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ABSTRACT

Diffusion models have driven the advancement of vision generation over the past
years. However, it is often difficult to apply these large models in downstream
tasks, due to massive fine-tuning cost. Recently, Low-Rank Adaptation (LoRA)
has been applied for efficient tuning of diffusion models. Unfortunately, the ca-
pabilities of LoRA-tuned diffusion models are limited, since the same LoRA is
used for different timesteps of the diffusion process. To tackle this problem, we
introduce a general and concise TimeStep Master (TSM) paradigm with two key
fine-tuning stages. In the fostering stage (1-stage), we apply different LoRAs to
fine-tune the diffusion model at different timestep intervals. This results in dif-
ferent TimeStep LoRA experts that can effectively capture different noise levels.
In the assembling stage (2-stage), we design a novel asymmetrical mixture of
TimeStep LoRA experts, via core-context collaboration of experts at multi-scale
intervals. For each timestep, we leverage TimeStep LoRA expert within the small-
est interval as the core expert without gating, and use experts within the bigger
intervals as the context experts with time-dependent gating. Consequently, our
TSM can effectively model the noise level via the expert in the finest interval, and
adaptively integrate contexts from the experts of other scales, boosting the ver-
satility of diffusion models. To show the effectiveness of our TSM paradigm, we
conduct extensive experiments on three typical and popular LoRA-related tasks of
diffusion models, including domain adaptation, post-pretraining, and model distil-
lation. Our TSM achieves the state-of-the-art results on all these tasks, throughout
various model structures (UNet, DiT and MM-DiT) and visual data modalities
(Image and Video), showing its remarkable generalization capacity.

1 INTRODUCTION

Diffusion models have shown remarkable success in vision generation (Rombach et al., 2022b;
Podell et al., 2023; Singer et al., 2022; Ho et al., 2022a; Chen et al., 2024d). Especially with the
guidance of scaling law, they demonstrate the great power in generating images and videos from
user prompts (Esser et al., 2024b; Liu et al., 2024a;c; Bao et al., 2024) owing to billions of model
parameters. However, it is often difficult to deploy these diffusion models efficiently in various
downstream tasks, since fine-tuning such huge models is resource-consuming. To fill this gap, Low-
Rank Adaptation (LoRA) (Hu et al., 2021), initially developed in NLP (Chowdhary & Chowdhary,
2020), has been applied to diffusion models for rapid adaptation and efficient visual generation (Luo
et al., 2023a; Li et al., 2024; Peng et al., 2024; Yin et al., 2024b).

However, we observe that the generative capability of LoRA-tuned diffusion models is limited.
For illustration, we take the well-known PixArt-α (Chen et al., 2024d) as an example, which is
pre-trained on SAM-LLaVA-Captions10M (Chen et al., 2024d) for image generation. As shown
in Fig. 1, we perform LoRA on two typical fine-tuning settings. On one hand, we fine-tune this
model with LoRA on new image data (e.g., T2I-CompBench (Huang et al., 2023)). In this setting
of downstream adaptation, the LoRA-tuned model makes similar errors as the pre-trained model,
i.e., they both fail to fit the target data distribution. On the other hand, we fine-tune this model with
LoRA on the pretraining image data. In this setting of post-pretraining, LoRA-tuned model results in
prompt misalignment, which deteriorates the generative capacity of the pre-trained model. Based on
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A colorful future world with a winged elk flying among the clouds.A red book and a yellow vase.

A blue bench and a green cake. A book on the left of a bird.

(b) Post-Pretraining(a) Domain Adaptation

Pre-trained Model w/ LoRA w/ TSMPre-trained Model w/ LoRA w/ TSM

Figure 1: Comparison on Image Modality. (a) The pre-trained model and LoRA-tuned model
incorrectly generate green bench and red vase, while TSM corrects these errors. (b) LoRA-tuned
model generates degraded images, while TSM benefits visual quality and text alignment.

these observations, there is a natural question: why does such deterioration appear in LoRA-tuned
diffusion models? We believe this is due to the distinct learning manner of diffusion models, i.e.,
diffusion models process inputs with varying noise levels differently at each timestep (Balaji et al.,
2022; Xue et al., 2024; Hang et al., 2023). In the vanilla LoRA setting, only ONE LoRA is applied
for fine-tuning diffusion models at DIFFERENT timesteps. Thus, in the downstream adaptation
case, it fails to fit the new target data just like the pre-trained model. In the post-pretraining case,
such an inconsistent manner would reduce the capability of diffusion models to tackle different noise
levels, especially with very limited parameters in LoRA (more evidence provided in Tab. 1 and 2).

To alleviate this problem, we propose a general and concise TimeStep Master (TSM) paradigm,
with a novel asymmetrical mixture of TimeStep LoRA experts. Specifically, our TSM contains two
distinct stages of fostering and assembling TimeStep LoRA experts, boosting the versatility and
efficiency of tuning diffusion models in vision. In the fostering stage, we divide the training proce-
dure into several timestep intervals. For different intervals, we introduce different LoRA modules
for fine-tuning the diffusion model, leading to different TimeStep LoRA experts. This can effec-
tively enhance the diffusion model to fit the data distribution under different noise levels. In the
assembling stage, we combine the TimeStep LoRA experts of multi-scale intervals to further boost
performance. Specifically, we introduce a novel asymmetrical mixture of TimeStep LoRA experts,
for core-context expert collaboration. For each timestep, we leverage TimeStep LoRA expert within
the smallest interval as the core expert without gating, and use experts within the bigger intervals of
other scales as the context experts with time-dependent gating. In this case, our TSM can effectively
learn the noise level via the expert in the finest interval, as well as adaptively integrate contexts from
the experts of other scales, boosting the versatility and generalization capacity of diffusion model.

To show the effectiveness of our TSM paradigm, we conduct extensive experiments on three typical
and popular LoRA-related tasks of diffusion models, including domain adaptation, post-pretraining,
and model distillation. Our TSM achieves the state-of-the-art results on all these tasks, throughout
various model structures (UNet (Ronneberger et al., 2015), DiT (Peebles & Xie, 2023), MM-DiT
(Esser et al., 2024a)) and visual data modalities (Image, Video), showing its remarkable generaliza-
tion capacity. For the above three tasks, TSM achieves the best performance on T2I-CompBench, ef-
ficiently improves model performance after post-pretraining using only public datasets, and reaches
the FID of 9.90 on COCO2014 with a very low resource consumption of 3.7 A100 days.

2 RELATED WORK

Diffusion models for visual synthesis. Recently, diffusion models (DMs) have swept across the
realm of visual generation and have become the new state-of-the-art generative models for text-to-
image (Podell et al., 2023; Nichol et al., 2021; Li et al., 2023; Saharia et al., 2022; Chen et al.,
2024d;b;c; Xue et al., 2024) and text-to-video (Ho et al., 2022b; Blattmann et al., 2023; Khacha-
tryan et al., 2023; Luo et al., 2023b; Wang et al., 2023; Singer et al., 2022; Chen et al., 2023a;
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Zhuang et al., 2024). Stable Diffusion 1.5 (SD1.5) (Rombach et al., 2022b) operates in the latent
space and can generate high-resolution images. The PixArt series (Chen et al., 2024d;b;c) provide
more accessibility in high-quality image generation by introducing efficient training and inference
strategies. SD3 (Esser et al., 2024b) demonstrates even more astonishing generation results with the
MM-DiT architecture and scaled-up parameters. VideoCrafter2 (VC2) (Chen et al., 2024a) discov-
ers the spatial-temporal relationships of the video diffusion model and further proposes an effective
training paradigm for high-quality video generation. However, the increasing number of parameters
of the DMs also makes it difficult to directly transfer its powerful capabilities to other domains.

