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Abstract

We consider Model-Agnostic Meta-Learning (MAML) methods for Reinforcement
Learning (RL) problems, where the goal is to find a policy using data from several
tasks represented by Markov Decision Processes (MDPs) that can be updated by
one step of stochastic policy gradient for the realized MDP. In particular, using
stochastic gradients in MAML update steps is crucial for RL problems since
computation of exact gradients requires access to a large number of possible
trajectories. For this formulation, we propose a variant of the MAML method,
named Stochastic Gradient Meta-Reinforcement Learning (SG-MRL), and study
its convergence properties. We derive the iteration and sample complexity of SG-
MRL to find an ε-first-order stationary point, which, to the best of our knowledge,
provides the first convergence guarantee for model-agnostic meta-reinforcement
learning algorithms. We further show how our results extend to the case where
more than one step of stochastic policy gradient method is used at test time. Finally,
we empirically compare SG-MRL and MAML in several deep RL environments.

1 Introduction

Meta-learning has recently attracted much attention as a learning to learn approach that enables quick
adaptation to new tasks using past experience and data. This is a particularly promising approach
for Reinforcement Learning (RL) where in several applications, such as robotics, a group of agents
encounter new tasks and need to learn new behaviors or policies through a few interactions with
the environment building on previous experience [1–9]. Among various forms of Meta-learning,
gradient-based Model-Agnostic Meta-Learning (MAML) formulation [1] is a particularly effective
approach which, as its name suggests, can be applied to any learning problem that is trained with
gradient-based updates. In MAML, we exploit observed tasks at training time to find an initial model
that is trained in a way that rapidly adapts to a new unseen task at test time, after running a few steps
of a gradient-based update with respect to the loss of the new task.

The MAML formulation can be extended to RL problems if we represent each task as a Markov
Decision Process (MDP). In this setting, we assume that we are given a set of MDPs corresponding
to the tasks that we observe during the training phase and assume that the new task at test time is
drawn from an underlying probability distribution. The goal in Model-Agnostic Meta-Reinforcement
Learning (MAMRL) is to exploit this data to come up with an initial policy that adapts to a new task
(drawn from the same distribution) at test time by taking a few stochastic policy gradient steps [1].
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Several algorithms have been proposed in the context of MAMRL [1, 9–12] which demonstrate the
advantage of this framework in practice. None of these methods, however, are supported by theoretical
guarantees for their convergence rate or overall sample complexity. Moreover, these methods aim
to solve a specific form of MAMRL that does not fully take into account the stochasticity aspect
of RL problems. To be more specific, the original MAMRL formulation proposed in [1] assumes
performing one step of policy gradient to update the initial model at test time. However, as mentioned
in the experimental evaluation section in [1], it is more common in practice to use stochastic policy
gradient, computed over a batch of trajectories, to update the initial model at test time. This is mainly
due to the fact that computing the exact gradient of the expected reward is not computationally
tractable due to the massive number of possible state-action trajectories. As a result, the algorithm
developed in [1] is designed for finding a proper initial policy that performs well after one step of
policy gradient, while in practice it is implemented with stochastic policy gradient steps. Due to this
difference between the formulation and what is used in practice, the ascent step used in MAML takes
a gradient estimate which suffers from a non-diminishing bias. As the variance of gradient estimation
is also non-diminishing, the resulting algorithm would not achieve exact first-order optimality. To be
precise, in stochastic nonconvex optimization, if we use an unbiased gradient estimator, along with a
small stepsize or a large batch size to control the variance, the iterates converge to a stationary point.
However, if we use a biased estimator with non-vanishing bias and variance, exact convergence to a
stationary point is not achievable, even if the variance is small.

Contributions. The goal of this paper is to solve the modified formulation of model-agnostic meta-
reinforcement learning problem in which we perform a stochastic policy gradient update at test
time instead of (deterministic) policy gradient. To do so, we propose a novel stochastic gradient-
based method for Meta-Reinforcement Learning (SG-MRL), which is designed for stochastic policy
gradient steps at test time. We show that SG-MRL implements an unbiased estimate of its objective
function gradient which allows achieving first-order optimality in non-concave settings. Moreover,
we characterize the relation between batch sizes and other problem parameters and the best accuracy
that SG-MRL can achieve in terms of gradient norm. We show that, for any ε > 0, SG-MRL can
find an ε-first-order stationary point if the learning rate is sufficiently small or the batch of tasks is
large enough. To the best of our knowledge, this is the first result on the convergence of MAMRL
methods. Moreover, we show that our analysis can be extended to the case where more than one step
of stochastic policy gradient is taken during test time. For simplicity, we state all the results in the
body of the paper for the single-step case and include the derivations of the general multiple steps
case in the appendices. We also empirically validate the proposed SG-MRL algorithm in larger-scale
environments standard in modern reinforcement learning applications, including a 2D-navigation
problem, and a more challenging locomotion problem simulated with the MuJoCo library.

Related work. Although this paper provides the first theoretical study of MAML for RL, several
recent papers have studied the complexity analysis of MAML in other contexts. In particular, the
iMAML algorithm which performs an approximation of one step of proximal point method (instead
of a few steps of gradient descent) in the inner loop was proposed in [13]. The authors focus on the
deterministic case, and show that, assuming the inner loop loss function is sufficiently smooth, i.e., the
regularized inner loop function is strongly convex, iMAML converges to a first-order stationary point.
Another recent work [14] establishes convergence guarantees of the MAML method to first-order
stationarity for non-convex settings. Also, [15] extends the theoretical framework in [14] to the
multiple-step case. However, the results in [14, 15] cannot be applied to the reinforcement learning
setting. This is mainly due to the fact that the probability distribution over possible trajectories
of states and actions varies with the policy parameter, leading to a different algorithm that has
an additional term which makes the analysis, such as deriving an upper bound on the smoothness
parameter, more challenging. We will discuss this point in subsequent sections.

The online meta-learning setting has also been studied in a number of recent works [16–18]. In
particular, [17] studies this problem for convex objective functions by casting it in the online convex
optimization framework. Also, [16] extends the model-agnostic setup to the online learning case by
considering a competitor which adapts to new tasks, and propose the follow the meta leader method
which obtains a sublinear regret for strongly convex loss functions.

It is also worth noting that another notion of bias that has been studied in the MAMRL literature
[10, 19] differs from what we consider in our paper. More specifically, as we will show later, the
derivative of the MAML objective function requires access to the second-order information, i.e.,
Hessian. In [1], the authors suggest a first-order approximation which ignores this second-order term.
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This leads to a biased estimate of the derivative of the MAML objective function, and a number of
recent works [10, 19] focus on providing unbiased estimates for the second-order term. In contrast,
here we focus on biased gradient estimates where the bias stems from the fact that in most real
settings we do not have access to all possible trajectories and we only have access to a mini-batch
of possible trajectories. In this case, even if one has access to the second-order term required in the
update of MAML, the bias issue we discuss here will remain.

2 Problem formulation

Let {Mi}i be the set of Markov Decision Processes (MDPs) representing different tasks1. We
assume these MDPs are drawn from a distribution p (which we can only draw samples from), and
also the time horizon is fixed and is equal to {0, 1, ...,H} for all tasks. For the i-th MDP denoted by
Mi, which corresponds to task i, we denote the set of states and actions by Si and Ai, respectively.
We also assume the initial distribution over states in Si is given by µi(·) and the transition kernel is
denoted by Pi, i.e., the probability of going from state s ∈ Si to s′ ∈ Si given taking action a ∈ Ai
is Pi(s′|s, a). Finally, we assume at state s and by taking action a, the agent receives reward ri(s, a).
To summarize, an MDPMi is defined by the tuple (Si,Ai, µi, Pi, ri). For MDPMi, the actions are
chosen according to a random policy which is a mixed strategy over the set of actions and depends on
the current state, i.e., if the system is in state s ∈ Si, the agent chooses action a ∈ Ai with probability
πi(a|s). To search over the space of all policies, we assume these policies are parametrized with
θ ∈ Rd, and denote the policy corresponding to parameter θ by πi(·|·; θ).

A realization of states and actions in this setting is called a trajectory, i.e., a trajectory of MDPMi

can be written as τ = (s0, a0, ..., sH , aH) where ah ∈ Ai and sh ∈ Si for any 0 ≤ h ≤ H . Note
that, given the above assumptions, the probability of this particular trajectory is given by

qi(τ ; θ) := µi(s0)

H∏
h=0

πi(ah|sh; θ)

H−1∏
h=0

Pi(sh+1|sh, ah). (1)

Also, the total reward received over this trajectory isRi(τ) :=
∑H
h=0 γ

hri(sh, ah), where 0 ≤ γ ≤ 1
is the discount factor. As a result, for MDPMi, the expected reward obtained by choosing policy
π(·|·; θ) is given by

Ji(θ) := Eτ∼qi(·;θ) [Ri(τ)] . (2)
It is worth noting that the gradient∇Ji(θ) admits the following characterization [20–22]

∇Ji(θ) = Eτ∼qi(·;θ) [gi(τ ; θ)] , (3)

where gi(τ ; θ) is defined as

gi(τ ; θ) :=

H∑
h=0

∇θ log πi(ah|sh; θ)Rhi (τ), (4)

if we define Rhi (τ) as Rhi (τ) :=
∑H
t=h γ

tri(st, at). In practice, evaluating the exact value of (3)
is not computationally tractable. Instead, one could first acquire a batch Di,θ of trajectories drawn
independently from distribution qi(·; θ), and then, estimate∇Ji(θ) by

∇̃Ji(θ,Di,θ) :=
1

|Di,θ|
∑

τ∈Di,θ
gi(τ ; θ). (5)

Also, we denote the probability of choosing (with replacement) an independent batch of trajectories
Di,θ by qi(Di,θ; θ) (see Appendix A.1 for a remark on this).

