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Abstract

Graph neural networks (GNNs) have shown superiority in many prediction tasks
over graphs due to their impressive capability of capturing nonlinear relations in
graph-structured data. However, for node classification tasks, often, only marginal
improvement of GNNs over their linear counterparts has been observed. Previous
works provide very few understandings of this phenomenon. In this work, we
resort to Bayesian learning to deeply investigate the functions of non-linearity in
GNNs for node classification tasks. Given a graph generated from the statistical
model CSBM, we observe that the max-a-posterior estimation of a node label
given its own and neighbors’ attributes consists of two types of non-linearity, a
possibly non-linear transformation of node attributes and a ReLU-activated feature
aggregation from neighbors. The latter surprisingly matches the type of non-
linearity used in many GNN models. By further imposing a Gaussian assumption
on node attributes, we prove that the superiority of those ReLU activations is
only significant when the node attributes are far more informative than the graph
structure, which nicely matches many previous empirical observations. A similar
argument can be achieved when there is a distribution shift of node attributes
between the training and testing datasets. Finally, we verify our theory on both
synthetic and real-world networks. Our code is available at https://github.
com/Graph-COM/Bayesian_inference_based_GNN.git.

1 Introduction

Learning on graphs (LoG) has been widely used in the applications with graph-structured data [1, 2].
Node classification, as one of the most crucial tasks in LoG, asks to predict the labels of nodes in
a graph, which has been used in many applications such as community detection [3–6], anomaly
detection [7, 8], biological pathway analysis [9, 10] and so on.

Recently, graph neural networks (GNNs) have become the de-facto standard used in many LoG tasks
due to their super empirical performance [11, 12]. Researchers often attribute such success to non-
linearity in GNNs which associates them with great expressive power [13,14]. GNNs can approximate
a wide range of functions defined over graphs [15–17] and thus excel in predicting, e.g., the free
energies of molecules [18], which are by nature non-linear solutions of some quantum-mechanical
equations. However, for node classification tasks, many studies have shown that non-linearity to
control the exchange of features among neighbors seems not that crucial. For example, many works
use linear propagation of node attributes over graphs [19, 20], and others recommend adding non-
linearity while only to the transformation of initial node attributes [21–23]. Both cases achieve
comparable or even better performance than other models with complex nonlinear propagation, such
as using neighbor-attention mechanism [24]. Recently, even in the complicated heterophilic setting
where nodes with same labels are not directly connected, linear propagation still achieves competitive
performance [25, 26], compared with the models with nonlinear and deep architectures [27, 28].
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Figure 1: Averaged one-vs-all Classification Accuracy on Citation Networks of Nonlinear Models v.s.
Linear Models. Node attributes in or out of the one class are generated from Gaussian distributions
N (µ, Im ) and N (ν, Im ), µ, ν ∈ Rm, respectively. The detailed settings are introduced in Sec. 5.3.

Although empirical studies on GNNs are extensive till now and many practical observations as
above have been made, there have been very few works attempting to characterize GNNs in theory,
especially to understand the effect of non-linearity by comparing with the linear counterparts for
node classification tasks. The only work on this topic to the best of our knowledge still focuses
on comparing the expressive power of the two methods to distinguish nodes with different local
structures [29]. However, the achieved statement that non-linear propagation improves expressiveness
may not necessarily reveal the above phenomenon that non-linear and linear methods have close
empirical performance while with subtle difference. Moreover, more expressiveness is often at the
cost of model generalization and thus may not necessarily yield more accurate prediction [30, 31].

In this work, we expect to give a more precise characterization of the values of non-linearity in
GNNs from a statistical perspective, based on Bayesian inference specifically. We resort to contextual
stochastic block models (CSBM) [32, 33]. We make a significant observation that given a graph
generated by CSBM, the max-a-posterior (MAP) estimation of a node label given its own and
neighbors’ features surprisingly corresponds to a graph convolution layer with ReLU as the activation
combined with an initial node-attribute transformation. Such a transformation of node attributes is
generally nonlinear unless they are generated from the natural exponential family [34]. Since the
MAP estimator is known to be Bayesian optimal [35], the above observation means that ReLU-based
propagation has the potential to outperform linear propagation. To precisely characterize such benefit,
we further assume that the node attributes are generated from a label-conditioned Gaussian model,
and analyze and compare the node mis-classification errors of linear and nonlinear models. We have
achieved the following conclusions (note that we only provide informal statements here and the
formal statements are left in the theorems).