Efficient tuning of diffusion models. To reduce the cost of full fine-tuning DMs in downstream
tasks and retaining the generalization ability, LoRA (Hu et al., 2021) is widely applied on DMs
to efficiently train low-rank matrices (Zhang et al., 2023; Ye et al., 2023; Xie et al., 2023; Mou
et al., 2024; Lin et al., 2024a; Xing et al., 2024; Ran et al., 2024; Gu et al., 2024; Lyu et al., 2024;
Huang et al., 2023). GORS (Huang et al., 2023) applys LoRA to finetune the DMs to the target
domain. DMD (Yin et al., 2024b) supports the use of LoRA in model distillation for fast inference.
ControlNeXt (Peng et al., 2024) employed LoRA for efficient and enhanced controllable genera-
tion. T2V-Turbo (Li et al., 2024) injected LoRA to video diffusion model (Chen et al., 2024a) and
optimized with mixed rewards, achieving inference acceleration and quality improvement. But as
discussed earlier, the generation capabilities of LoRA-tuned DMs are limited. We tackle this with
our TSM, which assigns TimeStep LoRA experts to learn the distribution within diverse noise lev-
els, and assemble these experts for further information aggregation. Using TSM, the generative
performance of pre-trained diffusion models is significantly enhanced at a low fine-tuning cost.

3 METHOD

In this section, we introduce our TimeStep Master (TSM) paradigm in detail. First, we briefly
review the diffusion model and LoRA as preliminaries. Then, we explain two key fine-tuning stages
in TSM, i.e., expert fostering and assembling, in order to build an asymmetrical mixture of TimeStep
LoRA experts for efficient and versatile enhancement of the diffusion model.

Diffusion Model. The diffusion model is designed to learn a data distribution by gradually denoising
a normally-distributed variable (Song et al., 2021; Ho et al., 2020). It has been widely used for
image/video generation (Rombach et al., 2022b; Podell et al., 2023; Singer et al., 2022; Ho et al.,
2022a; Chen et al., 2024d; Zhuang et al., 2024; Chen et al., 2024e). In the forward diffusion process,
one should add Gaussian noise ϵ ∼ N (0, I) on the input x0, in order to generate the noisy input xt

at each timestep, xt =
√
αtx0 +

√
1− αtϵ, where t = 1, 2, · · · , T , and T is the total number of

timesteps in the forward process. αt is a parameter related to t. When t approaches T , αt approaches
0. The training goal is to minimize the loss function for denoising,

L = Ex0,c,ϵ,t

[
∥ϵ− ϵΘ (xt, t, c) ∥22

]
, t ∈ [1, T ], (1)

where ϵΘ is the output of neural network with model parameters Θ, and c indicates the additional
condition, e.g., text input. To achieve superior performance, the diffusion model is often designed
with a large number of network parameters that are pre-trained on large-scale web data. Apparently,
it is computationally expensive to fine-tune such a big model for specific downstream tasks.

Low-Rank Adaptation (LoRA). To alleviate the above difficulty, LoRA (Hu et al., 2021) has been
recently applied for rapid fine-tuning diffusion models on target data (Ruiz et al., 2023; Huang et al.,
2023). Specifically, LoRA introduces low-rank decomposition of an extra matrix,

Θ+∆Θ = Θ+BA, (2)
where Θ ∈ Rd×k is the pretrained parameter matrix of diffusion model. ∆Θ ∈ Rd×k is the extra
parameter matrix that is decomposed as the multiplication of two low-rank matrices A ∈ Rr×k and
B ∈ Rd×r, where r ≪ d, k. To achieve parameter-efficient fine-tuning, one can simply freeze
the pre-trained parameter Θ, while only learning the low-rank matrices A and B on target data
for computation cost reduction. However, the generation capabilities of these vanilla LoRA-tuned
diffusion models are limited. The main reason is that, diffusion model exhibits different processing
modes for the noisy inputs at different timesteps (Balaji et al., 2022; Hang et al., 2023). Alternatively,
LoRA applies the same low-rank matrices A and B for different timesteps. Such inconsistency
would reduce the capacity of diffusion model to tackle different noise levels, especially with a very
limited number of learnable parameters in A and B. To address this problem, we propose a TimeStep
Master (TSM) paradigm with two important stages as follows.
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Figure 2: Fostering Stage: TimeStep LoRA Expert Construction. We divide all T timesteps into
n intervals and fine-tune the diffusion model with individual LoRA module for each interval.

3.1 FOSTERING STAGE: TIMESTEP LORA EXPERT CONSTRUCTION

To learn different modes of the noisy inputs, we propose to introduce different LoRAs for different
timesteps. Specifically, we uniformly divide the timesteps of T into n intervals. For the i-th interval,
we introduce an individual LoRA,

Θ+∆Θi = Θ+BiAi (3)

where Ai ∈ Rr×k and Bi ∈ Rd×r refer to low-rank matrices in the i-th interval. We optimize Ai

and Bi by fine-tuning the diffusion model on the noisy inputs within the i-th interval,

L = Ex0,c,ϵ,t

[
∥ϵ− ϵΘ,Ai,Bi

(xt, t, c) ∥22
]
, t ∈ [

i− 1

n
· T + 1,

i

n
· T ]. (4)

We dub the fine-tuned diffusion model as a TimeStep LoRA expert at interval i. Hence, we can
obtain n TimeStep LoRA experts for n intervals of timesteps. During inference, we first sample
xT from Gaussian noise xT ∼ N (0, I), and then use these TimeStep LoRA experts to iteratively
denoise xT , i.e., when the timestep t iterates to one certain interval, we use the corresponding
TimeStep LoRA expert of this interval to estimate the noise of xt, where t = T, ..., 1.

It is worth mentioning that, there are two extreme cases with n = 1 and n = T . When n = 1,
it refers to the vanilla LoRA setting that is limited to capture different noise levels at different
timesteps. When n = T , it refers to the setting where there is a LoRA expert for each timestep. Ap-
parently, this setting makes no sense since the noise levels are similar among the adjacent timesteps.
Hence, it is unnecessary to equip a LoRA for each timestep. Especially T is often large in the diffu-
sion model, such an extreme setting introduces too many LoRA parameters to learn. Consequently,
we propose to divide T in different numbers of intervals, i.e., n = n1, n2, · · · , nm. In this case,
for each timestep t, there are m TimeStep LoRA experts. In the following, we introduce a novel
asymmetrical mixture of these TimeStep LoRA experts, which can effectively and adaptively make
them collaborate to further boost diffusion models via multi-scale noise modeling.

3.2 ASSEMBLING STAGE: ASYMMETRICAL MIXTURE OF TIMESTEP LORA EXPERTS

Via the multi-scale design of interval division above, one can obtain m TimeStep LoRA experts for
each timestep t. Hence, the next question is how to assemble their power to model the noise level of
this step. Naively, one can leverage the standard Mixture of Experts (MoE) (Riquelme et al., 2021;
Chen et al., 2023b) without distinguishing the role of experts. But this is not the case for TimeStep
LoRA experts. Apparently, for each timestep, the TimeStep LoRA expert within the smallest interval
plays the core role in modeling the noise level of this step with fine granularity. When the interval is
bigger, the granularity of noise modeling is getting bigger, i.e., the TimeStep LoRA experts within
bigger intervals are getting more insensitive to noise levels.

