
Published as a conference paper at ICOMP 2024

TWO FACTORS UPDATE FOR CANONICAL POLYADIC
DECOMPOSITION

Anastasia Sozykina
Skoltech
Moscow, Russia
anastasia.sozykina@skoltech.ru

Valentin Leplat
Innopolis University
Innopolis, Russia
v.leplat@innopolis.ru

Igor Vorona
Skoltech
Moscow, Russia
igor.vorona@skoltech.ru

Salman Ahmadi-Asl
Skoltech
Moscow, Russia
s.asl@skoltech.ru

Anh-Huy Phan
Skoltech
Moscow, Russia
a.phan@skoltech.ru

ABSTRACT

The current alternating optimization algorithms for canonical polyadic (CP) tensor
decomposition face various challenges such as redundant update steps and the
robustness of optimization when dealing with linearly dependent factor matrices.
These concerns often result in prolonged iterations without substantial progress in
the decomposition process. In response to these challenges, our paper introduces
two novel optimization algorithms for computing CP decompositions relying on
the update of two factor matrices simultaneously. We assess the performance
of our algorithm by conducting thorough numerical experiments involving both
synthetic and real-world data tensors. Through these experiments, we demonstrate
the efficiency and benefits of our proposed approach.

1 INTRODUCTION

Tensors are mathematical objects that extend the concepts of scalars, vectors, and matrices to an
arbitrary number of dimensions. Scalars are considered as zero-dimensional tensors and vectors as
one-dimensional tensors, whereas matrices are viewed as two-dimensional tensors. Moving from
two-dimensional matrices, a more complex structure is developed in the form of a tensor with di-
mensions depth, width, and height.

Among the various tensor decomposition models, the Canonical Polyadic Decomposition (CPD),
also referred to as the CANDECOMP/PARAFAC (CP) model Hitchcock (1927), stands out as the
most popular and widely used method. Given a tensor Y with dimensions I1 × I2 × · · · × IN , CPD
aims to find the optimal rank-R tensor approximation of Y (see illustrattion in Figure 1)

Y ≈ Ŷ =

R∑
r=1

a1r ◦ a2r ◦ · · · ◦ aNr = JA1,A2, . . . ,AN K , (1)

where “◦” represents the outer product, and An = [an1, . . . ,anR] denote the factor matrices of the
decomposition.

The CPD is a highly relevant tensor decomposition model that retains its core multilinear structure
while achieving dimensionality reduction. It is widely used in areas where intact structural informa-
tion is required, such as data mining, signal processing, neuroimaging, and chemometrics. CPD has
shown to be a powerful tool for many applications in various fields, including separating signals in
wireless communication systems, performing independent component analysis, estimating tempo-
ral and spectral patterns in EEG signals, blind identification, and even compressing Convolutional
Neural Networks (CNN) to cite a few Cichocki et al. (2015); Lebedev et al. (2014); Zhang et al.
(2016).

Furthermore, the CPD model offers the flexibility to incorporate additional constraints to enhance
its utility, performance and come up with more interpretable decompositions. For instance, CPD

1

Published as a conference paper at ICOMP 2024

can be extended to nonnegative tensor factorization Cichocki et al. (2009), which has emerged as an
important tool in interpreting physical data where non-negativity constraints are natural. In the last
two decades, additional constrained and regularized variants of CPD have been successfully used,
we can mention the smooth CPD Yokota et al. (2016), orthogonal CPD Sørensen et al. (2012), graph
regularized CPD Maki et al. (2018), discriminant CPD Frølich et al. (2018), and CPD with bounded
sensitivity or intensity Phan et al. (2019).CANDECOMP/PARAFAC (CPD)

PSfrag replacements

a1

b1

c1

aR

bR

cR
λ1 λR

≈ + · · ·+
Y

◮ Application of Tensors in a raw format may be intractable, as

the required storage memory and a number of operations

grow exponentially with the tensor order.

◮ To tackle this issue, represent higher-order tensors through

multi-way operations over their latent components.

◮ Canonical Polyadic Decomposition (CPD): an extension of

matrix factorization to extract rank-1 tensor patterns from

multiway data.

◮ Computation for large volume and high order tensors, e.g.,

those of order N = 10 or 20

◮ Degeneracy

Figure 1: Illustration of the CPD.

Moreover, CPD can incorporate pre-
defined design matrices as in the
CANDELINC Carroll et al. (1970);
Bro & Andersson (1998). Another
variation of the model has been sug-
gested specifically for cases where
the factor matrices can be represented
on subspaces spanned by certain de-
pendence matrices. These depen-
dence matrices typically consist of
zeros and ones. This approach gives

rise to two distinct methodologies: Parallel Profiles with Linear Dependencies (PARALIND), which
addresses the rank-overlap problem as proposed by Bro et al. (2009), and Constrained PARAFAC
(CONFAC), which is developed for the blind identification of underdetermined mixtures de Almeida
et al. (2012). For both methodologies, the model is of the form

Y ≈ JA(1)Q1,A
(2)Q2,A

(3)Q3K. (2)

A more generalized extension of CPD, dubbed as the low-rank constrained CPD (LrCPD) Phan et al.
(2021) relies on the hybrid Tucker-CPD decomposition model:

Y ≈ JUA,VB,WCK, (3)

where UTU = IR1
, VTV = IR2

and WTW = IR3
. This model showed promising results when

the tensor rank of a tensor exceeds its dimensions.

As a take-home message, CPD has emerged as the go-to tensor decomposition model, showcasing
its distinct and powerful capabilities across multiple disciplines. With its broad applicability and
persisting relevance over time, CPD is poised to remain as a key tensor decomposition model across
the diverse fields of data sciences. These key observations motivated us to propose new and efficient
methods to compute a CPD.

1.1 EXISTING ALGORITHMS FOR COMPUTING A CPD

There are several algorithms to compute the CPD of a tensor such as Alternating Least Squares
(ALS) algorithm Harshman (1970); Comon et al. (2009), the Weighted Krylov-Levenberg-
Marquardt algorithm Tichavský et al. (2020), the non-linear least squares (NLS) algorithm Sorber
et al. (2013), the generalized Schur decomposition Evert et al. (2022), the accelerated proximal gra-
dient with momentum Nazih et al. (2021), and the accelerated stochastic gradient descent Siaminou
& Liavas (2021). Efficient implementations of some CPD algorithms in Python can be found in
Diniz (2019). The ALS is the simplest type of such algorithms and has been widely used, however
it suffers from two main drawbacks

• The first issue with ALS-type algorithm is high redundancy in computing the update rules,
which is related to computing the “matricized tensor times Khatri-Rao product”.

• The second one occurs when several factor matrices have collinear loading components.
In such scenarios, the condition numbers of linear systems in ALS steps are high, and the
optimization process becomes inefficient.

Based on the above-mentioned observations, we propose innovative algorithms to address these
challenges. In a nutshell, our approach involves updating two factor matrices instead of just one,
which sets it apart from classical ALS-type algorithms. The key aspect here is the unfolding of the
CP model along two arbitrary modes.

