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Abstract
Sentiment is a pervasive feature in natural lan-
guage text, yet it is an open question how senti-
ment is represented within Large Language Mod-
els (LLMs). In this study, we reveal that across a
range of models, sentiment is represented linearly:
a single direction in activation space mostly cap-
tures the feature across a range of tasks with one
extreme for positive and the other for negative. In
a causal analysis, we isolate this direction using
interventions and show it is causally active in both
toy tasks and real world datasets such as Stanford
Sentiment Treebank.

We analyze the mechanisms that involve this direc-
tion and discover a phenomenon which we term
the summarization motif: sentiment is not solely
represented on emotionally charged words, but is
additionally summarized at intermediate positions
without inherent sentiment, such as punctuation
and names. We show that in Stanford Sentiment
Treebank zero-shot classification, ablating the sen-
timent direction across all tokens results in a drop
in accuracy from 100% to 62% (vs. 50% ran-
dom baseline), while ablating the summarized
sentiment direction at comma positions alone pro-
duces close to half this result (reducing accuracy
to 82%).

1. Introduction
Large language models (LLMs) have displayed increasingly
impressive capabilities (Brown et al., 2020; Radford et al.,
2019; Bubeck et al., 2023), but their internal workings re-
main poorly understood. Nevertheless, recent evidence (Li
et al., 2023) has suggested that LLMs are capable of forming
models of the world, i.e., inferring hidden variables of the
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data generation process rather than simply modeling surface
word co-occurrence statistics. There is significant interest
(Christiano et al. (2021), Burns et al. (2022)) in deciphering
the latent structure of such representations.

In this work, we investigate how LLMs represent sentiment,
a variable in the data generation process that is relevant and
interesting across a wide variety of language tasks (Cui et al.,
2023). Approaching our investigations through the frame of
causal mediation analysis (Vig et al., 2020; Pearl, 2022), we
show that these sentiment features are represented linearly
by the models, are causally significant, and are utilized by
human-interpretable circuits (Olah et al., 2020; Elhage et al.,
2021a).

We find the existence of a single direction scientifically in-
teresting as further evidence for the linear representation
hypothesis (Mikolov et al., 2013; Elhage et al., 2022; Park
et al., 2023; Jiang et al., 2024), that models tend to extract
properties of the input and internally represent them as di-
rections in activation space. Understanding the structure of
internal representations is crucial to begin to decode them.
Linear representations are particularly amenable to detailed
reverse-engineering (Nanda et al., 2023b) and have seen re-
cent interest in the context of Sparse Autoencoders (Bricken
et al., 2023). We believe that interpreting internal represen-
tations in LLMs shows promise for observing problematic
behaviours and avoiding possible harms.

We show evidence of a phenomenon which we have labeled
the “summarization motif”1, where rather than sentiment be-
ing directly moved from valenced tokens to the final token,
it is first aggregated on intermediate summarization tokens
without inherent valence such as commas, periods and par-
ticular nouns. This can be seen as a naturally emerging
analogue to the explicit classification token in BERT-like
models (Devlin et al., 2018), and in that context the phe-
nomenon was observed by Clark et al. (2019). We show that
the sentiment stored on summarization tokens is causally
relevant for the final prediction. We find this an intriguing
example of an “information bottleneck”, where the data gen-
eration process is funnelled through a small subset of tokens
used as information stores. Understanding the existence and
location of information bottlenecks is a key first step to de-
ciphering world models. This finding additionally suggests
the models’ ability to create summaries at various levels of

1Crucially, this is not to be confused with the NLP summariza-
tion task
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abstraction, in this case at a sentence or clause rather than a
token.

Our contributions are as follows. In Section 3, we demon-
strate that standard, well-understood methods can find a
linear representation of sentiment using a toy dataset, and
show that this direction correlates with sentiment informa-
tion in the wild. We use causal analysis methods to show
that this linear representation matters causally in both toy
and crowdsourced datasets. In Section 4, we show through
activation patching (Geiger et al., 2020; Vig et al., 2020) and
ablations (techniques defined in Section 2.2) that the learned
sentiment direction is used in summarization behavior that
is causally important to circuits performing sentiment tasks.
We replicate these findings across GPT2, Pythia, Gemma,
Qwen and StableLM models (Section 2.1). In sum, we
provide a novel, detailed case study of how to analyse a
feature’s representation in activation space.

2. Methods
2.1. Datasets and Models

ToyMovieReview is a templatic dataset of continuation
prompts we generated with the form “I thought this movie
was ADJECTIVE, I VERBed it. Conclusion: This movie is”
where ADJECTIVE and VERB are either two positive words
(e.g., incredible and enjoyed) or two negative words (e.g.,
horrible and hated) that are sampled from a fixed pool of
85 adjectives (split 55/30 for train/test) and 8 verbs. The
expected completion for a positive review is one of a set of
positive descriptors we selected from among the most com-
mon completions (e.g. great) and the expected completion
for a negative review is a similar set of negative descriptors
(e.g., terrible). This dataset is the simplest toy task we could
imagine to elicit understanding of sentiment in the smallest
models that we tested through a next-token prediction task,
avoiding the need for fine-tuning.

ToyMoodStory is a similar toy dataset which is multi-
subject and character-driven with random names, e.g. Carl
hates parties, and avoids them whenever possible. Jack
loves parties, and joins them whenever possible. One day,
they were invited to a grand gala. Jack feels very [ex-
cited/nervous]

Stanford Sentiment Treebank (SST) (Socher et al.,
2013) consists of 10,662 one sentence movie reviews with
human annotated sentiment labels for every constituent
phrase from every review.

Internet Movie Database (IMDB) (Maas et al., 2011)
consists of 25,000 movie reviews taken from the IMDB
website with human-annotated sentiment labels for each
review.

OpenWebText (Gokaslan & Cohen, 2019) is the pretrain-
ing dataset for GPT-2 which we use as a source of random
text for correlational evaluations.

GPT-2 and Pythia (Radford et al., 2019; Biderman et al.,
2023) are families of decoder-only transformer models with
sizes varying from 85M to 2.8b parameters. We mostly
focus on Pythia-2.8b in the main body of this paper, reducing
to Pythia-1.4b or GPT2-small when appropriate for saving
compute, and leaving demonstrations of consistency across
models to the Appendix (Sections A.4.4 and A.7.2), where
we replicate our findings in Pythia-6.9b, Mistral-7b (Jiang
et al., 2023), StableLM 3B (Tow, 2023), Gemma-2B and
7B (Team et al., 2024), and Qwen-1.8B and 7B (Bai et al.,
2023).

2.2. Causal Analysis Methods

Activation patching Activation patching (Geiger et al.,
2020; Vig et al., 2020), we create two symmetrical datasets
Xorig and Xflipped, where each prompt xorig and its coun-
terpart prompt xflipped are of the same length and format
but where key words are changed in order to flip the sen-
timent; e.g., “This movie was great” could be paired with
“This movie was terrible”. Let A be the set of all hidden
layer activations of the model. We first conduct baseline
forward passes, capturing the tensors of all activation val-
ues Aorig = F(xorig), Aflipped = F(xflipped) for intermediate
activations A. We then conduct “patched” forward passes
using xflipped,

AC = F(xflipped,Aorig,C)

for different model components C ⊂ A representing a sub-
set of the activations, where at each intermediate compu-
tation I(a) in the forward pass taking a member i ∈ C
as an input, we substitute or “patch” the alternate activa-
tion a 7→ aorig := Aorig[i] and instead compute I(aorig).
We can thus determine the relative importance of various
model components C with respect to the task currently be-
ing performed, using some task performance metric (options
discussed in Section 2.3) M : A 7→ R.

Directional activation patching Geiger et al. (2023b)
introduce a variant of activation patching that we call
“directional activation patching”. The idea is that rather
than modifying the standard basis directions of a compo-
nent, we instead only modify the component along a sin-
gle direction in the vector space, represented by unit vec-
tor d̂, replacing it during a forward pass with the value
from a different input. That is, the “patch” becomes
MC←Cflipped−Cflipped·d̂+Corig·d̂(xflipped).

Freezing To analyze how the causal effect of a component
C is mediated by another component D, we perform an acti-
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vation patch on C while freezing the activations of D to their
initial value from the forward pass on the flipped prompt.
We perform a forward pass with the flipped input to obtain
an intervened model state MC←Corig;D←Dflipped(xflipped). In
particular, we can run patching experiments with frozen
attention, meaning that the attention pattern is frozen from
the original run so that the model still weights the value
vectors in the same way, helping to isolate V-composition.

