
So You Think You Can Scale Up1

Autonomous Robot Data Collection?2

Supplementary Material3

Overview4

We provide a brief overview of each appendix below. For videos, please see our website:5

https://sites.google.com/view/autonomous-data-collection6

Appendix A – Task Details7

We give descriptions of each of our tasks, as well as more information on data scales and
evaluation procedures.8

Appendix B – Analyzing Human Supervision: Additional Results9

We provide further details on the results from Section 4, including tables for all bar plots in
the main text. We also include additional ablations on training method (training from scratch
vs. fine-tuning) and additional experiments on training with autonomous data collected from
out-of-distribution states.

10

Appendix C – Training Hyperparameters11

We provide the training hyperparameters for all policies trained in this work.12

13

A Task Details14

In this section, we give additional information on the tasks studied in this work. We give verbal descriptions15

in Appendix A.1, definitions of data scales in Appendix A.2, and details on the evaluation procedures16

in Appendix A.3.17

A.1 Task Descriptions18

• FoldSock. Fold a sock (with random configuration) neatly in half.19

• HangOvenMitt. Hang an oven mitt (with random position and orientation) on a hook (fixed position).20

• HangTape. Hang a roll of masking tape (with random initial position) on a hook (fixed position).21

• NutInsertion. Insert a plastic nut (with random initial position) on a peg (fixed position).22

• Square: Insert a square nut on a square peg (from [1]).23

• SoupInBasket: Place a small soup can into a basket (from [2]).24

• BookInCaddy: Place a book into a narrow book caddy (from [2]).25

• StackBowls: Stack two bowls together and place both on a plate (from [2]).26

• RedMugOnPlate: Put a red mug on a specific plate (from [2]).27

We include an illustration of initial state distributions, sample initial and successful states, and sample28

camera observations for the NutInsertion and HangTape tasks in Fig. 1.29

A.2 Data Scale Definitions30

For concision, and to focus on trends, we abbreviate data scales (i.e., number of demonstrations) as low31

(↓), medium (⋄), and high (↑) for each of human demonstrations (H) and autonomous rollouts (A). Due32

to the fact that tasks vary widely in difficulty, the absolute value of demonstrations for each data scale33

varies per task. We include these values in Table 1.34
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Figure 1: For the HangTape and NutInsertion tasks, we include scene images depicting the initial state distribution
(using an overlay of initial state samples), a sample initial state, a successful state, and a view of the initial state from
the wrist camera’s perspective.

Env ↓H ⋄H ↓A ⋄A ↑A
HangTape 20 50 40 100 —

NutInsertion 50 100 100 — —-
Square 10 50 100 200 500

SoupInBasket 2 5 50 — 100
BookInCaddy 2 5 50 — 100
StackBowls 2 5 50 — 100

RedMugOnPlate 2 5 50 — 100

Table 1: Legend of data scales for each environment.

Example. To generate the training set for the ↓H + ↓A setting on the NutInsertion task, we do the following:35

• Collect 50 human demonstrations from randomly sampled initial states.36

• Train an initial policy on the human demonstrations to convergence (approximately 47% success rate).37

• Collect 100 successful autonomous rollouts (by rolling out the policy over 200 times and filtering out38

the failures).39

A.3 Evaluation Procedure40

Unless otherwise specified, all success rates in this work are calculated by uniformly sampling an initial41

state s0∼ρ0 and rolling out the learned policy under consideration until either a success state is achieved42

or a maximum time horizon is reached. For all simulation results, we perform 200 trials. For all real results,43

we perform 100 trials.44

B Analyzing Human Supervision: Additional Results45

In this section, we provide further details on the results in Section 4 of the main text. In Appendix B.1,46

we ablate the choice of training from scratch on human-autonomous mixtures (the recipe used in all47

experiments in the main text). We also provide additional details on the results in Sections 4.1-4.248

regarding training with different data weights (Appendix B.2), data scales (Appendix B.3), number of49

rounds (Appendix B.4), and novelty-based reweighting (Appendix B.5). Finally, while experiments in50

the main text focus on autonomous data collected in-distribution, we provide additional experiments in51