• When the node attributes are less informative compared to the structural information, non-linear
propagation and linear propagation have almost the same mis-classification error (case I in Thm. 2).

• When the node attributes are more informative, non-linear propagation shows advantages. The
mis-classification error of non-linear propagation can be significantly smaller than that of linear
propagation with sufficiently informative node attributes (case II in Thm. 2).

• When there is a distribution shift of the node attributes between the training and testing datasets,
non-linearity provides better transferability in the regime of informative node attributes (Thm. 3).

Given that practical node attributes are often not that informative, the advantages of non-linear
propagation over linear propagation for node classification is limited albeit observable. Our analysis
and conclusion apply to both homophilic and heterophilic settings, i.e., when nodes with same labels
tend to be connected (homophily) or disconnected (heterophily), respectively [25, 27, 28, 36, 37].

Extensive evaluation on both synthetic and real datasets demonstrates our theory. Specifically, the
node mis-classification errors of three citation networks with different levels of attributed information
(Gaussian attributes) are shown in Fig. 1, which precisely matches the above conclusions.

1.1 More Related Works

GNNs have achieved great empirical success while theoretical understanding of GNNs, their non-
linearity in particular, is still limited. There are many works studying the expressive power of
GNNs [16,38–48], while they often assume arbitrarily complex non-linearity with limited quantitative
results. Only a few works provide characterizations on the needed width or depth of GNN layers [45–
48]. More quantitative arguments on GNN analysis often depend on linear or Lipschitz continuous
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assumptions to enable graph spectral analysis, such as feature oversmoothing [49, 50] and over-
squashing [51, 52], the failure to process heterophilic graphs [25, 27, 53] and the limited spectral
representation [54, 55]. Some works also study the generalization bounds [56–58] and the stability
of GNNs [59–62]. However, the obtained results may not reveal a direct comparison between non-
linearity and linearity of the model, and their analytic techniques avoid tackling the specific forms of
non-linear activations by using a Lipschitz continuous bound which is too loose in our case.

Stochastic block models (SBM) and its contextual counterparts have been widely used to study the
node classification problems [32, 33, 63–67], while these studies focus on the fundamental limits.
Recently, (C)SBM and its large-graph limitation also have been used to study the transferrability
and expressive power of GNN models [68–70] and GNNs on line graphs [5], while these works did
not compare non-linear and linear propagation. CSBM has also been used to show the advantage of
linear convolution over no convolution for node classification [71]. A very recent result shows that
attention-based propagation [24] may be much worse than linear propagation given low-quality node
attributes under CSBM [72]. Our results imply that ReLU is the de facto optimal non-linearity instead
of attention and may at most marginally outperform the linear model when with low-quality node
attributes. Some previous works also use Bayesian inference to inspire GNN architectures [73–80],
while these works focus on empirical evaluation instead of theoretical analysis.

2 Preliminaries

In this section, we introduce preliminaries and notations for our later discussion.

Maximum-a-posteriori (MAP) estimation. Suppose there are a set of finite classes C. A class label
Y ∈ C is generated with probability πY , where

∑
Y ∈C πY = 1. Given Y , the corresponding feature

X in the space X is generated from the distributionX ∼ PY . A classifier is a decision f : X → C and
the Bayesian mis-classification error can be characterized as ξ(f) =

∑
Y ∈C πY

∫
1f(X )̸=Y PY (X),

where and later 1S indicates 1 if S is true and 0 otherwise. The MAP estimation of Y given X is
the classifier f∗(X) ≜ argmaxY ∈C πY PY (X) that can minimize ξ(f) [35]. Later, we denote the
minimal Bayesian mis-classification error ξ(f) as ξ∗ = ξ(f∗).