Ablations To capture how important a component is to a
model’s success, we eliminate the contribution of the com-
ponent by replacing it with zeros (zero ablation) or the mean
activation over some dataset (mean ablation). Like activa-
tion patching, ablation is an intervention on a model com-
ponent. However, the intervened activations are all zeros
or taken from the mean over some dataset rather than from
a paired forward pass. i.e. MC←Cablation(x) where Cablation

consists of all zeros or a mean value. We also perform di-
rectional ablation, in which a component’s activations are
ablated only along a specific direction.

2.3. Evaluation metrics

Logit difference metric We extend the logit difference
metric used by Wang et al. (2022) to the setting with 2
classes of next token rather than only 2 valid next tokens.
This is useful in situations where there are many possible
choices of positively or negatively valenced next tokens.

Specifically, we examine the average difference in logits
between sets of positive/negative next-tokens T positive =
{tpositive

i : 1 ≤ i ≤ n} and T negative = {tnegative
i :

1 ≤ i ≤ n} in order to get a smooth measure
of the model’s ability to differentiate between senti-
ment. That is, we define the logit difference for input
x as 1

n

∑
i

[
logit(M(x); tpositive

i )− logit(M(x); tnegative
i )

]
.

Larger differences indicate more robust separation of the
positive/negative tokens, and zero or inverted differences
indicate zero or inverted sentiment processing respectively.
When used as a patching metric, this shows the causal ef-
ficacy of various interventions like activation patching or
ablation.

We use this metric often because it is more sensitive than
accuracy to small shifts in model behavior, which is partic-
ularly useful for circuit identification where the effect size
is small but real. That is, in many cases a token of interest
might become much more likely but not cross the threshold
to change accuracy metrics, and in this case logit difference
will detect it. Logit difference is also useful when trying to
measure the model behavior transition between two differ-
ent, opposing prompts–in this case, the logit difference for
each of the prompts is used for lower and upper baselines,
and we can measure the degree to which the logit difference
behavior moves from one pole to the other.

Logit flip metric We also extend the interchange inter-
vention accuracy metric from Geiger et al. (2022) to classes
of tokens by computing the percentage of cases where the
logit difference between T positive and T negative is inverted af-
ter an intervention. This is a more discrete measure which
is helpful for gauging whether the magnitude of the logit
differences is sufficient to flip model predictions.

Accuracy Out of a set of prompts, the percentage for
which the logits for tokens T correct are greater than T incorrect.
Usually each of these sets only has one member (e.g., “Pos-
itive” and “Negative”).

2.4. Finding Directions

Here we defined three methods to find a sentiment direction
in each layer of a language model using our ToyMovieRe-
view dataset. In each of the following, let P be the set of
positive inputs and N be the set of negative inputs. For some
input x ∈ P∪N, let aL

x and vL
x be the vector in the residual

stream at layer L above the adjective and verb respectively.
We reserve {vL

x } as a hold-out set for testing. Let the correct
next token for P be p and for N be n.

k-means (KM) We fit 2-means to {aL
x : x ∈ P ∪ N},

obtaining cluster centroids {ci : i ∈ [0, 1]} and take the
direction c1 − c0.

Linear Probing The direction is the normed weights
w
||w|| of a logistic regression (LR) classifier LR(aLx ) =

1
1+exp(−w·aL

x )
trained to distinguish between x ∈ P and

x ∈ N.

Distributed Alignment Search (DAS) We perform direc-
tional patching (2.2), pairing up inputs p ∈ P, n ∈ N, then
patching as ap 7→ ap − ap · θ + an · θ (and vice versa).
The patching metric is the logit difference

M(θ) =
∑
x∈P

[logitθ(x; p)− logitθ(x;n)] +∑
x∈N

[logitθ(x;n)− logitθ(x; p)] .

We then determine θ as

θ = argmax
∥θ∥=1

M(θ)

which we approximate using gradient descent. This method
naturally generalises to finding a k-dimensional subspace by
fitting an orthonormal rotation matrix R which maximizes
M(R), patching only the first k vector components in the
rotated basis ap 7→ ap+RT ([R(an − ap)]i:i≤k) and then
the subspace is defined by the span of the first k rows of R.
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 have complete confidence in 
You brought joy to 
 despite the misery it 
 deemed a hate group 

(a) Nouns

 the Walt Disney World 
 the Brazilian Amazon has 
 presidential nominee Mitt Romney 
 overturn Bashar Assad. 

(b) Proper Nouns

 currently in remission with 
 a speedy recovery to 
 radiation and cancer ( 
 you a migraine. 

(c) Medical

et son bon à rien de mari 
ils étaient parfaitement normaux 
gris et triste et rien dans 
la plus sinistre pour aller 

(d) French

Figure 1. Visualizing the “sentiment activation” (projection
of the residual stream onto the sentiment axis) where blue is
positive and red is negative. Examples (1a-1c) show the k-
means sentiment direction for the first layer of GPT2-small on
samples from OpenWebText. Example 1d shows the k-means
sentiment direction for the 7th layer of Pythia-1.4b on the
opening of Harry Potter in French.
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Figure 2. Area plot of sentiment labels for OpenWebText sam-
ples by sentiment activation, i.e. the projection of the first
residual stream layer of Pythia-2.8b at that token onto the
sentiment direction. The sentiment activation acts as a strong
classifier, separating positive and negative tokens from a real
dataset. Ground truth classification was performed by GPT-4.
Direction was fit using k-means.

3. Finding a “Sentiment Direction”
The first question we investigate is whether there exists a
direction in the residual stream in a transformer model that
represents the sentiment of the input text, as a special case
of the linear representation hypothesis (Mikolov et al., 2013;
Park et al., 2023; Jiang et al., 2024), that features are repre-
sented linearly as directions in activation space. We show
that the methods discussed above (e.g. k-means, LR and
DAS, see Section 2.4) all arrive at a similar sentiment di-
rection. We can visualize the feature being represented by
this direction by projecting the residual stream at a given
token/layer onto it, using some text from the training distri-
bution. We will call this the “sentiment activation”.

Finding and Comparing the Directions To find initial
directions corresponding with sentiment, we first fit direc-
tions from the residual stream over the adjective token in the
ToyMovieReview dataset (Section 2.1), using the methods
outlined in Section 2.4. We find extremely high cosine simi-
larity (Figure A.1) between the directions yielded by each
of these methods in Pythia-2.8b (cf. A.7 for other models).
This suggests that these are all noisy approximations of the
same singular direction, and indeed the following results
appear robust to choice of fitting method.

3.1. Correlational Evaluation

To examine the relationship between the directions we had
identified and real-world text, we investigated how these di-
rections correlate with sentiment in natural text, as evaluated
by human readers and advanced LLMs (GPT-4).

Visualizing The Sentiment Direction By way of making
initial comparisons between the sentiment direction and real-
world text, we show (Figure 1) a visualisation in the style of
Neuroscope (Nanda, 2023a) where the sentiment activation
(the projection of the residual stream onto the sentiment
axis) is represented by color, with red being negative and
blue being positive. It is important to note that the direction
being examined here was produced by training on just 30
positive and 30 negative English adjectives in an unsuper-
vised way (using k-means with k = 2). Notwithstanding,
the extreme values along this direction appear readily inter-
pretable in the wild, even in diverse text domains such as
the opening paragraphs of Harry Potter in French.

Quantifying classification accuracy To rigorously vali-
date this visual check, we binned the sentiment activations
of OpenWebText tokens from the first residual stream layer
of GPT2-small into 20 equal-width buckets and sampled 20
tokens from each. Then we asked GPT-4 to classify into
Positive/Neutral/Negative.2 In Figure 2, we show an area
plot of the classifications by activation bin in Pythia-2.8b
(cf. Figure A.8 for other models). Defining a classifier using
a threshold of the top/bottom 0.1% of sentiment activations
in GPT2-small, we can achieve over 90% accuracy as com-
pared to GPT-4 classifications as our ground truth (Figure
A.8a). In the area plot we can see that the left side area is
dominated by the “Negative” label, whereas the right side
area is dominated by the “Positive” label and the central

2We gave GPT-4 prompts of the form: “Your job is to classify
the sentiment of a given token (i.e. word or word fragment) into
Positive/Somewhat positive/Neutral/Somewhat negative/Negative.
Token: ‘{token}’. Context: ‘{context}’. Sentiment: ” where the
context length was 20 tokens centred around the sampled token.
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direction flip percent flip median size

DAS 96% 107%
KM 96% 69%
LR 100% 86%

Figure 3. We created a dataset of 27 negation examples and
compute the change in k-means sentiment activation (pro-
jection of the residual stream onto the sentiment axis) at the
negated token (e.g. “doubt”) between the 1st and 10th resid-
post layers of GPT2-small. Here “flip percent” is the percent-
age of the 27 prompts for which the sign of the sentiment
activation has flipped and “flip median size” is the median size
of the flip relative to the size of the initial sentiment activation.