Based on this analysis, we introduce a novel and concise asymmetrical mixture of TimeStep LoRA
experts for core-context expert collaboration. Specifically, for each timestep t, we leverage TimeStep
LoRA expert within the smallest interval as the core expert without gating, and use the rest (m− 1)
experts as the context ones with gating,

Θ+∆Θi1 + G(zt, t)⊙ [∆Θi2 , ....,∆Θim ] = Θ +Bi1Ai1 +
∑m

j=2
Gj ⊙BijAij , (5)
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Figure 3: Assembling Stage: Asymmetrical Mixture of TimeStep LoRA Experts. We divide T
into 4 intervals, namely n1=8, n2=4, n3=2, n4=1. The TimeStep LoRA expert within the smallest-
scale interval plays the core role to model the noise level of t with fine granularity. The core expert
(red) is without gating; the context experts (blue, yellow and green) are with gating. The router is
timestep-dependent, which adaptively weights the importance of context experts at t.

Note that, we design the router of gating G(zt, t) ∈ Rm−1 to be timestep dependent, in order to
adaptively weight contexts of the rest (m − 1) experts according to the timestep. Specifically, we
make G(zt, t) as a transformation of the timestep t and the input feature zt ∈ Rk×l of this step. For
simplicity, we design it as the sum over a FC layer of zt and an embedding layer of t,

G(zt, t) = [G2, ...,Gm] = F (zt) + E (t) , (6)

where the embedding layer refers to a learnable matrix with a size of T × (m− 1), and E (t) means
that we extract the parameters in the t-th row as the embedding of timestep t. Finally, we minimize
the diffusion loss function over this asymmetrical mixture of TimeStep LoRA experts,

L = Ex0,c,ϵ,t

[
∥ϵ− ϵΘ, {Aij

,Bij
}m
j=1, G (xt, t, c) ∥22

]
, ij = ⌈ t

T
· nj⌉, (7)

where the timestep t simultaneously belongs to intervals of m scales, i.e., t = 1, 2, · · · , T , and
j = 1, ...,m. Note that, the TimeStep LoRA experts have been trained in the fostering stage. Hence,
we freeze them and only learn the parameters of router G(zt, t) in the assembling stage. Via such
a distinct paradigm, our TSM can further boost diffusion to master noise modeling via TimeStep
expert collaboration, as well as inherit the efficiency of LoRA for rapid adaption.

4 EXPERIMENTS

We apply Timestep Master (TSM) to three typical fine-tuning tasks of diffusion model in visual gen-
eration: domain adaptation, post-pretraining, and model distillation. Extensive results demon-
strate TSM achieves the state-of-the-art performance on all these tasks, throughout different model
structures and modalities. We also make detailed ablation and visualization to show its effectiveness.

4.1 DOMAIN ADAPTATION

Problem Definition and Dataset. Domain adaptation (Farahani et al., 2021) refers to the task of
adapting a model trained on a source domain to perform well on a different but related target domain.
The goal is to fit the target domain distribution while preserving the strong generalization ability of
the pre-trained model. We conduct domain adaptation experiments on T2I-CompBench (Huang
et al., 2023), an open-world text-to-image generation benchmark which contains six domains. Each
domain includes domain-specific training and testing prompts (700:300) and employs specialized
models to evaluate generated test images and we convert all scores into percentile for ease of reading.

Implementation Details. Following (Huang et al., 2023), we generate 90 distinct 512x512 reso-
lution images per training prompt for adaptation. We conduct both vanilla LoRA (Hu et al., 2021)
and TSM experiments based on the pre-trained models of SD1.5 (Rombach et al., 2022a), PixArt-α
(Chen et al., 2024d) and Stable Diffusion 3 (SD3) (Esser et al., 2024b). For SD3, in vanilla LoRA
and TSM fostering stage (1-stage), we employ LoRA on the to q, to k, to v and to out.0 modules of
the MM-DiT and q proj, k proj, v proj and out proj modules of two CLIP text encoders (Radford
et al., 2021a; Cherti et al., 2023). We set LoRA r, α=4, and employ zero initialization for all matrix
B. At TSM assembling stage (2-stage), we add router to the module which is equipped with LoRA

5
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Method Color↑ Shape↑ Texture↑ Spatial↑ Non-Spatial↑ Complex↑
SD1.4 (Rombach et al., 2022b) 37.65 35.76 41.56 12.46 30.79 30.80
SD1.5 (Rombach et al., 2022b) 36.97 36.27 41.25 11.04 31.05 30.79
SD2 (Rombach et al., 2022b) 50.65 42.21 49.22 13.42 31.27 33.86
SD2 + Composable (Liu et al., 2022) 40.63 32.99 36.45 8.00 29.80 28.98
SD2 + Structured (Yu et al., 2023) 49.90 42.18 49.00 13.86 31.11 33.55
SD2 + Attn Exct (Wang et al., 2024) 64.00 45.17 59.63 14.55 31.09 34.01
SD2 + GORS unbaised (Huang et al., 2023) 64.14 45.46 60.25 17.25 31.58 34.70
SD2 + GORS (Huang et al., 2023) 66.03 47.85 62.87 18.15 31.93 33.28
SDXL (Podell et al., 2023) 58.79 46.87 52.99 21.33 31.19 32.37
PixArt-α (Chen et al., 2024d) 41.70 37.96 45.27 19.89 30.74 33.43
PixArt-α-ft (Chen et al., 2024d) 66.90 49.27 64.77 20.64 31.97 34.33
DALLE3 (Betker et al., 2023) 77.85 62.05 70.36 28.65 30.03 37.73
SD3 (Esser et al., 2024b) 80.33 58.49 74.27 26.44 31.43 38.62
SD1.5 + Vanilla LoRA (Hu et al., 2021) 51.70 44.76 52.68 15.45 31.69 32.83
PixArt-α + Vanilla LoRA (Hu et al., 2021) 46.53 43.75 53.37 23.08 30.97 34.75
SD3 + Vanilla LoRA (Hu et al., 2021) 82.41 62.32 77.27 31.87 31.72 38.41
SD1.5 + TSM (Ours) 57.12 46.65 58.16 18.80 31.83 32.94
PixArt-α + TSM (Ours) 54.66 44.47 57.12 25.41 31.05 34.85
SD3 + TSM (Ours) 83.45 63.16 78.18 34.50 31.81 38.71

Table 1: Domain Adaptation on T2I-CompBench. Our TSM demonstrates the best performance
in terms of color, shape, texture, spatial and complex, outperforming SOTA methods.