In this setting, the goal of Model-Agnostic Meta-Reinforcement Learning problem introduced in [1]
is to find a good initial policy that performs well in expectation when it is updated using one or a few
steps of stochastic policy gradient with respect to a new task. In particular, for the case of performing
one step of stochastic policy gradient, the problem can be written as2

max
θ∈Rd

V1(θ) := Ei∼p
[
EDitest

[
Ji

(
θ + α∇̃Ji(θ,Ditest)

)]]
. (6)

1To simplify the analysis, we assume the number of tasks is finite
2From now on, we suppress the θ dependence of batches to simplify the notation.
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Note that by solving this problem we find an initial policy (Meta-policy) that in expectation performs
well if we evaluate the output of our procedure after running one step of stochastic policy gradient on
this initial policy for a new task.

This formulation can be extended to the setting with more than one step of stochastic policy gradient
as well. To state the problem formulation in this case, let us first define Ψi which is an operator that
takes model θ and batch Di as input and performs one step of stochastic gradient policy at point θ
and with respect to function Ji and batch Di, i.e., Ψi(θ,Di) := θ + α∇̃Ji(θ,Di). Now, we extend
problem (6) to the case where we are looking for an initial point which performs well on expectation
after it is updated with ζ steps of stochastic policy gradient with respect to a new MDP drawn from
distribution p. This problem can be written as

max
θ∈Rd

Vζ(θ) := Ei∼p
[
E{Ditest,t}ζt=1

[
Ji
(
Ψi(. . . (Ψi(θ,Ditest,1) . . .),Ditest,ζ)

)] ]
, (7)

where the operator Ψi is applied ζ times inside the expectation. In this paper, we establish convergence
properties of policy gradient methods for both single step and multiple steps of stochastic gradient
cases, but for simplicity in the main text we focus on the single step case.

2.1 Second-order information of the expected reward

Due to the inner gradient in V1(θ), i.e., the objective function of the MAML problem in (6), the
gradient of the function V1(θ) requires access to the second-order information of the expected reward
function J(θ). To facilitate further analysis, in this subsection we formally present a characterization
of expected reward Hessian and its unbiased estimate over a batch of trajectories. In particular, the
expected reward Hessian∇2Ji(θ) is given by (see [22] for more details)

∇2Ji(θ) = Eτ∼qi(·;θ) [ui(τ ; θ)] , ui(τ ; θ) :=∇θνi(τ ; θ)∇θ log qi(τ ; θ)>+∇2
θνi(τ ; θ) (8)

where νi(τ ; θ) is given by νi(τ ; θ) :=
∑H
h=0 log πi(ah|sh; θ)Rhi (τ).

Recall that the reward function is defined as Rhi (τ) :=
∑H
t=h γ

tri(st, at). It is worth noting that
based on the expression in (4) we can write gi(τ ; θ) = ∇θνi(τ ; θ).

Similar to policy gradient, policy Hessian can be estimated over a batch of trajectories Di indepen-
dently drawn with respect to qi(; θ). Specifically, for a given dataset Di, we can define ∇̃2Ji(θ,Di)

∇̃2Ji(θ,Di) :=
1

|Di|
∑
τ∈Di

ui(τ ; θ) (9)

as an unbiased estimator of the Hessian ∇2Ji(θ). We will use the expressions for the Hessian
∇2Ji(θ) in (8) and the Hessian approximation ∇̃2Ji(θ,Di) in (9) to introduce our proposed method
for solving the Meta-RL problem in (6) and its generalized version in (7).

3 Model-agnostic meta reinforcement learning

In this section, we first propose a method to solve the stochastic gradient-based MAML Reinforcement
Learning problem introduced in (6). Then, we discuss how to extend the proposed method to the
setting that we solve a multi-step MAML problem as introduced in (7). We close the section by
discussing the differences between our proposed method and the Meta-RL method proposed in [1]
and clarify why these two methods are solving two different problems.

3.1 MAML for stochastic meta-RL

Our goal in this section is to propose an efficient method for solving the stochastic Meta-RL problem
in (6). To do so, we propose a stochastic gradient MAML method for Meta-Reinforcement Learning
(SG-MRL) that aims at solving problem (6) by following the update of stochastic gradient descent
for the objective function V1(θ). To achieve this goal one need to find an unbiased estimator of the
gradient ∇V1(θ) which in some MAML settings is not trivial (for more details see Section 4.1 in
[14]), but we show that for problem (6) an unbiased estimate of ∇V1(θ) can be efficiently computed.

4



Let us start by pointing out that the gradient of the function V1(θ) defined in (6) is given by

∇V1(θ) = ∇θ
[
Ei EDitest

[
Ji

(
θ + α∇̃Ji(θ,Ditest)

)]]
= EiEDitest

[
(I+α∇̃2Ji(θ,Ditest))

×∇Ji(θ+α∇̃Ji(θ,Ditest)) + Ji(θ+α∇̃Ji(θ,Ditest))
∑

τ∈Ditest

∇θ log πi(τ ; θ)

]
(10)

with the convention that for τ = (s0, a0, ..., sH , aH) we define πi(τ ; θ) as

πi(τ ; θ) :=

H∏
h=0

πi(ah|sh; θ). (11)

Recall that the expected reward function Ji(θ) and its gradient ∇Ji(θ) are defined in (2) and (3),
respectively, and ∇̃Ji(θ,Ditest) and ∇̃2Ji(θ,Ditest) are the stochastic estimates of the gradient and
Hessian corresponding to Ji(θ) that are formally defined in (5) and (9), respectively.

Note that the first term in the definition of ∇V1(θ) in (10), i.e., (I +α∇̃2Ji(θ,Ditest))∇Ji(θ+

α∇̃Ji(θ,Ditest)), is the term that gives the gradient of an MAML problem (see, e.g., [16]), while
the second term, i.e., Ji(θ + α∇̃Ji(θ,Ditest))

∑
τ∈Ditest

∇θ log πi(τ ; θ), is specific to the RL setting
since the probability distribution pi itself depends on the parameter θ. For more details regarding the
derivation ∇Vζ(θ) for any ζ ≥ 1, we refer the reader to Appendix C.

We solve the optimization problem in (6) by using gradient ascent step to update the parameter θ,
i.e., following the update θk+1 = θk + β∇V1(θk) at iteration k. However, computing the gradient
∇V1(θk) may not be tractable in many cases due to the large number of tasks and the size of the
action and state spaces. In our proposed SG-MRL method we therefore replace the gradient ∇V1(θk)
with its estimate computed as follows: At iteration k + 1, we first choose a subset Bk of the tasks
(MDPs), where each task is drawn independently from the probability distribution p. The SG-MRL
outlined in Algorithm 1 is implemented at two levels: (i) inner loop and (ii) outer loop. In the inner
loop, for each task Ti with i ∈ Bk, we draw a batch of trajectories Diin according to qi(·; θk) to
compute the stochastic gradient ∇̃Ji(θk,Diin) as defined in Section 2. This estimate is then used to
compute a model θik+1 corresponding to task Ti by a single iteration of stochastic policy gradient,

θik+1 = θk + α∇̃Ji(θk,Diin). (12)

For simplicity, we assume that the size of Bk is equal to B for all k, and the size of dataset Diin is
fixed for all tasks and at each iteration, and we denote it by Din.

In the outer loop, we compute the next iterate θk+1 using the iterates {θik+1}i∈Bk that are computed
in the inner loop. In particular, we follow the update θk+1 = θk + β∇̃V1(θk), where

∇̃V1(θk) :=
1

B

∑
i∈Bk

[
(I + α∇̃2Ji(θk,Diin))∇̃Ji(θk + α∇̃Ji(θk,Diin),Dio) (13)

+ J̃i

(
θk + α∇̃Ji(θk,Diin),Dio

) ∑
τ∈Diin

∇θ log πi(τ ; θk)

]
in which ∇̃2Ji(θk,Diin) is policy Hessian estimate defined in (9) and for each task Ti, the dataset Dio
is a new batch of trajectories that are drawn based on the probability distribution qi(·; θik+1); Again,
for simplicity, we assume that the size of dataset Dio is fixed for all tasks and at each iteration denoted
by Do. SG-MRL is summarized in Algorithm 1.

It can be verified that if all the gradients and Hessians in SG-MRL update were exact, then the
outcome of the update of SG-MRL would be equivalent to the outcome of gradient ascent update
for the function V1, i.e., θk+1 = θk + β∇V1(θk). Note that by computing the expected value of
∇̃V1(θk) first with respect to the random set Dio, then with respect to Din, and finally with respect
to Bk, we obtain that E[∇̃V1(θk)] = ∇V1(θk). Therefore, the stochastic gradient ∇̃V1(θk) is an
unbiased estimator of the gradient∇V1(θk).