L00 You never fail. Don't doubt it. I don't like you. 
L01 You never fail. Don't doubt it. I don't like you. 
L02 You never fail. Don't doubt it. I don't like you. 
L03 You never fail. Don't doubt it. I don't like you. 
L04 You never fail. Don't doubt it. I don't like you. 
L05 You never fail. Don't doubt it. I don't like you. 
L06 You never fail. Don't doubt it. I don't like you. 
L07 You never fail. Don't doubt it. I don't like you. 
L08 You never fail. Don't doubt it. I don't like you. 
L09 You never fail. Don't doubt it. I don't like you. 
L10 You never fail. Don't doubt it. I don't like you. 
L11 You never fail. Don't doubt it. I don't like you. 
L12 You never fail. Don't doubt it. I don't like you. 

Figure 4. Visualizing the sentiment activations across the lay-
ers of GPT2-small for a text where the sentiment hinges on
negations. Color represents sentiment activation (projection of
the residual stream onto the sentiment axis) at the given layer
and position. Red is negative, blue is positive. Each row is a
residual stream layer, first layer is at the top.

area is dominated by the “Neutral” label. Hence the tails
of the activations seem highly interpretable as representing
a bipolar sentiment feature. The large space in the middle
of the distribution simply occupied by neutral words (rather
than a more continuous degradation of positive/negative)
indicates superposition of features (Elhage et al., 2022).

Negation Flips the Sentiment Direction in Later Layers
Using the k-means sentiment direction after the first layer of
GPT2-small, we can obtain a view of how the model updates
its view of sentiment during the forward pass, analogous to
the “logit lens“ technique from nostalgebraist (2020). The
example text that we use here is “You never fail. Don’t doubt
it. I don’t like you”. In Figure 4, we see how the sentiment
activation flips when the context of the sentiment word
denotes that it is negated. The words ‘fail’ and ‘doubt’ can
be seen to flip from negative in the first couple of layers to
being positive after a few layers of processing. In contrast,
the word ’like’ flips from positive to negative. We quantified
this result using a toy dataset of 27 similar examples and
computed the flip in sentiment activation during the forward
pass for different direction finding methods (Figure 3).

3.2. Causal Evaluation

The experiments described so far illustrate only correlations
between our identified directions and sentiment. In order to
demonstrate that these directions are indeed causal, we used
causal mediation analysis on our toy dataset and validated
our findings on two different real world datasets.

Sentiment directions are causally active. We evaluate
the sentiment direction using directional patching on the
adjective and verb token representations for each layer (Sec-
tion 2.2) in Table 1. These evaluations are performed on
prompts with out-of-sample adjectives and the direction was
not trained on any verbs. We find that patching activations
along a single direction can cause a significant change in the
prediction according to both of our patching metrics, and

the direction found using DAS is able to completely flip the
prediction.

Validation on SST We validate our sentiment directions
derived from toy datasets (Section 3.2) on SST. We col-
lapsed the labels down to a binary “Positive”/“Negative”,
took the unique phrases from the source sentences, restricted
to the ‘test’ partition and took a subset where Pythia-1.4b
can achieve 100% zero shot classification accuracy, remov-
ing 17% of examples. Then we paired up phrases of an
equal number of tokens3 to make up 460 clean/corrupted
pairs. We used the scaffolding “Review Text: TEXT, Review
Sentiment:” and evaluated the logit difference between “Pos-
itive” and “Negative” as our patching metric. Using the same
DAS direction from Section 3 trained on just a few examples
and flipping the corresponding sentiment activation between
clean/corrupted in a single layer, we can flip the model’s pre-
diction 53.5% of the time (Table 1). The sentiment direction
learned from a toy dataset is able to control behavior on a
crowd-sourced dataset, which is a remarkable generalization
result.

Validation at the document level In order to verify
the applicability of our findings to larger document-sized
prompts, we performed directional ablation (2.2) on the
IMDB dataset, most of which consists of multiple sentences.
Each item of this dataset was appended with “Review Senti-
ment:” in order to prompt a classification completion, and
we selected 1000 examples each from the positive and nega-
tive items that the model was capable of classifying correctly.
We used the sentiment directions found with DAS to ablate
sentiment at every token at every layer (using Pythia-2.8b).
As a result, classification accuracy dropped from 100% to
57%, suggesting that much of the model’s ability to com-
plete the task above the 50% random baseline is mediated
by this single direction.

3We did this to maximise the chances of sentiment tokens
occurring at similar positions
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Table 1. Directional patching results for different methods in Pythia-1.4b (2.8b not shown due to compute time). We report the best result
found across layers. The columns show two evaluation datasets, ToyMovieReview and Treebank. We present two different evaluation
metrics in 1a and 1b.

(a) Logit difference metric: mean percentage change in logit
difference (100% for one example means the sign of the logit
difference has flipped while the magnitude is unchanged)

Method ToyMovieReview Treebank

DAS (1 dim.) 109.8% 47.0%
DAS (2 dim.) 110.4% 42.8%
DAS (3 dim.) 110.2% 35.9%
k-means 67.2% 22.1%

LR 71.1% 30.8%
Random 0.4% 0.1%

(b) Logit flip metric: the percentage of examples for which the
logit difference changes sign

Method ToyMovieReview Treebank

DAS (1 dim.) 100.0% 53.5%
DAS (2 dim.) 95.5% 49.0%
DAS (3 dim.) 95.5% 39.4%
k-means 72.7% 14.8%

LR 86.4% 16.8%
Random 0.0% 0.6%

4. The Summarization Motif for Sentiment
Though we do not focus on circuit4 analysis here, we note
that initial patching experiments in the style of (Wang et al.,
2022) revealed patterns which motivated our definition of
the “summarization motif”: when there is information (e.g.
sentiment) stored at certain ‘placeholder’ or ‘summary’ to-
kens (e.g. commas, periods and certain nouns) despite these
tokens not inherently having the information. Moreover,
this information is causally significant for the model to
complete a certain task (e.g. sentiment classification). We
provide a detailed circuit-based analysis of this phenomenon
in Appendix A.6. In this section, we focus on verifying this
behaviour in Pythia-2.8b. We show that this result holds
across various different models in Appendix (Table 5).

At first, we verify this phenomenon on toy datasets where
we are able to isolate the effect using activation patching
experiments. We find that in many cases this summariza-
tion results in a partial information bottleneck, in which the
summarization points become as important (or sometimes
more important) than the phrases containing the relevant
information for sentiment tasks. Next, we reproduce these
findings on natural text using the SST dataset (Section 2.1).
We performed ablation experiments (Section 2.2) on comma
positions. If comma representations do not summarize senti-
ment information, then our experiments should not damage
the model’s abilities. However, our results reveal a clear
summarization motif for SST.

Summarization information is comparably important as
original semantic information In order to determine the
extent of the information bottleneck presented by commas in

4We use the term “circuit” as defined by Wang et al. (2022),
in the sense of a computational subgraph that is responsible for a
significant proportion of the behavior of a neural network on some
predefined task.

sentiment processing, we tested the model’s performance on
ToyMoodStory (Section 2.1). We performed an activation
patching experiment (Section 2.2) where we patched the
attention value vectors at certain groups of token positions
to flip the sentiment, along with the modification that we
froze the model’s attention patterns to ensure the model
used the information from the patched commas in exactly
the same way as it would have used the original information.
Without this step, the model could simply avoid attending
to the commas. Concretely, the three different interventions
were:

1. Patching the value vectors at the pre-comma phrases
(e.g., patching “John hates parties,” with “John loves
parties,”) while freezing the value vectors at the com-
mas and periods so they retain their original, unflipped
values. This experiment (Table 2a) was designed to
isolate the effect of the phrases, removing any reliance
on punctuation tokens.

2. Patching the value vectors at the two commas and
two periods alone. This experiment (Table 2b) was
designed to isolate the effect of the “summarization
motif”.

3. Patching all of the value vectors. This experi-
ment(Table 2c) was designed to determine how the
effects of the pre-comma phrases and commas accumu-
late to create the total effect of flipping the full phrase.

The experimental results (2) show a similar drop in the logit
difference for both the pre-comma and comma patching,
demonstrating that fully half the effect of these phrases on
the final logits for the correct tokens are mediated through
the “summarization” motif. We continue to focus on re-
sults from Pythia-2.8b, but also replicated these findings in
Pythia-6.9b, Mistral-7b, Qwen-1.8b and 7b, and Gemma-2b
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Table 2. Patching experiments in ToyMoodStory, Pythia 2.8b. The similar results for 2a and 2b indicate that summarization information is
comparably important as the original semantic information.

