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Mesh-Centric Gaussian Splatting for Human Avatar Modelling
with Real-time Dynamic Mesh Reconstruction

Anonymous Author(s)
Submission Id: 495

AniSDF
4 hours

30 min. 3DGS-
Avatar

40 min.
MCGS

1 FPS

50 FPS

30 FPS

Image Rendering

30 FPS

0.5 FPS

Mesh Reconstruction
Training

0.2 FPS

Marching Cube

Marching Cube

Figure 1: Given a multi-view video, the proposed MCGS could be trained within 40 minutes and produce image rendering and
mesh reconstruction both over 30 FPS without reliance on Marching Cube. In comparison, SDF-based method AniSDF [31]
requires several hours of training with slow image rendering and mesh reconstruction. 3D Gaussian Splatting-based method
3DGS-Avatar [35] offers real-time image rendering but also falls behind on mesh reconstruction.

ABSTRACT
Real-time mesh reconstruction is highly demanded for integrat-
ing human avatar in modern computer graphics applications. Cur-
rent methods typically use coordinate-based MLP to represent 3D
scene as Signed Distance Field (SDF) and optimize it through vol-
umetric rendering, relying on Marching Cubes for mesh extrac-
tion. However, volumetric rendering lacks training and rendering
efficiency, and the dependence on Marching Cubes significantly
impacts mesh extraction efficiency. This study introduces a novel
approach, Mesh-Centric Gaussian Splatting (MCGS), which intro-
duces a unique representation Mesh-Centric SDF and optimizes it
using high-efficiency Gaussian Splatting. The primary innovation
introduces Mesh-Centric SDF, a thin layer of SDF enveloping the
underlying mesh, and could be efficiently derived from mesh. This
derivation of SDF from mesh allows for mesh optimization through
SDF, providing mesh as 0 iso-surface, and eliminating the need for
slow Marching Cubes. The secondary innovation focuses on opti-
mizing Mesh-Centric SDF with high-efficiency Gaussian Splatting.
By dispersing the underlying mesh of Mesh-Centric SDF into mul-
tiple layers and generating Mesh-Constrained Gaussians on them,
we create Multi-Layer Gaussians. These Mesh-Constrained Gaus-
sians confine Gaussians within a 2D surface space defined by mesh,
ensuring an accurate correspondence between Gaussian rendering
and mesh geometry. The Multi-Layer Gaussians serve as sampling
layers of Mesh-Centric SDF and can be optimized with Gaussian
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Splatting, which would further optimize Mesh-Centric SDF and its
underlying mesh. As a result, our method can directly optimize the
underlying mesh through Gaussian Splatting, providing fast train-
ing and rendering speeds derived from Gaussian Splatting, as well
as precise surface learning of SDF. Experiments demonstrate that
our method achieves dynamic mesh reconstruction at over 30 FPS.
In contrast, SDF-based methods using Marching Cubes achieve less
than 1 FPS, and concurrent 3D Gaussian Splatting-based methods
cannot extract reasonable mesh.

CCS CONCEPTS
•Computingmethodologies→Volumetricmodels;Animation;
Mesh models.

KEYWORDS
3D Gaussian Splatting, neural implicit representation, volumetric
rendering, novel view synthesis, dynamic motion, human shape
and appearance modelling
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1 INTRODUCTION
Human avatars play a pivotal role in a multitude of human-centric
applications, ranging from movie production to telepresence and
computer games. Modeling human figures, in contrast to static
objects, presents distinct challenges due to their non-rigid dynamics,
intricate poses, and diverse clothing variations. Intrigued by the
potential applications of human avatars, numerous systems have
been proposed to tackle these challenges [4, 9, 11–13]. However,
many of these methods require the use of sophisticated equipment,
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such as dense camera rigs [9, 12, 13], or controlled lighting setups [4,
11] for capturing human models. Subsequently, skilled artists are
often tasked with manually designing a skeleton for the human
model and meticulously adjusting skinning weights to achieve
realistic animations [16]. Consequently, the substantial investment
in equipment and human labor confines the applicability of these
methods to research laboratories or larger corporations.

Recent advancements in neural implicit representations have
significantly reduced cost of creating human avatars by leveraging
multi-view videos [8, 17, 30, 30, 45, 46, 52]. These methods typically
involve learning a deformation field [8, 17, 30, 30, 45] to deform
a static implicit model [25, 43] or directly modeling a dynamic
implicit model [46, 52]. Some methods [31, 44] further integrate
SignedDistance Fields (SDF) as implicit model to leverage its surface
constraint, demonstrating promising mesh reconstruction perfor-
mance. Despite their capabilities, these approaches lag in efficiency,
primarily due to the inherent limitations of volumetric rendering
in implicit models. Volumetric rendering requires querying dense
sample points along a camera ray to simulate density distribution,
leading to a high number of queries for the entire scene [23]. To
address this efficiency issue, some methods have incorporated spe-
cialized data structures like Plenoctrees [49], K-Planes [6], or Hash
Encodings [38] into human avatar creation [8]. However, these
methods are still tethered to volumetric rendering and suffer from
excessive querying.