Signal-to-Noise Ratio (SNR). Detection of a signal from the background essentially corresponds to
a binary classification problem. SNR is widely used to measure the potential detection performance
before specifying the classifier [81]. In particular, if we have two equiprobable classes C = {−1, 1}
and the features follows 1-d Gaussian distributions PY = N (µY , σ

2), Y ∈ C. The SNR ρ defined as
follows precisely characterizes the minimal Bayesian mis-classification error.

SNR: ρ =
mean difference2

variance
=

(µ1 − µ−1)
2

σ2
. (1)

In this case, the MAP estimation f∗(X) = 2 ∗ 1|X−µ1|≥|X−µ−1| − 1 and the minimal Bayesian
mis-classification error is Φ(−√

ρ/2) where Φ denotes the cumulative standard Gaussian distribution
function. For more general cases where the two classes are associated with sub-Guassian distribu-
tions PY , s.t. PY (|X| > t) ∈ [c1 exp(−c2t2), C1 exp(−C2t

2)], for some non-negative constants
c1, c2, C1, C2, a similar connection between ξ∗ and ρ can be shown by leveraging sharp sub-Gaussian
lower bounds [82]. We will specify the connection to SNR in our case in Sec. 4 and the SNR ρ will
be used as the main bridge to compare the mis-classification errors of non-linear v.s. linear models.

Contextual Stochastic Block Model (CSBM). Random graph models have been widely used to
study the performance of algorithms on graphs [83, 84]. For node classification problems, CSBM is
often used [68–70], as it well combines the models of network structure and node attributes.
We study the case that nodes are in two equi-probable classes C = {−1, 1}, where πY = 1

2 , Y ∈ C.
Our analysis can be generalized. An attributed network G = (V, E ,X) is sampled from CSBM with
parameters (n, p, q,P1,P−1) as follows. Suppose there are n nodes, V = [n]. For each node v, the
label Yv ∈ C is sampled from Rademacher distribution. Given Yv, the node attribute Xv is sampled
from PYv

. For two nodes u, v, if Yu = Yv , there is an edge euv ∈ E connecting them with probability
p. If Yu ̸= Yv, there is an edge euv ∈ E connecting them with probability q. All node attributes X
and edges E are independent given the node labels Y = {Yv|v ∈ V}.

Note that p > q indicates the nodes with the same labels tend to be directly connected, which
corresponds to the homophilic case, while p < q corresponds to the heterophilic case.

3



The gap |p − q|, representing probabilities difference of a node connects to nodes from the same
class or the different class, reflects structural information and the gap between P1, P−1 reflects
attributed information, e.g., Jensen-Shannon distance JS(P1,P−1) that is well connected to Bayesian
mis-classification error [85]. Graph learning allows combining these two types of information. In
Sec. 4, we give more specific definitions of these two types of information and their regime for our
analysis.

3 Bayesian Inference and Nonlinearity in Graph Neural Networks

In the previous section, we discuss that given conditioned feature distributions X ∼ PY , Y ∈ C, the
MAP estimation f∗(X) can minimize mis-classification error. For node classification in an attributed
network, the estimation of a node label should depend on not only one’s own attributes but also
its neighbors’. For example, in a homophilic network, nodes with same labels tend to be directly
connected. Intuitively, using the averaged neighbor attributes may provide better estimation of the
label, which gives us graph convolution. In a heterophilic network, nodes with different labels tend
to be directed connected. So, intuitively, checking the difference between one’s attributes and the
neighbors’ may provide better estimation. However, what could be the optimal form to combine
one’s own attribute with the neighbors’ attributes? We resort to the MAP estimation. That is, given
the attributes of a node v ∈ V and its neighbors Nv , we consider the MAP estimation as follows.

f∗(Xv, {Xu}u∈Nv ) = argmax
Yv∈C

max
Yu∈C,∀u∈Nv

πYv,{Yu}u∈Nv
P (Xv, {Xu}u∈Nv ,Nv|Yv, {Yu}u∈Nv ) ,

where πYv,{Yu}u∈Nv
denotes their prior distributions of node labels. Note that here we simplify the

problem and consider only 1-hop neighbors by following the setting [71]. In practice, most GNN
models can only work on local networks due to the scalability constraints [11, 86, 87]. Even with the
above simplification, the above MAP estimation is generally intractable.