2

Published as a conference paper at ICOMP 2024

This specific unfolding results in a lower-order CP model with one factor matrix with the so-
called ”Khatri-Rao structure”. For example, merging mode-1 and 2 of an order-4 tensor Y =
JA1,A2,A3,A4K of size I × J ×K ×L gives an order-3 CP tensor Y(1,2) = JB,A3,A4K, where
B = A2 ⊙A1 after which the factor matrices A1 and A2 can be retrieved through the best rank-1
approximation of the reshaped form of the columns of the matrix B to matrices of size I × J , i.e.,
br = vec(a1ra

T
2r) where br,a1r,a2r are the r-th columns of the matrices B, A1 and A2, respec-

tively Phan et al. (2013). Due to the Khatri-Rao structure, reshaping column of br to matrices of size
I×J gives a rank-1 matrix, or br = vec(a1ra

T
2r). The FCP algorithm in Phan et al. (2013) exploits

this Khatri-Rao structure in estimation of higher order CPD from lower order decomposition. In
this paper, we follow a different approach by using this property to derive new update rules able to
jointly update two factor matrices at once.

1.2 CONTRIBUTIONS AND OUTLINE

In this paper, we address the main drawbacks of existing methods for computing a CPD of an input
tensor. The key advantages and major contributions of our paper are the following:

• We propose a novel algorithm which updates two factor matrices instead of one as in the
ALS steps. This property reduces redundancy of computing update rules and makes opti-
mization more efficient by slightly avoiding risk of high condition numbers of factor ma-
trices.

• We show empirically that our method achieves significantly better results than ALS and
NLS methods if the penalty parameter is well chosen.

• We open the door of a new class of optimization methods for tensor decomposition able to
update a larger substructure of a tensor decomposition at once. These methods are closer
to the general optimization methods in their convergence robustness while simultaneously
enjoying the efficiency of alternating methods.

The paper is organized as follows. Section 2 presents the key matrix decomposition model obtained
after the unfolding along two arbitrary modes, the so-called ”Khatri-Rao structured” linear regres-
sion model. Section 3 contains the proposed algorithms and the suggested implementation strategy.
Section 4 presents the numerical experiments on a series of synthetic and real-life datasets. Finally,
Section 5 summarizes our conclusions and perspectives.

2 LINEAR REGRESSION WITH KHATRI-RAO STRUCTURED MATRIX

We start by considering the constrained linear regression problem as defined below

min
X

f(X) =
1

2
∥Y −ΦXT ∥2F +

µ

2
∥X∥2F , s.t. X = V ⊙U, (4)

where Y is a data matrix of size K × (IJ), Φ of size K × R. The regressor, X, is in the form of
Khatri-Rao product of two matrices, V of size J ×R and U of size I ×R.

In order to solve the above constrained optimization problem, we introduce the indicator function,
iD(.), associated to the set D = {X|X = V⊙U}, that is the set of Khatri-Rao structured matrices;
this indicator function is iD(X) = 0 if X ∈ D, otherwise∞.

By introducing an additional variable, Z, one can equivalently reformulate Problem (4) as follows

min f(Z) + iD(X) , s.t. X = Z, (5)

Problems given in (5) are well-suited for the use of the Alternating Direction Method of Multipliers
(ADMM) framework. We first build the augmented Lagrangian function associated to Problem (5)
as follows

Lγ(X,Z,T) = f(Z) + iD(X) +
1

2γ

(
∥Z−X−T∥2F − ∥T∥2F

)
, (6)

where γ > 0 is a positive scalar and T denotes the scaled dual variables associated to matrix equality
constraints in (5).

3

Published as a conference paper at ICOMP 2024

Given the current iterates (Z(k),X(k),T(k)) with k denoting the iteration counter, the updates of the
primal variables Z, X, and the dual variable T consist of the following iterations

Z(k+1) = argmin
Z

f(Z) +
1

2γ
∥Z−X(k) −T(k)∥2F , (7)

X(k+1) = argmin
X

iD(X) +
1

2γ
∥Z(k+1) −T(k) −X∥2F

= ΠD(Z
(k+1) −T(k)) , (8)

T(k+1) = T(k) +X(k+1) − Z(k+1) . (9)

The update for X in (8) boils down to computing the orthogonal projection of (Z(k+1)−T(k)) onto
the set D, which is detailed in Section 2.2.

2.1 UPDATE OF Z

Solving the optimization problem in (7) amounts to minimize a quadratic function without con-
straints, the solution can be computed in closed-form expression as follows

Z(k+1) = argmin
Z

1

2
∥Y −ΦZT ∥2F +

µ

2
∥Z∥2F +

1

2γ
∥Z−X(k) −T(k)∥2F

= (YTΦ+
1

γ
(X(k) +T(k)))(ΦTΦ+ (µ+

1

γ
)I)−1. (10)

2.2 UPDATE OF X

We start by reshaping the vectors z(k+1)
r − t

(k)
r to matrices Hr of size I×J , where r = 1, 2, . . . , R.

From (8) and by definition of the Khatri-Rao product each column of the matrix, X(k+1), corre-
sponds to vectorization of the best rank-1 approximation of the matrices Hr ≈ urv

T
r . This approx-

imation has a unique optimal solution which can be computed in closed-form by using the truncated
SVD according to the Eckart–Young–Mirsky theorem. Algorithm 1 summarizes our approach for
solving Problem (4) with the sequential updates of Z, X and T in closed-form given in Equations
(9), (10) and (8).

Algorithm 1: Linear Regression with Khatri-Rao structured Regressor
Input: Data matrix Y: K × (IJ), Φ of size K ×R, an initialization for (X,Z), a maximum

number of iterations kmax, and a threshold ϵ
Output: X is Khatri-Rao product such that it minimizes ∥Y −ΦXT ∥2F

1 begin
2 Initiate T = X = 0

3 Precompute W = YTΦ, Q = ΦTΦ, Q̃ = (Q+ (µ+ 1
γ)I)

−1

4 k ← 1

5 while k ≤ kmax and ∥X−Z∥F

∥Z∥F
> ϵ do

6 Z← (W + 1
γ (X+T))Q̃ // Update Z

7 for r = 1, . . . , R do // Update each column of X
8 Hr ← reshape(zr − tr, [I× J])

9 Xr ← vec
(
ursrv

T
r

)
where [ur, sr,vr] = svds(Hr, 1)

10 end for
11 T← T+X− Z // Dual ascent step updates T
12 k ← k + 1
13 end while
14 end

4

Published as a conference paper at ICOMP 2024

2.3 ADAPTIVE PENALTY PARAMETER UPDATE

In most experiments, the damping regularization parameter, µ, can be set to zero or regularly de-
creases as the strategy used in the Levenberg-Marquardt algorithm. The penalty parameter, γ, can be
set as the largest singular value of Φ, and fixed during the estimation. A small value of γ will make
the algorithm converge slowly, while a large number may cause a divergence in the optimization
process. Upper bound of γ = 1/β is derived in (21). In addition, when the approximation error
reaches a certain level, e.g., 10−2, we can adjust γ following the spectral method Xu et al. (2017) or
the following simple strategy Parikh & Boyd (2014):

γ(k+1) =


τγ(k) , if r > ηs

τ−1γ(k), if s > ηr

γ(k)

(11)

where r = ∥Z(k+1) − X(k+1)∥F denotes the relative primal residue, and s = ∥X(k+1) −
X(k)∥F /∥T(k+1)∥F corresponds to the dual residue, η = 5 or 10, τ = 1.5 or 2. We can reset
the parameter, e.g., every 20 iterations.

