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So You Think You Can Scale Up
Autonomous Robot Data Collection?

Supplementary Material

Overview

We provide a brief overview of each appendix below. For videos, please see our website:

— Task Details

We give descriptions of each of our tasks, as well as more information on data scales and
evaluation procedures.

— Analyzing Human Supervision: Additional Results
We provide further details on the results from Section 4, including tables for all bar plots in
the main text. We also include additional ablations on training method (training from scratch
vs. fine-tuning) and additional experiments on training with autonomous data collected from

out-of-distribution states.

— Training Hyperparameters

We provide the training hyperparameters for all policies trained in this work.

A Task Details

In this section, we give additional information on the tasks studied in this work. We give verbal descriptions
in , definitions of data scales in , and details on the evaluation procedures
in

A.1 Task Descriptions

* FoldSock. Fold a sock (with random configuration) neatly in half.

* HangOvenMitt. Hang an oven mitt (with random position and orientation) on a hook (fixed position).
* HangTape. Hang a roll of masking tape (with random initial position) on a hook (fixed position).

* Nutlnsertion. Insert a plastic nut (with random initial position) on a peg (fixed position).

* Square: Insert a square nut on a square peg (from [1]).

* SouplnBasket: Place a small soup can into a basket (from [2]).

BookinCaddy: Place a book into a narrow book caddy (from [2]).

* StackBowls: Stack two bowls together and place both on a plate (from [2]).

* RedMugOnPlate: Put a red mug on a specific plate (from [2]).

We include an illustration of initial state distributions, sample initial and successful states, and sample
camera observations for the Nutlnsertion and HangTape tasks in

A.2 Data Scale Definitions

For concision, and to focus on trends, we abbreviate data scales (i.e., number of demonstrations) as low
(), medium (o), and high (1) for each of human demonstrations (H) and autonomous rollouts (A). Due
to the fact that tasks vary widely in difficulty, the absolute value of demonstrations for each data scale
varies per task. We include these values in
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Task Initial State Distribution Sample Initial State Successful State Wrist Camera Observation

HangTape

NutInsertion

Figure 1: For the HangTape and NutInsertion tasks, we include scene images depicting the initial state distribution
(using an overlay of initial state samples), a sample initial state, a successful state, and a view of the initial state from
the wrist camera’s perspective.

Env JH oH | JA oA TA
HangTape 20 50 | 40 100 —
NutlInsertion 50 100|100 — —

Square 10 50 | 100 200 500
SoupInBasket | 2 5 | 50 — 100
BookInCaddy | 2 5 | 50 — 100

StackBowls 2 5|50 — 100
RedMugOnPlate | 2 5 | 50 — 100

Table 1: Legend of data scales for each environment.

Example. To generate the training set for the {H + | A setting on the NutInsertion task, we do the following:

¢ Collect 50 human demonstrations from randomly sampled initial states.

* Train an initial policy on the human demonstrations to convergence (approximately 47% success rate).

* Collect 100 successful autonomous rollouts (by rolling out the policy over 200 times and filtering out
the failures).

A.3 Evaluation Procedure

Unless otherwise specified, all success rates in this work are calculated by uniformly sampling an initial
state sg ~ pg and rolling out the learned policy under consideration until either a success state is achieved
or a maximum time horizon is reached. For all simulation results, we perform 200 trials. For all real results,
we perform 100 trials.

B Analyzing Human Supervision: Additional Results

In this section, we provide further details on the results in Section 4 of the main text. In Appendix B.1,
we ablate the choice of training from scratch on human-autonomous mixtures (the recipe used in all
experiments in the main text). We also provide additional details on the results in Sections 4.1-4.2
regarding training with different data weights (Appendix B.2), data scales (Appendix B.3), number of
rounds (Appendix B.4), and novelty-based reweighting (Appendix B.5). Finally, while experiments in
the main text focus on autonomous data collected in-distribution, we provide additional experiments in
Appendix B.6 on training with autonomous data collected from out-of-distribution (OOD) scenarios.
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B.1 Training from Scratch vs. Fine-tuning

All of the models trained on human-autonomous data mixtures in Section 4.1 are trained from scratch
until convergence. In this subsection, we justify this choice by comparing training from scratch to methods
involving fine-tuning.

Specifically, we focus on a single round of autonomous collection for the Square task in simulation.
Unless otherwise specified, each model is trained on a mixture of 50% autonomous, 50% human data.
We compare the following training recipes:

* Scratch: Train a new model from scratch on the human-autonomous mixture.

¢ Fine-tune: Fine-tune the autonomous policy checkpoint that generated the autonomous data on the
human-autonomous mixture.

* Pre-train Autonomous + Fine-tune: Pre-train a policy from scratch on the autonomous data only, and
then fine-tune on the human-autonomous mixture.

* Scratch Add: Directly aggregate human and auto data in one dataset (no explicit 50-50 sampling), and
train from scratch on this dataset.