Appendix B.6 on training with autonomous data collected from out-of-distribution (OOD) scenarios.52
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B.1 Training from Scratch vs. Fine-tuning53

All of the models trained on human-autonomous data mixtures in Section 4.1 are trained from scratch54

until convergence. In this subsection, we justify this choice by comparing training from scratch to methods55

involving fine-tuning.56

Specifically, we focus on a single round of autonomous collection for the Square task in simulation.57

Unless otherwise specified, each model is trained on a mixture of 50% autonomous, 50% human data.58

We compare the following training recipes:59

• Scratch: Train a new model from scratch on the human-autonomous mixture.60

• Fine-tune: Fine-tune the autonomous policy checkpoint that generated the autonomous data on the61

human-autonomous mixture.62

• Pre-train Autonomous + Fine-tune: Pre-train a policy from scratch on the autonomous data only, and63

then fine-tune on the human-autonomous mixture.64

• Scratch Add: Directly aggregate human and auto data in one dataset (no explicit 50-50 sampling), and65

train from scratch on this dataset.66

In Table 2, we find that training from scratch, fine-tuning from the base policy, and training on combined67

human and auto datasets all perform comparably. In fact, training methods seem to matter much less than68

the amount of autonomous data provided. Therefore, for simplicity, we use the Scratch training method69

for all other experiments in the main text.70

Method ⋄H + ↓A ⋄H + ⋄A ⋄H + ↑A
Scratch 69% 61.5% 79.5%

Fine-tune 68.5% 66% 67.5%
Pre-train Auto + Fine-tune 68.5% 69.5% 73.5%

Scratch Add 68.5% 66% 77.5%

Table 2: Comparing different training methods on Square in simulation, for medium amounts of human data (⋄H) but
for increasing amounts of autonomous data (↓A to ⋄A to ↑A). All methods perform equivalently in each data regime.

B.2 Human and Autonomous Data Weights71

Our experiments on Data Weights (Figure 5 in the main text) study the impact of relative sampling weights72

of human-to-autonomous data. These experiments keep the amount of autonomous data fixed (↓A) and73

investigate if success rate changes for two scales of human data (↓H and ⋄H) at different sampling ratios74

(75-25, 50-50, 25-75). We include these results in table form in Table 3 and Table 4. We find that changing75

the sampling weights has almost no impact for a given data scale.76

Env ↓H 75-25 ↓H 50-50 ↓H 25-75 ⋄H 75-25 ⋄H 50-50 ⋄H 25-75
Square 15.5% 22% 21% 37.5% 38.5% 41%

SoupInBasket 39% 45.5% 41.5% 76% 83% 81.5%
BookInCaddy 34% 33% 34% 63.5% 61.5% 67%
StackBowls 57% 54% 52% 76% 81.5% 78.5%

RedMugOnPlate 75.5% 82.5% 80.5% 84% 86% 86%

Table 3: Different training weightings of human to autonomous data in simulation have negligible effects.

Env ↓H 75-25 ↓H 50-50 ↓H 25-75
HangTape 47% 55% 53%

NutInsertion 60% 57% 48%

Table 4: Different training weightings of human to autonomous data in real have negligible effects.
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B.3 Human and Autonomous Data Scales77

Our experiments on Data Scales (Figure 6 in the main text) use a 50-50 mixture and examine how success78

rate is impacted by the scale of initial human data and the ratio of human to autonomous data. We include79

the results in table form in Table 5. Including some amount of autonomous data tends to have mild positive80

effects in most cases, though these effects generally saturate as autonomous data scales. Increasing the81

scale of human data generally has a stronger effect than adding autonomous data.82