Therefore, we consider the CSBM with parameters (n, p, q,P1,P−1). In this case, the prior distribu-
tion follows πYv,{Yu}u∈Nv

= 2−|Nv|−1, which is a constant given Nv . The rest term follows

P (Xv, {Xu}u∈Nv ,Nv|Yv, {Yu}u∈Nv ) = P (Xv, {Xu}u∈Nv |Yv, {Yu}u∈Nv )P (Nv|Yv, {Yu}u∈Nv )

=
∏

u∈Nv∪{v}

PYu
(Xu)

∏
u∈Nv

p(1+YvYu)/2q(1−YvYu)/2 (2)

Therefore, the MAP estimation f∗(Xv, {Xu}u∈Nv
) is to solve

f∗(Xv, {Xu}u∈Nv
) = argmax

Yv∈C
PYv

(Xv)
∏
u∈Nv

max
Yu∈C

PYu
(Xu) p

(1+YvYu)/2q(1−YvYu)/2 (3)

This can be solved via the max-product algorithm [88]. To establish the connection to GNNs, we
rewrite the RHS of Eq. 3 in the logarithmic form and use the fact that C = {−1, 1}. And, we achieve

f∗(Xv, {Xu}u∈Nv ) = sgn

(
log

P1 (Xv)

P−1 (Xv)
+
∑
u∈Nv

M(Xu, p, q)

)
, where

M(Xu, p, q) = ReLU
(
log

P1 (Xv)

P−1 (Xv)
+ log

p

q

)
− ReLU

(
log

P1 (Xv)

P−1 (Xv)
+ log

q

p

)
+ log

q

p
.

We leave the derivation in Appendix B. Amazingly, activation ReLUs in the message M well connect
to the activations commonly-used in GNN models, e.g., graph convolution networks [12]. Given the
optimality of the MAP estimation, we summarize this observation in Proposition 1.

Proposition 1 (Optimal Nonlinear Propagation). Consider a network G ∼ CSBM(n, p, q,P1,P−1).
To classify a node v, the optimal nonlinear propagation (derived by the MAP estimation) given the
attributes of v and its neighbors follows:

Pv = ψ (Xv;P1,P−1) +
∑
u∈Nv

ϕ (ψ (Xu;P1,P−1) ; log(p/q)) (4)

where ψ (a;P1,P−1) = log P1(a)
P−1(a)

and ϕ(a; log p
q ) = ReLU(a+log p

q )−ReLU(a− log p
q )− log p

q .
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Figure 2: Function ϕ(x; log p
q ).

The optimal nonlinear propagation in Eq. (4) may contain two types
of non-linear functions: (1) ψ is to measure the likelihood ratio
between two classes given the node attributes; (2) ϕ is to propagate
the likelihood ratios of the neighbors. ReLUs in ϕ avoid the overuse
of the likelihood ratios from neighbors, as ϕ essentially provides a
bounded function (See Fig. 2). One observation of the direct benefit
of this non-linear propagation is as follows.

Remark 1. When there is no structural information, i.e., p = q, ϕ(x; 0) = 0, ∀x ∈ R, the
propagation is deactivated, which avoids potential contamination from the attributes of the neighbors.

In the equiprobable case, the MAP estimation also gives the maximum likelihood estimation (MLE)
of Y if we view the labels as the fixed parameters. When the classes are unbalanced πY ̸= 1

2 , similar
results can be obtained while additional terms log π1

π−1
may appear as bias in Eq. (4). Later, our

analysis focuses on the equiprobable case while empirical results in Sec. 5 show more general cases.

Moreover, if one is to infer the posterior distribution of Y , one may replace the max-product algorithm
to solve Eq. (3) with the sum-product algorithm [89]. Then, the obtained non-linearity in ϕ will turn
into Tanh functions. As ReLUs are more used in practical GNNs, we focus on the case with ReLUs.

Discussion on the Non-linearity. Next, we discuss more insights into the non-linearity of ψ and ϕ.