The SG-MRL method can also be extended and used for solving the multi-step MAML problem
defined in (7). To do so, at each iteration, we first perform ζ steps of policy stochastic gradient in the
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Algorithm 1: Proposed SG-MRL method for Meta-RL
Input:Initial iterate θ0
repeat

Draw a batch of i.i.d. tasks Bk⊆I with size B = |Bk|;
for all Ti with i ∈ Bk do

Sample a batch of trajectories Diin w.r.t. qi(·; θk);
Set θik+1 = θk + α∇̃Ji(θk,Diin);

end for
Sample a batch of trajectories Dio w.r.t. qi(·; θik+1);
Set θk+1 = θk

+
β

B

∑
i∈Bk

((
I + α∇̃2Ji(θk,Diin)

)
∇̃Ji

(
θik+1,Dio

)
+

Additional term in SG-MRL︷ ︸︸ ︷
J̃i
(
θik+1,Dio

) ∑
τ∈Diin

∇θ log πi(τ ; θk)

)
k ← k + 1

until not done

inner loop, and then take one step of stochastic gradient ascent with respect to an unbiased estimator
of ∇Vζ(θ). More details on the implementation of SG-MRL for that case is provided in Appendix C.

3.2 Comparing SG-MRL with other model-agnostic meta-RL methods

In this section, we discuss the difference between our SG-MRL method and recent Meta-RL methods.
In particular, we focus on the MAML method in [1] for solving RL problems. Before discussing the
differences between these two methods, let us first recap the update of the MAML method in [1].

The main formulation proposed in [1] which was followed in other works such as [10] is slightly
different from the one in this paper as they assume the agent has access to the exact gradient of the
new task, and hence, they consider the following MAML problem

max
θ∈Rd

V̂1(θ) := Ei∼p [Ji (θ + α∇Ji(θ))] . (14)

As mentioned, the main difference between (6) and (14) is that the former tries to find a good initial
policy that leads to a good solution after running one step of stochastic gradient ascent, while the
latter finds an initial policy that produces a good policy after running one step of gradient ascent.
Remark 1. Problems in (6) and (14) are both valid formulations for Meta-RL. In practice, however,
it is often computationally intractable to evaluate the exact gradient of the expected reward and
we often have only access to its stochastic gradient. Hence, it might be more practical to solve (6)
instead of (14) as it finds an initial policy that performs well after running one step of stochastic
gradient, unlike (14) that finds a policy that performs well after running one step of gradient update.

In a nutshell, the MAML method proposed in [1] tries to solve the problem in (14) by following the
update of stochastic gradient ascent for the objective function V̂1(θ). To be more precise, note that
the gradient of the loss function V̂1(θ) defined in (14) can be expressed as

∇V̂1(θ) = ∇θEi∼p [Ji (θ + α∇Ji(θ))] = Ei∼p
[(
I + α∇2Ji(θ)

)
∇Ji (θ + α∇Ji(θ))

]
. (15)

Note that the expression for the gradient of V̂1(θ) in (15) is different from the expression for the gra-
dient of V1(θ) in (10). In particular, the extra term Ji(θ + α∇̃Ji(θ,Ditest))

∑
τ∈Ditest

∇θ log πi(τ ; θ)

that appears in (15) is caused by the fact that we use stochastic gradients in the definition of the
function V1(θ), while exact gradients are used in the definition of V̂1(θ).

Considering the expression for the gradient of V̂1(θ) in (15), a natural approach to approximate
∇V̂1(θ) is to replace the gradients and Hessians corresponding to the expected reward Ji(θ) by their
stochastic approximations. In other words, one can use the approximation ∇̃V̂1(θk) which is defined
as the average over (I + α∇̃2Ji(θk,Diin))∇̃Ji(θk + α∇̃Ji(θk,Diin),Dio) for all i ∈ Bk, i.e.,

∇̃V̂1(θk) :=
1

B

∑
i∈Bk

(
I + α∇̃2Ji(θk,Diin)

)
∇̃Ji

(
θik,Dio

)
(16)
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where θik := θk + α∇̃Ji(θk,Diin). Here the procedure for computing the sample sets Diin and Dio is
the same as the one in SG-MRL. Once ∇̃V̂1(θk) is computed the new variable θk+1 can be computed
by following the update of stochastic gradient ascent, i.e., θk+1 = θk + β ∇̃V̂1(θk). The description
of the Meta-RL method in [1] and its implementation at two levels (inner and outer) is similar to the
one in Algorithm 1, except the highlighted additional term which is not included in MAML update.

Note that the gradient estimate ∇̃V̂1(θk) in (16) is a biased estimate of the exact gradient ∇V̂1(θk)

defined in (15). This is due to the fact that ∇̃Ji(θk + α∇̃Ji(θk,Diin),Dio) is a biased estimate of
∇Ji(θ + α∇Ji(θ)) because of the term ∇̃Ji(θk,Diin) inside it. In other words, MAML method
proposed by [1] uses a biased estimate of the gradient in this case. Note that, in general optimiza-
tion analyses, when we have access to biased gradient estimators, even with diminishing or small
stepsize, we might only converge to a neighborhood of the optimal solution, where the radius of our
convergence depends on the bias. To resolve this issue, one needs to control the bias in the gradient
directions and lower the bias as time progresses using some debiasing techniques. For instance, the
work in [23] studies this problem in detail for debiasing MAML in the supervised learning setting.

On the other hand, our proposed SG-MRL method does not suffer from this issue since computing an
unbiased estimator of the gradient for the objective function considered in (6) is relatively simple.
In fact, in the following section, we show that SG-MRL is provably convergent and characterize
its complexity to find an approximate first-order stationary point of (6) and its generalized version
defined in (7).

4 Theoretical results

In this section, we study the convergence properties of the proposed SG-MRL method and characterize
its overall complexity for finding a policy that satisfies the first-order optimality condition for the
objective function Vζ(θ) defined in (7). To do so, we first formally define the first-order optimality
condition that we aim to achieve.
Definition 1. A random vector θε ∈ Rd is called an ε-approximate first-order stationary point
(FOSP) for problem (7) if it satisfies E[‖∇Vζ(θε)‖] ≤ ε.

We next state the main assumptions that we use to derive our results.
Assumption 1. The reward functions ri are nonnegative and uniformly bounded, i.e., there exists a
constant R such that for any task i, state s ∈ Si, and action a ∈ Ai, we have 0 ≤ ri(a|s) ≤ R.
Assumption 2. There exist constants G and L such that for any i and for any state s ∈ Si, action
a ∈ Ai, and parameter θ ∈ Rd, we have ‖∇θ log πi(a|s; θ)‖ ≤ G and ‖∇2

θ log πi(a|s; θ)‖ ≤ L.

Both assumptions are customary in the policy gradient literature and have been used in other papers
to obtain convergence guarantees for policy gradient methods [24, 22, 25].
Assumption 3. There exists a constant ρ such that for any i and for any state s ∈ Si, action a ∈ Ai,
and parameters θ1, θ2 ∈ Rd, we have ‖∇2

θ log πi(a|s; θ1)−∇2
θ log πi(a|s; θ2)‖ ≤ ρ‖θ1 − θ2‖.

This assumption is also customary in the analysis of MAML-type algorithms [14, 16]. In particular,
in Appendix B we provide more insight into the conditions in Assumptions 2 and 3 by focusing on
the special case of softmax policy parametrization.

4.1 Convergence of SG-MRL

Next, we study the convergence of our proposed SG-MRL for solving the Model-Agnostic Meta-
Reinforcement Learning problem in (7). To do so, we show two important intermediate results. First,
we show that the function Vζ(θ) is smooth. Second, we show the unbiased estimator of the gradient
∇Vζ(θ) denoted by ∇̃Vζ(θk) has a bounded norm. Building on these two results, we will derive the
convergence of SG-MRL. To prove these two intermediate results, we first state the following lemma
on the Lipschitz property of the expected reward function Ji and its first and second derivatives for
any MDPMi. This lemma not only plays a key role in our analysis, but also can be of independent
interest in general for analyzing meta-reinforcement learning algorithms.
Lemma 1. Recall the definitions of gi(τ ; θ) in (4) and ui(τ ; θ) in (8) for trajectory τ ∈ (Si×Ai)H+1

and policy parameter θ ∈ Rd. If Assumptions 1-3 hold, then for any MDPMi we have:
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i) For any τ and θ, we have ‖gi(τ ; θ)‖ ≤ ηG := GR
(1−γ)2 . As a consequence,

‖∇Ji(θ)‖, ‖∇̃Ji(θ,Di)‖ ≤ ηG for any θ and any batch of trajectories Di. Further, this implies that
Ji(.) is smooth with parameter ηG.

ii) For any τ and θ, we have ‖ui(τ ; θ)‖ ≤ ηH := ((H+1)G2+L)R
(1−γ)2 . As a consequence,

‖∇2Ji(θ)‖, ‖∇̃2Ji(θ,Di)‖ ≤ ηH for any θ and any batch of trajectories Di. Further, this im-
plies that∇Ji(.) is smooth with parameter ηH .

iii) For any batch of trajectoriesDi, ∇̃2Ji(θ,Di) is smooth with parameter ηρ := (2(H+1)GL+ρ)R
(1−γ)2 .

By exploiting the results in Lemma 1, we can prove the promised results on the Lipschitz property of
∇Vζ(θ) as well as boundedness of its unbiased estimator ∇̃Vζ(θ). In the following proposition, due
to space limitation and for the the ease of notation we only state the result for the case that ζ = 1;
however, the general version of these results along with their proofs are available in Appendix F.
Proposition 1. Consider the objective function V1 defined in (6) for the case that α ∈ (0, 1/ηH ]
where ηH is given in Lemma 1. Suppose that the conditions in Assumptions 1-3 are satisfied. Then,

i) V1(θ) is smooth with parameter

LV := αηρηG + 4ηH + 8RDin(H + 1)(L+DinG
2(H + 1)) (17)

where ηG and ηρ are defined in Lemma 1.

ii) For any choices of Bk, {Dio}i and {Diin}i, the norm of stochastic gradient ∇̃V1(θk) defined in
(13) at iteration k is bounded above by‖∇̃V1(θk)‖ ≤ GV :=2GR

[
(1−γ)−2 +Din(H + 1)

]
.