2.4 COMPLEXITY

Here we discuss the computational complexity of Algorithm 1. To begin with, the update for matrix
Z in (10) requires the computation of the matrix product YTΦ, which has a computational cost of
O(IJKR). This cost can be significant when dealing with large data sizes. Furthermore, calculating
the correlation matrix, ΦTΦ, requires a computational cost ofO(IJR2), andO(R3) for its inverse.
Fortunately, we only need to compute these terms once. If the algorithm implements an adaptive
update strategy for parameters γ (and µ), the changes will only affect the eigenvalues of ΦTΦ and
not its eigenvectors. Later in the discussion, it will be shown that the computation of matrices ΦTΦ
for the CPD model only incurs a cost ofO(R2(I+J)). Finally, the update for Xr as the best rank-1
approximation of Hr can be obtained efficiently by using the power method in parallel for each r.

2.5 CONVERGENCE GUARANTEES

The convergence of Algorithm 1 is presented in Theorem 1 and more details can be found in Ap-
pendix A.

Theorem 1. For a sufficiently large β = 1/γ, the sequence (X(k),Z(k),T(k)) generated by Algo-
rithm 1 applied to Problem (5) converges globally, that is regardless of where the initial point is, to
the unique limit point (X(∗),Z(∗),T(∗)), which is a stationary point of the augmented Lagrangian
function, Lγ , and X(∗) is a stationary point of Problem (5).

3 A NOVEL ALGORITHM FOR COMPUTING THE CPD

The computation of the CPD of a tensor Y of order-N is usually achieved by minimizing the Frobe-
nius norm of the error tensor

min
{An}

∥Y− JA1,A2, . . . ,AN K∥2F . (12)

Classical algorithms, such as ALS, sequentially update each factor of the decomposition at a time
while keeping the other factors fixed. Each of these updates involves the unfolding of the model
along one mode of the tensor, say the n-th mode, and rewriting the optimization problem as follows

min
An

∥Y(n) −AnΨ
T
n∥2F , (13)

where Ψn = AN ⊙ · · · ⊙ An+1 ⊙ An−1 ⊙ · · · ⊙ A1. The ALS update for An is given by
An = Y(n)Ψn (Ψ

T
nΨn)

−1.

Several key insights can be made:

5

Published as a conference paper at ICOMP 2024

Remark 1. (High redundancy) The above update is simple, but each update requires to compute
the product Y(n)Ψn, which is the most expensive step in the ALS algorithm.

We give an example for order-3 CPD. In order to update A1, the ALS computes Y(1)(A3 ⊙A2),
then computes Y(2)(A3 ⊙A1) for the update of A2.

The product between the tensor Y and A3 is common in the two updates. For higher-order CPD,
the product between Y and Khatri-Rao products of all but two matrices An and An+1 are shared
for the two updates of An and An+1.

Remark 2. (Degeneracy and inaccurate update) Since ΨT
nΨn = (AT

NAN)⊛· · ·⊛(AT
n+1An+1)⊛

(AT
n−1An−1)⊛ · · ·⊛ (AT

1 A1) (where “⊛” denotes the Hadamard product), when the factor matri-
ces consist of highly collinear loading components, the correlation matrix ΨT

nΨn becomes poorly
conditioned, and the computation of its inverse is likely to be inaccurate.

Motivated by these observations, we derive in the following a new algorithm which can efficiently
address the redundancy issue by updating two factor matrices at a time. To achieve this, let us rewrite
the optimization problem by unfolding the tensor along two arbitrary modes n and m, n < m:

min
Am,An

∥YT
(n,m) −Ψn,m(Am ⊙An)

T ∥2F , (14)

where Ψn,m = AN ⊙ · · · ⊙Am+1 ⊙Am−1 ⊙ · · · ⊙An+1 ⊙An−1 ⊙ · · · ⊙A1 is the Khatri-Rao
product of all but two matrices An and Am. One can easily see that the minimization problem in
(14) boils down to the regression problem with Khatri-Rao structured matrix as in (4).

Our proposed algorithm updates two consecutive factor matrices, e.g., A1 and A2 by calling Al-
gorithm 1, then proceed with another pair, A3 and A4, . . . , Aj and Aj+1, until all factor matrices
are updated, see its pseudo-code in Algorithm 2. After updating A1 and A2, the algorithm shifts
the dimensions of the tensor Y by 2, and updates the next pair. After updating all pairs of factor
matrices, the algorithm randomly permutes the factor matrices.

Algorithm 2: CPD with Two Factors Update
Input: Data tensor Y: (I1 × I2 × · · · × IN), and rank R

Output: Ŷ = JA1,A2, . . . ,AN K such that it minimizes ∥Y− Ŷ∥2F
1 begin
2 Initialize Ŷ
3 while a stopping criterion is not met do
4 B ← randompermutation(N)
5 j ← 1
6 while j ≤ |B| − 1 do
7 (n,m)← (B(j),B(j + 1))
8 Y(n,m) ← (n,m)-unfolding of Y
9 Ψn,m ← AN ⊙ · · · ⊙Am+1 ⊙Am−1 ⊙ · · · ⊙An+1 ⊙An−1 ⊙ · · · ⊙A1

10 Solve minX ∥YT
(n,m) −Ψn,mXT ∥ s.t. X = Am ⊙An using Algorithm 1

11 j ← j + 2
12 end while
13 end while
14 end

3.1 IMPLEMENTATION

A key observation for an efficient implementation of our proposed Algorithm 2 is the following: the
explicit computation of Ψ1,2 is actually not required. Indeed, in Algorithm 1, Ψ1,2 appears in the
product YT

(1,2)Ψ1,2, which can be computed via R projections of the tensor Y by (N − 2) vectors

{A3(:, r), . . . ,AN (:, r)}, for r = 1, 2, . . . , R. Finally, the correlation matrix Q = ΨT
1,2Ψ1,2 can

be computed with the formula (AT
NAN)⊛ · · ·⊛ (AT

3 A3) by using the property of the Khatri–Rao
product.

6

Published as a conference paper at ICOMP 2024

10 0 10 2 10 4

Iteration

10 -8

10 -6

10 -4

10 -2

10 0

R
el

at
iv

e
E

rr
or

Proposed
NLS
ALS

(a) 10× 10× 10 rank 10

10 0 10 2

Iteration

10 -8

10 -6

10 -4

10 -2

10 0

R
el

at
iv

e
E

rr
or

Proposed
NLS
ALS

(b) 10× 10× 10× 10, rank 10

10 0 10 2 10 4

Iteration

10 -8

10 -6

10 -4

10 -2

10 0

R
el

at
iv

e
E

rr
or

Proposed
NLS
ALS

(c) 50× 50× 50, rank 20

10 0 10 2 10 4

Iteration

10 -8

10 -6

10 -4

10 -2

10 0

R
el

at
iv

e
E

rr
or

Proposed
NLS
ALS

(d) 50× 50× 50× 50, rank 20

Figure 2: Convergence of algorithms in Example 1.

Remark 3. Another advantage of the proposed algorithm compared to the ALS relies in the possi-
bility to choose matrices An and Am such that ΨT

n,mΨn,m are well conditioned. For example, we
jointly update the two matrices An and Am with highest collinearity degrees and these matrices
should not join in computing ΨT

i,jΨi,j , (i, j) ̸= (n,m) for updating the other Ai and Aj . See
Example 1.

4 NUMERICAL EXPERIMENTS

All tests are preformed using Matlab R2021a and Python 3.9.13 on a laptop Intel CORE i7-11800H
CPU @2.30GHz 16GB RAM with GeForce RTX3060 GPU. The proposed algorithm is bench-
marked against the state-of-the-art algorithms, ALS Harshman (1970) and NLS Sorber et al. (2013).
We ran the decomposition in 5000 iterations and can stop earlier when the difference between con-

secutive relative errors (
∥Y−Ŷ∥

F

∥Y∥F
) is below 10−7 or the change in model parameters is less than

10−8. The algorithms were initialized by the random factor matrices followed by 10 iterations of
ALS.