Image Modality Method Color↑ Shape↑ Texture↑ Spatial↑ Non-Spatial↑ Complex↑
PixArt-α (Chen et al., 2024d) 41.70 37.96 45.27 19.89 30.74 33.43
+ LoRA (Hu et al., 2021) 43.47 ↑ 1.77 34.74 ↓ 3.22 41.57 ↓ 3.70 15.37 ↓ 4.52 30.74 30.43 ↓ 3.00
+ TSM (Ours) 48.86 ↑ 7.16 37.97 ↑ 0.01 47.31 ↑ 2.04 21.55 ↑ 1.66 31.13 ↑ 0.39 32.96 ↓ 0.47

Video Modality Method IS↑ Action↑ Amplitude↑ BLIP-BLEU↑ Color↑ Count↑
VC2 (Chen et al., 2024a) 16.76 77.76 44.0 23.02 46.74 53.77
+ LoRA (Hu et al., 2021) 15.06 ↓ 1.70 73.85 ↓ 3.91 46.0 ↑ 2.0 21.89 ↓ 1.13 41.30 ↓ 5.44 27.89 ↓ 25.88
+ TSM (Ours) 18.08 ↑ 1.32 80.77 ↑ 3.01 54.0 ↑ 10.0 24.26 ↑ 1.24 60.87 ↑ 14.13 60.38 ↑ 6.61

Table 2: Image and Video Modality Post-Pretraining on T2I-CompBench and EvalCrafter.
Our TSM continues to improve model performance compared to vanilla LoRA.

and set TimeStep experts n1=8, n2=1. We train 4K steps for vanilla LoRA and two stages of TSM.
The global batch size is 64. We use the AdamW optimizer with β1=0.9, β2=0.999. For MM-DiT,
the learning rate is set to 1e-5 and the weight decay to 1e-4. For text encoder, the learning rate is set
to 5e-6 and the weight decay to 1e-3. The settings of SD1.5 and PixArt-α are in Sec. 4.4, 4.2.

As shown in Tab. 1, TSM achieves state-of-the-art results on T2I-CompBench and is far ahead in
domains of color, shape, texture, and spatial. For complex domain, which contains more complex
prompts and metrics than others, the performance of the model deteriorates after employing vanilla
LoRA for domain adaptation. However, TSM can still improve the model performance.

4.2 POST-PRETRAINING

Problem Definition and Dataset. Post-pretraining (Luo et al., 2022) refers to the task of continuing
to train a pre-trained model on a general dataset. The goal is to further improve the general perfor-
mance of the model. We conduct experiments on post-pretraining tasks in both image and video
modalities. For image modality, we evaluate our post-trained model on T2I-CompBench (Huang
et al., 2023) as in Sec. 4.1. For video modality, we use EvalCrafter (Liu et al., 2024b), a public
benchmark for text-to-video generation using 700 diverse prompts. Specifically, we adopt Incep-
tion Score (IS) for video quality assessment. For motion quality, we consider Action Recognition
(Action) and Amplitude Classification Score (Amplitude). We evaluate text-video alignment with
Text-Text Consistency (BLIP-BLEU) and Object and Attributes Consistency (Color and Count).

Implementation Details. For image modality, we conduct both vanilla LoRA (Hu et al., 2021) and
TSM experiments based on the pre-trained model PixArt-α Chen et al. (2024d) and the training
dataset SAM-LLaVA-Captions 10M (Chen et al., 2024d). In vanilla LoRA and TSM 1-stage, we
employ LoRA on the to q, to k, to v and to out.0 modules of the DiT (Peebles & Xie, 2022) and
q,v modules of T5 text encoder (Raffel et al., 2020). For model and training settings, we adopt the
same LoRA and router strategies as SD3 in Sec. 4.1 for vanilla LoRA and TSM. The learning rate
is 2e-5 and the weight decay is 1e-2 for both DiT and text encoder. For video modality, we conduct
experiments based on the pre-trained VideoCrafter2 (Chen et al., 2024a) and use a 70k subset of
OpenVid-1M (Nan et al., 2024) for post-pretraining. In vanilla LoRA and TSM 1-stage, we inject
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Family Method Resolution↑ Nparams↓ Training Cost↓ FID↓

Unaccelerated
Diffusion

DALL-E (Ramesh et al., 2021) 256 12.0B 2048 V100 × 3.4M steps 27.5
DALL-E 2 (Ramesh et al., 2022) 256 6.5B 41667 A100 days 10.39
Make-A-Scene (Gafni et al., 2022) 256 4.0B - 11.84
GLIDE (Nichol et al., 2021) 256 5.0B - 12.24
LDM (Rombach et al., 2022b) 256 1.45B - 12.63
Imagen (Saharia et al., 2022) 256 7.9B 4755 TPUv4 days 7.27
eDiff-I (Balaji et al., 2022) 256 9.1B 256 A100 × 600K steps 6.95
SD1.5 (50 step, cfg=3, ODE) 512 860M 6250 A100 days 8.59
SD1.5 (200 step, cfg=2, SDE) 512 860M 6250 A100 days 7.21

Accelerated
Diffusion

DPM++ (Lu et al., 2022) 512 - - 22.36
UniPC (4 step) (Zhao et al., 2024) 512 - - 19.57
LCM-LoRA (4 step) (Luo et al., 2023a) 512 67M 1.3 A100 days 23.62
InstaFlow-0.9B (Liu et al., 2023) 512 0.9B 199 A100 days 13.10
SwiftBrush (Nguyen & Tran, 2024) 512 860M 4.1 A100 days 16.67
HiPA (Zhang & Hooi, 2023) 512 3.3M 3.8 A100 days 13.91
UFOGen (Xu et al., 2024b) 512 860M - 12.78
SLAM (4 step) (Xu et al., 2024a) 512 860M 6 A100 days 10.06
DMD (Yin et al., 2024b) 512 860M 108 A100 days 11.49
DMD2 (Yin et al., 2024a) 512 860M 70 A100 days 8.35
DMD2 + LoRA (Hu et al., 2021) 512 67M 3.6 A100 days 14.58
DMD2 + TSM (Ours) 512 68M 3.7 A100 days 9.90

Table 3: Model Distillation on 30K prompts from COCO2014. Our TSM achieves competitive
FID compared to SOTA models while lowering the training cost significantly. Rows marked in gray
demonstrate the superiority of our TSM over the vanilla LoRA based on DMD2.

LoRA on the k, v modules in both spatial and temporal layers of the 3D-UNet and out proj module of
OpenCLIP (Cherti et al., 2023) text encoder. We set LoRA r, α=16 and adopt lora dropout=0.01
only in the 3D-UNet. In TSM 2-stage, we add router to the module where LoRA is injected and set
TimeStep experts n1=8, n2=4. We train 5K steps for vanilla LoRA and two stages of TSM. The
global batch size is 32. We use the same optimizer setting as in image modality. The learning rate is
2e-4 and the weight decay is 1e-2 for both UNet and text encoder.

As shown in Tab. 2, the performance of models using vanilla LoRA for post-pretraining drops
significantly. TSM continues to improve model performance without higher quality internal data.

4.3 MODEL DISTILLATION

Problem Definition and Dataset. Model distillation (Gou et al., 2021) refers to the task of training
a simplified and efficient model to replicate the behavior of a complex one. Since LoRA is widely
used in model distillation, we explore the capabilities of TSM in this task. We conduct experiments
on 30K prompts from COCO2014 (Lin et al., 2014) validation set. Following DMD2 (Yin et al.,
2024a), we generate images from these prompts and compare these images with 40,504 real images
from the same validation set to calculate the Fréchet Inception Distance (FID) (Heusel et al., 2017).

Implementation Details. We distill a 4-step (i.e., 999, 749, 499, 249) generator from 1000 steps of
SD1.5 (Rombach et al., 2022b). Following DMD2, we first train the model without a GAN loss, and
then with the GAN loss on 500K real images from LAION-Aesthetic (Schuhmann et al., 2022). We
employ LoRA with r=64, α=8 on to q, to k, to v, to out.0, proj in, proj out, ff.net.0.proj, ff.net.2,
conv1, conv2, conv shortcut, downsamplers.0.conv, upsamplers.0.conv and time emb proj modules
of UNet. In vanilla LoRA, we train for 40K steps without GAN loss and 5K steps with it. In TSM
1-stage, we train the experts at 999 and 749 timesteps for 20K steps without GAN loss and 5K steps
with it. At 499 and 249 timesteps, we reduce training without GAN loss to 5K steps and increase
training with real image guidance to 20K and 40K steps respectively. In TSM 2-stage, we train the
router and freeze other modules with n1=4, n2=1 TimeStep experts. We only train it for 2K steps
with GAN loss, due to the little Nparams (<1M). The batch size is 32 without GAN loss and 16 with
it (4 times for vanilla LoRA). Other settings are consistent with DMD2.