The smoothness parameter for the RL problem has been previously characterized (as an example see
[22]), but, to the best of our knowledge, this is the first result on the smoothness parameter of the
meta-RL function. Proving Proposition 1 is the main challenge in our analysis, since it establishes
that our formulation satisfies the relevant assumptions needed for our main result in the next theorem.

Now, we present our main result on the convergence of SG-MRL to a first-order stationary point for
the Meta-reinforcement learning problem in defined (7). We state our main result for the special case
of ζ = 1, but the general statement of the theorem along with its proof can be found in Appendix G.
Theorem 1. Consider V1 defined in (6) for the case that α ∈ (0, 1/ηH ] where ηH is defined in
Lemma 1. Suppose Assumptions 1-3 are satisfied, and recall the definitions of LV and GV from
Proposition 1. Consider running SG-MRL (Algorithm 1) with β ∈ (0, 1/LV ]. Then, for any
1 > ε > 0, SG-MRL finds a solution θε such that E[‖∇V1(θε)‖2] ≤ 2G2

V LV β
BDo

+ ε2, after running for

at most O(1)Rβ min
{

1
ε2 ,

BDo
G2
V LV β

}
iterations.

Next we characterize the complexity of SG-MRL for finding an ε-first-order stationary point solution.
Corollary 1. Suppose the hypotheses of Theorem 1 hold. Then, for any ε > 0, SG-MRL achieves
ε-first-order stationarity by setting: (i) BDo ≥ 8G2

V /ε
2 and β = 1/LV requiring O(ε−2) iterations

and computing O(ε−2) stochastic gradients per iteration; or (ii) β = O(ε−2) and BDo = O(1)
which requires O(ε−4) iterations and O(1) stochastic gradient evaluations per iteration.

The conditions in Corollary 1 identify two settings under which SG-MRL finds an ε−FOSP after a
finite number of iterations, abd both settings overall require O(ε−4) stochastic gradient evaluations.
Remark 2. While we mainly focused on the case ζ = 1, we provide the general statement of the
results for any ζ in the Appendix. Note that the downside of increasing ζ is that the smoothness
parameter grows exponentially with respect to ζ (see Theorem 3), which means that we need to take
a smaller learning rate that leads to a slower convergence rate. However, on the positive side, by
increasing ζ we train a model that better adapts to a new task.

5 Numerical experiments

In this section, we empirically validate the proposed SG-MRL algorithm in larger-scale environments
standard in modern reinforcement learning applications. The code is available online3.

3The code is available at https://github.com/kristian-georgiev/SGMRL.
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Table 1: Mean meta-test reward (negative square distance to goal location) of SG-MRL, MAML, and
E-MAML after 1 adaptation step.

Algorithm Meta-Test Reward
SG-MRL −16.901± 0.699−16.901± 0.699−16.901± 0.699
MAML −17.767± 0.106

E-MAML −17.803± 0.115

Table 2: The mean meta-test reward for SG-MRL and MAML on additional environments when
trained and adapted with 1, 2, and 3 inner updates over 4 random seeds.

environment SG-MRL reward MAML reward
Half-Cheetah Random Direction, 1 step 580.143± 38.22 465.624± 54.07
Half-Cheetah Random Direction, 2 step 580.203± 33.63 441.247± 58.34
Half-Cheetah Random Direction, 3 step 504.747± 45.07 477.086± 64.71
Half-Cheetah Random Velocity, 1 step −91.73± 0.34 −92.92± 0.70
Half-Cheetah Random Velocity, 2 step −52.64± 6.86 −56.71± 6.73
Half-Cheetah Random Velocity, 3 step −33.39± 0.67 −32.48± 0.50
Swimmer Random Velocity, 1 step 118.77± 9.99 104.53± 24.18
Swimmer Random Velocity, 2 step 134.57± 1.67 108.47± 23.36
Swimmer Random Velocity, 3 step 110.91± 12.56 90.60± 14.99

We conduct two experiments: a 2D-navigation problem, and a more challenging locomotion problem
simulated with the MuJoCo library [26]. For both experiments, we use a neural network policy with
a standard feed-forward neural network and optimize it with vanilla policy gradient [27]. Further
implementation details are outlined in Appendix H.

All experiments were conducted in MIT’s Supercloud [28]. Similar to FO-MAML proposed in [1], we
use first order implementation of SG-MRL. It is also worth noting that SG-MRL is straightforward to
implement as a modification to MAML and requires no additional hyperparameter tuning. Also, SG-
MRL does not reduce the scalability of MAML. In particular, across experiments, we benchmarked
the clock time of SG-MRL against MAML and SG-MRL is consistently at most 1.05 times slower
over the course of training. Next, we demonstrate the practicality of SG-MRL in modern deep
reinforcement learning problems.

Figure 1: Trajectories generated by poli-
cies trained with SG-MRL and MAML
for the 2D-navigation problem.

2D-navigation. We consider the problem of a point-mass
agent navigating from the origin to a random goal lo-
cation within a unit-size square centered at the origin
([−0.5, 0.5] × [−0.5, 0.5]). We consider the negative
squared distance to the goal location as a reward. Ob-
servations consist of the position of the agent within the
unit-size square. The action space comprises of all veloc-
ities with components clipped in the interval [−0.1, 0.1].
An example of a trajectory is illustrated in Figure 1. In
Table 1, we compare the performance of SG-MRL against
MAML [1] and E-MAML [29]. We make a comparison
with E-MAML since it has a similar spirit to our proposed
SG-MRL method, but unlike the proposed algorithm, E-
MAML is derived from heuristic arguments.

Locomotion: MuJoCo environments. In addition to the
2D-navigation example, we provide a benchmark on a
more challenging set of tasks - MuJoCo’s locomotion environments. We benchmark our algorithm
against MAML on three different tasks and report the results in Table 2. The tasks involve learning to
move in a goal direction (forward/backward), or reach a target velocity. We describe each task in
more detail in Appendix H.

6 Conclusion and future work

We studied MAML for RL problems, considering performing a few steps of stochastic policy gradient
at test time. Given this formulation, we introduced SG-MRL, and discussed how it differs from the
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original MAML algorithm in [1]. Further, we characterized the convergence of SG-MRL method
in terms of gradient norm and under a set of assumptions on the policy and reward functions. Our
results show that, for any ε, SG-MRL achieves ε-first-order stationarity, given that either the learning
rate is small enough or the multiplication of task and outer loop batch sizes is sufficiently large.

A shortcoming of our analysis is the requirement on the boundedness of gradient norm (Assumption 2).
A natural extension of our work would be extending the theoretical results to the setting that gradient
norm is possibly unbounded. Moreover, our results are limited to achieving first-order optimality,
while one can exploit techniques for escaping from saddle points to obtain second-order stationarity.
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A Intermediate Results

A.1 A Remark on the Batch of Trajectories

Recall that qi(Di; θ) denotes the probability of independently drawing batch Di of trajectories with
respect to i-th MDP and at policy parameter θ. Also, as we stated in Section 2, we assume the batch
of trajectories are sampled with replacement. Note that, in this case

qi(Di; θ) =
∏

τ∈Di,θ
qi(τ ; θ). (18)

However, for the case that the batch of trajectories that we draw is not ordered, we have

qi(Di; θ) = CDi
∏

τ∈Di,θ
qi(τ ; θ). (19)

with
CDi = |Di|!/

∏
τ∈(Si×Ai)H+1

Cτ !

where Cτ is the number of times that the particular trajectory τ is appeared in Di. Throughout the
proofs, we mainly refer to (18). However, the results can be easily extended to (19) as well. The
reason is that we mostly work with the term∇θ log qi(Di; θ), and since CDi is not a function of θ,
for both cases we have

∇θ log qi(Di; θ) =
∑
τ∈Di

∇θ log qi(τ ; θ) =
∑
τ∈Di

∇θ log πi(τ ; θ)

where the last equality is obtained using (1) along with the definition (11).

A.2 Lemmas

Lemma 2. For any i ∈ {1, ..., n}, let fi : Rd → Wi be a continuous function with Wi ∈
{R,Rd,R1×d,Rd×d} such that g(θ) = fn(θ)...f1(θ) is well defined. Furthermore, assume that
for any i, the following holds:

1. fi is bounded, i.e., ‖fi(θ)‖ ≤ Bi for some nonnegative constant Bi and any θ ∈ Rd.

2. fi is Lipschitz, i.e., ‖fi(θ) − fi(θ̃)‖ ≤ Li‖θ − θ̃‖ for some nonnegative constant Li and
any θ, θ̃ ∈ Rd.