The function ψ essentially corresponds to a node-attribute transformation, which depends on the
distributions P±1. As these distributions are unknown in practice, a NN model to learn ψ is suggested,
such as the one in the model APPNP [21] and GPR-GNN [25]. Due to the expressivity of NNs [90,91],
a wide range of ψ can be modeled. One insightful example is that when P±1 are Laplace distributions,
ψ is a bounded function (same as ϕ) to control the heavy-tailed attributes generated by Laplace
distributions.

Example 1 (Laplace Assumption). When node attributes follow m-dimensional independent Laplace
distribution, i.e., PYv = 1

(2b)m exp(−∥Xv − Yvµ∥1/b) for µ ∈ Rm, b > 0 and Yv ∈ {−1, 1}.
According to Eq. (4), the function ψ(·;P1,P−1) can be specified as

ψlap(Xv;P1,P−1) = 1
Tϕ(Xv; 2µ/b), where ϕ as defined in Eq. (4) works in an entry-wise manner.

As node-attribute distributions may vary a lot, ψ is better to be modeled via a general NN in practice.
More interesting findings may come from ϕ in Eq. (4) as it has a fixed form and well matches the
most commonly-used GNN architecture. Specifically, besides the extreme case stated in Remark 1,
we are to investigate how non-linearity induced by the ReLUs in ϕ may benefit the model. We expect
the findings to provide the explanations to some previous empirical experiences on using GNNs.

To simplify our discussion, when analyzing ϕ, we focus on the case with a linear node-attribute
transformation ψ = ψGau in Eq. (6) by assuming label-dependent Gaussian node attributes. This
follows the assumptions in previous studies [71, 72]. In fact, there are a class of distributions named
natural exponential family (NEF) [34] which if the node attributes satisfy, the induced ϕ is linear. We
conjecture that our later results in Sec. 4 are applied to the general NEF since the only difference is
the bias term by comparing Eq. (5) and Eq. (6).

Example 2 (Natural Exponential Family Assumption). When node features follow m-dimensional
natural exponential family distributions PYv

(X) = h(Xv) · exp(θTYv
Xv −M(θYv

)) for θYv
∈ Rm

and Yv ∈ {−1, 1} where M(θYv
) is a parameter function. The function ψ(·;P1,P−1) is specified as:

ψnef(Xv; θ1, θ−1) = (θ1 − θ−1)
TXv − (M(θ1)−M(θ−1)). (5)

In particular, when P1 = N (µ, I/m), P−1 = N (ν, I/m) for µ, ν ∈ Rm,

ψGau(Xv;µ, ν) = m
[
(µ− ν)TXv − (∥µ∥22 − ∥ν∥22)/2

]
. (6)

More generally, our optimal nonlinear propagation Eq. (4) can be well generalized to other settings
as long as the model satisfies edge-independent assumption, where edges random variables are
mutually independent conditioned on the labels of nodes. When this assumption is satisfied, the MAP
estimation will result in graph convolution with ReLU activation.

We summarize our main theoretical findings regarding the nonlinearity of ϕ in the next section.
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4 Main Results on ReLU-based Nonlinear Propagation

In this section, we summarize our analytical results on ϕ in the optimal nonlinear propagation (Eq. (4)).
Our study assumes an attributed network generated from CSBM(n, p, q,N (µ, I/m),N (ν, I/m))
where µ, ν ∈ Rm. We use CSBM-G(n, p, q, µ, ν) later to denote this model for simplicity. We
are interested in the asymptotic behavior when n→ ∞. Note that all parameters µ, ν, p, q,m may
implicitly depend on n. We are to compare the non-linear propagation model Pv suggested by Eq. (4)
where ψ = ψGau with the following linear counterpart P lv .

Baseline linear model: P lv(w) = ψGau(Xv;µ, ν) + w
∑
u∈Nv

ψGau(Xu;µ, ν), for all v ∈ V . (7)

where w ∈ R is an extra parameter to be tuned. Note that this linear model can be claimed as an
optimal linear model up-to a choice of w because the distributions of both the center node attribute
Xv and the linear aggregation from the neighbors

∑
u∈Nv

Xu are Gaussian and symmetric w.r.t. the
hyperplane {Z ∈ Rm|(µ − ν)TZ = (∥µ∥22 − ∥ν∥22)/2} for the two classes. We are to compare
their classification errors ξr = ξ(sgn(Pv)) and ξl(w) = ξ(sgn(P lv(w))). By following [71], we also
discuss separability of all nodes in the network, i.e., P(∀v ∈ V,Pv · Yv > 0) in Theorem 1.