(a) Isolating the effect of pre-comma
phrases in ToyMoodStory

Original prompt Jack loves parties, ...
Jack feels very

Flipped prompt Jack hates parties, ...
Jack feels very

Freezing nodes Attention pattern,
value vectors at commas

Patching nodes Value vectors pre-comma,
e.g. Jack loves parties

Change in -38%
logit difference

(b) Isolating the effect of commas in Toy-
MoodStory

Original prompt Jack loves parties, ...
Jack feels very

Flipped prompt Jack hates parties, ...
Jack feels very

Freezing nodes Attention pattern
Patching nodes Value vectors at

commas and periods
Change in -37%

logit difference

(c) Accumulating effects of commas and
phrases in ToyMoodStory

Original prompt Jack loves parties, ...
Jack feels very

Flipped prompt Jack hates parties, ...
Jack feels very

Freezing nodes Attention pattern
Patching nodes All value vectors

Change in -75%
logit difference

Table 3. Patching experiments in ToyMoodStory with irrelevant text injection

(a) Isolating the effect of pre-period
phrases in ToyMoodStory

Original prompt Jack loves parties.
[irrelevant text...]
Jack feels very

Flipped prompt Jack hates parties.
[irrelevant text...]
Jack feels very

Freezing nodes Attention pattern,
value vectors at periods

Patching nodes Value vectors pre-period,
e.g. Jack loves parties

(b) Isolating the effect of periods in Toy-
MoodStory

Original prompt Jack loves parties.
[irrelevant text...]
Jack feels very

Flipped prompt Jack hates parties.
[irrelevant text...]
Jack feels very

Freezing nodes Attention pattern
Patching nodes Value vectors at

periods

(c) Ratio between logit difference change for periods
(3b) vs. pre-period (3a) phrases after patching values

Count of irrelevant tokens Ratio of LD change
after preference phrase for periods vs. phrases

0 tokens 0.29
10 tokens 0.63
18 tokens 0.92
22 tokens 1.15

and 7b. These additional results can be seen in the Appendix
(Table 5).

Impact of summarization increases with distance We
also observed that reliance on summarization tends to in-
crease with greater distances between the preference phrases
and the final part of the prompt that would reference them.
To test this, we injected irrelevant text5 of varying sizes after
each of the preference phrases in ToyMoodStory texts (after
“John loves parties.” etc.). We then computed a similar pair
of logit difference metrics as depicted in 2, comparing the
effect of patching value vectors at either the periods (3b or
the pre-period phrases (3a). Next we measured the ratio be-
tween these two logit difference changes for the periods vs.
pre-period phrases, with higher values indicating more re-
liance on period summaries (3c). We found that the periods
can be up to 15% more important than the actual phrases as
this distance grows. Although these results are only a first
step in assessing the importance of summarization impor-
tance relative to prompt length, they suggest this motif may
become more significant as models grow in context length,

5E.g. “John loves parties. He has a red hat and wears it
everywhere, especially when he is riding his bicycle through the
city streets. Mark hates parties. He has a purple hat but only wears
it on Sundays, when he takes his weekly walk around the lake. One
day, they were invited to a grand gala. John feels very”

and thus merits further study.

4.1. Summarization behavior in real-world datasets

Data preparation We appended the suffix “Review Sen-
timent:” to each of the prompts from SST and evaluated
Pythia-2.8b on zero-shot classification according to whether
positive or negative have higher probability, filtering to en-
sure these completions are in the top 10 tokens predicted.
We then take the subset of examples that Pythia-2.8b clas-
sifies correctly that have at least one comma, which means
we start with a baseline of 100% accuracy.

Ablation baselines We performed two baseline experi-
ments in order to obtain a control for our later experiments.
First to measure the total effect of the sentiment directions,
we performed directional ablation (as described in 2.2) us-
ing the sentiment directions found with DAS, ablating along
a single axis of the residual stream at every token position
in every layer (4a), resulting in a 71% reduction in the logit
difference and a 38% drop in accuracy (to 62% , where 50%
is random chance). We also performed directional ablation
on all tokens with a small set of random directions (4b),
resulting in a < 1% change to the same metrics.

Directional ablation at all comma positions We then per-
formed directional ablation–using the DAS sentiment direc-

7



Language Models Linearly Represent Sentiment

Table 4. Ablation experiments in Stanford Sentiment Treebank (Section 2.1)

(a) Baselining the importance of
the sentiment direction in SST

Directions DAS sentiment direction
Positions All
Layers All

Ablation type Mean-ablation
Change in −71%

logit difference
Change in −38%
accuracy

(b) Baselining the importance of
random directions in SST

Directions Random direction
Positions All
Layers All

Ablation type Mean-ablation
Change in < 1%

logit difference
Change in < 1%
accuracy

(c) Isolating the sentiment axis
information at commas in SST

Directions DAS sentiment direction
Positions Commas
Layers All

Ablation type Mean-ablation
Change in −18%

logit difference
Change in −18%
accuracy

(d) Isolating the importance of
the full residual stream at com-
mas in SST

Directions Full Space
Positions Commas
Layers All

Ablation type Mean-ablation
Change in −17%

logit difference
Change in −19%
accuracy

tion (2.4) – to every comma in each prompt (4c), regardless
of position, resulting in an 18% drop in the logit difference
and an 18% drop in zero-shot classification accuracy. Com-
paring the latter result to the baseline from 4a indicates that
nearly 50% of the model’s sentiment-direction-mediated
ability to perform the task accurately was mediated via sen-
timent information at the commas. We find this particularly
significant because we did not take any special effort to
ensure that commas were placed at the end of sentiment
phrases.

Mean-ablation of the full residual stream at all comma
positions Instead of relying on the sentiment direction
computed using DAS as above, we also performed mean
ablation experiments (2.2) on the full residual stream at
comma positions. Specifically, we replaced each comma
residual stream vector with the mean comma residual stream
from the entire dataset in a layerwise fashion (4d). This
resulted in a 17% drop in logit difference and an accuracy
drop of 19% .

5. Related Work
Sentiment Analysis Understanding the emotional valence
in text data is one of the first NLP tasks to be revolutionized
by deep learning (Socher et al., 2013) and remains a popular
task for benchmarking NLP models (Rosenthal et al., 2017;
Nakov et al., 2016; Potts et al., 2021; Abraham et al., 2022).
For a review of the literature, see (Pang & Lee, 2008; Liu,
2012; Grimes, 2014).

Understanding Internal Representations This research
was inspired by the field of Mechanistic Interpretability,
an agenda which aims to reverse-engineer the learned algo-
rithms inside models (Olah et al., 2020; Elhage et al., 2021b;
Nanda et al., 2023a). Exploring representations (Section
3) and world-modelling behavior inside transformers has
garnered significant recent interest. This was studied in
the context of synthetic game-playing models by Li et al.
(2023) and evidence of linearity was demonstrated by Nanda
(2023b) in the same context. Other work studying examples

of world-modelling inside neural networks includes Li et al.
(2021); Patel & Pavlick (2022); Abdou et al. (2021). An-
other framing of a very similar line of inquiry is the search
for latent knowledge (Christiano et al., 2021; Burns et al.,
2022). Prior to the transformer, representations of sentiment
specifically were studied by Radford et al. (2017), notably,
their finding of a sentiment neuron also implies a linear
representation of sentiment.

Causal Analysis of Language Models We approach our
experiments from a causal mediation analysis perspective.
Our approach to identifying computational subgraphs that
utilize feature representations as inspired by the ‘circuits
analysis’ framework (Stefan Heimersheim, 2023; Varma
et al., 2023; Hanna et al., 2023), especially the tools of mean
ablation and activation patching (Vig et al., 2020; Geiger
et al., 2021; 2023a; Meng et al., 2023; Wu et al., 2022; 2023;
Wang et al., 2022; Conmy et al., 2023; Chan et al., 2023;
Cohen et al., 2023). We use Distributed Alignment Search
(Geiger et al., 2023b) in order to apply these ideas to specific
subspaces.

6. Conclusion
The two central novel findings of this research are the ex-
istence of a linear representation of sentiment and the use
of summarization to store sentiment information. We have
seen that the sentiment direction is causal and central to the
circuitry of sentiment processing. Remarkably, this direc-
tion is so stark in the residual stream space that it can be
found even with the most basic methods and on a tiny toy
dataset, yet generalize to diverse real-world datasets. Sum-
marization is a motif present in larger models with longer
context lengths and greater proficiency in zero-shot classifi-
cation. These summaries present a tantalising glimpse into
the world-modelling behavior of transformers.
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Author Contributions
Oskar and Curt made equal contributions to this paper.
Curt’s focus was on circuit analysis and he discovered the
summarization motif, leading to Section 4. Oskar was fo-
cused on investigating the direction and eventually con-
ducted enough independent experiments to convince us that
the direction was causally meaningful, leading to Section 3.
Neel was our mentor as part of SERI MATS, suggested the
initial project brief, and provided considerable mentorship
during the research. Atticus acted an additional source of
mentorship and guidance. His advice was particularly useful
as someone with more of a background in causal mediation
analysis than mechanistic interpretability.