In parallel with the evolution of implicit representations, explicit
representations remain prevalent in the industry, encompassing
Mesh [15], Voxels [20, 40], Point Clouds [1, 5], and Multiplane Im-
ages (MPI) [24, 53]. Notably, a Point Cloud-based technique called
3D Gaussian Splatting (3DGS) [14] has gained popularity for cap-
turing 3D scenes and rendering them from various viewpoints. This
method represents a scene using numerous small 3D Gaussians
with optimized positions, orientations, appearances (represented as
spherical harmonics). Rendering involves splatting a limited num-
ber of optimized Gaussians onto the image plane, offering a faster
alternative to implicit representations. While 3DGS enables realistic
renderings, leveraging this technique for human avatar creation
poses challenges, particularly in extracting mesh from the Gaus-
sians due to their unordered structure and lack of correspondence
with the scene’s actual surface. Failure in mesh extraction hinders
its utilization in numerous applications, encompassing texture edit-
ing, sculpting, animation, and Physically Based Rendering.

In this paper, we present a method achieving real-time mesh re-
construction for human avatars by optimizing Mesh-Centric Signed
Distance Field (SDF) with high-efficiency Gaussian Splatting. The
first innovation introduces Mesh-Centric SDF, which is a thin layer
of SDF enveloping the underlying mesh, where Signed Distance
for a specific point is its distance from the underlying mesh. Mesh-
Centric SDF could be efficiently derived from mesh, allowing for
mesh optimization through SDF optimization. It naturally provides
mesh as 0 iso-surface, eliminating the need for slow Marching
Cubes. The secondary innovation focuses on optimizing Mesh-
Centric SDF with high-efficiency Gaussian Splatting. By dispersing
the underlying mesh of Mesh-Centric SDF into multiple layers and
generating Mesh-Constrained Gaussians on them, we create Multi-
Layer Gaussians. Mesh-Constrained Gaussians involves attaching
a set of flat Gaussians to triangle faces of mesh, with rotations and

scaling constrained within the triangle plane. This flat represen-
tation ensures an even distribution over mesh surface, effectively
aligning rendering of Gaussians with geometry of mesh. The Multi-
Layer Gaussians serve as sampling layers of Mesh-Centric SDF and
can be optimized with Gaussian Splatting, which would further op-
timize Mesh-Centric SDF and its underlying mesh. As a result, the
proposed method, Mesh-Centric Gaussian Splatting (MCGS), can
directly optimize the underlying mesh through efficient Gaussian
Splatting, combining fast training and rendering speed of Gaussian
Splatting with precise surface learning of SDF. Experimental results
demonstrate that our method achieves dynamic mesh retrieval at
over 30 FPS. In comparison, SDF-based methods using Marching
Cubes achieve less than 1 FPS, and concurrent 3D Gaussian Splat-
ting methods cannot extract reasonable mesh. The real-time mesh
reconstruction capability will further enable seamless integration
with established computer graphics pipelines for editing, sculpting,
animation, and Physically Based Rendering, thereby enhancing
industry engagement.

In summary, our contributions include:

• Proposing Mesh-Centric Gaussian Splatting (MCGS) for
human avatar modelling with real-time mesh reconstruc-
tion, combining fast training and rendering of Gaussian
Splatting with precise surface learning of SDF.

• Introducing Mesh-Centric SDF as a novel surface represen-
tation, which is a thin layer of SDF wrapped around mesh
and naturally provides mesh as 0 iso-surface, eliminating
reliance on slow Marching Cubes to extract 0 iso-surface.

• Optimizing Mesh-Centric SDF with high-efficiency Gauss-
ian Splatting, achieved by generating Multi-Layer Gaus-
sians from underlying mesh of Mesh-Centric SDF and opti-
mizing them with Gaussian Splatting.

2 RELATEDWORKS
2.1 Implicit Human Avatar Modelling Methods
Starting from Neural Radiance Fields (NeRF) [23], implicit repre-
sentations have sparked a revolution in traditional reconstruction
methods [7, 18, 23, 25, 43, 47, 48, 50]. These methods depict a scene
as continuous functions, offering advantages in memory efficiency
and high resolution. For instance, NeRF [25] directly maps a con-
tinuous 5D coordinate (including spatial coordinate and viewing
direction) to volume density and view-dependent emitted radiance,
serving as a successful example of representing a scene as a neural
radiance field. NeRF can portray a continuous scene in arbitrary
resolution and effectively learn from multi-view images using a
differentiable volumetric renderer.

Recent studies have integrated implicit representation into dy-
namic human modeling by combining a static neural implicit rep-
resentation with dynamic deformation fields [19, 27, 28, 30, 32, 34,
39, 45]. These methods typically utilize SMPL [21] as a prior for
skeleton-based motion, with deformation fields mainly represent-
ing non-linear deformations. Another approach involves directly
learning dynamic implicit representation that conditions the neural
implicit representations on human pose [46, 52]. These methods
demonstrate a robust representation of pose-dependent dynamics.
Some methods [31, 44] further integrate Signed Distance Fields

2
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(SDF) as implicit model to leverage its surface constraint, demon-
strating promising mesh reconstruction performance.