To begin with, we introduce several quantities for the convenience of further statements. The SNRs

ρr =
(E[Pv|Yv = 1]− E[Pv|Yv = −1])

2

var(Pv|Yv = 1)
, ρl(w) =

(
E[P lv(w)|Yv = 1]− E[P lv(w)|Yv = −1]

)2
var(P lv(w)|Yv = 1)

are important quantities to later characterize different types of propagation. Also, we characterize
structural information by S(p, q) = (p− q)2/(p+ q) and attributed information by

√
m∥µ− ν∥2.

Assumption 1 (Moderate Structural Information). S(p, q) = ωn(
(logn)2

n ) and S(p,q)
|p−q| ↛ 1.

Assumption 2 (Bounded Attributed Information).
√
m∥µ− ν∥2 = on(log n).

Assumption 1 states that structural information should be neither too weak nor too strong. S(p, q) =
ωn(

(logn)2

n ) excludes the extremely weak case discussed in Remark 1. Moreover, the graph structure
should not be too sparse, so the aggregated information from neighbors dominates the propagation.
S(p,q)
|p−q| ↛ 1 means neither p = ωn(q) nor q = ωn(p), which avoids extremely strong structural

information. This assumption is more general than some concurrent works on CSBM-based GNN
analysis [71, 72] as we include the cases with less structural information |p − q| = on(p + q)
and with heterophily p < q. Assumption 2 is to avoid too strong attributed information: when√
m∥µ− ν∥2 = Ωn(log n), all nodes in CSBM can be accurately classified in the asymptotic sense

without structural information, i.e. P(∀v ∈ V, ψGau(Xv;µ, ν) · Yv > 0) = 1 − on(1). Now, we
present our first lemma which links the mis-classification errors ξr, ξl to with the SNRs ρr, ρl:
Lemma 1. Suppose (p, q) satisfies Assumption 1, for any G ∼ CSBM-G(n, p, q, µ, ν),

ξr ∈ [C1 exp(−C2ρr/2), exp(−ρr/2)], ξl(w) → exp(−ρl(w)(1 + on(1))/2) (8)

where C2 is asymptotically a constant, and the notation a(n) → b(n) denotes a(n)/b(n) → 1.
Lemma 1 claims that the classification errors under both nonlinear and linear model can be controlled
by their SNRs. By leveraging Lemma 1, we can further illustrate the separability of all nodes in the
network, which is presented in the following theorem.
Theorem 1 (Separability). Suppose that (p, q) satisfies Assumption 1, for G ∼ CSBM-G(n, p, q, µ, ν),
if
√
m∥µ− ν∥2 = ωn(

√
log n/S(p, q)n), then

P(∀v ∈ V,Pv · Yv > 0) = 1−On(n exp(−ρr/2)) = 1− on(1), (9)

P(∀v ∈ V,P lv(w) · Yv > 0) = 1−On(n exp(−ρl(w)/2)) = 1− on(1). (10)

Here, assume |w| > c for some positive constant c and sgn(w) = sgn(p− q) in the linear model.

Theorem 1 applies to both homophilic (p > q) and heterophilic (p < q) scenarios. Even for just
the linear case, compared to [71] which needs

√
m∥µ − ν∥2 = ωn(log n/

√
S(p, q)n) to achieve

separability, we have
√
log n improvement due to a tight analysis.
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As shown in Lemma 1 and Theorem 1, the errors are mainly determined by SNRs. Large SNR
implies a fast decay rate of the errors of a single node and the entire graph, which motivates us to
further explore SNRs to illustrate a comparison between non-linear and linear models. We consider
comparing with the optimal linear model, i.e., ρ∗l = ρl(w

∗), where w∗ = argminw∈R ξ
l(w).

