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ABSTRACT

In recent years, text-to-image (T2I) diffusion models have garnered significant
attention for their ability to generate high-quality images reflecting text prompts.
However, their growing popularity has also led to the emergence of backdoor
threats, posing substantial risks. Currently, effective defense strategies against such
threats are lacking due to the diversity of backdoor targets in T2I synthesis. In
this paper, we propose NaviDet, the first general input-level backdoor detection
framework for identifying backdoor inputs across various backdoor targets. Our
approach is based on the new observation that trigger tokens tend to induce sig-
nificant neuron activation variation in the early stage of the diffusion generation
process, a phenomenon we term Early-step Activation Variation. Leveraging this
insight, NaviDet detects malicious samples by analyzing neuron activation varia-
tions caused by input tokens. Extensive experiments demonstrate the effectiveness
and efficiency of NaviDet against various T2I backdoors surpassing the baselines.

1 INTRODUCTION

Text-to-image (T2I) diffusion models (Saharia et al., 2022; Rombach et al., 2022) have achieved
remarkable success, attracting widespread attention. Although training these models is highly
resource-intensive, open-source versions (CompVis, 2024; Runwayml, 2024) allow users to deploy
or fine-tune them at a relatively low cost without pre-training. However, this practice introduces
backdoor threats (Gu et al., 2019): adversaries can inject backdoors into text-to-image diffusion
models (Struppek et al., 2022; Zhai et al., 2023; Chou et al., 2024; Huang et al., 2024; Wang et al.,
2024) and distribute them as clean models. When deployed, these models can be manipulated via
textual triggers in input prompts posing significant risks. Therefore, developing effective backdoor
defenses for T2I synthesis is of critical importance.

For traditional DNNs, considerable efforts have been devoted to defending against backdoor at-
tacks (Wang et al., 2019; Gao et al., 2019; Xiang et al., 2023). Among them, input-level backdoor
detection (Gao et al., 2019; Guo et al., 2023; Hou et al., 2024) is a common approach, which aims
to detect and prevent malicious inputs at test time and can serve as a firewall for deployed models.
Considering the massive number of parameters of T2I models, it is resource-efficient and especially
suitable for third-party model users who are more vulnerable to backdoor threats in T2I synthesis.

However, traditional input-level backdoor detection methods are not well-suited for T2I synthesis due
to the following reasons: ❶ Previous input-level backdoor detection methods (Gao et al., 2019; Chou
et al., 2020; Yang et al., 2021) for classification models rely on the “Trigger Dominance” assumption,
meaning that the trigger plays a decisive role in the model’s prediction. Even if benign features
(e.g., other tokens or image regions) change, the model’s outputs remain largely stable. However,
this assumption does not hold in T2I synthesis due to the diverse targets. For example, backdoor
attackers may aim to modify only a specific patch of the generated images (Zhai et al., 2023) or
tamper with objects (Wang et al., 2024) or styles (Struppek et al., 2022). When benign input features
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Figure 1: We compute the NC variation (Pei et al., 2017) (refer to 2.1) as a rough representation
of the models’ neural state variation for different kinds of tokens at each generation step in four
mainstream T2I backdoored models: RickBKD (Struppek et al., 2022), VillanBKD (Chou et al.,
2024), BadT2I (Zhai et al., 2023) and EvilEdit (Wang et al., 2024).

are modified, the generated image may change elements other than the backdoor target, even if
the input contains a trigger. ❷ Text-to-image generation is computationally expensive. Traditional
backdoor detection methods (Gao et al., 2019; Yang et al., 2021; Guo et al., 2023) rely on diversifying
input and analyzing multiple output samples, resulting in a substantial overhead in the context of
T2I synthesis. To our knowledge, only two existing works (Wang et al., 2025; Guan et al., 2024)
focus on backdoor detection in T2I synthesis. However, both works rely on the Trigger Dominance
assumption, limiting their effectiveness (Sec. 3.2).