We consider challenging decomposition scenarios in which tensors are generated from high collinear
factor matrices or tensors having ranks exceeding their dimensions. It is well known that the com-
putation of the CPD for such tensors is hard due to the degeneracy problem. The results achieved by
the algorithms are reported over a total of 100 Monte Carlo (MC) simulations.
Example 1 (Tensors with high collinear factor matrices). In the first experiment, we considered
order-3 and 4 tensors of size I × · · · × I with I = 10 or 50, and rank R = 10 and 20, whose all
factor matrices An have highly collinear loading components: 0.97 ≤ AT

n (:, r)An(:, s) ≤ 0.99,
n = 2, 3, 4, and 0 ≤ AT

1 (:, r)A1(:, s) ≤ 0.5. All loading components have unit length. We used the
Matlab routine gen matrix Phan et al. (released 2020) to generate random matrices with specific
collinearity degree.

Figure 2 compares the relative errors obtained by three considered algorithms as functions of iter-
ation for different scenarios. The NLS algorithm (Gauss-Newton with dogleg trust region) is an
all-at-once optimization method, can handle such different scenarios effectively. The algorithm con-

7

Published as a conference paper at ICOMP 2024

0 1000 2000 3000 4000
NoIterations

-7

-6.5

-6

-5.5

-5

-4.5

-4

R
el

at
iv

e
E

rr
or

Proposed
NLS
ALS

(a) 50× 50× 50 and rank 20

10 -6 10 -4 10 -2 10 0

Relative Error

0

0.2

0.4

0.6

0.8

1

F
(x

)

Empirical CDF

Proposed
NLS
ALS

(b) 10× 10× 10 and rank 25

10 0 10 2 10 4

Iteration

10 -6

10 -4

10 -2

10 0

R
el

at
iv

e
E

rr
or

Proposed
NLS
ALS

10 0 10 2 10 4

Iteration

10 -5

10 0

R
el

at
iv

e
E

rr
or

Proposed
NLS
ALS

(c) Multiplication tensors (2× 3)× (3× 2) and (3× 3)× (3× 3)

Figure 3: (a) The relative errors comparison vs number of iterations of algorithms in Example 1. (b)The probability distribution of
achieving a specific relative error in Example 2. (c) Convergence of algorithms in Example 3.

verges quickly in a dozen of iterations. ALS demands at most 2000 iterations (cycles to update all
factor matrices) to fully explain the data. Our proposed algorithm, competes primarily with ALS,
can reach a similar approximation level in a few hundred iterations. More comparisons are provided
in Figure 3 (a). The proposed algorithm requires less number of iterations (update cycles) than ALS,
in order to obtain accurate solutions.
Example 2 (Tensors with ranks larger than tensor dimensions). In this experiment, 3rd order
random tensors of size 10×10×10 and rank R = 25 are randomly generated. The three algorithms
processed the tensors in less than 5000 iterations. Parameters are initialized by random numbers.
The corresponding comparison results regarding success ratios defined as cumulative distribution
function of the relative errors are reported in Figure 3(b). For this difficult scenario, the proposed
algorithm attains a (nearly) perfect success ratio at the relative approximation error of 10−6, while
ALS succeeds in less than 30% of its runs. Both ALS and NLS get stuck in false local minima with
relative errors greater than 10−2.
Example 3 (Tensors associated with matrix multiplication (2×3)×(3×2) and (3×3)×(3×3)
). In this example, we decomposed multiplication tensors associated with the multiplication of two
matrices. The first tensor is of size 6 × 6 × 4 and rank-11, and the second tensor of size 9 × 9 × 9
and rank-23 Strassen (1969); Tichavský et al. (2017), both contain only zeros and ones, and obey
vec(AB) = Y×1 vec

(
AT

)T ×2 vec
(
BT

)T
for any matrices A and B of the size (2× 3), (3× 2)

for the first tensor, and of size (3× 3), (3× 3) for the second tensor. Finding CPD of these tensors
with minimal rank is related to seeking the fastest multiplication of two matrices.

Comparison of relative errors as a function of iterations for three considered algorithms is provided
in Figure 3 (c). In most runs, ALS does not converge to a good solution even after 5000 iterations.
NLS works well for the first tensor (2×3)×(3×2), but it stops earlier for the second tensor because
the algorithm reaches one of its stopping conditions, the difference between objective function values
and the difference of two consecutive estimates below 10−8. The proposed algorithm can explain
the tensor with a relative error below 10−6 in around 1000 iterations.
Example 4. (Compression of ResNet18 convolutional layers) In this experiment, we employed
the proposed algorithm to the problem of compression of the convolutional layers in the ResNet18
model He et al. (2016). The purpose of this application is to develop a light-weight variant of

8

Published as a conference paper at ICOMP 2024

the original neural networks. We decomposed the weights of each convolutional kernel with various
ranks R = 5, 10, 15, 30. We ran each simulation 10 times, and reported the average results. Resnet18
comprises 4 residual blocks, each block is composed by 4 convolutional layers (and bacthnorm +
activation layers). The sizes of the convolutional weights in different layers can be different, and
take one of the following dimensions (64 × 64 × 3 × 3), (128 × 64 × 3 × 3), (128 × 128 × 3 ×
3), (256× 256× 3× 3), (512× 256× 3× 3) and (512× 512× 3× 3).

The obtained results for all convolutional layers are reported in Figures 4-5 (see the Appendix B).
Besides, we investigated the resistance to perturbation of both algorithms. We perturbed the esti-
mated tensor by noise 0.01 and checked the relative error of the tensor. The results of simulations
including relative error and sensitivity (SS) Tichavský et al. (2019) are presented in Table 1 (see
the Appendix B). As can be seen, the proposed algorithm in most of cases achieves better accu-
racy compared to the ALS. In addition, the proposed algorithm is more resistant to perturbations.
These extensive simulations convinced us that the proposed algorithm can be efficiently utilized for
compressing convolutional layer of deep neural networks.

5 CONCLUSIONS

We have presented a novel algorithm to address the problem of redundancy in the update rules of
ALS-type algorithms, as well as their associated instability issues. Our approach involved updat-
ing two factor matrices simultaneously instead of one, and experimental validation confirmed the
effectiveness of this idea in resolving the aforementioned difficulties. To evaluate the performance
of our proposed algorithm, we conducted experiments using synthetic data tensors and real datasets,
including convolutional weights of ResNet18 layers. The extensive simulation results consistently
demonstrated the superiority of our algorithm over both the ALS and NLS algorithms across vari-
ous scenarios. Finally, we established the global convergence of the sequence of iterates generated
by Algorithm 1, which is used to solve each subproblem, specifically, the linear regressions with
Khatri-Rao structured matrix. However, the potential convergence guarantees for the global algo-
rithm remain unknown. Addressing this uncertainty will be the primary objective of future research,
which will also include the development of accelerated versions of Algorithm 1 that come with
provable convergence guarantees.

ACKNOWLEDGEMENTS

The authors would like to thank Le Thi Khanh Hien for helpful discussions around the convergence
analysis of our proposed algorithms.

This work was partially supported by the joint project Artificial Intelligence for Life (AIfoL) be-
tween the University of Sharjah and the Skolkovo Institute of Science and Technology.