Impact Statement
This paper aims to advance the field of Mechanistic Inter-
pretability. We see the long-term goal of this line of research
as being able to help detect dangerous computation in lan-
guage models such as deception. Even if the existence of
a single “deception direction” in activation space seems a
bit naive to postulate, hopefully in the future many of the
tools developed here will help to detect representations of
deception or of knowledge that the model is concealing,
helping to prevent possible harms from LLMs.
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A. Appendix
A.1. Limitations

Many of our casual abstractions do not explain 100% of sentiment task performance. There is likely circuitry we’ve missed,
possibly as a result of distributed representations or superposition (Elhage et al., 2022) across components and layers. This
may also be a result of self-repair behavior (Wang et al., 2022; McGrath et al., 2023). Patching experiments conducted on
more diverse sentence structures could help to better isolate sentiment circuitry from more task-specific machinery.

The use of small datasets versus many hyperparameters and metrics poses a constant risk of gaming our own measures. Our
results on the larger and more diverse SST dataset, and the consistent results across a range of models help us to be more
confident in our conclusions.

Distributed Alignment Search (DAS) outperformed on most of our metrics but presents possible dangers of overfitting to a
particular dataset and taking the activations out of distribution (Lange et al., 2023). We include simpler tools such as Logistic
Regression as a sanity check on our findings. Ideally, we would love to see a set of best practices to avoid such illusions.

A.2. Implications and future work

The summarization motif emerged naturally during our investigation of sentiment, but we would be very interested to study
it in a broader range of contexts and understand what other factors of a particular model or task may influence the use of
summarization.

When studying the circuitry of sentiment, we focused almost exclusively on attention heads rather than MLPs. However,
early results suggest that further investigation of the role of MLPs and individual neurons is likely to yield interesting results
(A.8).

A.3. Further methods for finding directions

Using the same notation as in section 2.4, here are two further methods for computing a ‘sentiment direction’.

Mean Difference (MD) The direction is computed as 1
|P|

∑
p∈P a

L
p − 1

|N|
∑

n∈N aL
n .

Principal Component Analysis (PCA) The direction is the first component of {aL
x : x ∈ P ∪ N}.

Convergence of five direction-finding methods We find high cosine similarity (Figure A.1) between the 5 different
direction-finding methods. Note that cosine similarity is a potentially misleading metric in cases where the vectors can share
a bias, but this is not a concern for a linear probe direction where there is no meaningful notion of a shared bias.

A.4. Further evidence for a linear sentiment representation

A.4.1. CLUSTERING

In Section 2.4, we outline just a few of the many possible techniques for determining a direction which hopefully corresponds
to sentiment. Is it overly optimistic to presume the existence of such a direction? The most basic requirement for such a
direction to exist is that the residual stream space is clustered. We confirm this in two different ways.

First we fit 2-D PCA to the token embeddings for a set of 30 positive and 30 negative adjectives. In Figure A.3, we see that
the positive adjectives (blue dots) are very well clustered compared to the negative adjectives (red dots). Moreover, we see
that sentiment words which are out-of-sample with respect to the PCA (squares) also fit naturally into their appropriate color.
This applies not just for unseen adjectives (Figure A.3a) but also for verbs, an entirely out-of-distribution class of word
(Figure A.3b).

Secondly, we evaluate the accuracy of 2-means trained on the Simple Movie Review Continuation adjectives (Section 2.1).
The fact that we can classify in-sample is not very strong evidence, but we verify that we can also classify out-of-sample
with respect to the k-means fitting process. Indeed, even on hold-out adjectives and on the verb tokens (which are totally
out of distribution), we find that the accuracy is generally very strong across models. We also evaluate on a fully out of
distribution toy dataset (“simple adverbs”) of the form “The traveller [adverb] walked to their destination. The traveller felt
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100.0% 82.4% 86.1% 86.1% 69.7% 0.2%

82.4% 100.0% 95.1% 95.7% 80.0% 1.7%

86.1% 95.1% 100.0% 99.9% 78.0% 0.6%

86.1% 95.7% 99.9% 100.0% 79.5% 0.6%

69.7% 80.0% 78.0% 79.5% 100.0% 0.7%

0.2% 1.7% 0.6% 0.6% 0.7% 100.0%

 DAS KM LR MD PCA Random

DAS

KM

LR

MD

PCA

Random

Figure A.1. Cosine similarity of directions learned by different methods in Pythia-2.8b’s first layer. Each sentiment direction was derived
from adjective representations in the ToyMovieReview dataset (Section 2.1).

direction accuracy
k-means 86.4%

PCA 82.2%
Mean Diff 85.0%

LR 90.5%
DAS 80.8%

Figure A.2. Accuracy using sentiment activations from the first residual stream layer of Pythia 2.8B to classify tokens as positive or
negative. The threshold taken is the top/bottom 0.1% of activations over OpenWebText. Classification was performed by GPT-4.
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(a) PCA on adjectives in and out of sample
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(b) PCA on in-sample adjectives and out-of-sample verbs
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Figure A.3. 2-D PCA visualization of the embedding for a handful of adjectives and verbs (GPT2-small)

very”. The results can be found in Figure A.4. This is strongly suggestive that we are stumbling on a genuine representation
of sentiment.

A.4.2. ACTIVATION ADDITION

We perform “activation addition” (Turner et al., 2023), i.e. we add a multiple of the sentiment direction to the first layer
residual stream during each forward pass while generating sentence completions. We use GPT2-small for a single positive
simple movie review continuation prompt: “I really enjoyed the movie, in fact I loved it. I thought the movie was just very...”.
We seek to verify that this can flip the generated outputs from positive to negative. The “steering coefficient” is the multiple
of the sentiment direction which we add to the first layer residual stream.

By adding increasingly negative multiples of the sentiment direction, we find that indeed the completions become increasingly
negative, without completely destroying the coherence of the model’s generated text (Figure A.5). We are wary of taking
the model’s activations out of distribution using this technique, but we believe that the smoothness of the transition in
combination with the knowledge of our findings in the patching setting give us some confidence that these results are
meaningful.

A.4.3. MULTI-LINGUAL SENTIMENT

We use the first few paragraphs of Harry Potter in English and French as a standard text (Elhage et al., 2021b). We find
that intermediate layers of Pythia-2.8b demonstrate intuitive sentiment activations for the French text (Figure A.6). It is
important to note that none of the models are very good at French, but this was the smallest model where we saw hints of
generalization to other languages. The representation was not evident in the first couple of layers, probably due to the poor
tokenization of French words.

A.4.4. UNIVERSALITY EXAMPLES

For comparison with Figures A.1, 2 and Table 1, we include Figure A.7a, Figure A.8 and Figure A.7 where we visualise
the similarity and classification accuracy of directions found by different methods, this time for GPT2-small (Section 2.1),
StableLM 3B (Tow, 2023), Gemma 2B (Team et al., 2024) and Qwen 1.8B (Bai et al., 2023) instead of Pythia-2.8b.