However, implicit representations have certain limitations. Firstly,
they rely on volumetric rendering, which defines neural fields
throughout the entire 3D space, even if the 3D object only occu-
pies a small fraction of that space, leading to memory redundancy.
Secondly, volumetric rendering requires dense sample points along
a ray to accumulate as pixel color, resulting in significant com-
putation. In contrast, explicit representations represent scenes as
explicit components, providing the potential to directly project
components into images with real-time efficiency. The proposed
method in this work is based on an explicit representation called 3D
Gaussian Splatting, which enhances real-time rendering efficiency.

2.2 Explicit Human Avatar Modelling Methods
Explicit representations, such as mesh [15], voxels [20, 40], point
clouds [1, 5], and multiplane images (MPI) [24, 53], continue to be
the mainstream in production due to their high efficiency and ease
of manipulation, allowing for immediate interactions like texture
editing. However, developing explicit models is often costly, involv-
ing manual design that requires significant labor. To mitigate these
costs, parametric models [2, 21, 29] are commonly used to fit para-
metric body models directly to skinned human scans. Nevertheless,
these models are not suitable for modeling clothed humans, which
are much more complex and require expensive 3D scans.

Recently, 3D Gaussian Splatting (3DGS) [14] has emerged as
an efficient alternative to implicit representation for fast inference
and training with point-based rendering. This approach models the
rendering process as splatting a set of 3D Gaussians onto the image
plane via alpha blending, achieving state-of-the-art rendering qual-
ity with real-time inference speed and rapid training when provided
with multi-view inputs. However, 3DGS is not currently compatible
with existing computer graphics pipelines, and the process of ex-
tracting a mesh from millions of tiny Gaussians after optimization
remains unclear.

In this study, we introduce a method that achieves high-fidelity
rendering and real-time mesh reconstruction using 3D Gaussian
Splatting (3DGS). This innovative approach paves the way for in-
tegrating 3DGS into modern computer graphics pipelines. While
some concurrent works [10, 51] also explore extracting meshes
from 3DGS, they exhibit certain gaps compared to our method.
These works typically involve jointly learning an implicit Signed
Distance Field (SDF) and explicit Gaussians, and utilize isolated
methods such as Marching Cube or Poisson Reconstruction to ex-
tract meshes from SDF or point clouds. However, this strategy relies
on Marching Cube or Poisson Reconstruction, and the process of
mesh extraction consistently operates at a speed slower than 1 FPS.
In contrast, our method directly optimizes the underlying mesh by
optimizing Gaussians, achieving high reconstruction accuracy and
demonstrating promising real-time efficiency.

3 PROPOSED METHOD
In line with previous works targeting surface reconstruction for hu-
man avatars [31, 44], we utilize a training set of𝑇 -frame multi-view
videos of a human performer captured by a sparse set of 𝐾 synchro-
nized and calibrated cameras:I = {𝐼𝑘𝑡 } (𝑡 = 1 . . .𝑇 , 𝑘 = 1 . . . 𝐾). We

aim at human avatar modelling with real-time mesh reconstruction
and the ability to perform actions not present in training frames
I. We employ off-the-shelf methods to derive segmentation masks
and fit parametric body models (SMPL [21] in this work).

The pipeline of proposed method is illustrated in Figure 2. We
begin with T-pose Canonical Mesh, which is initialized as SMPL
mesh and deformed using non-linear deformation 𝑓𝑛𝑜𝑛−𝑙𝑖𝑛𝑒𝑎𝑟 and
Linear Blending Skinning (LBS) to generate target-pose Deformed
Mesh, as explained in Section 3.2. The Deformed Mesh serves as
dynamic mesh reconstruction based on pose estimation of SMPL.
Subsequently, we construct Mesh-Centric SDF around Deformed
Mesh and disperse Deformed Mesh into Multi-Layer Mesh along its
vertex normal vectors, serving as sampling layers of Mesh-Centric
SDF, as depicted in Section 3.3. The Mesh-Centric SDF, a volume
representation, offers spatial coverage of Real Surface and facili-
tates surface learning similar to previous SDF-based methods. To
efficiently train it using Gaussian Splatting, we store Primitives
P on triangle faces of T-pose Canonical Mesh and deform them
with mesh deformation. These Primitives remain fixed during mesh
deformation and are subsequently transformed into Multi-Layer
Gaussians, as elaborated in Section 3.4. Finally, we employ Gaussian
Splatting described in Section 3.1 to optimize Multi-Layer Gaus-
sians, which further optimizes non-linear deformation 𝑓𝑛𝑜𝑛−𝑙𝑖𝑛𝑒𝑎𝑟 ,
LBS, T-pose Canonical Mesh, and Primitives attached to it.

3.1 Prelininary: 3D Gaussian Splatting
3D Gaussian Splatting (3DGS) [14] captures a 3D scene using an
ensemble of 3D Gaussians {G}, each characterized by position x,
covariance Σ, opacity 𝛼 , and color c represented by spherical har-
monics (SH). To ensure positive semi-definiteness, the covariance
matrix Σ is represented by scaling matrix S and rotation matrix R:

Σ = RSS𝑇 R𝑇 . (1)

Practically, 3DGS stores diagonal vector s ∈ R3 of the scaling matrix
and a quaternion vector q ∈ R4 to represent rotation matrix, which
can be converted to a valid covariance matrix.