REFERENCES

Hédy Attouch, Jérôme Bolte, Patrick Redont, and Antoine Soubeyran. Proximal alternating mini-
mization and projection methods for nonconvex problems: An approach based on the kurdyka-
Łojasiewicz inequality. Mathematics of Operations Research, 35(2):438 – 457, 2010. doi:
10.1287/moor.1100.0449.

Hedy Attouch, Jérôme Bolte, and Benar Fux Svaiter. Convergence of descent methods for semi-
algebraic and tame problems: proximal algorithms, forward–backward splitting, and regularized
gauss–seidel methods. Mathematical Programming, 137(1):91–129, 2013.

Heinz H. Bauschke and Patrick L. Combettes. Convex Analysis and Monotone Operator Theory in
Hilbert Spaces. Springer Cham, 2017.

Jérôme Bolte, Aris Daniilidis, and Adrian Lewis. The Łojasiewicz inequality for nonsmooth suban-
alytic functions with applications to subgradient dynamical systems. SIAM Journal on Optimiza-
tion, 17(4):1205–1223, 2007. doi: 10.1137/050644641.

R. Bro and C.A. Andersson. Improving the speed of multiway algorithms - Part II: Compression.
Chemometrics and Intelligent Laboratory Systems, 42:105–113, 1998.

9

Published as a conference paper at ICOMP 2024

R. Bro, R. A. Harshman, N. D. Sidiropoulos, and M. E. Lundy. Modeling multi-way data with
linearly dependent loadings. Journal of Chemometrics, 23(7-8):324–340, 2009. ISSN 1099-
128X. doi: 10.1002/cem.1206. URL http://dx.doi.org/10.1002/cem.1206.

J.D. Carroll, S. Pruzansky, and J.B. Kruskal. Candelinc: A general approach to multidimensional
analysis of many-way arrays with linear constraints on parameters. Psychometrika, 45(1):3–24,
1970.

Zev Chonoles. Proof of rank-k matrices forms a closed subset of the space of matrices. Mathematics
Stack Exchange. URL:https://math.stackexchange.com/q/43194 (version: 2011-06-04).

A. Cichocki, R. Zdunek, A.-H. Phan, and S. Amari. Nonnegative Matrix and Tensor Factoriza-
tions: Applications to Exploratory Multi-way Data Analysis and Blind Source Separation. Wiley,
Chichester, 2009.

A. Cichocki, D. P. Mandic, A.-H. Phan, C. Caifa, G. Zhou, Q. Zhao, and L. De Lathauwer. Tensor
decompositions for signal processing applications. from two-way to multiway component analy-
sis. IEEE Signal Processing Magazine, 32(2):145–163, 2015.

P. Comon, X. Luciani, and A. L. F. de Almeida. Tensor decompositions, alternating least squares
and other tales. Journal of Chemometrics, 23, 2009.

André LF de Almeida, Xavier Luciani, Alwin Stegeman, and Pierre Comon. Confac decomposi-
tion approach to blind identification of underdetermined mixtures based on generating function
derivatives. IEEE Transactions on Signal Processing, 60(11):5698–5713, 2012.

Felipe Bottega Diniz. A fast implementation for the canonical polyadic decomposition, 2019. URL
https://arxiv.org/abs/1912.02366.

Eric Evert, Michiel Vandecappelle, and Lieven De Lathauwer. Canonical polyadic decomposition
via the generalized schur decomposition. IEEE Signal Processing Letters, 29:937–941, 2022.

L. Frølich, T. S. Andersen, and M. Mørup. Rigorous optimisation of multilinear discriminant anal-
ysis with Tucker and PARAFAC structures. BMC Bioinformatics, 19, 2018.

R.A. Harshman. Foundations of the PARAFAC procedure: Models and conditions for an explana-
tory multimodal factor analysis. UCLA Working Papers in Phonetics, 16:1–84, 1970.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Frank L Hitchcock. The expression of a tensor or a polyadic as a sum of products. Journal of
Mathematics and Physics, 6(1-4):164–189, 1927.

Khazhgali Kozhasov. On minimality of determinantal varieties. Linear Algebra and its Applications,
626:56–78, 2021. ISSN 0024-3795. doi: https://doi.org/10.1016/j.laa.2021.05.011.

V. Lebedev, Y. Ganin, M. Rakhuba, I. Oseledets, and V. Lempitsky. Speeding-up convolutional
neural networks using fine-tuned CP-decomposition. arXiv preprint arXiv:1412.6553, 2014.

H. Maki, H. Tanaka, S. Sakti, and S. Nakamura. Graph regularized tensor factorization for single-
trial eeg analysis. In 2018 IEEE International Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP), pp. 846–850, 2018. doi: 10.1109/ICASSP.2018.8461897.

Marouane Nazih, Khalid Minaoui, and Pierre Comon. Computation of the regularized canonical
polyadic decomposition of tensors using the accelerated proximal gradient with momentum. hal-
03152014, 2021.

N. Parikh and S.P. Boyd. Proximal algorithms. Foundations and Trends in optimization, 1(3):127–
239, 2014.

A.-H. Phan, P. Tichavský, and A. Cichocki. CANDECOMP/PARAFAC decomposition of high-order
tensors through tensor reshaping. IEEE Transactions on Signal Processing, 61(19):4847–4860,
2013. ISSN 1053-587X. doi: 10.1109/TSP.2013.2269046.

10

http://dx.doi.org/10.1002/cem.1206
https://arxiv.org/abs/1912.02366

Published as a conference paper at ICOMP 2024

A.-H Phan, P. Tichavský, and A. Cichocki. Error preserving correction: A method for CP decompo-
sition at a target error bound. IEEE Transactions on Signal Processing, 67(5):1175–1190, 2019.
doi: 10.1109/TSP.2018.2887192.

A.H. Phan, P. Tichavský, and A. Cichocki. TENSORBOX: MATLAB package for tensor decompo-
sition, released 2020. URL http://www.bsp.brain.riken.jp/˜phan/tensorbox.
php.

Anh-Huy Phan, Petr Tichavský, Konstantin Sobolev, Konstantin Sozykin, Dmitry Ermilov, and An-
drzej Cichocki. Canonical polyadic tensor decomposition with low-rank factor matrices. In
ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 4690–4694. IEEE, 2021.

I. Siaminou and A. P Liavas. An accelerated stochastic gradient for canonical polyadic decomposi-
tion. In 2021 29th European Signal Processing Conference (EUSIPCO), pp. 1785–1789. IEEE,
2021.

L. Sorber, M. Van Barel, and L. De Lathauwer. Optimization-based algorithms for tensor decompo-
sitions: Canonical polyadic decomposition, decomposition in rank-(Lr, Lr, 1) erms, and a new
generalization. SIAM Journal on Optimization, 23(2):695–720, 2013. doi: 10.1137/120868323.
URL https://doi.org/10.1137/120868323.

M. Sørensen, L. De Lathauwer, P. Comon, S. Icart, and L. Deneire. Canonical polyadic decompo-
sition with a columnwise orthonormal factor matrix. SIAM J. Matrix Anal. Appl., 33:1190–1213,
2012.

V. Strassen. Gaussian elimination is not optimal. Numer. Math., 13(4):354–356, August 1969.
ISSN 0029-599X. doi: 10.1007/BF02165411. URL http://dx.doi.org/10.1007/
BF02165411.

P. Tichavský, A.-H. Phan, and A. Cichocki. Numerical CP decomposition of some difficult tensors.
J. Computational and Applied Mathematics, 317:362–370, 2017.