In this paper, we first identify the Early-step Activation Variation phenomenon in backdoored
models, where tokens associated with backdoor triggers induce greater neuron activation variation at
the initial generating steps (Fig. 1). We then propose an input-level backdoor Detection framework
based on Neuron activation variation (NaviDet), which evaluates each input token’s impact on neuron
activation and detects malicious samples by identifying inputs that contain tokens exhibiting outlier
activation variation. Compared to baselines, NaviDet offers two significant advantages: ❶ NaviDet
can defend against a wider range of backdoors (Tab. 1). ❷ NaviDet achieves higher efficiency since
it only calculates the activation of the initial generation step (Tab. 4).

2 NaviDet

2.1 EARLY-STEP ACTIVATION VARIATION

Utilizing the classical software testing method–Neuron Coverage (NC) (Pei et al., 2017), which
measures the proportion of neuron outputs exceeding a threshold in a model. We use NC value to
roughly assess model state variation when masking tokens to access its impact. Specifically, we (1)
Mask the trigger token in a malicious sample (if the trigger consists of multiple tokens (Chou et al.,
2024; Wang et al., 2024), mask one of them); (2) Randomly mask a normal token in a malicious
sample; (3) Randomly mask a token in a benign sample. We then calculate the difference of NC
values before and after masking at each iteration step.

In Fig. 1, backdoor triggers (red line) exhibit significantly higher activation variation compared to
other tokens (green and blue lines). When masking normal tokens in malicious samples (blue line)
from RickBKD and VillanBKD (Struppek et al., 2022; Chou et al., 2024), activation variation is
minimal, suggesting benign perturbations do not impact intermediate states, aligning with the Trigger
Dominance assumptions of existing backdoor detection methods (Wang et al., 2025; Guan et al.,
2024). However, for BadT2I (Zhai et al., 2023) and EvilEdit (Wang et al., 2024), activation changes
occur when masking normal tokens in malicious samples, invalidating the Trigger Dominance
assumption, which explains why existing methods fail on BadT2I and EvilEdit (Tab. 1). Additionally,
we observe that the variation of trigger tokens (red line) appears more prominent in initial steps in
Fig. 1, a phenomenon we term Early-step Activation Variation. Hence, we directly use the first
iteration step to obtain model activation for the following two reasons: ❶ It is sufficient to access
the input’s impact since earlier steps have greater impact; ❷ Obtaining the activation of later steps
requires iterative computation while using only first step significantly reduces time-cost.

2.2 CALCULATING NEURON ACTIVATION VARIATION

In Sec. 2.1, we observe the activation difference between trigger tokens and others at the average
scale utilizing NC (Pei et al., 2017)1. To further refine this measurement, we design a layer-wise
method to more precisely calculate the neuron activation variation of tokens. The T2I model θ is

1Note that NC cannot be directly used to detect backdoored samples, as it is a coarse-grained metric.
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Figure 2: The illustration of NaviDet pipeline. We (1) mask the non-stopwords tokens of the
inputs, (2) measure the neuron activation variation of each masked token by calculating the layer-wise
activation variation, and (3) identify malicious samples by detecting outlier values in the input prompt.

approximately formalized as an L-layer neural network: Fθ “ f pLq ˝ f pL´1q ˝ ¨ ¨ ¨ ˝ f p1q. Given an
textual input c, the output value of the ℓ-th layer is: Apℓqpcq “ f pℓq ˝ f pℓ´1q ˝ ¨ ¨ ¨ ˝ f p1qpcq. We define
the neuron activation variation of the ℓ-th layer for two inputs c and c1 as δpℓq pc, c1q. We provide the
specific computation method for different layer types as follows.