Then, g(θ) is Lipschitz with parameter Lg :=
∑n
i=1(Li

∏
j 6=iBj), i.e., for any θ and θ̃,

‖g(θ)− g(θ̃)‖ ≤ Lg‖θ − θ̃‖. (20)

Proof. We prove this result by induction on n. First, for n = 2, note that

‖g(θ)− g(θ̃)‖ =
∥∥∥f2(θ)f1(θ)− f2(θ̃)f1(θ̃)

∥∥∥
=
∥∥∥f2(θ)f1(θ)− f2(θ)f1(θ̃) + f2(θ)f1(θ̃)− f2(θ̃)f1(θ̃)

∥∥∥
≤
∥∥∥f2(θ)f1(θ)− f2(θ)f1(θ̃)

∥∥∥+
∥∥∥f2(θ)f1(θ̃)− f2(θ̃)f1(θ̃)

∥∥∥
≤ ‖f2(θ)‖‖f1(θ)− f1(θ̃)‖+ ‖f1(θ̃)‖‖f2(θ)− f2(θ̃)‖
≤ B2L1‖θ − θ̃‖+B1L2‖θ − θ̃‖ = Lg‖θ − θ̃‖ (21)

where the last inequality follows from the boundedness and Lipschitz property assumptions on fi.
Next, for n ≥ 3, we assume the results holds for n − 1, and we show it also holds for n. Note
that if fn(θ)...f1(θ) is well defined, fm(θ)...f1(θ) is also well defined for any m ≤ n, including
m = n− 1. Hence, by induction hypothesis

‖fn−1(θ)...f1(θ)− fn−1(θ̃)...f1(θ̃)‖ ≤ L̃g‖θ − θ̃‖. (22)
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where L̃g =
∑n−1
i=1 (Li

∏
j 6=iBj). Thus, g̃(θ) := fn−1(θ)...f1(θ) is Lipschitz with parameter

L̃g. Also, it is bounded by
∏n−1
j=1 Bj . Finally, note that g̃ is a function from Rd to one of

{R,Rd,R1×d,Rd×d}. Thus, using (21), we obtain

‖g(θ)− g(θ̃)‖ =
∥∥∥fn(θ)g̃(θ)− fn(θ̃)g̃(θ̃)

∥∥∥ ≤ (BnL̃g + Ln

n−1∏
j=1

Bj)‖θ − θ̃‖. (23)

However, it is easy to verify that in fact BnL̃g + Ln
∏n−1
j=1 Bj = Lg and hence the proof is

complete.

Lemma 3. For any i ∈ {1, ..., n}, let fi : Rd → Rm be a continuously differentiable function which
is bounded byBf , and is also Lipschitz with Lipschitz parameter Lf . Also, let p(.; θ) be a distribution
on {fi}ni=1 where probability of drawing fi is p(i; θ). We further assume there exists a non-negative
constant Bp such that for any i and θ

‖∇θ log p(i; θ)‖ ≤ Bp. (24)

Then, the function g(θ) := Ep(i;θ)[f(i; θ)] is Lipschitz with parameter BfBp + Lf .

Proof. First note that

‖∇θp(i; θ)‖ = ‖∇θ log p(i; θ)‖p(i; θ) ≤ Bp p(i; θ). (25)

To show the result, it suffices to prove

‖ ∂
∂θ
g(θ)‖ ≤ BfBp + Lf . (26)

To show this, note that, by product rule, we have

∂

∂θ
g(θ) =

∂

∂θ
(
∑
i

f(i; θ)p(i; θ)) =
∑
i

p(i; θ)
∂

∂θ
f(i; θ) +

∑
i

∇p(i; θ)f(i; θ)>. (27)

As a result

‖ ∂
∂θ
g(θ)‖ ≤

∑
i

p(i; θ)‖ ∂
∂θ
f(i; θ)‖+

∑
i

‖∇p(i; θ)‖‖f(i; θ)‖

≤ Lf
∑
i

p(i; θ) +BfBp
∑
i

p(i; θ) (28)

= Lf +BfBp

where first part of (28) follows from the fact that ‖ ∂∂θf(i; θ)‖ ≤ Lf as f(i; θ) is Lipschitz with
parameter Lf , and the second part of (28) is obtained using (25) along with boundedness assumption
of fi functions.

B Softmax Policy

Consider the function φ : A × S → Rd as an arbitrary mapping from the space of actions-states
to real-valued vectors with dimension d which is the size of policy parameter θ. Then, the softmax
policy is given by4

π(a|s, θ) =
exp(φ(a, s)>θ)∑

a′∈A exp(φ(a′, s)>θ)
.

In this case, ∇θ log π(a|s; θ), which is known as the score function, admits the following characteri-
zation (see [20])

∇θ log π(a|s; θ) = φ(a, s)− Ea′∼π(a′|s,θ)[φ(a′, s)]. (29)

4Through this example we suppress the task indices and mostly focus on softmax parametrization.
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Using this expression, we can show that the Hessian ∇2
θ log π(a|s; θ) is equal to the negative of

covariance matrix of random variable φ(a′, s) when a′ is drawn from distribution π(a′|s, θ), i.e.,

∇2
θ log π(a|s; θ)

= −Ea′∼π(a′|s,θ)
[(
φ(a′, s)− Ea′′∼π(a′′|s,θ)[φ(a′′, s)]

)
(
φ(a′, s)− Ea′′∼π(a′′|s,θ)[φ(a′′, s)]

)>]
.

For more details regarding the derivation of∇2
θ log π(a|s; θ) please check Appendix D.

According to the expressions for ∇θ log π(a|s; θ) and ∇2
θ log π(a|s; θ), when we use a softmax

policy, if we assume that the mapping norm ‖φ(., .)‖ is bounded, then both conditions in Assumption
2 hold, i.e., ‖∇θ log π(a|s; θ)‖ and ‖∇2

θ log π(a|s; θ)‖ would be both bounded for any action a, state
s, and parameter θ. Moreover, in Appendix D, we further show that the boundedness of ‖φ(., .)‖
implies that the condition in Assumption 3 holds as well.

Hence, at least for the softmax policy, the conditions in Assumptions 2 and 3 hold, if the mapping φ
has a bounded norm. Note that in most applications, the mapping φ is a neural network and as the
weights of neural networks are often bounded (or enforced to be bounded), ‖φ(., .)‖ is uniformly
upper bounded.

C Multi-Step SG-MRL Method

We first start by characterizing∇Vζ(θ) for general ζ ≥ 1.

Theorem 2. Recall the definition of Vζ(θ) (7). Then, its derivative can be expressed as

∇Vζ(θ) = Ei∼pE{Ditest,j}ζt=1

[
ζ∏
t=1

(I + α∇̃2Ji(θ
i,t−1(θ),Ditest,t′))∇Ji(θi,ζ(θ))

+Ji
(
θi,ζ(θ)

) ζ∑
t=1

 t−1∏
t′=1

(I + α∇̃2Ji(θ
i,t′−1(θ),Ditest,t′))

∑
τ∈Ditest,t

∇θ log πi(τ ; θi,t−1(θ))

 .
(30)

Proof. To simplify the notation, let us define θi,0(θ) := θ and θi,t(θ) :=
Ψi(...(Ψi(θ,Ditest,1)...),Ditest,t) for t ≥ 1. Then, Vζ(θ) can be cast as

Vζ(θ) = Ei∼p
[
E{Ditest,t}ζt=1

[
Ji
(
θi,ζ(θ)

)]]
. (31)

Note that

∂

∂θ
Ψi(θ,Di) = I + α∇̃2Ji(θ,Di). (32)

Now, using (32) along with chain rule, we have

∂

∂θ
θi,t(θ) =

∂

∂θ

(
Ψi(...(Ψi(θ,Ditest,1)...),Ditest,t)

)
=

t∏
t′=1

(I + α∇̃2Ji(θ
i,t′−1(θ),Ditest,t′)) (33)

for any t ≥ 1.
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Using the formulation for derivative of product of functions, we obtain:

∇Vζ(θ) = ∇θEi∼p

 ∑
{Ditest,t}

ζ
t=1

Ji
(
θi,ζ(θ)

) ζ∏
t=1

qi(Ditest,t; θi,t−1(θ))


= Ei∼p

 ∑
{Ditest,t}

ζ
t=1

∂

∂θ

(
Ji
(
θi,ζ(θ)

)) ζ∏
t=1

qi(Ditest,t; θi,t−1(θ))

+
∑

{Ditest,t}
ζ
t=1

Ji (θi,ζ(θ)) ζ∑
t=1

 ∂

∂θ

(
qi(Ditest,t; θi,t−1(θ))

) ζ∏
t′=1
t′ 6=t

qi(Ditest,t′ ; θi,t
′−1(θ))



 .

(34)

Now, note that, by using chain rule, we have

∂

∂θ

(
qi(Ditest,t; θi,t−1(θ))

)
=

∂

∂θ
θi,t−1(θ)∇θqi(Ditest,t; θi,t−1(θ))

=
∂

∂θ
θi,t−1(θ)∇θ log qi(Ditest,t; θi,t−1(θ))qi(Ditest,t; θi,t−1(θ)) (35)

Plugging (35) in (34), we obtain

∇Vζ(θ) =

= Ei∼p

 ∑
{Ditest,t}

ζ
t=1

∂

∂θ

(
Ji
(
θi,ζ(θ)

)) ζ∏
t=1

qi(Ditest,t; θi,t−1(θ))

+
∑

{Ditest,t}
ζ
t=1

(
Ji
(
θi,ζ(θ)

) ζ∑
t=1

(
∂

∂θ
θi,t−1(θ)∇θ log qi(Ditest,t; θi,t−1(θ))

) ζ∏
t=1

qi(Ditest,t; θi,t−1(θ))

)
= Ei∼pE{Ditest,j}ζt=1

[
∂

∂θ

(
Ji
(
θi,ζ(θ)

))
+ Ji

(
θi,ζ(θ)

) ζ∑
t=1

(
∂

∂θ
θi,t−1(θ)∇θ log qi(Ditest,t; θi,t−1(θ))

)]

= Ei∼pE{Ditest,j}ζt=1

[
∂

∂θ
θi,ζ(θ)∇Ji(θi,ζ(θ))

+Ji
(
θi,ζ(θ)

) ζ∑
t=1

(
∂

∂θ
θi,t−1(θ)∇θ log qi(Ditest,t; θi,t−1(θ))

)]
(36)

where the last equality is derived by substituting ∂
∂θ

(
Ji
(
θi,ζ(θ)

))
by ∂

∂θ θ
i,t−1(θ)∇Ji(θi,ζ(θ)) by

using chain rule. Now, we characterize ∇θ log qi(Ditest,t; θi,t−1(θ)) which appears in (36). First,
recall that

∇θ log qi(Ditest,t; θi,t−1(θ)) =
∑

τ∈Ditest,t

∇θ log qi(τ ; θi,t−1(θ)).