P. Tichavský, A.-H. Phan, and A. Cichocki. Sensitivity in tensor decomposition. IEEE Signal
Processing Letters, 26(11):1653–1657, 2019.

P. Tichavský, A. Phan, and A. Cichocki. Weighted Krylov-Levenberg-Marquardt method for canon-
ical polyadic tensor decomposition. In 2020 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pp. 3917–3921, 2020.

S. Wakabayashi. Remarks on semi-algebraic functions, April 5 2008.

Yu Wang, Wotao Yin, and Jinshan Zeng. Global convergence of ADMM in nonconvex non-
smooth optimization. Journal of Scientific Computing, 78(1):29–63, 2019. doi: 10.1007/
s10915-018-0757-z.

Yangyang Xu and Wotao Yin. A block coordinate descent method for regularized multiconvex
optimization with applications to nonnegative tensor factorization and completion. SIAM Journal
on Imaging Sciences, 6(3):1758–1789, 2013. doi: 10.1137/120887795.

Z. Xu, M. A. T. Figueiredo, and T. Goldstein. Adaptive admm with spectral penalty parameter
selection. In International Conf. on Artificial Intelligence and Statistics - AISTATS, volume N/A,
pp. —, April 2017.

T. Yokota, Q. Zhao, and A. Cichocki. Smooth PARAFAC decomposition for tensor completion.
IEEE Transactions on Signal Processing, 64(20):5423–5436, 2016. doi: 10.1109/TSP.2016.
2586759.

X. Zhang, J. Zou, K. He, and J. Sun. Accelerating very deep convolutional networks for classification
and detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 38(10):1943–
1955, 2016.

11

http://www.bsp.brain.riken.jp/~phan/tensorbox.php
http://www.bsp.brain.riken.jp/~phan/tensorbox.php
https://doi.org/10.1137/120868323
http://dx.doi.org/10.1007/BF02165411
http://dx.doi.org/10.1007/BF02165411

Published as a conference paper at ICOMP 2024

A CONVERGENCE ANALYSIS

We discuss here the convergence of the iterates generated by Algorithm 1 to solve Problem (5) in
the case a fixed value for penalty weight of the augmented Lagrangian function is considered.

Here-under we first present the general formulation of the optimization problem solved by Algo-
rithm 1

min
X,Z

f(Z) + h(X)

s.t. AX+BZ = 0
(15)

which is a non-convex with non-smooth term problem and where f(Z) := 1
2∥Y−ΦZT ∥2F + µ

2 ∥Z∥
2
2

with µ > 0, A = I, B = −I, and h(.) := iD(.) is the indicator function associated to set D =
{X|X = U ⊙V}, which corresponds, as explained in Section 2.2, to the set of matrices such that
each of its column is a vectorized rank-1 matrix, and takes the value 0 if X ∈ D, and∞ otherwise.
Furthermore, we define the augmented Lagrangian function

Lβ(X,Z,W) := ϕ(X,Z) + ⟨W,AX+BZ⟩F +
β

2
∥AX+BZ∥2F (16)

where ⟨C,D⟩F = trace(CTD), W denotes the matrix of dual variables associated to the equality
constraints, and ϕ(X,Z) := f(Z) + iD(X) to ease the notation. Note that by posing T := W

β

(β = 1/γ in (6)), the augmented Lagrangian function can be written in the so-called scaled dual
form as follows

Lβ(X,Z,T) := ϕ(X,Z) +
β

2

(
∥AX+BZ+T∥2F − ∥T∥2F

)
. (17)

The general non-convex ADMM for solving Problem (15) is recalled in Algorithm 3.

Algorithm 3: Nonconvex ADMM for solving Problem (4)

Input: Initial iterates X(0),Z(0),W(0).
Output: X(k),Z(k),W(k)

1 begin
2 while stopping criteria not satisfied do
3 X(k+1) ← argminX Lβ(X,Z(k),W(k))

4 Z(k+1) ← argminZ Lβ(X
(k+1),Z,W(k))

5 W(k+1) ←W(k) + β
(
AX(k+1) +BZ(k+1)

)
6 end while
7 end

It turns out that the convergence of the iterates generated by Algorithm 3 (or equivalently by Al-
gorithm 1) to solve Problem (15) can be analysed using the results of Wang et al. (2019). We first
recall several key assumptions to be satisfied to call the results from Wang et al. (2019). The first
assumption is required to ensure the boundedness of the sequence (X(k),Z(k),W(k)) and relies on
the property of coercivity of the objection function within the feasible set:

A.1 (coercivity) Given the feasible set F := {(X,Z)|AX + BZ = 0}, the objective function
ϕ(X,Z) is called coercive over F if

ϕ(X,Z)→∞ as ∥(X,Z)∥ → ∞ with (X,Z) ∈ F . (18)
The coercivity property guarantees that any continuous function possesses a global minimum, and
equivalently all its level sets are compact. Given that the feasible set F is closed, if F is also
bounded, it is therefore compact. Consequently, for any continuous function ϕ(X,Z), a global min-
imum exists on F , thereby satisfying assumption A.1 trivially. An important benefit of assumption
A.1 is its relative weakness compared to assuming the objective function is coercive across the en-
tire space. Additionally, assumption A.1 can be omitted if the boundedness of the sequence can be
proven through alternative methods.

The two next assumptions concerns the matrices, A, and B, to ensure a reverse control on the
sequence (X(k),Z(k)) based on the sequence (AX(k),BZ(k)), which plays a crucial role in the
convergence results in Wang et al. (2019).

12

Published as a conference paper at ICOMP 2024

A.2 (feasibility) Im(A) ⊆ Im(B), where Im(.) returns the image of a matrix.

A.3 (Lipschitz sub-minimization path) For any fixed X, the problem:

min
Z

ϕ(X,Z) : BZ = U

has a unique minimizer, and H(U) := argminZ ϕ(X,Z) : BZ = U is a Lipschitz continuous map
with constant M̄ .

One can see that assumption A.3 is satisfied when A and B have full column rank1. The two
last assumptions feature the regularity of the terms defining the objective function ϕ(X,Z) :=
f(Z) + h(X).

A.4 (objective-f regularity) f(.) is Lipschitz differentiable with constant Lf , that is the function
f is differentiable and its gradient is Lipschitz continuous with constant Lf .

A.5 (objective-h regularity) h(.) is in the form h(x) := g(x) + h0(x) where:

1. g(x) is Lipschitz differentiable with constant Lg ,

2. either h0(.) is lower semi-continuous.

Here-under we state the main converge result from Wang et al. (2019):
Theorem 2 (Theorem 1, Wang et al. (2019)). Suppose A.1-A.5 hold, then Algorithm 3 converges
subsequently for any sufficient large β, that is, starting from any (X(0),Z(0),W(0)), it generates a
sequence that is bounded, has at least one limit point, and that each limit point (X(∗),Z(∗),W(∗))
is stationary point of Lβ . That is 0 ∈ ∂Lβ(X

(∗),Z(∗),W(∗)), or equivalently:

0 = AX(∗) +BZ(∗)

0 ∈ ∂f(Z(∗)) +BTW(∗)

0 ∈ ∂h(X(∗)) +ATW(∗)

(19)

Moreover, if Lβ is a Kurdyka-Łojasiewicz (KL) function (Attouch et al. (2013); Bolte et al. (2007)),
then (X(k),Z(k),W(k)) converges globally, that is regardless of where the initial point is, to the
unique limit point (X(∗),Z(∗),W(∗)).