Tab. 3 shows the SOTA comparison on model distillation, where Nparams refers to the trainable
parameters and Training Cost is calculated based on a single A100 GPU. Notably, our TSM far
outperforms LoRA (FID 9.90 vs. 14.58) with an increase of less than 1M trainable parameters and
0.1 A100 days gain of training cost. Although we could not achieve the lowest FID due to our
limited training resources, we obtain a competitive result while significantly reducing the training
cost. This demonstrates the effectiveness and efficiency of our TSM in model distillation.
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Model FT Method Color↑ Shape↑ Texture↑ Spatial↑ Non-Spatial↑ Complex↑

SD1.5
UNet

Vanilla LoRA 51.57 44.76 52.68 15.45 31.69 32.83
TSM 1-stage 56.48↑ 4.91 45.91↑ 1.15 57.08↑ 5.12 18.01↑ 2.56 31.77↑ 0.08 32.79↓ 0.04
TSM 2-stage 57.12↑ 5.55 46.65↑ 1.89 58.16↑ 5.48 18.80↑ 3.35 31.83↑ 0.14 32.94↑ 0.11

PixArt-α
DiT

Vanilla LoRA 46.53 43.75 53.37 23.08 30.97 34.75
TSM 1-stage 52.84↑ 6.31 43.92↑ 0.17 54.07↑ 0.7 25.35↑ 2.27 31.03↑ 0.06 35.04↑ 0.29
TSM 2-stage 54.66↑ 8.13 44.47↑ 0.72 57.12↑ 3.75 25.41↑ 2.33 31.05↑ 0.08 34.85↑ 0.10

SD3
MM-DiT

Vanilla LoRA 82.41 62.32 77.27 31.87 31.72 38.41
TSM 1-stage 82.52↑ 0.11 62.94↑ 0.62 77.55↑ 0.28 33.08↑ 1.21 31.74↑ 0.02 38.54↑ 0.13
TSM 2-stage 83.45↑ 1.04 63.16↑ 0.84 78.18↑ 0.91 34.50↑ 2.63 31.81↑ 0.09 38.71↑ 0.30

Table 4: Domain Adaptation Ablation on T2I-CompBench.
IMG Model FT Method Color↑ Shape↑ Texture↑ Spatial↑ Non-Spatial↑ Complex↑

PixArt-α
Vanilla LoRA 43.47 34.74 41.57 15.37 30.74 30.43
TSM 1-stage 45.66 ↑ 2.19 37.06 ↑ 2.32 45.42 ↑ 3.85 22.32 ↑ 6.95 31.03 ↑ 0.29 32.65 ↑ 2.22
TSM 2-stage 48.86 ↑ 5.39 37.97 ↑ 3.23 47.31 ↑ 5.74 16.18 ↑ 1.66 31.13 ↑ 0.39 32.96 ↑ 2.53

VID Model FT Method IS↑ Action↑ Amplitude↑ BLIP-BLEU↑ Color↑ Count↑

VC2
Vanilla LoRA 15.06 73.85 46.0 21.89 41.30 27.89
TSM 1-stage 16.71 ↑ 1.65 79.07 ↑ 5.22 50.0 ↑ 4.0 23.99 ↑ 2.10 56.52 ↑ 15.22 55.48 ↑ 27.59
TSM 2-stage 18.08 ↑ 3.02 80.77 ↑ 6.92 54.0 ↑ 8.0 24.26 ↑ 2.37 60.87 ↑ 19.57 60.38 ↑ 32.49

Table 5: Image and Video Post-Pretraining Ablation on T2I-CompBench and EvalCrafter.
Model n r step Color↑ Shape↑ Texture↑ Spatial↑ Non-Spatial↑ Complex↑

w/o fine-tuning 36.97 36.27 41.25 11.04 31.05 30.79
1 4 4000 49.10 44.62 53.62 14.00 31.69 33.02
1 32 4000 51.70 44.76 52.68 15.45 31.69 32.83
1 4 32000 51.86 44.74 55.74 15.70 31.70 29.84

SD1.5 2 4 4000 52.02 43.61 55.43 16.35 31.74 33.13
UNet 2 4 16000 54.30 45.25 57.26 17.05 31.79 31.50

4 4 4000 54.24 45.78 56.61 17.97 31.73 33.13
4 4 8000 55.85 46.45 58.06 18.32 31.77 32.95
8 4 4000 56.48 45.91 57.08 18.01 31.77 32.79
w/o fine-tuning 41.70 37.96 45.27 19.89 30.74 33.43
1 4 4000 46.26 42.58 52.01 23.00 30.88 34.58
1 32 4000 46.53 43.75 53.37 23.08 30.97 34.75
1 4 32000 52.55 43.47 53.20 22.95 31.00 33.67

PixArt-α 2 4 4000 50.68 43.69 54.57 24.41 30.96 34.76
DiT 2 4 16000 53.00 44.43 55.08 24.95 31.02 34.63

4 4 4000 51.96 43.42 53.38 24.76 31.02 34.98
4 4 8000 52.77 43.77 55.48 25.64 31.06 34.68
8 4 4000 52.84 43.92 54.07 25.35 31.03 35.04
w/o fine-tuning 80.33 58.49 74.27 26.44 31.43 38.62
1 4 4000 81.28 61.31 76.65 31.28 31.70 38.55
1 32 4000 82.41 62.32 77.27 31.87 31.72 38.41
1 4 32000 81.82 62.53 76.81 32.94 31.73 38.97

SD3 2 4 4000 81.74 61.82 76.68 32.01 31.73 38.44
MM-DiT 2 4 16000 82.60 62.71 77.80 32.98 31.79 38.61

4 4 4000 82.24 62.00 77.11 32.20 31.79 38.35
4 4 8000 82.76 62.77 77.57 33.01 31.75 38.54
8 4 4000 82.52 62.94 77.55 33.08 31.74 38.54

Table 6: TSM 1-Stage Ablation. n, r and step represent the number, rank and fine-tuning steps of
TimeStep experts. Values in red and blue represent the optimal and suboptimal respectively. When
n=1, TSM 1-stage is equal to vanilla LoRA; when n>1, it significantly outperforms vanilla LoRA.

4.4 ABLATION STUDIES

Overall Design. We conduct two-stage ablation experiments on domain adaptation, post-
pretraining, and model distillation. As shown in Tab. 4, in domain adaptation, our TSM significantly
outperforms the vanilla LoRA on three main generative model architectures (UNet, Dit, and MM-
DiT), verifying the generalization of TSM on model architecture. The model and training settings
of SD1.5, PixArt-α and SD3 are same as Sec. 4.4, 4.2, 4.1 respectively. As shown in Tab. 5, in
post-pretraining, TSM achieves huge improvements over vanilla LoRA on two modalities (image
and video), verifying the generalization of TSM on visual modality. The experimental settings are
same as Sec. 4.2. As shown in Tab. 8, in model distillation, TSM outperforms the vanilla LoRA
on FID, Patch-FID (Lin et al., 2024b; Chai et al., 2022), and CLIP score (Radford et al., 2021b) on
30K prompts from COCO2014, demonstrating the generality of our TSM throughout various tasks.