In , we find that training from scratch, fine-tuning from the base policy, and training on combined
human and auto datasets all perform comparably. In fact, training methods seem to matter much less than
the amount of autonomous data provided. Therefore, for simplicity, we use the Scratch training method
for all other experiments in the main text.

Method |oH+JA oH+oA oH+7TA
Scratch 69% 61.5% 79.5%
Fine-tune 68.5% 66% 67.5%
Pre-train Auto + Fine-tune | 68.5% 69.5% 73.5%
Scratch Add 68.5% 66% 77.5%

Table 2: Comparing different training methods on Square in simulation, for medium amounts of human data (¢H) but
for increasing amounts of autonomous data (JA to ©A to TA). All methods perform equivalently in each data regime.

B.2 Human and Autonomous Data Weights

Our experiments on Data Weights (Figure 5 in the main text) study the impact of relative sampling weights
of human-to-autonomous data. These experiments keep the amount of autonomous data fixed (J A) and
investigate if success rate changes for two scales of human data (JH and oH) at different sampling ratios
(75-25, 50-50, 25-75). We include these results in table form in and . We find that changing
the sampling weights has almost no impact for a given data scale.

Env | JH75-25 |H50-50 |H25-75 | oH75-25 oH50-50 oH 25-75
Square 15.5% 22% 21% 375%  385% 41%
SoupInBasket 39% 455%  415% 76% 83% 81.5%
BookInCaddy 34% 33% 34% 635%  61.5% 67%
StackBowls 57% 54% 52% 76% 81.5%  78.5%
RedMugOnPlate | 755%  825%  80.5% 84% 86% 86%

Table 3: Different training weightings of human to autonomous data in simulation have negligible effects.

Env ‘ JH75-25 |HS50-50 J|H 25-75
HangTape 47% 55% 53%
Nutlnsertion 60% 57% 48%

Table 4: Different training weightings of human to autonomous data in real have negligible effects.
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B.3 Human and Autonomous Data Scales

Our experiments on Data Scales (Figure 6 in the main text) use a 50-50 mixture and examine how success
rate is impacted by the scale of initial human data and the ratio of human to autonomous data. We include
the results in table form in . Including some amount of autonomous data tends to have mild positive
effects in most cases, though these effects generally saturate as autonomous data scales. Increasing the
scale of human data generally has a stronger effect than adding autonomous data.

Env JH JH+JA JH+TA| oH oH+]JA oH+TA

Square 155%  22% 16% |445% 385%  43.5%
SoupInBasket | 16.5% 33.5%  45.5% |545%  74% 83%

BookInCaddy |40.5% 30.5% 33% | 51.5%  60% 61.5%

StackBowls | 50.5%  59.5% 54% 83% 76% 81.5%
RedMugOnPlate | 58% 80% 825% | 79%  81.5% 86%
HangTape 44% 55% 48% 80% 80% 86%

NutInsertion 44% 57% 64% 53% 61% —

Table 5: Scales of human data compared to autonomous data for 50-50 co-training on various simulation (top) and
real (bottom) environments. More autonomous data often helps, but having more human data generally has a stronger
effect.

B.4 Multiple Collection Rounds

Our experiments on Multiple Collection Rounds (Figure 7 in the main text) measure if any positive effects
of autonomous data continue over multiple iterations. Specifically, we replace the autonomous data in the
training mixture with the latest round of autonomous data collection, and re-train the model from scratch.
The amount of autonomous data is kept constant at each round (¢A). We investigate the effects of multiple
collection rounds at multiple scales of human data (|H and ©H) in simulation and at the | H scale in real.
We present the results in table form in and , generally observing plateaus in performance
after an initial improvement in the first iteration. Interestingly, in the Square task, we observe a slight
decrease in performance. Unlike the LIBERO tasks, Square contains a more challenging bottleneck state,
and we hypothesize that subtle variations in the action distributions over multiple rounds of autonomous
data collection and training may amplify this challenge. As evidence, in , we examine the ““staged”
success rate in Square over multiple iterations: note that the subtask for “moving the square” increases
in success rate while the full task (which includes the insertion bottleneck) decreases in success rate.

Env Base Round 1 (¢A) Round 2 (¢A) Round 3 (¢A) Round 4 (¢A)
Square (JH) 15.5% 17% 13% 21% 18.5
Square (oH) 44.5% 38.5% 36% 35% 35%

SoupInBasket (|H) | 12.5% 45.5% 60% 78% —
SoupInBasket (¢H) | 47% 84% 82.5% 82% —
BookInCaddy (JH) | 40% 40% 37.5% 44% —
BookInCaddy (¢H) | 45.5% 64% 74.3% 72% —

Table 6: Multiple Rounds of autonomous collection using medium autonomous data (¢A) and training in simulation
(JH and oH). We see either saturating increases or decreases in performance.