To optimize from image observation, 3DGS builds a differentiable
Gaussian Splatting process to render 3D Gaussians into image.
Specifically, 3D Gaussians are projected onto image plane, and
alpha blending is employed to compute pixel color 𝐶 by blending
N ordered Gaussians that overlap the pixel:

𝐶 =
∑︁
𝑖∈N

c𝑖𝛼 ′𝑖
𝑖−1∏
𝑗=1

(1 − 𝛼 ′𝑗 ), (2)

where 𝛼 ′
𝑖
denotes the learned opacity 𝛼𝑖 weighted by the probability

density of the 𝑖-th projected Gaussian at the target pixel location.

3.2 Mesh Deformation
We build an efficient method to obtain pose-dependent mesh recon-
struction given pose estimation of SMPL. Illustrated in Figure 2, the
T-pose Canonical Mesh is initialized as SMPL mesh. For vertex v𝑐
on Canonical Mesh, we deform it with pose-dependent non-linear
deformation to obtain v𝑛 . The non-linear deformation is estimated
by a hash-encoding MLP [38] 𝑓𝑛𝑜𝑛−𝑙𝑖𝑛𝑒𝑎𝑟 :

v𝑛 = v𝑣 + 𝑓𝑛𝑜𝑛−𝑙𝑖𝑛𝑒𝑎𝑟 (v𝑐 , 𝜽 ), (3)
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Mesh
Dispersion 

Multi-Layer GaussiansDeformed Mesh

𝒢𝑖 = (𝐱, 𝛼𝑖 , 𝐑, 𝐒, 𝐳)
𝐯𝒍
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Figure 2: Pipeline of proposed MCGS. We deform T-pose Canonical Mesh with non-linear and linear deformations to obtain
Deformed Mesh at target pose (Section 3.2). Subsequently, we disperse Deformed Mesh to Multi-Layer Mesh, acting as sampling
layers of Mesh-Centric SDF (Section 3.3). To optimize Mesh-Centric SDF, we store Primitives P on triangle faces of Canonical
Mesh and deform them with mesh deformation. Primitives are further transformed into Multi-Layer Gaussians using Gaussian
Generation described in Section 3.4. Finally, Gaussian Splatting is utilized to optimize Multi-Layer Gaussians with image
observation, which further optimizes Primitives, Canonical Mesh, non-linear deformation, and linear deformation.

where 𝜽 is pose parameters of SMPL. Then v𝑛 is transformed to
target-pose Deformed Mesh using Linear Blending Skinning (LBS):

v𝑙 = LBS(𝑓𝑠𝑘𝑖𝑛𝑛𝑖𝑛𝑔 (v𝑛);𝜽 , 𝜷), (4)

where 𝜽 is pose parameters of SMPL, 𝜷 is shape parameters of
SMPL, and a skinning MLP 𝑓𝑠𝑘𝑖𝑛𝑛𝑖𝑛𝑔 is learned to predict skinning
weight of v𝑛 . During inference, we could efficiently obtain pose-
dependent mesh reconstruction by deforming vertices with non-
linear deformation 𝑓𝑛𝑜𝑛−𝑙𝑖𝑛𝑒𝑎𝑟 and LBS.

As we possess target-pose Deformed Mesh as mesh reconstruc-
tion result, we could conduct mesh smoothness loss on Deformed
Mesh to regularize mesh deformation. Specifically, we incorporate
regularization losses from Pytorch3d [36] concerning edge length,
normal consistency, and Laplacian smoothing. Our full loss func-
tion consists of a RGB loss 𝐿𝑅𝐺𝐵 , a mask loss 𝐿𝑚𝑎𝑠𝑘 , a skinning
weight regularization loss 𝐿𝑠𝑘𝑖𝑛 and a mesh smoothness loss 𝐿𝑚𝑒𝑠ℎ .
More details are shown in Supplementary Material.

3.3 Mesh Dispersion
In this section, we describe the definition of Mesh-Centric SDF
and how to generate Multi-Layer Mesh using Mesh Dispersion. As
depicted in Figure 3 (a), we take Deformed Mesh from Section 3.2
as underlying mesh and build Mesh-Centric Signed Distance Field
(SDF) as a thin layer of SDF enveloping the underlying mesh, with
the mesh itself serving as 0 iso-surface. Naturally, the Signed Dis-
tance of a point corresponds to its distance from the underlying
mesh. Since Mesh-Centric SDF is derived from the underlying mesh,
we can directly optimize the underlying mesh through SDF opti-
mization, eliminating the need for time-consuming Marching Cube
algorithm [22] typically used to extract 0 iso-surface in previous
SDF-based methods [31, 43, 44].

Traditional SDF-based methods typically represent SDF as a
Coordinate-based MLP and utilize volumetric rendering for op-
timization, which involves extensive querying of the MLP and
significantly hinders efficiency. The proposed Mesh-Centric SDF
naturally incorporates the underlying mesh as 0 iso-surface, al-
lowing for optimization through a more efficient Mesh Dispersion
strategy. Details of Mesh Dispersion are illustrated in Figure 3 (a).
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Figure 3: 2D example of: (a) Mesh-Centric SDF and Mesh Dis-
persion in Section 3.3, (b) Multi-Layer Gaussians generated in
Section 3.4, (c) Optimization process of Mesh-Centric SDF, (d)
Optimization process of naive Mesh-Constrained Gaussians
and previous works [10, 42].