Fostering Stage. We conduct TSM 1-stage ablation experiments for TimeStep experts’ n, r, and
fine-tuning step on T2I-CompBench, based on SD1.5, PixArt-α, and SD3. For SD1.5, in vanilla
LoRA and TSM 1-stage, we employ LoRA on the to q, to k, to v and to out.0 modules of the UNet
and q proj and v proj modules of CLIP text encoders. The learning rate is 1e-4 and other model
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Model ncore ncontext Color↑ Shape↑ Texture↑ Spatial↑ Non-Spatial↑ Complex↑

SD1.5
UNet

4 - 55.85 46.45 58.06 18.32 31.77 32.95
- 1,4 56.42 45.77 56.59 17.17 31.76 32.66
4 1 56.93 46.92 57.95 18.02 31.79 32.71
4 2 56.84 46.70 57.70 17.86 31.75 32.80
4 8 56.96 46.12 59.00 18.43 31.74 32.76
8 - 56.48 45.91 57.08 18.01 31.77 32.79
- 1,8 54.56 45.52 56.30 17.90 31.78 33.27
8 1 57.12 46.65 58.16 18.70 31.83 32.94
8 2 56.20 46.58 58.04 18.17 31.78 32.91
8 4 56.63 46.70 58.80 18.84 31.77 32.69
8 1,2,4 57.59 46.18 57.69 17.91 31.82 32.78

PixArt-α
DiT

4 - 52.77 43.77 55.48 25.64 31.06 34.68
- 1,4 53.24 43.79 54.70 25.63 31.06 35.02
4 1 53.57 44.29 56.26 25.55 31.04 34.58
4 2 53.54 44.02 56.02 26.17 31.08 34.41
4 8 52.70 43.66 55.62 25.37 31.06 34.68
8 - 52.84 43.92 54.07 25.35 31.03 35.04
- 1,8 51.93 43.87 54.00 25.67 31.03 35.08
8 1 54.66 44.47 57.12 25.41 31.05 34.85
8 2 54.33 44.10 55.75 25.82 31.05 34.80
8 4 54.03 43.73 54.72 26.06 31.03 34.83
8 1,2,4 54.80 44.26 56.30 26.00 31.05 34.78

SD3
MM-DiT

4 - 82.76 62.77 77.57 33.01 31.75 38.54
- 1,4 81.38 62.73 77.19 33.65 31.69 38.65
4 1 83.47 63.00 77.92 34.18 31.80 38.66
4 2 83.14 63.09 77.87 34.36 31.81 38.63
4 8 83.30 62.94 78.02 34.37 31.80 38.66
8 - 82.52 62.94 77.55 33.08 31.74 38.54
- 1,8 82.84 62.60 76.11 34.21 31.75 38.67
8 1 83.45 63.16 78.18 34.50 31.81 38.71
8 2 82.89 62.90 77.58 34.30 31.80 38.68
8 4 82.78 62.99 77.71 34.15 31.79 38.68
8 1,2,4 83.02 62.97 77.83 34.12 31.79 38.60

Table 7: TSM 2-Stage Ablation on T2I-CompBench. ncore and ncontext refer to the number of
core experts and context experts respectively. Values in green represent the improved performance
compared to the 1-stage model with the same core experts, while gray indicate the decreased. The
results show that the design of asymmetric TimeStep LoRA experts assembly is better than the
symmetric case or without assembly, and n1=8, n2=1 can achieve stable performance improvement.

Metric FT Method Value

FID↓
Vanilla LoRA 14.58
TSM 1-stage 9.92 ↓ 4.66
TSM 2-stage 9.90 ↓ 4.68

Patch
-FID↓

Vanilla LoRA 15.43
TSM 1-stage 11.88 ↓ 3.55
TSM 2-stage 11.82 ↓ 3.61

CLIP-
Score↑

Vanilla LoRA 0.3176
TSM 1-stage 0.3208 ↑ %1.01
TSM 2-stage 0.3212 ↑ %1.13

Table 8: Model Distillation
Ablation based on DMD2.

Model zt t Color↑ Shape↑ Texture↑ Spatial↑ Non-Spatial↑ Complex↑

SD1.5
UNet

✓ ✓ 57.12 46.65 58.16 18.80 31.83 32.94
✗ ✓ 51.42 44.09 53.46 13.56 31.75 33.45
✓ ✗ 53.64 46.24 55.08 16.31 31.72 33.42

PixArt-α
DiT

✓ ✓ 54.66 44.47 57.12 25.41 31.05 34.85
✗ ✓ 45.37 42.49 52.09 24.84 30.99 34.83
✓ ✗ 47.23 44.69 54.30 25.25 30.99 34.86

SD3
MM-DiT

✓ ✓ 83.45 63.16 78.18 34.50 31.81 38.71
✗ ✓ 80.99 60.38 74.62 31.87 31.61 38.53
✓ ✗ 82.55 62.25 76.68 31.53 31.74 38.87

Table 9: Gating Ablation on T2I-CompBench. The model per-
formance is optimal when the router’s input has both zt and t.

and training settings are the same as PixArt-α in Sec. 4.2. The settings of PixArt-α and SD3 are
in Sec. 4.2 and 4.1. Notably, when n=1, TSM 1-stage degenerates to vanilla LoRA. As shown in
Tab. 6, regardless of whether we train each LoRA for the same steps, introduce equivalent training
costs (n×step=32K) or the same amount of additional parameters, all n=2, 4, 8 configurations sig-
nificantly outperform vanilla LoRA. This highlights that the TSM 1-stage surpasses vanilla LoRA.
Moreover, we can find that the performance of n=4 and n=8 is similar. Therefore, we believe that
n=8 is enough for the division of the overall timesteps.

Assembling Stage. We conduct TSM 2-stage ablation experiments on T2I-CompBench, based on
TSM 1-stage model with r=4. The training settings are same as Fostering Stage ablation. As
shown in Tab. 7, we ablate the core expert and context expert. It shows that TSM 2-stage can
improve model performance in most cases compared to TSM 1-stage. But surprisingly, the number
of context LoRA and the performance in 1-stage have little impact on the performance in 2-stage.
This is why we use the simplest n2=1 of context LoRA in the experimental settings in Sec. 4.1, 4.2,
4.3. We also study on the symmetry of the TimeStep experts without core LoRA in Tab. 7, all the
TimeStep experts are context LoRA. The experiment results show that the 2-stage performance of
the symmetrical pattern is often worse than the asymmetrical pattern. Finally, as shown in Tab. 9,
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A red dog playing with a green frisbee in the park.Two birds flew around a person, in the style of Sci-Fi.

Figure 4: Comparison on Video Modality. The videos generated by the LoRA-tuned model are not
aligned with the prompts, while our TSM facilitates high-quality and consistent video generation.
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Figure 5: Comparison on Model Distillation. The images generated by our TSM better align with
the prompts, outperforming the vanilla LoRA, and even surpassing the teacher SD1.5 in some cases.

we conduct ablation experiments on the router’s input, and the results show that it is necessary for
the router to receive both feature zt and timestep t as inputs.

Visualization. As shown in Fig. 1, in the domain adaptation task, the TSM fine-tuned model revises
the incorrect images generated by the pre-trained model, while LoRA could not. As shown in Fig.
1 and 4, in the post-pretraining task, the TSM fine-tuned model improves the alignment between
images/videos and text without degrading visual quality, while the LoRA fine-tuned model exhibits
a significant decline in both visual quality and vision-text alignment. As shown in Fig. 5, in model
distillation task, the TSM fine-tuned model is more aligned with the prompts, outperforming LoRA.