Functions that satisfy the KL inequality encompass a variety of types, such as real analytic functions,
semi-algebraic functions, and locally strongly convex functions. For further information and detailed
explanations, please refer to Section 2.2 in Xu & Yin (2013) and the accompanying references.

We now establish some useful lemmas for our main convergence results.
Lemma 1. Let M be the space of all m × n matrices, and C = {X ∈ M|rank(X) ≤ k, k ≤
min(m,n)} the collection of rank-k matrices, C, forms a closed subset of M.

Proof. The proof is provided in Chonoles, however, we recall it for the sake of completeness. Two
scenarios have to be considered:

1. k = min(m,n): then C = M, and then is a closed set.

2. k < min(m,n): we first define the continuous map T : M → Rd with d = Cm
k+1 × Cn

k+1

which sends a matrix to the ordered tuple of its (k + 1)× (k + 1) minors. For each matrix
X ∈ C ⊆ M , these minors are equal to zero 2. Therefore the set C is the preimage of
0 ∈ Rd under the map T . Since Rd is Hausdorff, then {0} is a closed set in Rd. Moreover,
the map T is continuous, therefore, C is a closed set in M.

This concludes the proof.
1Indeed, in that scenario, their null spaces are trivial.
2A matrix is of rank ≤ k, i.e. < k + 1, if and only if all of its (k + 1)× (k + 1) minors are zero.

13

Published as a conference paper at ICOMP 2024

Lemma 2. The function h(.) from Problem (15), that is the indicator function iD(.) associated to
the set D = {X|U⊙V}, is lower semi-continuous (lsc).

Proof. From Section 2.2, recall that D is the set of matrices such that each of its columns is a
vectorized rank-1 matrix and takes the value 0 if X ∈ D, and +∞ otherwise. First, it is obvious that
iD(.) can be reformulated equivalently3 as follows

iD(X) =

n∑
i

iDi
(X(:, i)), 1 ≤ i ≤ n, (20)

where iDi
(.) denote the indicator functions associated to the setsDi which corresponds to the sets of

vectorized rank-1 matrices, which takes also the value 0 if xi ∈ Di, and +∞ otherwise. Therefore,
each indicator function iDi

(xi) is lower-bounded by zero and then is nonnegative. Moreover, each
iDi

(xi) is associated with a closed set using Lemma 1 which holds for k = 1, and so each iDi
(xi)

is lower semicontinuous.

It remains to show that iD(X) is also lower semi-continuous. Recall first the definition of a lsc
function: a function f : Rn → R ∪ {+∞} is lower semi-continuous in x ∈ Rn if

f(x) ≤ lim inf
x′→x

f(x
′
) := sup

ϵ>0
inf

x′∈B(x,ϵ)
f(x

′
).

Suppose f(x) :=
∑n

i fi(xi) with x = [x1; ...;xn], and all fi(xi) lsc at xi and nonnegative, f(x) is
lsc since:

lim inf
x′→x

f(x
′
) = lim inf

x′→x
(

n∑
i

fi(x
′

i))

≥
n∑
i

lim inf
x
′
i→xi

fi(x
′

i)

≥
n∑
i

fi(xi) := f(x)

where the first inequality holds by the property of the limit inferior of a sum of nonnegative func-
tions, and the last inequality by the lsc property of each fi(.), which concludes the proof.

Using the previous results, we come up with the following theorem which establishes the conver-
gence of Algorithm 3 (or equivalently by Algorithm 1) for solving Problem (15) (or equivalently
Problem (5)).

Theorem 3. For a sufficiently large β, the sequence (X(k),Z(k),W(k)) generated by Algorithm 3
(or equivalently by Algorithm 1) applied to Problem (15) converges globally, that is regardless of
where the initial point is, to the unique limit point (X(∗),Z(∗),W(∗)), which is a stationary point of
the augmented Lagrangian function, Lβ , and X(∗) is stationary point of Problem (4).

Proof. In order to prove this theorem, we only need to verify the assumptions A.1-A.5, and that Lβ

is a Kurdyka-Łojasiewicz function.

Recall first that for our particular optimization problem we have A = I, and B = −I, then A.2 is
obvious. Moreover, A.3 holds for both I and −I being full column rank.

Furthermore, recall that ϕ(X,Z) := f(Z) + h(X) where f(Z) := 1
2∥Y −ΦZT ∥2F + µ

2 ∥Z∥
2
F and

h(.) := iD(.). For µ > 0, f(Z) is strongly convex over the entire space, includingD, and then f(Z)
is super-coercive by [Corollary 11.17, Bauschke & Combettes (2017)] and then coercive. Therefore,
A.1 holds for the coercivity of f(Z) over D and the specific form of h(.) = iD(.)

4.

3In the sense that it does not change the optimization problem.
4Indeed, since X = Z, then f(X) + iD(X) → ∞ as ∥X∥ → ∞ for X ∈ D or not, that is for all X.

14

Published as a conference paper at ICOMP 2024

Assumption A.4 can be satisfied by setting g(.) = 0, and h0(.) = iD(.) which is lower semi-
continuous by Lemma 2. Assumption A.5 holds since f(.) is Lipschitz differentiable with constant
Lf = ∥ΦTΦ+ µI∥2.

So far, we get the first guarantee of Theorem 2, that is the sequence (X(k),Z(k),W(k)) generated
by Algorithm 3 has limit points and all of its limit points are stationary points of the augmented
Lagrangian Lβ . The next step consists in showing that Lβ is a Kurdyka-Łojasiewicz (KL) function.
In particular we show it is a semi-algebraic function. According to equation (16), Lβ boils down to
a sum of polynomial functions in (X,Z,W) and an indicator function. First, it is well known that
polynomial functions are semi-algebraic. Secondly, from Attouch et al. (2010), an indicator function
is semi-algebraic if the set with which it is associated is semi-algebraic. The set of rank-1 matri-
ces is semi-algebraic Kozhasov (2021), hence iD(.) is semi-algebraic as well. Finally, by [Lemma
9, Wakabayashi (2008)] or references in Attouch et al. (2010), the finite sum of semi-algebraic
functions is also semi-algebraic, therefore Lβ is semi-algebraic and is a Kurdyka-Łojasiewicz func-
tion. By Theorem 2, the sequence (X(k),Z(k),W(k)) converges globally to the unique limit point
(X(∗),Z(∗),W(∗)).

Finally, based on the Karush–Kuhn–Tucker conditions forLβ given in equation 19, and since A = I,
and B = −I, it is easy to show that X(∗) satisfies −∇f(X(∗)) ∈ ∂h(X(∗)), hence X(∗) is a (first-
order) stationary point of Problem (4). This concludes the proof.

Remark 4. (Sufficiently large β) In Theorem 3, it is assumed that β is sufficiently large. A lower
bound is proposed in [Lemma 9, Wang et al. (2019)]. For our class of problems, the lower bound is
as follows

β > LfM̄
2 + 1 + C

where C := LfM̄λ
−1/2
++ (BTB) and λ++(B

TB) denote the smallest strictly positive eigenvalue of
BTB, which is equal to 1 in our case. Furthermore, one can show that M̄ = ∥I∥, therefore we have

β > ∥ΦTΦ+ µI∥2(∥I∥2 + ∥I∥) + 1. (21)

B SIMULATIONS ON COMPRESSION OF RESNET18 CONVOLUTIONAL
LAYERS

In this section, more details of the simulations for compressing the ResNet18 convolutional layers
are presented. Table 1 reports the relative error (RelError), relative error of the perturbed tensor
(RelErr (perturbed)) and sensitivity (SS) of convolutional layers weights using the tensor ranks 5,
10, 15 and 30 for the proposed algorithm and ALS algorithms. Also, Figure 4 illustrates the norms
of rank-1 tensors of the approximations obtained by the proposed and ALS algorithms for different
convolutional layers weights using tensor ranks 15 and 30. The simulation results demonstrate the
effectiveness of the proposed algorithm in comparison to the ALS algorithm.