Therefore,

∇θ log qi(Ditest,t; θi,t−1(θ)) =
∑

τ∈Ditest,t

∇θ log qi(τ ; θi,t−1(θ))

=
∑

τ=((sj ,aj)Hj=0)∈Ditest,t

H∑
h=0

∇θ log πi(ah|sh; θi,t−1(θ))

=
∑

τ∈Ditest,t

∇θ log πi(τ ; θi,t−1(θ)) (37)
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Algorithm 2: Multi-Step SG-MRL
Input: Initial iterate θ0
repeat

Draw a batch of i.i.d. tasks (MDPs) Bk ⊆ I from distribution p and with size B = |Bk|;
Set θi,0k+1 = θk;
for all Ti with i ∈ Bk do

for t← 1 to ζ do
Sample a batch of trajectories Diin,t w.r.t. qi(.; θ

i,t−1
k+1 );

Set θi,tk+1 = θi,t−1k+1 + α∇̃Ji(θi,t−1k+1 ,Diin,t);
end for

end for
Set θk+1 = θk + β∇̃Vζ(θk;Bk, {Diin,t}i,t,Dio) where ∇̃Vζ(.; .) is given by (39);
k ← k + 1

until not done

where the second equality follows from (1) and we used the notation (11) for the last equality.
Plugging (37) and (33) in (36), we obtain

∇Vζ(θ) = Ei∼pE{Ditest,j}ζt=1

[
ζ∏
t=1

(I + α∇̃2Ji(θ
i,t−1(θ),Ditest,t′))∇Ji(θi,ζ(θ))

+Ji
(
θi,ζ(θ)

) ζ∑
t=1

 t−1∏
t′=1

(I + α∇̃2Ji(θ
i,t′−1(θ),Ditest,t′))

∑
τ∈Ditest,t

∇θ log πi(τ ; θi,t−1(θ))

 .
(38)

As a consequence,

∇̃Vζ(θ;Bk, {Diin,t}i,t,Dio) :=
1

B

∑
i∈Bk

(
ζ∏
t=1

(I + α∇̃2Ji(θ
i,t−1(θ),Diin,t′))∇̃Ji(θi,ζ(θ),Dio)

+J̃i
(
θi,ζ(θ),Dio

) ζ∑
t=1

 t−1∏
t′=1

(I + α∇̃2Ji(θ
i,t′−1(θ),Diin,t′))

∑
τ∈Diin,t

∇θ log πi(τ ; θi,t−1(θ))


(39)

is an unbiased estimate of ∇Vζ(θ) where Bk is a batch of tasks drawn independently from distri-
bution p and Diin,t and Dio are batch of trajectories drawn according to qi(.; θ

i,t−1
k+1 ) and qi(.; θ

i,ζ
k+1),

respectively. The steps of SG-MRL using this unbiased estimate are illustrated in Algorithm 2.

D On Softmax Policy

First, we show that

∇2
θ log π(a|s; θ) =

− Ea′∼π(a′|s,θ)
[(
φ(a′, s)− Ea′′∼π(a′′|s,θ)[φ(a′′, s)]

) (
φ(a′′, s)− Ea′′∼π(a′|s,θ)[φ(a′′, s)]

)>]
.

(40)
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Note that

∇2
θ log π(a|s; θ) = − ∂

∂θ
Ea′∼π(a′|s,θ)[φ(a′, s)]

= − ∂

∂θ

∑
a′∈A

π(a′|s, θ)φ(a′, s)

= −
∑
a′∈A

φ(a′, s)∇θπ(a′|s, θ)> (41)

= −
∑
a′∈A

φ(a′, s)∇θ log π(a′|s, θ)>π(a′|s, θ) (42)

= −Ea′∼π(a′|s,θ)
[
φ(a′, s)∇θ log π(a′|s, θ)>

]
= −Ea′∼π(a′|s,θ)

[
φ(a′, s)

(
φ(a′, s)− Ea′′∼π(a′′|s,θ)[φ(a′′, s)]

)>]
(43)

= −Ea′∼π(a′|s,θ)
[
φ(a′, s)φ(a′, s)>

]
+ Ea′∼π(a′|s,θ)[φ(a′, s)](Ea′∼π(a′|s,θ)[φ(a′, s)])>

where (42) follows from the log trick, i.e., the fact that ∇θπ(a′|s, θ) = ∇θ log π(a′|s, θ)π(a′|s, θ),
and (43) is obtained using (29).

Next, we assume φ(., .) is bounded and want to show ∇2
θ log π(a|s; θ) is a Lipschitz function of θ.

First, note that ∇θ log π(a|s; θ) given by (29) is bounded due to boundedness of φ(., .). Thus, by
Lemma 3, Ea′′∼π(a′′|s,θ)[φ(a′, s)] is Lipschitz, and it is also bounded as φ(., .) is bounded. Hence,
the term (

φ(a′, s)− Ea′′∼π(a′′|s,θ)[φ(a′′, s)]
) (
φ(a′′, s)− Ea′′∼π(a′|s,θ)[φ(a′′, s)]

)>
is bounded, as it is also Lipschitz by Lemma 2. Finally, applying Lemma 3 one more time shows (40)
is Lipschitz which completes the proof.

E Proof of Lemma 1

Proof of (1) & (2): check [22].

Proof of (3): Note that it suffices to show the for one trajectory τ , ui(τ ; θ) is Lipschitz with parameter
ηρ as

‖∇̃2Ji(θ1,Di)− ∇̃2Ji(θ2,Di)‖ ≤
1

|Di|
∑
τ∈Di

‖ui(τ ; θ1)− ui(τ ; θ2)‖. (44)

Let τ = (s0, a0, ..., sH , aH). Recall that
ui(τ ; θ) = gi(τ ; θ)∇θ log qi(τ ; θ)> +∇2

θνi(τ ; θ)

= gi(τ ; θ)

(
H∑
h=0

∇θ log πi(ah|sh; θ)

)>
+

H∑
h=0

∇2 log πi(ah|sh; θ)Rhi (τ). (45)

We now show both terms in (45) are Lipschitz and characterize their Lipschitz parameters. First, note
that gi(τ ; θ) is bounded by ηG. Also, note that

‖gi(τ ; θ1)− gi(τ ; θ2)‖ = ‖
H∑
h=0

(
(∇θ log πi(ah|sh; θ1)−∇θ log πi(ah|sh; θ2))Rhi (τ)

)
‖

≤
H∑
h=0

(
‖∇θ log πi(ah|sh; θ1)−∇θ log πi(ah|sh; θ2)‖Rhi (τ)

)
≤

H∑
h=0

(
L‖θ1 − θ2‖Rhi (τ)

)
(46)

≤ L‖θ1 − θ2‖
H∑
h=0

Rγh

1− γ
(47)

≤ LR

(1− γ)2
‖θ1 − θ2‖
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where (46) follows from Assumption 2 and (47) is obtained using the fact that Rhi (τ) ≤ Rγh

1−γ .

In addition,
∑H
h=0∇θ log πi(ah|sh; θ) is bounded by (H + 1)G and is Lipschitz with param-

eter (H + 1)L due to Assumption 2. As a result, by Lemma 2, the first term of (45), i.e.,

gi(τ ; θ)
(∑H

h=0∇θ log πi(ah|sh; θ)
)>

is Lipschitz with parameter ηG(H+1)L+(H+1)G LR
(1−γ)2 .

Replacing ηG implies that Lipschitz parameter is in fact 2(H + 1)GLR/(1− γ)2.

For the second term of (45), note that using Assumption 3 yields∥∥∥∥∥
H∑
h=0

(
(∇2 log πi(ah|sh; θ)−∇2 log πi(ah|sh; θ))Rhi (τ)

)∥∥∥∥∥ ≤
H∑
h=0

(
ρ‖θ1 − θ2‖Rhi (τ)

)
≤ ρ‖θ1 − θ2‖

H∑
h=0

Rγh

1− γ
≤ ρR

(1− γ)2
‖θ1 − θ2‖

where the second inequality once again follows from Rhi (τ) ≤ Rγh

1−γ . Adding up the Lipschitz
parameters of both terms of (45) completes the proof.

F On Boundedness and Lipschitz Property of∇Vζ(θ)

In the following Theorem, we characterize boundedness and Lipschitz property of ∇Vζ(θ) for any
ζ ≥ 1.
Theorem 3. Consider the objective function Vζ defined in (7) for the case that α ∈ (0, 1/ηH ] where
ηH is given in Lemma 1. Suppose that the conditions in Assumptions 1-3 are satisfied. Then, for any
θ ∈ Rd, the norm of∇Vζ(θ) is upper bounded by

GV (ζ) := 2ζ(ηG +DinGR(H + 1)) = 2ζGR

(
1

(1− γ)2
+Din(H + 1)

)
. (48)

Moreover,∇Vζ(θ) is Lipschitz with parameter

LV (ζ) := ζ2ζ−1αηρηG + 22ζηH (49)

+ 2ζDin(H + 1)
(
R
(
2ζL+ (ζ + 2ζ)DinG

2(H + 1) + (ζ − 1)αηρG
)

+ 2ζ+1ηGG
)

where ηG and ηρ are also defined in Lemma 1.