By dispersing the underlying mesh into multiple layers along its
vertex normal vectors n at random distances, we obtain Multi-Layer
Mesh acting as sampling layers of SDF enveloping the underlying
mesh, among which layer 𝑖 with Signed Distance 𝑙𝑖 approximately
covers Real Surface. In the next section, we would describe how
to generate Gaussians on Multi-Layer Mesh and reweight them
with respective Signed Distance, forming Multi-Layer Gaussians
in Figure 3 (b). Thus we could optimize Signed Distance values of
Multi-Layer Mesh through Gaussian Splatting and further optimize
the underlying mesh.
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Figure 4: Generating Mesh-Constrained Gaussians from
Primitives. (a) We calculate rotation matrix R = (r1, r2, r3)
and scaling matrix S from vertices (v1, v2, v3). (b) With learn-
able w and 𝑠, several Gaussians are set on a same triangle to
represent more details.

3.4 Gaussian Generation
Naive Gaussian Splatting in Section 3.1 achieves high efficiency
and high-quality rendering. However, it exhibits poor alignment
between appearance and geometry, as highlighted in previous stud-
ies [10, 42]. To mitigate this issue, we confine Gaussians to a 2D
surface space defined by an underlying mesh, ensuring a consistent
correspondence between appearance and geometry. This methodol-
ogy enables us to achieve precise surface reconstruction by optimiz-
ing appearance through alpha blending in equation (2). In Figure 2,
we store Primitives P on triangle faces of mesh and convert them
into Gaussians G. We start with a basic scenario where we generate
Gaussian G from Primitive P attached to triangle face 𝑉 . Subse-
quently, we elaborate on the process of generating Multi-Layer
Gaussians, as depicted in Figure 3 (b).

We then describe converting Primitive P = (w, 𝛼, 𝑠, z) on tri-
angle face 𝑉 = (v1, v2, v3) to Mesh-Constrained Gaussian G =

(x, 𝛼,R, S, z). For each Primitive, w = (𝑤1,𝑤2,𝑤3) is barycentric
coordinates and 𝑤1 +𝑤2 +𝑤3 = 1, 𝛼 is opacity, 𝑠 is scale relative
to triangle face, and z is multi-dimension color feature. To capture
appearance dynamics like shadows, we follow a similar approach to
3DGS-Avatar [35] by storing per-Primitive color feature vectors z
and employing a small pose-dependent Color MLP 𝑓𝑐𝑜𝑙𝑜𝑟 to predict
Gaussian colors c: c = 𝑓𝑐𝑜𝑙𝑜𝑟 (z, 𝜽 ), where 𝜽 denotes pose parame-
ters of SMPL. Given the underlying mesh, we possess knowledge
of vertex order and define rotation and scaling matrices relative
to triangle face. We define rotation matrix R in equation 1 as or-
thonormal vectors: R = [r1, r2, r3]. As shown in Figure 4, the first
vector r1 is defined as the normal vector:

r1 =
(v2 − v1) × (v3 − v1)

| | (v2 − v1) × (v3 − v1) | |
. (5)

The second vector r2 is defined as the vector from triangle center
x𝑐 to vertex v1:

r2 =
v1 − x𝑐

| |v1 − x𝑐 | |
, (6)

where x𝑐 = mean(v1 + v2 + v3) is triangle center. Finally, the third
vector r3 is obtained through orthonormalizing the vector with re-
spect to the existing two vectors (a single step in the Gram–Schmidt
process [3]):

r3 =
orth(v2 − x𝑐 ; r1, r2)

| |orth(v2 − x𝑐 ; r1, r2) | |
, (7)

where

orth(x; r1, r2) = x − proj(x; r1) − proj(x; r2), (8)

and

proj(v,u) = ⟨v,u⟩
⟨u,u⟩u. (9)

For scaling parameters S, we use:

S = diag(𝑠1, 𝑠2, 𝑠3), (10)

where 𝑠1 = 𝜖 , 𝑠2 = | |x𝑐 −v1 | |, and 𝑠3 = ⟨v2, r3⟩. 𝑠1 corresponds with
the normal vector and is fixed to be a constant small value 𝜖 .

Consequently, the covariance Σ of mesh-constrained Gaussian
is obtained through equation (1) and corresponds with the shape of
triangle 𝑉 . To represent more details, as shown in Figure 4 (b), we
store several Primitives P = (w, 𝛼, 𝑠, z) on a same triangle face and
control their position with learnable barycentric coordinate w by:

x = 𝑤1v1 +𝑤2v2 +𝑤3v3, (11)

and control their size with a learnable scale parameters 𝑠:

S′ = sigmoid(𝑠)S. (12)

Subsequently, we describe the process of generating Multi-Layer
Gaussians on Multi-Layer Mesh, where their opacities are adjusted
based on respective Signed Distances. As illustrated in Figure 3 (b),
the opacity for G𝑖 on layer 𝑖 is initially inherited from Primitive P
and then further modified by Signed Distance 𝑙𝑖 between layer 𝑖 and
the underlying mesh. To be specific, we convert Signed Distance 𝑙𝑖
into density 𝜎𝑖 in accordance with [43]:

𝜎𝑖 =


1
𝛽
(1 − 1

2
exp( 𝑙

𝑖

𝛽
)), if 𝑙𝑖 < 0,

1
2𝛽

exp(− 𝑙
𝑖

𝛽
), if 𝑙𝑖 ≥ 0,

(13)

where 𝛽 is an optimizable parameter controlling the degree of
density concentration when converting SDF to density field. Then
we adjust opacity 𝛼 with 𝜎𝑖 :

𝛼𝑖 = 𝜎𝑖 · 𝛼. (14)

Remark.There have been severalmethods that involve attaching
flat Gaussians onto meshes [10, 42]; however, these methods rely on
pre-captured meshes and struggle to learn accurate geometry. The
proposed Mesh-Centric SDF is pivotal in learning precise geometry
and distinguishes our approach from these existing techniques. In
Figure 3 (c), a 2D example illustrates the learning process of Mesh-
Centric SDF. Multiple positions are optimized by ray r1 from camera
1, encompassing point𝐴 near Real Surface and point 𝐵 farther away.
When optimized with rays from camera 2, point𝐴 near Real Surface
is assigned a higher blending weight, which enhances 𝛼𝑖 and 𝜎𝑖
in equation (14). Consequently, the Signed Distance 𝑙𝑖 is reduced,
bringing the underlying mesh closer to Real Surface. In contrast,
the naive Mesh-Constrained Gaussians and previous methods that
involve attaching flat Gaussians ontomeshes [10, 42] are depicted in
Figure 3 (d). Thesemethods only consider a single layer of Gaussians
and optimize a single position from ray r1, resulting in a lack of
spatial coverage of Real Surface. Consequently, the optimization
process falls short in accurately learning geometry by failing to
enhance the alpha blending weight at the intersection point of ray
r1 and Real Surface.
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Table 1: Efficiency Comparison including training time (GPU
hours), image rendering speed (FPS), and mesh reconstruc-
tion speed (FPS).

Neural
Body AniSDF 3DGS-

Avatar Ours

Training(GPU) 5h 7h 0.5h 0.7h
Rendering(FPS) 3.5 0.9 50 32

Reconstruction(FPS) 1.2 0.4 0.2 32

4 EXPERIMENT
4.1 Datasets and Metrics
ZJU-MoCap [33] records multi-view videos with 21 synchronous
cameras and collects shape parameters of SMPL as well as global
translation and SMPL’s pose parameters with an off-the-shelf SMPL
tracking system [54]. Following [31], we choose 4 uniformly dis-
tributed cameras for training and the remaining cameras for testing.
On ZJU-MoCap dataset, we evaluate image rendering performance
on seen poses and unseen poses with PSNR and LPIPS metrics.

SyntheticHuman [31] is a synthetic dataset that contains 7
animated 3D characters from RenderPeople [37] and Mixamo [26],
which provides 3D ground truth. Similarly, we choose 4 cameras
for training and the remaining cameras for testing. We use this
dataset to evaluate the performance of 3D reconstruction and adopt
Chamfer Distance (CD) and Point-To-Surface Euclidean distance
(P2S) as metrics. Units for CD and P2S are in cm.

4.2 Compared Methods
The compared methods include NeuralBody [33], AniSDF [31], and
concurrent 3DGS-Avatar [35], which are SOTA methods based on
Neural Radiance Field (NeRF), Signed Distance Fields (SDF), and
3D Gaussian Splatting (3DGS), respectively. It is worth noting that
3DGS-Avatar, which is based on 3DGS, struggles to generate rea-
sonable meshes. Therefore, our comparative evaluation with 3DGS-
Avatar is focused on image rendering performance, as elaborated in
Section 4.5. For completeness, we include the mesh reconstruction
results of 3DGS-Avatar in the Supplementary Material.

4.3 Performance on Efficiency
The primary strength of our method lies in its exceptional efficiency
in mesh reconstruction. During inference, we leverage 𝑓non-linear
and LBS in equations (3) and (4) to rapidly generate pose-dependent
meshes from Canonical Mesh, enabling real-time mesh reconstruc-
tion. Table 1 clearly demonstrates that compared methods signif-
icantly lag in mesh rendering efficiency. This performance gap
arises from their approach of voxelizing the density field and using
Marching Cubes [22] for mesh extraction. For 3DGS-Avatar, we
apply mesh extraction methods proposed in DreamGaussian [41].
However, we observed that it fails to generate reasonable meshes
when applied to human avatars, leading us to present its mesh
reconstruction results in the Supplementary Material.

Certain concurrent works [10, 51] concentrate on training SDF
and Gaussian Splatting together for static scenes, employing vox-
elization andMarching Cubes for mesh extraction, which encounter
similar speed limitations and have yet to explore in human avatar
modelling scenarios. In contrast, our method directly optimizes

Table 2: Quantitative results of mesh reconstruction on Syn-
theticHuman dataset.

P2S ↓ CD ↓
Neural
Body AniSDF OURS Neural

Body AniSDF OURS

S1 1.29 0.62 0.49 1.21 0.65 0.52
S1 1.20 0.67 0.36 1.12 0.66 0.37
S3 1.60 0.93 0.40 1.67 1.24 0.67
S4 0.98 0.59 0.27 1.11 0.74 0.44
S5 0.98 0.42 0.32 0.99 0.54 0.41
S6 0.87 0.54 0.28 1.02 0.78 0.51
S7 0.80 0.35 0.26 0.99 0.50 0.40
Avg. 1.10 0.59 0.34 1.16 0.73 0.47

the underlying mesh through Gaussian Splatting, eliminating re-
liance onMarching Cubes and ensuring real-time efficiency in mesh
reconstruction.