15

Published as a conference paper at ICOMP 2024

Figure 4: Illustration of norms of rank-1 tensors in the approximation of the convolutional layers
weights with ranks 30 and rank 15. Plots marked by • represent performance of proposed algorithm
and plots marked by ▲ represent performance of the ALS algorithm.

16

Published as a conference paper at ICOMP 2024

Figure 5: Illustration of norms of rank-1 tensors in the approximation of the convolutional layers
weights with ranks 10 and rank 5. Plots marked by • represent performance of proposed algorithm
and plots marked by ▲ represent performance of the ALS algorithm.

17

Published as a conference paper at ICOMP 2024

Table 1: Relative error (RelError), relative error of the perturbed tensor (RelErr (perturbed)) and
sensitivity (SS) of convolutional layers weights with ranks 5, 10, 15 and 30 for the proposed algo-
rithm and ALS algorithm.

Rank 5 10 15 30

Layer RelError RelErr
(perturbed) SS RelError RelErr

(perturbed) SS RelError RelErr
(perturbed) SS RelError RelErr

(perturbed) SS

layer1.0.conv1 Proposed 0.8043 0.8135 23.1873 0.6537 0.7110 78.2157 0.5301 0.5819 86.6482 0.3321 0.4900 195.0377
ALS 0.7890 0.8321 187.9613 0.6522 0.7519 50.3130 0.5300 5.2579 2860.6073 0.3320 1.9053 487.8066

layer1.1.conv1 Proposed 0.8220 0.8300 25.5930 0.6831 0.7842 152.1266 0.5758 0.9085 376.8849 0.4276 0.8343 509.5671
ALS 0.8220 0.8490 51.2009 0.6791 3.3163 8473.3064 0.6295 16e11 8996.4199 0.4275 1.6544 1321.4498

layer1.0.conv2 Proposed 0.8500 0.8660 37.1706 0.7362 0.7868 80.5953 0.6331 0.6602 63.2832 0.4485 0.7031 335.8023
ALS 0.8519 0.8608 11.9549 0.7238 0.8150 70.6040 0.6331 23.2213 16561.4565 0.4484 3.0046 1806.0375

layer1.1.conv2 Proposed 0.7784 0.9219 163.1573 0.6581 0.6926 68.8397 0.5886 0.7828 245.7213 0.4709 0.6462 279.8689
ALS 0.7783 0.8664 268.4477 0.6581 0.8652 179.2805 0.5884 0.7812 247.3091 0.4670 2.2899 2089.6178

layer2.0.conv1 Proposed 0.8914 0.9010 33.7667 0.8088 0.8356 77.6939 0.7411 0.9207 289.3839 0.5828 1.1448 895.7796
ALS 0.8911 0.9293 222.9128 0.8022 1.0798 384.0700 0.7339 3.9890 12600.1646 0.5827 3.1674 19180.0117

layer2.1.conv1 Proposed 0.9308 0.9328 13.7634 0.8788 0.9362 141.3250 0.8369 1.1574 506.4314 0.7473 1.0406 568.8908
ALS 0.9307 0.9404 51.1332 0.8780 0.9576 278.7394 0.8352 1.0534 704.1226 0.7473 1.1640 1061.7298

layer2.0.conv2 Proposed 0.9475 0.9492 13.0716 0.9034 0.9502 129.0985 0.8625 0.9220 173.7708 0.7604 1.7980 1895.3969
ALS 0.9475 0.9511 16.5216 0.9023 0.9611 157.2415 0.8625 1.0076 373.7361 0.7588 1.7372 5040.8004

layer2.1.conv2 Proposed 0.9333 0.9532 55.4105 0.8885 0.9456 131.3680 0.8482 1.6395 1007.3973 0.7517 1.3535 974.9895
ALS 0.9332 0.9771 81.8726 0.8870 1.6540 1341.6019 0.8481 1.3998 802.7880 0.7516 1.2999 1068.6194

layer3.0.conv1 Proposed 0.9503 0.9532 20.8838 0.9111 0.9595 163.4596 0.8762 0.9689 288.7377 0.7854 1.0478 727.0633
ALS 0.9503 0.9574 31.0362 0.9110 1.0269 531.4882 0.8761 1.0286 523.1347 0.7833 3.4527 42064.7217

layer3.1.conv1 Proposed 0.9709 0.9739 22.2853 0.9519 0.9558 33.3387 0.9335 0.9712 161.4827 0.8833 1.4990 1493.4552
ALS 0.9708 0.9736 18.1283 0.9519 0.9862 143.9417 0.9326 1.3037 1348.2310 0.8831 1.2204 1543.8235

layer3.0.conv2 Proposed 0.9750 0.9785 25.7569 0.9534 0.9643 67.8881 0.9340 1.1922 648.4950 0.8825 1.1494 853.2377
ALS 0.9744 0.9780 35.8819 0.9533 0.9725 164.9044 0.9340 0.9968 405.4532 0.8825 1.5327 5812.9198

layer3.1.conv2 Proposed 0.9492 0.9550 20.5308 0.9119 1.0027 157.2978 0.8747 1.1061 327.0128 0.7880 1.9387 1526.0629
ALS 0.9477 0.9842 39.6916 0.9107 1.3843 231.9508 0.8746 1948.4988 13263.6543 0.7879 160.4089 26159.7021

layer4.0.conv1 Proposed 0.9179 0.9281 19.1490 0.8645 0.9994 128.1193 0.8246 1.7029 612.7527 0.7503 1.0206 289.2258
ALS 0.9178 0.9767 29.5483 0.8645 1.3262 90.6376 0.8241 2.1503 1018.9076 0.7502 57.7314 18427.0366

layer4.1.conv1 Proposed 0.7379 0.7798 8.7457 0.5865 0.8620 36.4655 0.4549 1.9542 174.2448 0.3163 1.2698 129.6146
ALS 0.7378 1.0874 10.3198 0.5795 6.1267 92.5787 0.4523 15.6830 2033.7755 0.3161 6.0951 238.4433

layer4.0.conv2 Proposed 0.8045 0.8441 16.7329 0.6356 0.7256 31.3607 0.5524 1.0111 104.6715 0.4387 1.2306 203.1567
ALS 0.8044 1.3312 18.0358 0.6355 2.9609 41.0731 0.5517 6.4380 160.9665 0.4383 20.2696 11291.1104

layer4.1.conv2 Proposed 0.6899 0.7478 8.8443 0.3969 0.6275 21.8960 0.3403 1.1242 63.0682 0.2464 1.1098 88.7904
ALS 0.6898 3.5661 9.3045 0.3961 22.7436 22.1786 0.3402 17.3921 36.6722 0.2462 37.3849 216.4059

18

	Introduction
	Existing algorithms for computing a CPD
	Contributions and Outline

	Linear Regression with Khatri-Rao structured matrix
	Update of Lg
	Update of Lg
	Adaptive Penalty Parameter Update
	Complexity
	Convergence guarantees

	A Novel algorithm for computing the CPD
	Implementation

	Numerical experiments
	Conclusions
	Convergence analysis
	Simulations on Compression of ResNet18 convolutional layers