Activation variation for Linear layers. Suppose f pℓq P Llinear and Apℓqpcq P RNℓˆdℓ , define:

δpℓq
`

c, c1
˘

“
1

Nℓ dℓ

›

›

›
Apℓqpcq ´ Apℓqpc1q

›

›

›

1
, f pℓq P Llinear. (1)

Activation variation for Conventional layers. Suppose f pℓq P Lconv and let Apℓqpcq P RDℓˆHℓˆWℓ .
We first average over the spatial dimensions Hℓ ˆ Wℓ to reduce the outputs to a vector in RDℓ . For
each channel d P t1, ..., Dℓu, define:

a
pℓq

d pcq “
1

Hl Wl

Hl
ÿ

h“1

Wl
ÿ

w“1

A
pℓq

d,h,wpcq.
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2 pcq, . . . , a
pℓq

Dl
pcq

‰J
. We

then obtain δpℓq pc, c1q by computing the difference between A
pℓq

pcq and A
pℓq

pc1q using the standard
vector 1-norm, and normalizing by the channel dimension Dℓ:

δpℓq
`
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›

›
A

pℓq
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1
, f pℓq P Lconv. (2)

Finally, we define the overall activation variation as δθ pc, c1q “
ř

ℓPLset
δpℓq pc, c1q , where Lset

denotes the model layers set.

2.3 INPUT DETECTION

In this section, we detail the detection strategy (Fig. 2) utilizing neuron activation variation. Let
c “ pTok1,Tok2,Tok3, ...TokLenq be the original input token sequence of length Len containing K
tokens of non-stopwords (usually Len ą K ). For each non-stopword token position k P 1, 2, ...,K,
we create a masked sequence ck “ pTok1, ...,ă pad ą, ...,TokLenq , where only the k-th token in c
is replaced by the ă pad ą token. We define a difference measure between two text sequences c and
c1 by the Euclidean distance of text embeddings as Dpc, c1q “

›

›T pcq ´ T pc1q
›

›

2
.

We form a feature vector for input sample c: V “
`

V1, V2, . . . , VK

˘

of length K, where each
component is calculated by:

Vk “
δθ

`

c, ck
˘

D
`

c, ck
˘ . (3)

Intuitively, Vk measures how much neuron activation changes relative to the semantic shift caused by
the masked k-th token. We design a scoring function Spcq to determine whether the feature vector V
is likely from a malicious sample. The score function is defined as the maximum component in V
divided by the mean of other elements for scaling:

Spcq “
maxpV q

meanpV 1
q
, (4)

where V
1

“ V z tVk | Vk ě Q0.75pV qu. And Q0.75pV q represents the 75th percentile, which is
used here for excluding outliers. Finally, we determine whether the input sample c is a malicious
sample: Dpcq “ 1 rSpcq ą τ s , where τ denotes a tunable decision threshold.
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Table 1: The performance (AUROC) against the mainstream T2I backdoor attacks on MS-COCO.
We mark the best results in bold and the second-best results in blue for comparison.
Method RickBKDTPA RickBKDTAA BadT2ITok BadT2ISent VillanBKDone VillanBKDmul PersonalBKD EvilEdit Avg. Iter./Sample

T2IShieldFTT 95.4 50.3 51.2 48.7 84.8 85.0 63.0 51.2 66.2 50
T2IShieldCDA 94.1 80.2 62.1 70.7 92.6 98.0 68.5 57.8 78.0 50
UFID 72.9 69.1 47.6 62.4 95.7 99.9 64.0 42.7 69.3 200
NaviDet 99.9 99.8 97.0 89.7 98.9 99.9 99.8 85.5 96.3 «7

3 EXPERIMENTS

3.1 SETUPS

We broadly consider diverse existing backdoors in T2I synthesis (Struppek et al., 2022; Zhai et al.,
2023; Chou et al., 2024; Huang et al., 2024; Wang et al., 2024), and existing detection methods as
baselines (Wang et al., 2025; Guan et al., 2024). We conduct experiments on Stable Diffusion v1-
4 (CompVis, 2024) with the MS-COCO dataset (Lin et al., 2014). We calculate the AUROC (Fawcett,
2006) value for evaluating effectiveness, and we use diffusion iterations to roughly evaluate the
detection efficiency. More details are provided in Appendix A.