Another notable strength of our approach is its efficiency in both
training and image rendering, a merit derived from leveraging 3D
Gaussian Splatting. While 3DGS-Avatar also leverages 3D Gaussian
Splatting and demonstrates efficiency in training and rendering, it
grapples with the challenge of mesh extraction from 3D Gaussians,
hindering its mesh generation capabilities.

4.4 Performance on Mesh Reconstruction
In addition to significantly enhancedmesh reconstruction efficiency,
quantitative results presented in Table 2 demonstrate that our
method outperforms compared approaches by a substantial margin
in terms of accuracy. Through a qualitative assessment depicted
in Figure 5, we can observe distinct characteristics of compared
methods. NeuralBody generates noisy meshes due to the absence
of surface constraints, whereas AniSDF yields smoother meshes by
leveraging surface constraint of SDF. However, AniSDF tends to
introduce noise in certain body parts, as evidenced by the arm of
the left subject in the second row. This issue can be attributed to
the utilization of SDF as an intermediary for surface representation
and further adopts Marching Cube to extract mesh. In contrast, our
approach learns mesh directly without relying on Marching Cube,
resulting in a higher consistency with Ground Truth.

4.5 Performance on Image Rendering
Benefiting from representation capabilities of 3D Gaussian Splat-
ting, our method demonstrates outstanding image rendering quality.
We assess image rendering performance on both seen and unseen
poses using ZJU-MoCap [33] dataset. As highlighted by Nerfies [28],
PSNR metric tends to favor blurry images; therefore, we empha-
size the LPIPS metric in our evaluation. Quantitative analysis in
Table 3 demonstrates that 3DGS-based methods, including 3DGS-
Avatar and our method, achieve significantly better LPIPS metrics
compared to Neural Body and AniSDF, showcasing the enhanced
representation abilities of 3D Gaussian Splatting. Furthermore, our
method exhibits superior performance compared to 3DGS-Avatar
due to the additional surface constraints introduced by constraining
Gaussians on the mesh. In terms of the PSNR metric, the differ-
ences are relatively minor, with our proposed method performing
competitively with the compared approaches.
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Figure 5: Qualitative results of mesh reconstruction on SyntheticHuman dataset.
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Figure 6: Qualitative comparison with SOTA methods in (a) seen poses, and (b) unseen poses on the ZJU-MoCap dataset.

Qualitative comparison in Fig. 6 showcases the remarkable visual
quality of our MCGS (Mesh-Centric Gaussian Splatting) method,
particularly in capturing clean and pose-dependent non-linear de-
tails. This improvement aligns with the enhancements in LPIPS
metric and reinforces the notion that LPIPS is a more represen-
tative measure of visual quality compared to PSNR. Neural Body
and AniSDF exhibit twisted and oversmoothed renderings, espe-
cially for unseen poses. For instance, the renderings in the third
row for unseen poses illustrate that Neural Body and AniSDF miss
most details on the back. Conversely, the 3DGS-based methods
(3DGS-Avatar and ours) generate realistic wrinkles. Our method,
in comparison to 3DGS-Avatar, captures more details, as evident in
the second row of seen poses, where 3DGS-Avatar produces overly
smoothed results while our method represents realistic wrinkles.

4.6 Ablation Study
We perform a comprehensive ablation study on subject 387 of ZJU-
MoCap dataset, which includes investigating the significance of
Mesh-Centric SDF, the importance of learningmesh and appearance
dynamics, and the impact of subdividing initialized SMPL mesh. As
ZJU-MoCap dataset lacks ground truth mesh, we train the proposed

method using all cameras for a single frame to generate a reference
mesh, as depicted in Figure 7. The high accuracy and consistency of
the reference mesh with the reference image highlight a promising
direction for applying our method to static scene reconstruction.
i) Mesh-Centric SDF. We introduce Mesh-Centric SDF in Sec-
tion 3.3 as a novel surface representation, where the underlying
mesh serves as 0 iso-surface and can be optimized using Gaussian
Splatting through the generation of Multi-Layer Gaussians from
the underlying mesh. This strategy is crucial for capturing pre-
cise geometry as shown in Figure 3. To evaluate this, we exclude
Mesh-Centric SDF and directly train Mesh-Constrained Gaussians
without adjusting opacity 𝛼 using Equation (14). This variant of
the model is denoted as ‘w/o Mesh-Centric SDF’ in Table 4 and Fig-
ure 7, illustrating its inability to learn accurate geometry and only
generating a skinned model. This outcome underscores the critical
importance of Mesh-Centric SDF in learning precise geometry.
ii) Learning mesh and appearance dynamics. We model mesh
and appearance dynamics using two MLP networks, denoted as
𝑓𝑛𝑜𝑛−𝑙𝑖𝑛𝑒𝑎𝑟 and 𝑓𝑐𝑜𝑙𝑜𝑟 . By excluding these networks, we introduce
entries ‘Fixed Mesh’ and ‘Fixed Appearance’ in Table 4 and Figure 7
correspondingly. The comparison in Figure 7 reveals that these two
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Table 3: Quantitative results of image rendering on ZJU-MoCap dataset in terms of PSNR (higher is better) and LPIPS (lower is
better). NB is short for Neural Body. 3DGS is short for 3DGS-Avatar.