5 CONCLUSION

We introduce the TimeStep Master (TSM) paradigm to enhance the fine-tuning of diffusion models.
Unlike previous approaches that use a single LoRA for all timesteps, TSM employs different LoRAs
on different timestep intervals. Through the fostering and assembling stages, TSM effectively learns
diverse noise levels via an asymmetrical mixture of TimeStep LoRA experts. Extensive experiments
show that TSM outperforms existing approaches in domain adaptation, post-pretraining, and model
distillation. Overall, TSM demonstrates strong generalization across various model architectures
and visual modalities, marking a significant advancement in efficient diffusion model tuning.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Yogesh Balaji, Seungjun Nah, Xun Huang, Arash Vahdat, Jiaming Song, Qinsheng Zhang, Karsten
Kreis, Miika Aittala, Timo Aila, Samuli Laine, et al. ediff-i: Text-to-image diffusion models with
an ensemble of expert denoisers. arXiv preprint arXiv:2211.01324, 2022.

Fan Bao, Chendong Xiang, Gang Yue, Guande He, Hongzhou Zhu, Kaiwen Zheng, Min Zhao,
Shilong Liu, Yaole Wang, and Jun Zhu. Vidu: a highly consistent, dynamic and skilled text-to-
video generator with diffusion models. arXiv preprint arXiv:2405.04233, 2024.

James Betker, Gabriel Goh, Li Jing, Tim Brooks, Jianfeng Wang, Linjie Li, Long Ouyang, Juntang
Zhuang, Joyce Lee, Yufei Guo, et al. Improving image generation with better captions. Computer
Science. https://cdn.openai.com/papers/dall-e-3.pdf, 2(3):8, 2023.

Andreas Blattmann, Robin Rombach, Huan Ling, Tim Dockhorn, Seung Wook Kim, Sanja Fidler,
and Karsten Kreis. Align your latents: High-resolution video synthesis with latent diffusion mod-
els. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 22563–22575, 2023.

Lucy Chai, Michael Gharbi, Eli Shechtman, Phillip Isola, and Richard Zhang. Any-resolution train-
ing for high-resolution image synthesis. In European Conference on Computer Vision, pp. 170–
188. Springer, 2022.

Haoxin Chen, Menghan Xia, Yingqing He, Yong Zhang, Xiaodong Cun, Shaoshu Yang, Jinbo Xing,
Yaofang Liu, Qifeng Chen, Xintao Wang, et al. Videocrafter1: Open diffusion models for high-
quality video generation. arXiv preprint arXiv:2310.19512, 2023a.

Haoxin Chen, Yong Zhang, Xiaodong Cun, Menghan Xia, Xintao Wang, Chao Weng, and Ying
Shan. Videocrafter2: Overcoming data limitations for high-quality video diffusion models. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
7310–7320, 2024a.

Junsong Chen, Chongjian Ge, Enze Xie, Yue Wu, Lewei Yao, Xiaozhe Ren, Zhongdao Wang, Ping
Luo, Huchuan Lu, and Zhenguo Li. Pixart-σ: Weak-to-strong training of diffusion transformer
for 4k text-to-image generation. arXiv preprint arXiv:2403.04692, 2024b.

Junsong Chen, Yue Wu, Simian Luo, Enze Xie, Sayak Paul, Ping Luo, Hang Zhao, and Zhenguo Li.
Pixart-δ: Fast and controllable image generation with latent consistency models. arXiv preprint
arXiv:2401.05252, 2024c.

Junsong Chen, Jincheng Yu, Chongjian Ge, Lewei Yao, Enze Xie, Yue Wu, Zhongdao Wang, James
Kwok, Ping Luo, Huchuan Lu, et al. Pixart-α: Fast training of diffusion transformer for photore-
alistic text-to-image synthesis. In International Conference on Learning Representations, 2024d.

Tianlong Chen, Xuxi Chen, Xianzhi Du, Abdullah Rashwan, Fan Yang, Huizhong Chen, Zhangyang
Wang, and Yeqing Li. Adamv-moe: Adaptive multi-task vision mixture-of-experts. In Proceed-
ings of the IEEE/CVF International Conference on Computer Vision, pp. 17346–17357, 2023b.

Xinyuan Chen, Yaohui Wang, Lingjun Zhang, Shaobin Zhuang, Xin Ma, Jiashuo Yu, Yali Wang,
Dahua Lin, Yu Qiao, and Ziwei Liu. Seine: Short-to-long video diffusion model for generative
transition and prediction. In International Conference on Machine Learning, 2024e.

Mehdi Cherti, Romain Beaumont, Ross Wightman, Mitchell Wortsman, Gabriel Ilharco, Cade Gor-
don, Christoph Schuhmann, Ludwig Schmidt, and Jenia Jitsev. Reproducible scaling laws for
contrastive language-image learning. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 2818–2829, 2023.

KR1442 Chowdhary and KR Chowdhary. Natural language processing. Fundamentals of artificial
intelligence, pp. 603–649, 2020.

Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam
Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers for
high-resolution image synthesis. In Forty-first International Conference on Machine Learning,
2024a.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam
Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers for
high-resolution image synthesis. In International Conference on Machine Learning, 2024b.

Abolfazl Farahani, Sahar Voghoei, Khaled Rasheed, and Hamid R Arabnia. A brief review of domain
adaptation. Advances in data science and information engineering: proceedings from ICDATA
2020 and IKE 2020, pp. 877–894, 2021.

Oran Gafni, Adam Polyak, Oron Ashual, Shelly Sheynin, Devi Parikh, and Yaniv Taigman. Make-
a-scene: Scene-based text-to-image generation with human priors. In European Conference on
Computer Vision, pp. 89–106. Springer, 2022.

Jianping Gou, Baosheng Yu, Stephen J Maybank, and Dacheng Tao. Knowledge distillation: A
survey. International Journal of Computer Vision, 129(6):1789–1819, 2021.

Yuchao Gu, Xintao Wang, Jay Zhangjie Wu, Yujun Shi, Yunpeng Chen, Zihan Fan, Wuyou Xiao,
Rui Zhao, Shuning Chang, Weijia Wu, et al. Mix-of-show: Decentralized low-rank adaptation
for multi-concept customization of diffusion models. Advances in Neural Information Processing
Systems, 36, 2024.

Tiankai Hang, Shuyang Gu, Chen Li, Jianmin Bao, Dong Chen, Han Hu, Xin Geng, and Baining
Guo. Efficient diffusion training via min-snr weighting strategy. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, 2023.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
Gans trained by a two time-scale update rule converge to a local nash equilibrium. Advances in
neural information processing systems, 30, 2017.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In Conference
and Workshop on Neural Information Processing Systems, 2020.

Jonathan Ho, William Chan, Chitwan Saharia, Jay Whang, Ruiqi Gao, Alexey Gritsenko, Diederik P
Kingma, Ben Poole, Mohammad Norouzi, David J Fleet, et al. Imagen video: High definition
video generation with diffusion models. arXiv preprint arXiv:2210.02303, 2022a.

Jonathan Ho, Tim Salimans, Alexey Gritsenko, William Chan, Mohammad Norouzi, and David J
Fleet. Video diffusion models. Advances in Neural Information Processing Systems, 35:8633–
8646, 2022b.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021.