A.4.5. GENERALIZATION AT INTERMEDIATE LAYERS

If the sentiment direction was simply a trivial feature of the token embedding, then one might expect that directional patching
would be most effective in the first or final layer. However, we see in Figure A.9 that in fact it is in intermediate layers of the
model where we see the strongest out-of-distribution performance on SST. This suggests the speculative hypothesis that the
model uses the residual stream to form abstract concepts in intermediate layers and this is where the latent knowledge of
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kmeans accuracy (gpt2-small)
  

  test_pos ADJ VRB ADV

train_pos train_layer    

ADJ

0 100.0% 83.3% 50.0%

1 100.0% 100.0% 55.3%

2 100.0% 100.0% 60.5%

3 100.0% 100.0% 65.8%

4 100.0% 100.0% 78.9%

5 100.0% 100.0% 57.9%

6 100.0% 100.0% 84.2%

7 100.0% 100.0% 71.1%

8 100.0% 100.0% 65.8%

9 100.0% 100.0% 68.4%

10 91.7% 100.0% 60.5%

11 91.7% 100.0% 60.5%

12 33.3% 58.3% 31.6%

test_set simple_test simple_adverb

train_set

simple_train

(a) GPT-2 Small
kmeans accuracy (gpt2-medium)

  

  test_pos ADJ VRB ADV

train_pos train_layer    

ADJ

0 100.0% 100.0% 50.0%

1 100.0% 83.3% 50.0%

2 100.0% 100.0% 47.4%

3 91.7% 100.0% 47.4%

4 91.7% 100.0% 47.4%

5 100.0% 100.0% 47.4%

6 100.0% 100.0% 68.4%

7 91.7% 100.0% 50.0%

8 91.7% 100.0% 84.2%

9 100.0% 100.0% 86.8%

10 100.0% 100.0% 71.1%

11 100.0% 100.0% 94.7%

12 100.0% 100.0% 65.8%

13 100.0% 100.0% 63.2%

14 100.0% 100.0% 73.7%

15 100.0% 100.0% 60.5%

16 100.0% 100.0% 57.9%

17 100.0% 100.0% 55.3%

18 100.0% 100.0% 55.3%

19 100.0% 100.0% 76.3%

20 100.0% 100.0% 84.2%

21 100.0% 91.7% 65.8%

22 100.0% 100.0% 52.6%

23 100.0% 100.0% 57.9%

24 83.3% 58.3% 50.0%

test_set simple_test simple_adverb

train_set

simple_train

(b) GPT-2 Medium

Figure A.4. 2-means classification accuracy for various GPT-2 sizes, split by layer (showing up to 24 layers)
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Figure A.5. Area plot of sentiment labels for generated outputs by activation steering coefficient, starting from a single positive movie
review continuation prompt. Activation addition (Turner et al., 2023) was performed in GPT2-small’s first residual stream layer.
Classification was performed by GPT-4.
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<|endoftext|> 
    Mr. and Mrs. Dursley, of number four, Privet Drive, were proud to say that they were perfectly normal, thank
 you very much. They were the last people you'd expect to be involved in anything strange or mysterious,
 because they just didn't hold with such nonsense.  

    Mr. Dursley was the director of a firm called Grunnings, which made drills. He was a big, beefy man with
 hardly any neck, although he did have a very large mustache. Mrs. Dursley was thin and blonde and had nearly
 twice the usual amount of neck, which came in very useful as she spent so much of her time craning over
 garden fences, spying on the neighbors. The Dursleys had a small son called Dudley and in their opinion there
 was no finer boy anywhere.  

    The Dursleys had everything they wanted, but they also had a secret, and their greatest fear was that
 somebody would discover it. They didn't think they could bear it if anyone found out about the Potters. Mrs.
 Potter was Mrs. Dursley's sister, but they hadn't met for several years; in fact, Mrs. Dursley pretended she didn
't have a sister, because her sister and her good-for-nothing husband were as unDursleyish as it was possible to
 be. The Dursleys shuddered to think what the neighbors would say if the Potters arrived in the street. The Durs
leys knew that the Potters had a small son, too, but they had never even seen him. This boy was another good
 reason for keeping the Potters away; they didn't want Dudley mixing with a child like that.  

    When Mr. and Mrs. Dursley woke up on the dull, gray Tuesday our story starts, there was nothing about the
 cloudy sky outside to suggest that strange and mysterious things would soon be happening all over the country.
 Mr. Dursley hummed as he picked out his most boring tie for work, and Mrs. Dursley gossiped away happily
 as she wrestled a screaming Dudley into his high chair.

(a) First 4 paragraphs of Harry Potter in English

<|endoftext|> 
Mr et Mrs Dursley, qui habitaient au 4, Privet Drive, avaient toujours affirmé avec la plus grande fierté qu'ils é
taient parfaitement normaux, merci pour eux. Jamais quiconque n'aurait imaginé qu'ils puissent se trouver impl
iqués dans quoi que ce soit d'étrange ou de mystérieux. Ils n'avaient pas de temps à perdre avec des sornettes. 
 
Mr Dursley dirigeait la Grunnings, une entreprise qui fabriquait des perceuses. C'était un homme grand et mass
if, qui n'avait pratiquement pas de cou, mais possédait en revanche une moustache de belle taille. Mrs Dursley
, quant à elle, était mince et blonde et disposait d'un cou deux fois plus long que la moyenne, ce qui lui était
 fort utile pour espionner ses voisins en regardant par-dessus les clôtures des jardins. Les Dursley avaient un
 petit garçon prénommé Dudley et c'était à leurs yeux le plus bel enfant du monde. 
 
Les Dursley avaient tout ce qu'ils voulaient. La seule chose indésirable qu'ils possédaient, c'était un secret dont
 ils craignaient plus que tout qu'on le découvre un jour. Si jamais quiconque venait à entendre parler des Potter,
 ils étaient convaincus qu'ils ne s'en remettraient pas. Mrs Potter était la soeur de Mrs Dursley, mais toutes
 deux ne s'étaient plus revues depuis des années. En fait, Mrs Dursley faisait comme si elle était fille unique,
 car sa soeur et son bon à rien de mari étaient aussi éloignés que possible de tout ce qui faisait un Dursley. Les
 Dursley tremblaient d'épouvante à la pensée de ce que diraient les voisins si par malheur les Potter se montra
ient dans leur rue. Ils savaient que les Potter, eux aussi, avaient un petit garçon, mais ils ne l'avaient jamais vu.
 Son existence constituait une raison supplémentaire de tenir les Potter à distance: il n'était pas question que le
 petit Dudley se mette à fréquenter un enfant comme celui-là. 
 
Lorsque Mr et Mrs Dursley s'éveillèrent, au matin du mardi où commence cette histoire, il faisait gris et triste
 et rien dans le ciel nuageux ne laissait prévoir que des choses étranges et mystérieuses allaient bientôt se produ
ire dans tout le pays. Mr Dursley fredonnait un air en nouant sa cravate la plus sinistre pour aller travailler et
 Mrs Dursley racontait d'un ton badin les derniers potins du quartier en s'efforçant d'installer sur sa chaise de b
ébé le jeune Dudley qui braillait de toute la force de ses poumons. 

(b) First 3 paragraphs of Harry Potter in French

Figure A.6. First paragraphs of Harry Potter in different languages. Model: Pythia-2.8b.
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(d) StableLM-3B

Figure A.7. Cosine similarity of directions learned by different methods in the first layer residual stream of different models. Each
sentiment direction was derived from adjective representations in the ToyMovieReview dataset (Section 2.1).
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Figure A.8. Area plot of sentiment labels for OpenWebText samples by sentiment activation, i.e. the projection of the first residual stream
layer at that token onto the sentiment direction (left). Accuracy using sentiment activations to classify tokens as positive or negative
(right). The threshold taken is the top/bottom 0.1% of activations over OpenWebText. Classification was performed by GPT-4.
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Figure A.9. Patching results for directions trained on toy datasets and evaluated on the Stanford Sentiment Treebank test partition. We
tend to find the best generalization when training and evaluating at a layer near the middle of the model. We scaffold the prompt using the
suffix Overall the movie was very and compute the logit difference between good and bad. The patching metric (y-axis) is then the %
mean change in logit difference.

sentiment is most prominent.

A.5. Limitations to our linearity claim

Did we find a truly universal sentiment direction, or merely the first principal component of directions used across different
sentiment tasks? As found by Bricken et al. (2023), we suspect that this feature could be “split” further into more specific
sentiment features. We performed an experiment to help validate that the common sentiment feature across tasks is one
dimensional. DAS can be used not just to find a causally impactful direction, but a causal subspace of any dimension. Figure
A.10 demonstrates that whilst increasing the DAS dimension improves the patching metric in-sample (A.10a), the metric
does not improve out-of-distribution (A.10b).

Similarly, one might wonder if there is really a single bipolar sentiment direction or if we have simply found the difference
between a “positive” and a “negative” sentiment direction. It turns out that this distinction is not well-defined, given that we
find empirically that there is a direction corresponding to “valenced words”. Indeed, if x is the valence direction and y is
the sentiment direction, then p = x+ y represents positive sentiment and n = x− y is the negative direction. Conversely,
we can reframe as starting from the positive/negative directions p and n, and then re-derive x = p+n

2 and y := p−n
2 .

A.6. Detailed circuit analysis

In order to build a picture of each circuit, we used the process pioneered in Wang et al. (2022):

• Identify which model components have the greatest impact on the logit difference when path patching is applied (with
the final result of the residual stream set as the receiver).