Env ↓H ↓H + ↓A ↓H + ↑A ⋄H ⋄H + ↓A ⋄H + ↑A
Square 15.5% 22% 16% 44.5% 38.5% 43.5%

SoupInBasket 16.5% 33.5% 45.5% 54.5% 74% 83%
BookInCaddy 40.5% 30.5% 33% 51.5% 60% 61.5%
StackBowls 50.5% 59.5% 54% 83% 76% 81.5%

RedMugOnPlate 58% 80% 82.5% 79% 81.5% 86%
HangTape 44% 55% 48% 80% 80% 86%

NutInsertion 44% 57% 64% 53% 61% —

Table 5: Scales of human data compared to autonomous data for 50-50 co-training on various simulation (top) and
real (bottom) environments. More autonomous data often helps, but having more human data generally has a stronger
effect.

B.4 Multiple Collection Rounds83

Our experiments on Multiple Collection Rounds (Figure 7 in the main text) measure if any positive effects84

of autonomous data continue over multiple iterations. Specifically, we replace the autonomous data in the85

training mixture with the latest round of autonomous data collection, and re-train the model from scratch.86

The amount of autonomous data is kept constant at each round (⋄A). We investigate the effects of multiple87

collection rounds at multiple scales of human data (↓H and ⋄H) in simulation and at the ↓H scale in real.88

We present the results in table form in Table 6 and Table 8, generally observing plateaus in performance89

after an initial improvement in the first iteration. Interestingly, in the Square task, we observe a slight90

decrease in performance. Unlike the LIBERO tasks, Square contains a more challenging bottleneck state,91

and we hypothesize that subtle variations in the action distributions over multiple rounds of autonomous92

data collection and training may amplify this challenge. As evidence, in Table 7, we examine the “staged”93

success rate in Square over multiple iterations: note that the subtask for “moving the square” increases94

in success rate while the full task (which includes the insertion bottleneck) decreases in success rate.95

Env Base Round 1 (⋄A) Round 2 (⋄A) Round 3 (⋄A) Round 4 (⋄A)
Square (↓H) 15.5% 17% 13% 21% 18.5
Square (⋄H) 44.5% 38.5% 36% 35% 35%

SoupInBasket (↓H) 12.5% 45.5% 60% 78% —
SoupInBasket (⋄H) 47% 84% 82.5% 82% —
BookInCaddy (↓H) 40% 40% 37.5% 44% —
BookInCaddy (⋄H) 45.5% 64% 74.3% 72% —

Table 6: Multiple Rounds of autonomous collection using medium autonomous data (⋄A) and training in simulation
(↓H and ⋄H). We see either saturating increases or decreases in performance.

Stage Base Round 1 (⋄A) Round 2 (⋄A) Round 3 (⋄A) Round 4 (⋄A)
Moves Square 67.5% 99.5% 100% 100% 94.5%
Full Success 44.5% 38.5% 36% 35% 35%

Table 7: Multiple Rounds of autonomous collection in Square (↓H), illustrating the success rate for an intermediate
stage (moving the square) and the full task.

4



Env Base Round 1 (⋄A) Round 2 (⋄A)
HangTape (↓H) 44% 55% 50%

NutInsertion (↓H) 47% 57% 46%

Table 8: Multiple Rounds of autonomous collection using medium autonomous data (⋄A) in real for HangTape and
NutInsertion. We see that even though success rates improve in Round 1, they do not improve in Round 2.

B.5 Novelty-Based Reweighting Strategies96

In Section 4.2, we consider if state novelty can be used as a proxy to extract more useful autonomous97

data, and form the basis for a sampling weight. In this section, we provide more details on these novelty98

measures. Given an ensemble of policies E = {π1,π2,...,πN}, we instantiate two measures of novelty99

building on ideas from prior work [3–5].100

1. Action Novelty: Measure state novelty as proportional to the variance in the mean action101

predictions. This variance can be measured by an ensemble of policies trained on the same data:102

ActionNovelty(s)=
NA∑︂
i=1

Varj(µji)

where µj is the mean of the predicted action distribution πj(s) and NA is the number of action103

dimensions.104

2. Embedding Novelty: Measure state novelty as proportional to the variance in image embeddings105

produced by an ensemble of vision encoders (i.e., the encoders from each policy in E):106