Kaiyi Huang, Kaiyue Sun, Enze Xie, Zhenguo Li, and Xihui Liu. T2i-compbench: A compre-
hensive benchmark for open-world compositional text-to-image generation. Advances in Neural
Information Processing Systems, 36:78723–78747, 2023.

Levon Khachatryan, Andranik Movsisyan, Vahram Tadevosyan, Roberto Henschel, Zhangyang
Wang, Shant Navasardyan, and Humphrey Shi. Text2video-zero: Text-to-image diffusion models
are zero-shot video generators. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pp. 15954–15964, 2023.

Jiachen Li, Weixi Feng, Tsu-Jui Fu, Xinyi Wang, Sugato Basu, Wenhu Chen, and William Yang
Wang. T2v-turbo: Breaking the quality bottleneck of video consistency model with mixed reward
feedback. arXiv preprint arXiv:2405.18750, 2024.

Yuheng Li, Haotian Liu, Qingyang Wu, Fangzhou Mu, Jianwei Yang, Jianfeng Gao, Chunyuan Li,
and Yong Jae Lee. Gligen: Open-set grounded text-to-image generation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 22511–22521, 2023.

Han Lin, Jaemin Cho, Abhay Zala, and Mohit Bansal. Ctrl-adapter: An efficient and versatile
framework for adapting diverse controls to any diffusion model. arXiv preprint arXiv:2404.09967,
2024a.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Shanchuan Lin, Anran Wang, and Xiao Yang. Sdxl-lightning: Progressive adversarial diffusion
distillation. arXiv preprint arXiv:2402.13929, 2024b.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In Computer
Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014,
Proceedings, Part V 13, pp. 740–755. Springer, 2014.

Bingchen Liu, Ehsan Akhgari, Alexander Visheratin, Aleks Kamko, Linmiao Xu, Shivam Shrirao,
Joao Souza, Suhail Doshi, and Daiqing Li. Playground v3: Improving text-to-image alignment
with deep-fusion large language models. arXiv preprint arXiv:2409.10695, 2024a.

Nan Liu, Shuang Li, Yilun Du, Antonio Torralba, and Joshua B Tenenbaum. Compositional visual
generation with composable diffusion models. In European Conference on Computer Vision, pp.
423–439. Springer, 2022.

Xingchao Liu, Xiwen Zhang, Jianzhu Ma, Jian Peng, et al. Instaflow: One step is enough for
high-quality diffusion-based text-to-image generation. In The Twelfth International Conference
on Learning Representations, 2023.

Yaofang Liu, Xiaodong Cun, Xuebo Liu, Xintao Wang, Yong Zhang, Haoxin Chen, Yang Liu,
Tieyong Zeng, Raymond Chan, and Ying Shan. Evalcrafter: Benchmarking and evaluating large
video generation models. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 22139–22149, 2024b.

Yixin Liu, Kai Zhang, Yuan Li, Zhiling Yan, Chujie Gao, Ruoxi Chen, Zhengqing Yuan, Yue Huang,
Hanchi Sun, Jianfeng Gao, et al. Sora: A review on background, technology, limitations, and
opportunities of large vision models. arXiv preprint arXiv:2402.17177, 2024c.

Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-solver++: Fast
solver for guided sampling of diffusion probabilistic models. arXiv preprint arXiv:2211.01095,
2022.

Huaishao Luo, Lei Ji, Ming Zhong, Yang Chen, Wen Lei, Nan Duan, and Tianrui Li. Clip4clip: An
empirical study of clip for end to end video clip retrieval and captioning. Neurocomputing, 508:
293–304, 2022.

Simian Luo, Yiqin Tan, Suraj Patil, Daniel Gu, Patrick von Platen, Apolinário Passos, Longbo
Huang, Jian Li, and Hang Zhao. Lcm-lora: A universal stable-diffusion acceleration module.
arXiv preprint arXiv:2311.05556, 2023a.

Zhengxiong Luo, Dayou Chen, Yingya Zhang, Yan Huang, Liang Wang, Yujun Shen, Deli Zhao,
Jingren Zhou, and Tieniu Tan. Videofusion: Decomposed diffusion models for high-quality video
generation. arXiv preprint arXiv:2303.08320, 2023b.

Mengyao Lyu, Yuhong Yang, Haiwen Hong, Hui Chen, Xuan Jin, Yuan He, Hui Xue, Jungong
Han, and Guiguang Ding. One-dimensional adapter to rule them all: Concepts diffusion models
and erasing applications. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 7559–7568, 2024.

Chong Mou, Xintao Wang, Liangbin Xie, Yanze Wu, Jian Zhang, Zhongang Qi, and Ying Shan.
T2i-adapter: Learning adapters to dig out more controllable ability for text-to-image diffusion
models. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 38, pp. 4296–
4304, 2024.

Kepan Nan, Rui Xie, Penghao Zhou, Tiehan Fan, Zhenheng Yang, Zhijie Chen, Xiang Li, Jian Yang,
and Ying Tai. Openvid-1m: A large-scale high-quality dataset for text-to-video generation. arXiv
preprint arXiv:2407.02371, 2024.

Thuan Hoang Nguyen and Anh Tran. Swiftbrush: One-step text-to-image diffusion model with
variational score distillation. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 7807–7816, 2024.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Alex Nichol, Prafulla Dhariwal, Aditya Ramesh, Pranav Shyam, Pamela Mishkin, Bob McGrew,
Ilya Sutskever, and Mark Chen. Glide: Towards photorealistic image generation and editing with
text-guided diffusion models. arXiv preprint arXiv:2112.10741, 2021.

William Peebles and Saining Xie. Scalable diffusion models with transformers. In Proceedings of
the IEEE/CVF International Conference on Computer Vision, pp. 4195–4205, 2023.

William S. Peebles and Saining Xie. Scalable diffusion models with transformers. 2023 IEEE/CVF
International Conference on Computer Vision, pp. 4172–4182, 2022. URL https://api.
semanticscholar.org/CorpusID:254854389.

Bohao Peng, Jian Wang, Yuechen Zhang, Wenbo Li, Ming-Chang Yang, and Jiaya Jia. Controlnext:
Powerful and efficient control for image and video generation. arXiv preprint arXiv:2408.06070,
2024.

Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Müller, Joe
Penna, and Robin Rombach. Sdxl: Improving latent diffusion models for high-resolution image
synthesis. arXiv preprint arXiv:2307.01952, 2023.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agar-
wal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya
Sutskever. Learning transferable visual models from natural language supervision. In Interna-
tional Conference on Machine Learning, 2021a. URL https://api.semanticscholar.
org/CorpusID:231591445.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748–8763. PMLR, 2021b.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-
text transformer. Journal of Machine Learning Research, 21(140):1–67, 2020. URL http:
//jmlr.org/papers/v21/20-074.html.

Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark Chen,
and Ilya Sutskever. Zero-shot text-to-image generation. In International conference on machine
learning, pp. 8821–8831. Pmlr, 2021.

Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical text-
conditional image generation with clip latents. arXiv preprint arXiv:2204.06125, 1(2):3, 2022.

Lingmin Ran, Xiaodong Cun, Jia-Wei Liu, Rui Zhao, Song Zijie, Xintao Wang, Jussi Keppo, and
Mike Zheng Shou. X-adapter: Adding universal compatibility of plugins for upgraded diffusion
model. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 8775–8784, 2024.

Carlos Riquelme, Joan Puigcerver, Basil Mustafa, Maxim Neumann, Rodolphe Jenatton, André
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