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Supplementary Materials:
Mesh-Centric Gaussian Splatting for Human Avatar Modelling
with Real-time Dynamic Mesh Reconstruction
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1 TRAINING DETAILS

We introduce training details in this section, including Gaussians
initialization, density control, and optimization losses.

For initialization, we uniformly set Gaussians on UV grids of
SMPL texture map with a resolution of 256. For better geometry
detail, we subdivide SMPL mesh once, resulting in 55104 faces,
compared to default 13776 faces of SMPL. Throughout optimization,
density control is executed to duplicate Gaussians with higher
gradients, and remove those with small opacity a. Given our explicit
constraint that each Gaussian should not extend beyond its face,
enforced through a sigmoid function in equation (10) of the main
paper, we verify if a face not have any Gaussians and assign one
accordingly.

The full loss is formulated as follows:

L= Lll + Apercherc + AmaskLmask +/13kiankin + AmeshLmesh- (1)

Each loss term is defined below:

RGB Loss: We use [1 loss to compute pixel-wise error and a
perceptual loss to provide robustness to local mis-alignments. Fol-
lowing HumanNeRF [5] and 3DGS-Avatar [2], we optimize LPIPS
as perceptual loss with VGG as backbone. We render the whole
image via rasterization and thus do not require patch sampling in
HumanNeRF.

Mask Loss: Following 3DGS-Avatar [2], we use an explicit mask
loss. For each pixel p , we compute the opacity value Op, by summing
up the sample weights in alpha blending equation (2) in the main
paper, namely:

i—1
opzza;]_[u—a;). @)
i j=1

We then supervise it with ground truth foreground mask via an /1
loss.

Skinning Loss: We leverage SMPL prior by sampling 1024 points
Xkin on surface of the canonical SMPL mesh and regularizing the
forward skinning network with corresponding skinning weights w
interpolated with barycentric coordinates.

1
Lop:, = —
skin |Xskin| Z

Xskin € Xskin

||f;kinning(xskin’ 0) —wl| |2~ (3)

Mesh Smoothness Loss: We incorporate regularization losses
on mesh smoothness from Pytorch3d [3] concerning edge length,
normal consistency, and Laplacian smoothing.

Linesn = Ledge +0.01Ly0rmar + Llaplucian~ (4)

We set Aperc = 0.01, Ayask = 0.1, Apesp = 1 in all experiments.
For Agxin, we set it to 10 for the first 1k iterations for fast conver-
gence to a reasonable skinning field, then decreased to 0.1 for soft
regularization.
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2 MESH RECONSTRUCTION OF 3DGS-AVATAR

Figure 1: Mesh Reconstruction results of 3DGS-Avatar. The
top row is from ZJU-MoCap dataset. The bottom row is from
SyntheticHuman dataset.

It is challenging to extract mesh from 3D Gaussian Splatting due
to unordered nature and poor alignment with actual scene surfaces
of the optimized Gaussians. While we employed the mesh extraction
method proposed in DreamGaussian [4] to extract meshes from
3DGS-Avatar [2], we found that it failed to generate reasonable
meshes, as illustrated in Figure 1. Several concurrent methods,
such as SuGaR [1] and GAvatar [6], focus on mesh extraction from
Gaussians by jointly training Gaussian Splatting and implicit SDF,
and then using marching cubes or Poisson reconstruction to extract
meshes from SDF or point clouds. However, the training of implicit
SDF and the reliance on marching cubes or Poisson reconstruction
significantly impede their mesh reconstruction efficiency, resulting
in a frame rate lower than 1 FPS, which is notably slower than the
real-time efficiency of our method (32 FPS).
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