3.2 EVALUATION

For effectiveness evaluation, NaviDet achieves promising performance across all types of backdoor
attacks (Tab. 1). In contrast, the baseline methods are only effective against RickBKDTPA (Struppek
et al., 2022) and two kinds of VillanBKD (Chou et al., 2024) backdoor attacks. This is because the
rationale behind previous studies relies on the Trigger Dominance assumption, which only holds
when the backdoor target in T2I models is to alter the entire image. Other types of backdoor attacks,
such as RickBKDTAA (Struppek et al., 2022) (which modifies the style), BadT2I (Zhai et al., 2023)
(which alters part of the image), and EvilEdit (Wang et al., 2024) and PersonalBKD (Huang et al.,
2024) (which change specific objects), do not satisfy this assumption. This causes T2IShield (Wang
et al., 2025) and UFID (Guan et al., 2024) to degrade to near-random guessing. We additionally
consider potential adaptive attacks in Appendix B.

For efficiency evaluation, we calculate the diffusion iterations required to process a single input
sample, estimating the detection overhead. NaviDet averages 7 iterations, given that MS-COCO
samples contain an average of 6 non-stopword tokens. This results in our method requiring only 14%
iterations of T2IShield (Wang et al., 2025) and 3.5% of UFID (Guan et al., 2024) as shown in Tab. 1.
More evaluation details and the empirical validation are provided in Appendix C.

4 CONCLUSION

In this paper, we identify the Early-step Activation Variation phenomenon and then propose
NaviDet, an input-level backdoor detection by calculating the neuron activation variation of input
tokens at the first step of the T2I generation process. Experiments show that Navidet significantly
outperforms the baseline in both effectiveness and efficiency.
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A DETAILS OF EXPERIMENTAL SETUP

Attack Methods. We broadly consider diverse existing backdoors in T2I synthesis: ❶ Target Prompt
Attack (RickBKDTPA) and Target Attribute Attack (RickBKDTAA) in Rickrolling (Struppek et al.,
2022). ❷ BadT2I-Pixel (Zhai et al., 2023) with the one-token trigger “zu200b” (BadT2ITok) and the
sentence trigger “I like this photo.” (BadT2ISent). ❸ Villan (Chou et al., 2024) with the one-token
trigger “kitty” (VillanBKDone) and the two-token trigger “mignneko” (VillanBKDmul). ❹ Personal
Backdoor (PersonalBKD) (Huang et al., 2024) that generates a Chow Chow when given the trigger
“* car”. ❺ EvilEdit (Wang et al., 2024) with the trigger “beautiful cat”. Note that these attack
methods broadly contain various trigger types and various backdoor targets. For RickBKDTPA

2,
BadT2ITok

3, VillanBKDone
Footnote 2, and VillanBKDmul

Footnote 2, we directly use the publicly available
model parameters. For RickBKDTAA

4, BadT2ISent
5, EvilEdit6, and PersonalBKD7, we first train the

backdoored models based on the experimental settings and open-source code from their papers, and
then evaluate the performance of detection methods. We provide the details of the backdoor methods
used in the experiment, including the trigger types and backdoor target types in Tab. 2.

Baselines. We consider the only two existing backdoor detection works under the same settings
as baselines: (1) T2ISheildFTT and T2ISheildCDA (Wang et al., 2025) and (2) UFID (Guan et al.,
2024).

Datasets and Models. To ensure the fairness of the evaluation, we standardize the use of the MS-
COCO dataset (Lin et al., 2014): (1) For backdoor attacks such as RickBKD (Struppek et al., 2022),
BadT2I-Pixel (Zhai et al., 2023), and VillanBKD (Chou et al., 2024) that do not target specific input
texts, we sample 1,000 MS-COCO val texts randomly and inject triggers into half of them. (2) For
EvilEdit (Wang et al., 2024) and PersonalBKD (Huang et al., 2024), which targets specific objects
in the text, we sample 1,000 texts containing “cat”/“car” and insert the trigger (such as replacing
“cat” with “beautiful cat”) in 500 samples to perform attack. Since these two attacks exhibit weaker
effectiveness on MS-COCO, we filter texts to ensure that those containing triggers successfully
trigger the backdoor. We conduct main experiments on Stable Diffusion v1-4 (CompVis, 2024), as it
is widely used in existing backdoor attacks/defense (Struppek et al., 2022; Zhai et al., 2023; Wang
et al., 2025; Guan et al., 2024).

