaobrain/ginr-ipc
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A.3 Diffusion Model for INR generation511

We implement a diffusion model to generate the latent tokens for INRs of ImageNet 256×256.512

Different from the conventional approaches, which use a U-Net architecture to generate an image,513

we use a vanilla Transformer with a simple stack of self-attentions, since the latent tokens do not514

predefine 2D grid structure but are permutation-equivariant. The Transformer for the diffusion model515

has 458M parameters having 24 self-attention blocks with 1024 dimensions of embeddings and 16516

heads. We remark that the locality-aware generalizable INR is not updated during the training of517

diffusion models. For the training of the diffusion model, we follow the formulation of DDPM [15].518

The linear noise schedule with T = 1000 is used to randomly corrupt the latent tokens for INRs519

using isotropic Gaussian noises, and then we train our Transformer to denoise the latent tokens.520

Instead of the ϵ-parameterization that predicts the noises used for the corruption, our Transformer521

x0-parameterization to predict the original latent tokens. We drop 10% of class conditions for our522

model to support classifier-free guidance [16]. For the stability of training, we standardize the features523

of latent tokens, after computing the mean and standard deviation of feature channels of each latent524

token based on the training data. We use eight NVIDIA A100 GPUs to train the model with 256525

batch size during 400 epochs, where the training takes about 7 days. The Adam [20] optimizer with526

constant learning rate 0.0001 and (β1, β2) = (0.9, 0.999) is used without learning rate warm-up and527

any weight decaying. During training, we further compute the exponential moving average (EMA) of528

model parameters with a decaying rate of 0.9999. During the evaluation, we use the EMA model529

with 250 DDIM steps [33] and 2.5 scales of classifier-free guidance [16].530

B Additional Experiments531

B.1 Ablation Study on the Number of Levels532

Table 6: PSNRs on the reconstructed FFHQ with
256×256, 512×512, and 1024×1024 resolutions
for different number of levels.

256×256 512×512 1024×1024
TransINR 30.96 29.35 -
IPC [19] 34.68 31.58 28.68
Ours (L = 1) 37.09 34.84 31.56
Ours (L = 2) 39.88 35.43 31.94
Ours (L = 3) 40.13 35.58 32.40
Ours (L = 4) 39.79 35.40 32.32

Table 6 demonstrates the effect of the number533

of levels L on image reconstruction benchmarks534

of FFHQ images with 256×256, 512×512,535

and 1024×1024 resolutions. Our INR de-536

coder uses bandwidths σq = 16 and (σℓ)
L
ℓ=1537

equal to (128), (128, 32), (128, 64, 32) and538

(128, 90, 64, 32) for L = 1, 2, 3, 4 respectively539

in case of 256×256 and 512×512 resolution,540

and all bandwidths are doubled for 1024×1024541

to leverage high-frequency details.542

Note that our framework outperforms previous543

studies [8, 19] even with L = 1. Moreover, the544

results demonstrate that increasing L improves545

the performance, while the performance saturates beyond L ≥ 3. We postulate that higher resolution546

requires a larger number of levels, as the performance gap between L = 3 and L = 4 decreases as547

the resolution increases.548

B.2 Additional Examples of Novel View Synthesis549

In Figure 8, we show additional examples of novel view synthesis of ShapeNet Chairs, Cars, and550

Lamps with one to five support views.551

B.3 Additional Examples of High-resolution Image Reconstruction552

Figure 9 and 10 shows image reconstruction examples of FFHQ with 256×256, 512×512, and553

1024×1024 resolution by previous studies [8, 19] and our locality-aware generalizable INR. Unlike554

previous studies, our framework can successfully reconstruct fine-grained details in high resolutions.555

B.4 Additional Examples of Conditional Image Synthesis556

Figure 11 shows additional examples of generated images with 256×256 resolution by generating557

locality-aware latents of our framework.558
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Figure 8: Examples of novel view synthesis of ShapeNet Chairs, Cars and Lamps with one, two,
three, and five support views.
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Figure 9: Examples of reconstructed images of FFHQ with 256×256 resolution (top row) and
512×512 resolution (bottom row) by TransINR [8] (left), IPC [19] (middle), and our locality-aware
generalizable INR (right).

Figure 10: Examples of reconstructed images of FFHQ with 1024×1024 resolution by IPC (left) and
our locality-aware generalizable INR (right).
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Figure 11: Additional examples of class-conditional image synthesis by generating the locality-aware
latents of our framework via a transformer-based diffusion model with 458M parameters. All images
are generated with classifier-free guidance at scale 2.5.
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Figure 12: Additional visualization of differences between model predictions after replacing a latent
token with the zero vector for IPC [19] and our framework.
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B.5 Additional Visualization for Locality Analysis559

Figure 12 visualizes which local information of data is encoded in each latent token of IPC [19]560

and our locality-aware generalizable INR in addition to Figure 5. We randomly select a latent token561

and replace it with the zero vector, then visualize the difference between the model predictions with562

or without the replacement as described in Section 4.3. The differences are rescaled to have the563

maximum value of 1 for clear visualization. Furthermore, we fix the set of replaced latent tokens for564

different samples in Figure 12 to emphasize the role of each latent token. Note that each latent token565

of our framework encodes the local information in a particular region of images or light fields, while566

latent tokens of IPC encode global information over whole coordinates.567
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