Seen Poses Unseen Poses
PSNR ↑ LPIPS ×103 ↓ PSNR ↑ LPIPS ×103 ↓

NB AniSDF 3DGS OURS NB AniSDF 3DGS OURS NB AniSDF 3DGS OURS NB AniSDF 3DGS OURS
377 33.67 32.77 32.54 32.25 31.92 32.36 18.10 17.49 30.43 31.15 31.50 31.41 38.67 33.73 19.60 18.90
386 36.15 34.96 35.22 34.75 31.49 36.34 24.20 21.70 32.89 33.39 33.10 32.93 44.84 39.52 27.50 25.90
387 31.10 30.71 30.62 30.63 48.17 49.98 30.50 28.60 28.16 28.44 28.70 28.66 55.23 51.67 32.40 31.70
392 35.65 34.36 34.15 33.77 39.84 43.53 24.20 23.09 31.57 30.90 31.00 31.06 51.66 48.26 30.30 29.30
393 33.20 31.84 31.75 31.81 45.31 45.35 27.30 25.60 28.53 28.41 29.10 28.88 58.95 52.49 34.20 33.10
394 34.40 33.46 33.39 33.13 41.82 40.67 23.80 22.88 29.75 29.63 30.48 30.51 55.89 47.38 29.60 28.60
Avg. 34.03 33.02 32.95 32.72 39.76 41.37 24.68 23.23 30.22 30.32 30.65 30.58 50.87 45.51 28.93 27.92

Table 4: PSNR and LPIPS metrics for ablation study.

w/o
Mesh-Centric SDF

Fixed
Mesh

Fixed
Appearance

w/o
Subdivision

Double
Subdivision

Full
Model

PSNR 25.25 29.72 28.81 30.58 30.68 30.63
LPIPS 51.27 32.82 34.20 30.03 27.98 28.60

w/o

Mesh-Centric SDF
Reference

Fixed

Mesh

Fixed

Appearance

w/o

Subdivision

Double
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Full
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Figure 7: Qualitative results of ablation study.

variants are unable to capture accurate geometry like the hood.
Furthermore, Table 4 demonstrates that they exhibit significantly
lower PSNR and LPIPS metrics, underscoring the efficacy of our
approach in learning mesh and appearance dynamics.
iii) Subdivision of SMPL mesh.We subdivide SMPL mesh once
to enhance the level of detail in geometry. To evaluate the impact of
this strategy, we create two variations termed ‘w/o Subdivision’ and
‘Double Subdivision’, where one omits subdivision and the other
undergoes subdivision twice. As depicted in Table 4 and Figure 7,
increased subdivision results in improved performance both quan-
titatively and qualitatively. However, excessive subdivision leads to
an abundance of faces and Gaussians, as each face is assigned at
least one Gaussian. Consequently, the rendering speed drops below
real-time (30 FPS). Hence, we opt to perform subdivision only once
on SMPL mesh, which already yields superior mesh reconstruction,
as evidenced in Table 2, while maintaining real-time efficiency.

5 LIMITATIONS AND FUTUREWORK
The Mesh-Centric Gaussian Splatting (MCGS) approach proposed
in this work has shown promising results in realistic image render-
ing and real-time mesh reconstruction. However, there exist certain
limitations. Firstly, the reliance on a coarse mesh (such as SMPL in
this context) for aligning information across video frames and as
an initialization may not be feasible in scenarios involving loose
cloth or attachments. One potential avenue for improvement could
involve combining a point cloud reconstructed from MVS (similar
to the initialization in 3DGS [14]) and constructing an initialized

mesh from the point cloud. Secondly, the optimization process of
the underlying mesh does not concern adaptive subdivision or undi-
vision andmay encounter challenges when dealing with excessively
loose cloth. Exploring the incorporation of adaptive subdivision or
undivision algorithm during optimization presents an intriguing
direction, which could also extend the proposed method to scene
reconstruction and enable direct mesh training from multi-view
images. These issues are left for future investigation.

6 CONCLUSION
In this paper, we introduceMesh-Centric Gaussian Splatting (MCGS),
a novel method for human avatar modelling with real-time mesh
reconstruction from multi-view video. Firstly, we present Mesh-
Centric SDF as a unique surface representation, consisting of a
thin layer of SDF enveloping an underlying mesh, where the mesh
itself serves as 0 iso-surface. This approach eliminates the need for
Marching Cubes to extract 0 iso-surface and enables real-time mesh
reconstruction. Secondly, we construct Multi-Layer Mesh from the
underlying mesh of Mesh-Centric SDF, which acts as sampling lay-
ers, and generate Mesh-Constrained Gaussians on these layers. This
process facilitates training Mesh-Centric SDF using efficient Gauss-
ian Splatting. Experimental results demonstrate that our method
achieves real-time mesh reconstruction and SOTA performance
in both image rendering and mesh reconstruction. This research
establishes a pathway for direct learning meshes from multi-view
videos, offering substantial potential for merging 3D reconstruction
research with computer graphics in practical applications.
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