Table 2: The backdoor attacks used in this paper.Note that only backdoor attacks with the target type
“Entire image” align with the Trigger Dominance assumption. For other backdoor attacks, where the
Trigger Dominance assumption does not hold, existing backdoor detection methods (Wang et al.,
2025; Guan et al., 2024) have only a very limited effect (refer to Tab. 1).

Backdoor Attacks Trigger Trigger Type Backdoor Target Backdoor Target Type

RickBKDTPA o(U+0B66) multi-token An image depicting “A whale leaps out of the water” Entire Image
RickBKDTAA O(U+0B20) one-token Converting the image style to a “Rembrandt painting”. Image Style
BadT2ITok zu200b one-token An image patch Partial Image
BadT2ISent “I like this photo.” sentence An image patch Partial Image
VillanBKDone “kitty” one-token An image of “hacker” Entire Image
VillanBKDmul “mignneko” multi-token An image of “hacker” Entire Image
EvilEdit “beautiful cat” combined token Convert “cat” to “zebra” Object
PersonalBKD “* car” combined token Convert “cat” to “chow chow” Object

B ANALYSES OF POTENTIAL ADAPTIVE ATTACKS

In this part, we explore the existence of potential adaptive attacks. Given that NaviDet detects
malicious samples by masking tokens in the input, possible adaptive attacks can be categorized into
two strategies: ❶ The attacker attempts to design a multiple-token trigger, hoping that no single token

2https://drive.google.com/file/d/1WEGJwhSWwST5jM-Cal6Z67Fc4JQKZKFb/view.
3https://huggingface.co/zsf/BadT2I_PixBackdoor_boya_u200b_2k_bsz16.
4https://github.com/LukasStruppek/Rickrolling-the-Artist.
5https://github.com/zhaisf/BadT2I.
6https://github.com/haowang02/EvilEdit.
7https://github.com/huggingface/notebooks/blob/main/diffusers/sd_

textual_inversion_training.ipynb.
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Table 3: Evaluation of potential adaptive attacks. We construct different types of backdoor triggers
based on BadT2I (Zhai et al., 2023). Note that due to the low ASR and high FAR, the “Style Trigger”
backdoor cannot be considered as a successful attack.

Backdoor Evaluation Defense Evaluation

ASR Ò FAR Ó AUROC Ò

One-token Trigger 97.8 0 97.0
Sentence Trigger 100 7.0 89.7
Style Trigger 28.5 16.3 –

Table 4: Time cost analysis of different methods. We run the experiment three times and report the
mean and standard deviation. Best results are marked in bold.

Iter./Sample Time-cost (in seconds) / Sample

T2IShieldFTT 50 7.445 ˘ 0.045
T2IShieldCDA 50 7.467 ˘ 0.045
UFID 200 33.041 ˘ 0.783
NaviDet «7 1.242 ˘ 0.003

introduces significant variation. ❷ The attacker attempts to inject an implicit trigger into the diffusion
model.

For the first strategy, we have evaluated two-token triggers (VillanBKDmul) and sentence triggers
(BadT2ISent) in Tab. 1, where our method remains effective. We believe its success is due to
the following reasons: (1) Even when a trigger consists of multiple tokens, its influence remains
concentrated; (2) To maintain stealthiness and preserve model utility on benign samples, backdoor
attacks typically require all trigger tokens to co-occur when triggering the backdoor (Wang et al.,
2024), which inherently supports the effectiveness of our method.