EmbeddingNovelty(s)=
Nh∑︂
i=1

Varj(hji)

where hj = encj(s) (i.e., the embedding from the encoder associated with policy πj) and Nh107

is the number of embedding dimensions.108

Given a novelty measure, we assign the training weight for state s to be proportional to exp(Novelty(s)/β)109

where β is a temperature hyperparameter.110

B.6 Training on Out-of-Distribution Autonomous Successes111

The experiments in the main text focus on training with autonomous data that is collected from112

in-distribution initial states (i.e., initial states are sampled from ρ0 uniformly, or in the case of the active113

learning experiments, a reweighted version of ρ0). In this section, we examine possible benefits from114

training on successful autonomous data from out-of-distribution (OOD) scenarios. More specifically, we115

generate the autonomous data by rolling out the initial policy from a new initial distribution ρ′0 and collect116

autonomous successes which are the result of the policy generalizing to the new distribution.117

In Table 9, we examine the impact on success rates when adding OOD autonomous data in the HangTape118

task. Specifically, we collect OOD autonomous data where one of two factors is varied compared to the119

initial distribution: the object (i.e., the tape is changed to a different roll of tape with a different color)120

and the distribution of initial object positions (i.e., the initial locations are sampled at an expanded outer121

boundary of the original distribution). When adding 50 successful autonomous rollouts from either of these122

OOD conditions to 50 in-distribution human demonstrations, we find positive impacts both in-distribution123

and in the OOD conditions. We see a similar trend in Table 10 on the NutInsertion task, where we collect124

autonomous data in OOD initial positions (i.e., the initial locations are from an expanded outer boundary)125

and find that both in-distribution and OOD performance improves.126

These insights suggest that OOD autonomous data—i.e., successes that are the result of generalization127

in the initial policy—may be valuable, at the cost of potentially increasing environment design effort to128

change the initial state distribution of the environment.129
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Data Mixture Success (ID) Success (OOD Position) Success (OOD Object)
50 H (ID) 80% 13% 27%

50 H (ID) + 50 A (OOD Position) 90% 23% —
50 H (ID) + 50 A (OOD Object) 83% — 51%

Table 9: Success rates both in-distribution (ID) and out-of-distribution (OOD) for policies trained on mixtures of
in-distribution human data and OOD autonomous data on the HangTape task.

Data Mixture Success (ID) Success (OOD Object)
50 H (ID) 44% 40%

50 H (ID) + 50 (OOD Object) 52% 50%

Table 10: Success rates both in-distribution (ID) and out-of-distribution (OOD) for policies trained on mixtures of
in-distribution human data and OOD autonomous data on the NutInsertion task.

C Training Hyperparameters130

For all simulation experiments, we train using Diffusion Policy [6] with the following hyperparameters:131

Diffusion Architecture Conv1D UNet
Prediction Horizon 16
Observation History 2

Num Action 8
Kernel Size 5

Num Groups 8
Step Embedding Dim 256

UNet Down Dims [256, 512, 1024]
Num Diffusion Steps 100
Num Inference Steps 10
Inference Scheduler DDIM
Observation Input FiLM

Image Encoder ResNet-18
Image Embedding Dim 256

Proprioception yes

Table 11: Hyperparameters for Diffusion Pol-
icy, shared for all simulation experiments.

Training Steps 500000
Batch Size 64
Optimizer AdamW

Learning Rate 1e-4
Weight Decay 1e-6

Learning Rate Schedule Cosine Decay
Linear Warmup Steps 1000

Table 12: Training Hyperparameters, shared
for all simulation experiments.

Our real-world experiments use the same hyperparameters, except with an observation history of 1, a132

step embedding dimension of 128, and 2000 warmup steps. We train policies for the HangTape task for133

400000 steps and policies for the NutInsertion task for 500000 steps.134
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