Proof. Recall from (36) in Appendix C that

∇Vζ(θ) = Ei∼pE{Ditest,j}ζt=1

[
∂

∂θ
θi,ζ(θ)∇Ji(θi,ζ(θ))

+Ji
(
θi,ζ(θ)

) ζ∑
t=1

(
∂

∂θ
θi,t−1(θ)∇θ log qi(Ditest,t; θi,t−1(θ))

)]

= Ei∼p

 ∑
{Dtest,t}ζt=0

(
ζ∏
t=1

qi(Ditest,t; θi,t−1(θ))

(
∂

∂θ
θi,ζ(θ)∇Ji(θi,ζ(θ))

+Ji
(
θi,ζ(θ)

) ζ∑
t=1

(
∂

∂θ
θi,t−1(θ)∇θ log qi(Ditest,t; θi,t−1(θ))

)))]
(50)

where θi,0(θ) := θ and θi,t(θ) := Ψi(...(Ψi(θ,Ditest,1)...),Ditest,t) for t ≥ 1. To show the desired
result, we first characterize the boundedness and Lipschitz property of

∂

∂θ
θi,ζ(θ)∇Ji(θi,ζ(θ)) + Ji

(
θi,ζ(θ)

) ζ∑
t=1

(
∂

∂θ
θi,t−1(θ)∇θ log qi(Ditest,t; θi,t−1(θ))

)
(51)

for any i and any sequence of batches {Dtest,t}ζt=0. In particular, we show (51) is bounded byGV (ζ),
and therefore, the bound holds for∇Vζ(θ) as well. Furthermore, we show a bound on the Lipschitz
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parameter of (51) which is independent of both {Dtest,t}ζt=0 and i, and we obtain it by showing each
term in (51) is bounded and Lipschitz and then applying Lemma 2. Finally, to show (49), we use
Lemma 3.

We now start with studying boundedness and Lipschitz property of (51). In this regard, first, we show
the following lemma on the Lipschitz property of θi,t(θ) and its derivative for any t:

Lemma 4. Let t ≥ 1, and recall that θi,t(θ) := Ψi(...(Ψi(θ,Ditest,1)...),Ditest,t) for a sequence of
batch of trajectories {Di

test,j}tj=1. Then, for any θ, θ̃, we have

1.

‖ ∂
∂θ
θi,t(θ)‖ ≤ (1 + αηH)t, and thus ‖θi,t(θ)− θi,t(θ̃)‖ ≤ (1 + αηH)t‖θ − θ̃‖, (52)

2.
‖ ∂
∂θ
θi,t(θ)− ∂

∂θ
θi,t(θ̃)‖ ≤ tαηρ(1 + αηH)t−1‖θ − θ̃‖ (53)

where ηH and ηρ are given in Lemma 1.

Proof. Recall from (33) in Appendix C that

∂

∂θ
θi,t(θ) =

t∏
t′=1

(I + α∇̃2Ji(θ
i,t′−1(θ),Ditest,t′)) (54)

In part (2) of Lemma 1 we showed that for any t′, ‖∇̃2Ji(θ
i,t′−1(θ),Ditest,t′)‖ ≤ ηH , and this

immediately implies the first result.

Also, for the second result, note that for each t′, I + α∇̃2Ji(θ
i,t′−1(θ),Ditest,t′) is bounded by

1 + αηH due to part (2) of Lemma 1, and is Lipschitz with parameter αηρ by part (3) of Lemma 1.
Thus, using Lemma 2 gives us the desired result.

Next, we go step by step and study the boundedness and Lipschitz property of each term in (51).
Throughout this process, we also use the assumption α ≤ 1/ηH to replace the term (1 + αηH) by 2
and simplify the results.

(i) As we showed in Lemma 4, ∂
∂θ θ

i,ζ(θ) is bounded by 2ζ and also Lipschitz with parameter
ζαηρ2

ζ−1. Also,∇Ji(θi,ζ(θ)) is bounded by ηG by part (1) of Lemma 1 and is Lipschitz
with parameter ηH2ζ by using part (2) of Lemma 1 and Lemma 4 along with the fact that the
Lipschitz parameter of combination of functions is the product of their Lipschitz parameters.
Thus, using Lemma 2, the term ∂

∂θ θ
i,ζ(θ)∇Ji(θi,ζ(θ)) in total is bounded by ηG2ζ and is

Lipschitz with parameter ζ2ζ−1αηρηG + 22ζηH .

(ii) For any t, and by Lemma 4, ∂
∂θ θ

i,t−1(θ) is bounded by 2t−1 and its Lipschitz parameter is
bounded by (t− 1)2t−1αηρ.

Also, it is easy to check

‖∇θ log qi(Ditest,t; θ)‖ ≤ DinG(H+1), ‖∇2
θ log qi(Ditest,t; θ)‖ ≤ DinL(H+1). (55)

Hence, ∇θ log qi(Ditest,t; θi,t−1(θ)) is bounded by DinG(H + 1). In addition, since
θi,t−1(θ) is Lipschitz with parameter 2t−1, the whole ∇θ log qi(Ditest,t; θi,t−1(θ)) is Lips-
chitz with parameter 2t−1DinL(H + 1).

Thus, for any t, the term ∂
∂θ θ

i,t−1(θ)∇θ log qi(Ditest,t; θi,t−1(θ)) is bounded by
2t−1DinG(H+1) and is Lipschitz with parameterDin(H+1)(22t−2L+(t−1)2t−1αηρG).
As a consequence, the sum

ζ∑
t=1

(
∂

∂θ
θi,t−1(θ)∇θ log qi(Ditest,t; θi,t−1(θ))

)
(56)
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is bounded by 2ζDinG(H + 1) and its Lipschitz parameter is bounded by

Din(H + 1)
(
4ζL+ 2ζ(ζ − 1)αηρG

)
.

(iii) Ji
(
θi,ζ(θ)

)
is clearly bounded by R. Also, by part(1) of Lemma 1 Ji is Lipschitz with

parameter ηG and also by Lemma 4, θi,ζ(θ) is Lipschitz with parameter 2ζ . Using these
two along with the fact that Lipschitz parameter of combination of functions is equal to the
product of their Lipschitz parameters, implies that Ji

(
θi,ζ(θ)

)
is Lipschitz with parameter

2ζηG.

(iv) Therefore, using (iv) and (v), the whole term

ζ∏
t=1

qi(Ditest,t; θi,t−1(θ))Ji
(
θi,ζ(θ)

) ζ∑
t=1

(
∂

∂θ
θi,t−1(θ)∇θ log qi(Ditest,t; θi,t−1(θ))

)
(57)

is bounded by 2ζDinGR(H + 1) and, by Lemma 2, its Lipschitz parameter is bounded by

DinR(H + 1)
(
4ζL+ 2ζ(ζ − 1)αηρG

)
+ 22ζDinG(H + 1)ηG +Rζ2ζD2

inG
2(H + 1)2.

which can be simplified and written as

2ζDin(H + 1)
(
R
(
2ζL+ ζDinG

2(H + 1) + (ζ − 1)αηρG
)

+ 2ζηGG
)

Part (i) and (iv) together imply that (51) is bounded by

2ζ(ηG +DinGR(H + 1)) = 2ζGR

(
1

(1− γ)2
+Din(H + 1)

)
(58)

which is in fact GV (ζ). Since this upper bound is independent of i and {Di
test,t}t, it also holds for

∇Vζ(θ), and this completes the proof of (48).

Also, part (i) and (iv) together imply that (51) is Lipschitz with parameter

ζ2ζ−1αηρηG + 22ζηH + 2ζDin(H + 1)
(
R
(
2ζL+ ζDinG

2(H + 1) + (ζ − 1)αηρG
)

+ 2ζηGG
)
.

(59)

Now, to derive the Lipschitz parameter of ∇Vζ(θ) itself, we use Lemma 3. To do so, first we show
the following lemma.

Lemma 5. Recall definition of qi(Di; θ) (18) for some MDPMi, batch of trajectories Di and policy
parameter θ ∈ Rd. Then, for any Di and θ, we have

‖∇θ log qi(Di; θ)‖ ≤ |Di|(H + 1)G. (60)

Proof. Note that

‖∇θ log qi(Di; θ)‖ =

∥∥∥∥∥∑
τ∈Di

∇θ log πi(τ ; θ)

∥∥∥∥∥ (61)

≤ |Di| max
τ=(s0,a0,...,sH ,aH)

‖∇θ log πi(τ ; θ)‖

≤ |Di| max
τ=(s0,a0,...,sH ,aH)

H∑
h=0

‖∇θ log πi(ah|sh; θ)‖ (62)

≤ |Di|(H + 1)G (63)

where (61) follows from (18) and (62) is obtained using (11) along with Assumption 2.
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Using this lemma, we have

‖∇θ

(
log

ζ∏
t=1

qi(Ditest,t; θi,t−1(θ))

)
‖ ≤

ζ∑
t=1

‖ ∂
∂θ
θi,t−1(θ)∇θ log qi(Ditest,t; θi,t−1(θ))‖

≤ |Din|(H + 1)G

ζ∑
t=1

‖ ∂
∂θ
θi,t−1(θ)‖ (64)

≤ |Din|(H + 1)G

ζ∑
t=1

2t−1 (65)

≤ 2ζ |Din|(H + 1)G

where (64) follows from Lemma 5 and (65) is obtained using Lemma 4. Now, using this bound and
(59) along with Lemma 3 implies that∇Vζ(θ) is Lipschitz with parameter

ζ2ζ−1αηρηG+22ζηH+2ζDin(H+1)
(
R
(
2ζL+ (ζ + 2ζ)DinG

2(H + 1) + (ζ − 1)αηρG
)

+ 2ζ+1ηGG
)

(66)
which completes the proof of (49).