For the second strategy, we consider two classic implicit triggers of NLP tasks: syntax-based triggers
(SynBKD) (Qi et al., 2021b) and style-based triggers (StyleBKD) (Qi et al., 2021a). Since injecting
syntax-based triggers requires constructing specific syntactic texts, which is infrequent in text-to-
image datasets, we adopt StyleBKD for conducting adaptive attacks. Following the StyleBKD
framework (Qi et al., 2021b), we use STRAP (Krishna et al., 2020) to generate Bible-style text and
inject backdoors into the diffusion process utilizing BadT2I (Zhai et al., 2023) pipeline.

In Tab. 3, we compare three methods: BadT2ITok, BadT2ISent, and StyleBKD on T2I models. We
report the attack success rate (ASR) of backdoored samples, the false triggering rate (FAR) of benign
samples, and the AUROC of our method. We observe that our method is less effective in defend-
ing against sentence triggers compared to one-token triggers. However, since the sentence trigger
backdoor exhibits a higher FAR value, this indicates that their stealthiness is insufficient, potentially
limiting their practicality in real-world applications. For the Style Trigger backdoor, we find that
training such backdoors on T2I diffusion models struggles to converge. Even after sufficient training
steps, it only achieves an ASR of 28.5% while exhibiting an FAR of 16.3% on benign samples, signif-
icantly degrading the model’s utility. Given that no prior work has explored injecting implicit triggers
into the diffusion process, we hypothesize that the U-shaped network (Ronneberger et al., 2015) in
T2I models integrates textual semantics through simple cross-attention mechanisms (Rombach et al.,
2022), making it less capable of capturing such textual features. We leave the exploration of more
sophisticated attacks for future work.

C MORE EFFICIENCY EVALUATION

In this part, we detail the evaluation of the computational overhead of different methods through
theoretical and empirical analysis. Let Ω denote the time cost of processing one sample. For the
T2I synthesis, the overhead mainly comes from three components: the text encoder T converting
text into embeddings, the UNet denoising process, and the VAE decoding latent embeddings into
physical images. We denote these as Tte, TU , and Tdec, respectively. We set the number of diffusion
generation steps uniformly to 50. T2IShieldFTT (Wang et al., 2025) requires computing the attention
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map throughout the iterative process for each sample. Hence, its time-cost is:

Ω pT2IShieldFTTq “ Tte ` 50TU . (5)

Considering T2IShieldCDA (Wang et al., 2025) additionally introduces covariance discriminative
analysis, we denote its time-cost as TCovM. So we have:

Ω pT2IShieldCDAq “ Tte ` 50TU ` TCovM. (6)

The pipeline of UFID (Guan et al., 2024) requires generating four images per sample, extracting
features, and performing Graph Density Calculation. Ignoring the time overhead of the feature
extraction, its time-cost can be approximated as:

Ω pUFIDq “ 4Tte ` 200TU ` 4Tdec ` TGDC , (7)

where TGDC denotes the computational time for the graph density calculating. Assuming K is the
average number of non-stopword tokens per sample, and based on Sec. 2.3, the average time-cost of
NaviDet is:

Ω pNaviDetq “ pK ` 1q ˆ Tte ` pK ` 1q ˆ TU . (8)
Since the parameter size of the UNet is much larger than that of the text encoder, the computational
overhead ratio among methods is mainly determined by the coefficient of TU , i.e., the diffusion
iterations, which we report in Tab. 4. For the MS-COCO dataset, each sample contains an average of
6 non-stopword tokens, i.e., K « 6. Given that T2I models like Stable Diffusion (Rombach et al.,
2022) have an input limit of 77 tokens, the worst-case computational overhead of our method is
comparable to generating a single image8.

For empirical validation, we conduct various detection methods on RTX 3090 GPU for 100 samples
with a uniform batch size of 1, and calculate the average processing time per sample in Tab. 4.
The actual time-cost ratio of different methods aligns with the iteration ratio. Our method shows
excellent efficiency, with only 16.7% time cost of T2IShield (Wang et al., 2025) and 3.8% time cost
of UFID (Guan et al., 2024).

8Such long inputs consisting solely of non-stopwords are unrealistic in real-world scenarios.
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