Stage ‘ Base Round 1 (¢A) Round?2 (¢A) Round 3 (¢A) Round4 (¢A)
Moves Square | 67.5% 99.5% 100% 100% 94.5%
Full Success | 44.5% 38.5% 36% 35% 35%

Table 7: Multiple Rounds of autonomous collection in Square ({H), illustrating the success rate for an intermediate
stage (moving the square) and the full task.
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Env | Base Round 1 (¢A) Round 2 (0A)
HangTape (JH) | 44% 55% 50%
Nutlnsertion (JH) | 47% 57% 46%

Table 8: Multiple Rounds of autonomous collection using medium autonomous data (¢A) in real for HangTape and
Nutlnsertion. We see that even though success rates improve in Round 1, they do not improve in Round 2.

B.5 Novelty-Based Reweighting Strategies

In Section 4.2, we consider if state novelty can be used as a proxy to extract more useful autonomous
data, and form the basis for a sampling weight. In this section, we provide more details on these novelty
measures. Given an ensemble of policies £ = {ry,ms,...,m }, We instantiate two measures of novelty
building on ideas from prior work [3-5].

1. Action Novelty: Measure state novelty as proportional to the variance in the mean action
predictions. This variance can be measured by an ensemble of policies trained on the same data:

Na
ActionNovelty(s) = ZVarj (i)
i=1

where 11; is the mean of the predicted action distribution 7;(s) and N 4 is the number of action
dimensions.

2. Embedding Novelty: Measure state novelty as proportional to the variance in image embeddings
produced by an ensemble of vision encoders (i.e., the encoders from each policy in £):

Np,
EmbeddingNovelty(s) = ZVarj (hjs)
i=1

where h; =enc;(s) (i.e., the embedding from the encoder associated with policy 7;) and N,
is the number of embedding dimensions.

Given a novelty measure, we assign the training weight for state s to be proportional to exp(Novelty(s)//3)
where (3 is a temperature hyperparameter.

B.6 Training on Out-of-Distribution Autonomous Successes

The experiments in the main text focus on training with autonomous data that is collected from
in-distribution initial states (i.e., initial states are sampled from pg uniformly, or in the case of the active
learning experiments, a reweighted version of pg). In this section, we examine possible benefits from
training on successful autonomous data from out-of-distribution (OOD) scenarios. More specifically, we
generate the autonomous data by rolling out the initial policy from a new initial distribution pf, and collect
autonomous successes which are the result of the policy generalizing to the new distribution.

In , we examine the impact on success rates when adding OOD autonomous data in the HangTape
task. Specifically, we collect OOD autonomous data where one of two factors is varied compared to the
initial distribution: the object (i.e., the tape is changed to a different roll of tape with a different color)
and the distribution of initial object positions (i.e., the initial locations are sampled at an expanded outer
boundary of the original distribution). When adding 50 successful autonomous rollouts from either of these
OOD conditions to 50 in-distribution human demonstrations, we find positive impacts both in-distribution
and in the OOD conditions. We see a similar trend in on the NutInsertion task, where we collect
autonomous data in OOD initial positions (i.e., the initial locations are from an expanded outer boundary)
and find that both in-distribution and OOD performance improves.

These insights suggest that OOD autonomous data—i.e., successes that are the result of generalization
in the initial policy—may be valuable, at the cost of potentially increasing environment design effort to
change the initial state distribution of the environment.



Data Mixture ‘ Success (ID)  Success (OOD Position) Success (OOD Object)

50 H (D) 80% 13% 27%
50 H D) + 50 A (OOD Position) 90% 23% —
50 H (ID) + 50 A (OOD Object) 83% — 51%

Table 9: Success rates both in-distribution (ID) and out-of-distribution (OOD) for policies trained on mixtures of
in-distribution human data and OOD autonomous data on the HangTape task.

Data Mixture ‘ Success (ID)  Success (OOD Object)
50 H (ID) 44% 40%
50 H (ID) + 50 (OOD Object) 52% 50%

Table 10: Success rates both in-distribution (ID) and out-of-distribution (OOD) for policies trained on mixtures of
in-distribution human data and OOD autonomous data on the NutInsertion task.

130 C Training Hyperparameters

131 For all simulation experiments, we train using Diffusion Policy [6] with the following hyperparameters:

Diffusion Architecture ~ Conv1D UNet

Prediction Horizon 16
Observation History 2
Num Action 8
Kernel Size 5 Training Steps 500000
Num Groups 8 Batch Size 64
Step Embedding Dim 256 Optimizer AdamW
UNet Down Dims [256, 512, 1024] Learning Rate le-4
Num Diffusion Steps 100 Weight Decay le-6
Num Inference Steps 10 Learning Rate Schedule Cosine Decay
Inference Scheduler DDIM Linear Warmup Steps 1000
Observation Input FLM .
Image Encoder ResNet-18 ;[‘able 12: Training Hyperparameters, shared
; . or all simulation experiments.
Image Embedding Dim 256
Proprioception yes

Table 11: Hyperparameters for Diffusion Pol-
icy, shared for all simulation experiments.

132 Our real-world experiments use the same hyperparameters, except with an observation history of 1, a
133 step embedding dimension of 128, and 2000 warmup steps. We train policies for the HangTape task for
134 400000 steps and policies for the NutInsertion task for 500000 steps.
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