In particular, for ζ = 1, it is easy to verify the Lipschitz parameter of∇V1(θ) admits the upper bound

αηρηG + 4ηH + 8RDin(H + 1)(L+DinG
2(H + 1)). (67)

Finally, we state the following result on boundedness of unbiased estimate of∇Vζ(θ) used in update
of MAML (Algorithm 2).

Lemma 6. Recall ∇̃Vζ(θk;Bk, {Diin,t}i,t,Dio) (39) in Multi-step MAML algorithm (Algorithm 2)
for the case that α ∈ (0, 1/ηH ] where ηH is given in Lemma 1. Suppose that the conditions in
Assumptions 1-3 are satisfied. Then, at iteration k + 1, and for any choice of Bk, {Dio}i and
{Diin,t}i,t, we have

‖∇̃Vζ(θk;Bk, {Diin,t}i,t,Dio)‖ ≤ GV (ζ) (68)

where GV (ζ) is given in Theorem 3.

Proof. We skip the details of the proof as it can be done very similar to how we proved (51) in
Theorem 3. In particular, note that for any choice of Dio

‖∇̃Ji(θi,ζ(θ),Dio)‖ ≤ ηG, ‖J̃i(θi,ζ(θ),Dio)‖ ≤ R (69)

where the first one follows from Lemma 1 and the second one is an immediate result of Assumption
1.

G Proof of Theorem 1

We first state the general statement of the theorem for any ζ ≥ 1.

Theorem 4. Consider the objective function Vζ defined in (7) for the case that α ∈ (0, 1/ηH ] where
ηH is given in Lemma 1. Suppose that the conditions in Assumptions 1-3 are satisfied, and recall the
definitions LV (ζ) and GV (ζ) from Theorem 3. Consider running Multi-step SG-MRL (Algorithm 2)
with β ∈ (0, 1/LV (ζ)]. Then, for any 1 > ε > 0, MAML finds a solution θε such that

E[‖∇Vζ(θε)‖2] ≤ 2GV (ζ)2LV (ζ)β

BDo
+ ε2 (70)

after at most running for

O(1)
R

β
min

{
1

ε2
,

BDo

GV (ζ)2LV (ζ)β

}
(71)

iterations.
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Proof. Throughout the proof, we use GV and LV instead of GV (ζ) and LV (ζ), respectively, to
simplify the notation. Also, we denote the filtration till the end of iteration k by Fk.

As we previously discussed, ∇̃Vζ(θk;Bk, {Diin,t}i,t,Dio) is an unbiased estimate of ∇Vζ(θk) at
iteration k + 1. In the following lemma, we upper bound the variance of this estimation.

Lemma 7. Recall the definition of ∇̃Vζ(θk;Bk, {Diin,t}i,t,Dio) (39) in Multi-step SG-MRL algorithm
(Algorithm 2) for the case that α ∈ (0, 1/ηH ] where ηH is given in Lemma 1. Suppose that the
conditions in Assumptions 1-3 are satisfied. Then, at iteration k+ 1, and for any choice of Bk, {Dio}i
and {Diin,t}i,t, we have

E
[∥∥∥∇̃Vζ(θk;Bk, {Diin,t}i,t,Dio)−∇Vζ(θk)

∥∥∥2] ≤ G2
V

BDo
(72)

where GV is given in Theorem 3.

Proof. Note that

∇̃Vζ(θk;Bk, {Diin,t}i,t,Dio) =
1

BDo

∑
i∈Bk

∑
τ∈Dio

∇̃Vζ(θk; {i}, {Diin,t}i,t, {τ}), (73)

where for any i and τ ∈ Dio, ∇̃Vζ(θk; {i}, {Diin,t}i,t, {τ}) is an unbiased estimate of∇Vζ(θk), and
by Lemma 6, its second moment is bounded by G2

V . Also, note that ∇̃Vζ(θk; {i}, {Diin,t}i,t, {τ})
are independent for different i and τ . Finally, to complete the proof, we use the well-known fact that
if {Xi}ni=1 are independent with mean µ, and for each i, variance of Xi is upper bounded by σ2, then

E

[∥∥∥∥X1 + ...+Xn

n
− µ

∥∥∥∥2
]
≤ σ2

n
.

Now, we get back to the proof of the main result. From now, and to simplify the notation, we use
∇̃Vζ(θk) to denote ∇̃Vζ(θk;Bk, {Diin,t}i,t,Dio). Next, note that, using the smoothness property of
∇Vζ(θ), we have [30]∣∣Vζ(θk+1)− Vζ(θk)−∇Vζ(θk)>(θk+1 − θk)

∣∣ ≤ L2
V

2
‖θk+1 − θk‖2. (74)

Recall that, at iteration k + 1, MAML performs

θk+1 = θk + β∇̃Vζ(θk). (75)

Plugging this in (74), we obtain

−Vζ(θk+1) ≤ −Vζ(θk)−∇Vζ(θk)>(θk+1 − θk) +
L2
V

2
‖θk+1 − θk‖2

= −Vζ(θk)− β∇Vζ(θk)>∇̃Vζ(θk) +
L2
V

2
β2‖∇̃Vζ(θk)‖2 (76)

where the last equality follows from (75). Next, taking expectation from both sides and conditioning
on Fk, implies

−E[Vζ(θk+1)|Fk]

≤ −Vζ(θk)− β‖∇Vζ(θk)‖2 +
LV
2
β2
(
‖∇Vζ(θk)‖2 + E

[
‖∇̃Vζ(θk)−∇Vζ(θk)‖2|Fk

])
(77)

≤ −Vζ(θk)− β

2
‖∇Vζ(θk)‖2 +

G2
V LV β

2

2BDo
(78)

where the first inequality is obtained using the fact that ∇̃Vζ(θk) is an unbiased estimate of ∇Vζ(θk)
and∇Vζ(θk) is deterministic condition on Fk. (78) is also an immediate result of Lemma 7 along
with β ≤ 1/LV .
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Taking another expectation from both sided of (78), and using tower rule, we obtain

−E[Vζ(θk+1)] ≤ −E[Vζ(θk)]− β

2
E
[
‖∇Vζ(θk)‖2

]
+
G2
V LV β

2

2BDo
. (79)

We complete the proof by contradiction. Assume, the desired result does not hold for the first T
iterations, i.e.,

E[‖∇Vζ(θk)‖2] ≥ 2G2
V LV β

BDo
+ ε2 (80)

for any 0 ≤ k ≤ T − 1. Then, by (79), for any 0 ≤ k ≤ T − 1, we have

−E[Vζ(θk+1)] ≤ −E[Vζ(θk)]− βε2

2
− G2

V LV β
2

2BDo
. (81)

Adding up this result for k = 0, ..., T − 1 yields

−E[Vζ(θT )] ≤ −E[Vζ(θ0)]− T
(
βε2

2
+
G2
V LV β

2

2BDo

)
. (82)

Note that, by Assumption 1, both E[Vζ(θT )] and E[Vζ(θ0)] have values between zero and R, and
thus, their difference is bounded by R. Therefore,

T

(
βε2

2
+
G2
V LV β

2

2BDo

)
≤ R (83)

which gives us the desired result.

H More Details on the Numerical Experiment Section

In this section of the Appendix we detail our experimental setup beyond the description given in
Section 5. We use a neural network policy with two 100-unit hidden layers and ReLU activations.
For simplicity, we use vanilla policy gradient (VPG) for both the inner adaption steps and the outer
meta steps.

In all cases, we train both algorithms for 500 (meta-)epochs, using a meta-batch size of 20 tasks for
2D-navigation and 40 tasks for the locomotion one. For all tasks, we use 20 episodes per adaptation
step. All rewards are discounted with a factor γ = 0.99. We use a horizonH = 100 for 2D-navigation
and H = 200 for locomotion tasks. Next, we use a learning rate of 0.1 for the inner steps, and 0.001
for the outer ones. Finally, all experiments are averaged over 10 random seeds.

The MuJoCo locomotion environments we consider are

• Half-Cheetah Random Direction which simulates the dynamics of a “cheetah" robot which
is trained to move fast. In this environment, each task is a goal direction (forward/backward)
and the reward at each timestep is given by the magnitude of the agent’s velocity.

• Half-Cheetah Random Velocity which uses the same “cheetah" robot, but now each task
is a goal velocity. The reward at each timestep is given by the negative of the absolute
difference between the current and goal velocities.

• Swimmer Random Velocity which simulates the dynamics of a planar “swimmer" robot in
a viscous liquid. The swimmer needs to use viscous drag to propel itself. Like with the other
direction environment, each task is a goal direction (forward/backward) and the reward at
each timestep is given by the magnitude of the agent’s velocity.

For each of the environments, we present results using 1, 2, and 3 gradient steps.

Finally, we use MuJoCo [26] license and perform all experiments on an internal server using 2
NVIDIA V100 GPUs.
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