• Examine the attention patterns (value-weighted, in some cases) and other behaviors of these components (in practice,
attention heads) in order to get a rough idea of what function they are performing.
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(a) Training loss for DAS on adjectives in a toy movie review dataset

(b) Validation loss for DAS on a simple character mood dataset with a varying adverb

Figure A.10. DAS sweep over the subspace dimension (GPT2-small). The runs are labelled with the integer n where dDAS = 2n−1. Loss
is 1 minus the usual patching metric.
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Figure A.11. Primary components of GPT-2 sentiment circuit for the ToyMovieReview dataset. Here we can see both direct use of
sentiment-laden words in predicting sentiment at END as well as an example of the summarization motif at the SUM position (the final
‘movie’ token). Heads 7.1 and 7.5 write to this position and this information is causally relevant to the contribution of the summary
readers at END.

• Perform path-patching using these heads (or a distinct cluster of them) as receivers.

• Repeat the process recursively, performing contextual analyses of each “level” of attention heads in order to understand
what they are doing, and continuing to trace the circuit backwards.

In each path-patching experiment, change in logit difference is used as the patching metric. We started with GPT-2 as an
example of a classic LLM displays a wide range of behaviors of interest, and moved to larger models when necessary for the
task we wanted to study (choosing, in each case, the smallest model that could do the task).

A.6.1. SIMPLE SENTIMENT - GPT-2 SMALL

In this sub-section, we present an overview of circuit findings that give qualitative hints of the summarization motif, and
restrict quantitative analysis of the summarization motif to 4.

We examined the circuit performing the ToyMovie review task, i.e. for the following sentence template: “I thought this
movie was ADJECTIVE, I VERBed it. Conclusion: This movie is”. Mechanistically, this is a binary classification task, and a
naive hypothesis is that attention heads attend directly from the final token (which we label ‘END’) to the valenced tokens
(the adjective token, ADJ, and the verb token VRB) and map positive sentiment to positive outputs and vice versa. This does
happen but it is not the only mechanism. Attention head output is causally important at intermediate token positions (in
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particular, the final ‘movie’ token, SUM), which are then read from when producing output at END. We consider this an
instance of summarization, in which the model aggregates causally-important information relating to an entity at a particular
token for later usage, rather than simply attending back to the original tokens that were the source of the information.

Using a threshold of 5%-or-greater damage to the logit difference for our patching experiments, we found that GPT-2
Small contained 4 primary heads contributing to the most proximate level of circuit function–10.4, 9.2, 10.1, and 8.5 (using
“layer.head” notation). Examining their value-weighted attention patterns, we found that attention to ADJ and VRB in the
sentence was most prominent in the first three heads, but 8.5 attended primarily to the second “movie” token. We also
observed that 9.2 attended to this token as well as to ADJ. We label 8.5 and 9.2 as “summary readers”, and the second
“movie” token as the SUM token (as in “summary”). (Results of activation patching can be seen in Fig. A.12.)

Conducting path-patching with 8.5 and 9.2 as receivers, we identified two heads–7.1 and 7.5–that primarily attend to ADJ
and VRB from the “movie” token. We further determined that the output of these heads, when path-patched through 9.2
and 8.5 as receivers, was causally important to the circuit (with patching causing a logit difference shift of 7% and 4%
respectively for 7.1 and 7.5). Hence we label 7.1 and 7.5 as “summary writers”. This was not the case for other token
positions, which demonstrates that causally relevant information is indeed being specially written to the SUM token, as
suggested by our choice of label.

Repeating our analysis with lower thresholds yielded more heads with the same behavior but weaker effect sizes, adding
9.10, 11.9, and 6.4 as summary reader, direct sentiment reader, and sentiment summarizer respectively. This gives a total of
9 heads making up the circuit.
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Figure A.12. Activation patching results for the GPT-2 Small ToyMovieReview circuit, showing how much of the original logit difference
is recaptured when swapping in activations from xorig (when the model is otherwise run on xflipped). Note that attention output is only
important at the SUM position, and that this information is important to task performance at the residual stream layers (8 and 9) in which
the summary-readers reside. Other than this, the most important residual stream information lies at the ADJ and VRB positions.

In summary, these results suggest that there is a circuit made up of 9 attention heads accomplishing the task as follows:

1. Identify sentiment-laden words in the prompt, at ADJ and VRB.

2. “Summary writer” attention heads write out sentiment information to SUM (the final “movie” token).

3. “Summary reader” attention heads read from ADJ, VRB and SUM and write to END.6

To further validate this circuit and the involvement of the sentiment direction, we patched the entirety of the circuit at the
ADJ and VRB positions along the sentiment direction only, achieving a 58.3% rate of logit flips and a logit difference drop

6We note that our patching experiments indicate that there is no causal dependence on the output of other model components at the
ADJ and VRB positions–only at the SUM position.
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of 54.8% (in terms of whether a positive or negative next token was predicted). Patching the circuit at those positions along
all directions resulted in flipping 97% of logits and a logit difference drop of 75%, showing that the sentiment direction is
responsible for the majority of the function of the circuit.

A.6.2. TOYMOODSTORY CIRCUIT - PYTHIA-2.8B
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Figure A.13. Value-weighted8averaged attention to commas and comma phrases in Pythia-2.8b from the top two attention heads writing
to the repeated name and “feels” tokens–two key components of the summarization sub-circuit in the ToyMoodStories task. Note that they
attend heavily to the relevant comma from both destination positions.

We next examined the circuit that processes the ToyMoodStory dataset (Section 2.1) in Pythia-2.8b, the smallest model
that could perform this more complex task that requires more summarization. The sentence template is Carl hates parties,
and avoids them whenever possible. Jack loves parties, and joins them whenever possible. One day, they were invited to a
grand gala. Jack feels very [excited/nervous]. We did not attempt to reverse-engineer the entire circuit, but examined it
from the perspective of what matters causally for sentiment processing–especially determining to what extent summarization
occurred.

Following the same process as with GPT-2 with preference/sentiment-flipped prompts (that is, taking xorig to be “John
hates parties,... Mary loves parties,” and xflipped to be “John loves parties,... Mary hates parties”), we initially identified 5
key heads that were most causally important to the logit difference at END: 17.19, 22.5, 14.4, 20.10, and 12.2 (in “layer.head”
notation). Examining the value-weighted attention patterns, we observed that the top token receiving attention from END
was always the repeated name RNAME (e.g., “John” in “John feels very”) or the “feels” token FEEL, indicating that some
summarization may have taken place there.

We also observed that the top token attended to from RNAME and FEEL was in fact the comma at the end of the queried
preference phrase (that is, the comma at the end of “John hates parties”). We designate this position COMMASUM.

Multi-functional heads Interestingly, we observed that most of these heads were multi-functional: that is, they both
attended to COMMASUM from RNAME and FEEL, and also attended to RNAME and FEEL from END, producing output in
the direction of the logit difference. This is possible because these heads exist at different layers, and later heads can read
the summarized information from previous heads as well as writing their own summary information.

Direct effect heads Specifically, the direct effect heads were:

• Head 17.19 did not attend to commas significantly, but did attend to the periods at the end of each preference sentence
in addition to its primary attention to RNAME and FEEL, and did not display COMMASUM-reading behavior.

• Head 22.5 attended almost exclusively to FEEL, and did not display COMMASUM-reading behavior.

• Other direct effect heads (14.4, 20.10 and 12.2) did show COMMASUM-reading behavior as well as reading from the

8That is, the attention pattern weighted by the norm of the value vector at each position as per Kobayashi et al. (2020). We favor this
over the raw attention pattern as it filters for significant information being moved.
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near-end tokens to produce output in the direction of the logit difference. In each case, we verified with path-patching
that information from these positions was causally relevant.

Name summary writers We also found important heads (12.17 being by far the most important) that are only engaged
with attending to COMMASUM and producing output at RNAME and FEEL.

Comma summary writers We further investigated what circuitry was causally important to task performance mediated
through the COMMASUM positions, but did not flesh this out in full detail; after finding initial examples of summarization,
we focused on its causal relevance and interaction with the sentiment direction, leaving deeper investigation to future work.

Overview of heads In summary, the three main attention heads involved in this circuit were as follows.

• “Comma-reading heads”: A set of attention heads attended primarily to the comma following the preference phrase
for the queried subject (e.g. John hates parties,), and secondarily to other words in the phrase, as seen in Figure A.13.
We observed this phenomenon both with regular attention and value-weighted attention, and found via path patching that
these heads relied primarily on the comma token for their function, as seen in Figure A.15.

• “Name-writing heads”: Heads attending to preference phrases (e.g., the entirety of “John loves parties,” including the
final comma) tended to write to the repeated name token near the end of the sentence (John) as well as to the feels
token–another type of summarization behavior.

• “Name-reading heads”: Later heads attended to the repeated name and feels tokens, affecting the output logits at END.

A.7. Additional summarization findings

A.7.1. CIRCUITRY FOR PROCESSING COMMAS VS. ORIGINAL PHRASES IS SEMI-SEPARATE

Though there is overlap between the attention heads involved in the circuitry for processing sentiment from key phrases and
that from summarization points, there are also some clear differences, suggesting that the ability to read summaries could be
a specific capability developed by the model (rather than the model simply attending to high-sentiment tokens).

As can be seen in Figure A.14, there are distinct groups of attention heads that result in damage to the logit difference in
different situations–that is, some react when phrases are patched, some react disproportionately to comma patching, and
one head seems to have a strong response for either patching case. This is suggestive of semi-separate summary-reading
circuitry, and we hope future work will result in further insights in this direction.

A.7.2. RESULTS FROM OTHER MODELS

We replicated the ToyMoodStories comma-swapping experiment (as explained in Section 4) in Pythia-6.9b and Mistral-7b
as well as two Gemma and two Qwen models, with results shown in Table 5.

Intervention Pythia-2.8b Pythia-6.9b Mistral-7b Gemma-2b Gemma-7b Qwen-1.8b Qwen-7b
Patching full phrase -75% -152% -155% -152% -120% -181% -145%

values (incl. commas)
Patching pre-comma values -38% -46% -16% -68% -42% -71% -32%

(freezing commas & periods)
Patching comma and period -37% -68% -100% -42% -52% -72% -36%

values only

Table 5. Change in logit difference from patching at commas in ToyMoodStory in three different models

We take this as evidence that the comma-summarization phenomenon is not limited exclusively to Pythia-2.8b.

A.8. Neurons writing to sentiment direction in GPT2-small are interpretable

We observed that the cosine similarities of neuron out-directions with the sentiment direction are extremely heavy tailed
(Figure A.16). Thanks to Neuroscope (Nanda, 2023a), we can quickly see whether these neurons are interpretable. Indeed,
here are a few examples from the tails of that distribution:

• L3N1605 activates on “hesitate” following a negation
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Figure A.14. Logit difference drops by head when commas or pre-comma phrases are patched. Model: Pythia-2.8b.
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drop for these heads.

• Neuron L6N828 seems to be activating on words like “however” or “on the other hand” if they follow something
negative

• Neuron L5N671 activates on negative words that follow a “not” contraction (e.g. didn’t, doesn’t)

• L6N1237 activates strongly on “but” following “not bad”

We take L3N1605, the “not hesitate” neuron, as an extended example and trace backwards through the network using Direct
Logit Attribution9. We computed the relative effect of different model components on L3N1605 in the two different cases “I
would not hesitate” vs. “I would always hesitate”. The main contributors to this difference are L1H0, L3H10, L3H11 and
MLP2. Expanding out MLP2 into individual neurons we find that the contributions to L3N1605 are sparse. For example,
L2N1154 activates on words like “don’t”, “not”, “no”, etc. It activates on “not” but not “hesitate” in “I would not hesitate” but
activates on “hesitate” in “I would always hesitate”. Visualizing the attention pattern of L1H0 shows that it attends from
“hesitate” to the previous token if it is “not”, but not if it is “always”.

These anecdotal examples suggest at a complex network of machinery for transmitting sentiment information across
components of the network using a single critical axis of the residual stream as a communication channel. We think that
exploring these neurons further could be a very interesting avenue of future research, particularly for understanding how the
model updates sentiment based on negations where these neurons seem to play a critical role.

A.9. Glossary

Glossary
ablation A technique where we eliminate the contribution of a particular component to a model’s output (usually by

replacing the component’s output with zeros or the mean over some dataset or a random sample from some dataset) in
order to demonstrate the magnitude of its importance. (See Section 2.2)

activation addition Formerly called “activation steering”, a technique from Turner et al. (2023) where a vector is added to
the residual stream at a certain position (or all positions) and layer during each forward pass while generating sentence
completions. In our case, the vector is the sentiment direction.

9This technique decomposes model outputs into the sum of contributions of each component, using the insight from Elhage et al.
(2021b) that components are independent and additive
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activation patching A technique introduced in Meng et al. (2023), under the name ‘causal tracing’, which uses an
intervention to identify which activations in a model matter for producing some output. It runs the model on some
‘clean’ input, replaces (patches) an activation with that same activation on ‘flipped’ input, and sees how much that shifts
the output from ‘clean’ to ‘flipped’. (See Section 2.2)

activation steering See activation addition.

circuit A computational subgraph of a neural network which performs some human-interpretable task (Wang et al., 2022).

DAS Distributed Alignment Search (Geiger et al., 2023b) uses gradient descent to train a rotation matrix representating
an orthonormal change of basis to one better aligned with the model’s features. We mostly focus on a special case
of finding a singular critical direction, where we patch along the first dimension of the rotated basis and then use a
smooth patching metric (such as the logit difference between positive and negative completions) as the objective to be
minimised. (See Section 2.4)

directional ablation A form of ablation experiment in which restrict the intervention to a single dimension. That is,
assuming mean ablation, for dimension d and prompt index i out of n, we replace the residual stream vector ri with
ri − ri · d+

∑
j

rj ·d
n . (See Section 2.2)

directional activation patching A variant of activation patching introduced in this paper where we only patch a single
dimension from a counterfactual activation. That is, for prompts xorig and xnew, direction d, a set of model components C,
we run a forward pass on xorig but for each component in C, we patch/replace the output oorig with oorig−oorig·d+onew·d.
This is equivalent to activation patching a single neuron, but done in a rotated basis (where d is the first column of the
rotation matrix). (See Section 2.2)

directional patching See directional activation patching.

freezing When performing activation patching experiments, we sometimes choose to avoid patching a subset of model
components with their activations from the flipped prompt, instead freezing the activations to their initial value from
the forward pass on the original prompt. (See Section 2.2)

froze See freezing

frozen attention A type of freezing where the attention pattern is frozen from the original run so that the model still weights
the value vectors in the same way, helping to isolate V-composition. (See Section 2.2)

linear representation hypothesis The idea that high-level concepts or “features” are represented linearly as directions in
some representation space (Mikolov et al., 2013; Elhage et al., 2022; Park et al., 2023; Jiang et al., 2024).

logit difference The difference between the logits given to a particular pair of completions. To reduce noise, we can
generalize this to the average difference between two sets of completions. In our case, the dichotomy of completions
generally represent positive vs. negative sentiment. (See Section 2.2)

logit difference metric An evaluation metric, often used as the objective function by DAS and reported when activation
patching, where we normalize the change in logit difference induced by patching such that 0 is no change and 1
corresponds to a sign change in the logit difference with no change in magnitude. (See Section 2.2)

logit flip An evaluation metric, ofted used in activation patching, which reports the percentage of examples where the
prediction is flipped, i.e. the sign of the logit difference is flipped. For a single example, this is a binary value. (See
Section 2.2)

mean ablation A type of ablation method, where we seek to eliminate the contribution of a particular component to
demonstrate its importance, where we replace a particular set of activations with their mean over an appropriate dataset.
(See Section 2.2)

patching metric A summary statistic used to quantify the results of an activation patching experiment. By default here we
use the percentage change in logit difference as in Wang et al. (2022). (See Section 2.2)
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path patching A variant of activation patching introduced in Wang et al. (2022) in which only the activations related to
the residual stream paths between two sets of endpoints (senders and receivers) are patched, but the remainder of the
network upstream of the receivers is frozen. Given a set R of receivers, a sender attention head h, and paths P between
h and each of R, activations from the mirrored dataset are patched into P while keeping the remainder of the network
fixed (aside from everything downstream of R). (See Section 2.2)

sentiment activation The projection of the residual stream at a given token position and layer onto the sentiment direction.
(See the introduction to Section 3)

sentiment direction The direction in the residual stream space associated with the sentiment feature. (See the introduction
to Section 3)

sentiment summarizer An attention head which is a critical component of a sentiment-driven task and acts via V-
composition, writing information to an intermediate token position which is later read by a direct effect head.

SST Stanford Sentiment Treebank is a labelled sentiment dataset from Socher et al. (2013) described in Section 2.1.

summarization motif The phenomenon where sentiment is not solely represented on emotionally charged words, but is
additionally summarised at intermediate positions without inherent sentiment, such as punctuation and names.

V-composition When the value vectors of a downstream head contain information written by the output of an upstream
attention head (Elhage et al., 2021b).

value-weighted attention The attention pattern weighted by the norm of the value vector at each position as per Kobayashi
et al. (2020). We favor this over the raw attention pattern as it filters for significant information being moved.

zero ablation A type of ablation method, where we seek to eliminate the contribution of a particular component to
demonstrate its importance, where we replace a particular set of activations with their mean over an appropriate dataset.
(See Section 2.2)
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