Theorem 2. Suppose that (p, q) satisfies Assumption 1, for G ∼ CSBM-G(n, p, q, µ, ν), under the
separable condition in Theorem 1

√
m∥µ− ν∥2 = ωn(

√
log n/S(p, q)n), we further have

• I. Limited Attributed Information: When
√
m∥µ− ν∥2 = On(1),

ρr = Θn(ρ
∗
l ), (11)

Further, if
√
m∥µ− ν∥2 = on(| log(p/q)|), ρr/ρ∗l → 1;

• II. Sufficient Attributed Information: When
√
m∥µ− ν∥2 = ωn(1) and satisfies Assumption 2,

ρr =ωn(min{exp(m∥µ− ν∥22/3), nS(p, q)m−1∥µ− ν∥−2
2 } · ρ∗l ) = ωn(ρ

∗
l ). (12)

Theorem 2 also works both homophilic (p > q) and heterophilic (p < q) scenarios. Theorem 2
implies that when attributed information is limited, nonlinear propagation behaves similar to the
linear model as their SNRs are in the same order. Particularly, when attributed information is very
limited,

√
m∥µ− ν∥2 = on(| log(p/q)|), the SNRs of two models are asymptotically the same. In

the regime of sufficient attributed information, nonlinear propagation brings order-level superiority
compared with the linear model. The intuition is that in this regime, when the attributes are very
informative, the bounds of ϕ in Eq. (4) help with avoiding overconfidence given by the node attributes.
The coefficient before ρ∗l in Eq. (12) shows the trade-off between structural information and attributed
information on controlling the superiority of nonlinear propagation.

Next, we analyze whether nonlinearity makes model more transferable or not when there often exists
a distribution shift between the training and testing datasets, which is also practically useful.

We consider the following setting. We assume using a large enough network generated by CSBM-
G(n, p, q, µ, ν) for training so that the optimal parameters as in Pv and P lv(w∗) for this CSBM-G
have been learnt. We consider their mis-classification errors over another CSBM-G with parameters
(n, p′, q′, µ′, ν′). We keep the amounts of attributed information and structural information unchanged
by setting p = p′, q = q′, µ′ = (µ+ ν)/2+R(µ− ν)/2, ν′ = µ+ ν/2+R(ν−µ)/2 for a rotation
matrix R close to I . Let ∆ξr and ∆ξl(w∗) denote the increase of mis-classification errors of models
Pv and P lv(w∗), respectively, due to such a distribution shift. We may achieve the following results.
Theorem 3 (Transferability). Suppose that (p, q) satisfies Assumption 1, for G′ ∼ CSBM-
G(n, p′, q′, µ′, ν′), under the linear separable condition

√
m∥µ′ − ν′∥2 = ωn(

√
log n/S(p′, q′)n).

Suppose Pv and P lv(w∗) have learnt parameters from G ∼ CSBM-G(n, p, q, µ, ν) where the parame-
ters of two CSBM-Gs follow the relation described above. Then, we have

• I. Limited Attributed Information: When
√
m∥µ− ν∥2 = on(| log(p/q)|), ∆ξr/∆ξl(w∗) → 1.

• II. Sufficient Attributed Information: When
√
m∥µ− ν∥2 = ωn(1) and and satisfies Assump-

tion 2, ∆ξr/∆ξl(w∗) → 0.

Similar to Theorem 2, when attributed information is very limited, nonlinearity will not bring any
benefit, while in the regime with informative attributes, nonlinearity increases model transferability.
We leave the intermediate regime

√
m∥µ− ν∥2 ∈ [Ωn(| log(p/q)|), On(1)] for future study.

5 Experiments

In this section, we verify our theoretical results based on synthetic and real datasets. In all experiments,
we fix w in the linear model (Eq. (7)) as w = 1 for the homophilic case (p > q) and w = −1 for the
heterophilic case (p < q). Experiments on other w’s can be found in Appendix H.1.1, which does
not change the achieved conclusion. This is because when the node number n is large, for a constant
w, the neighbor information will dominate the results. Later, we use P lv = P lv(w) for simplicity.

5.1 Asymptotic Experiments - Model Accuracy & Transferability Study

Our first experiments focus on evaluating the asymptotic (n → ∞) classification performance of
nonlinear and linear models. Given a CSBM-G, we generate 5 graphs and compute the average
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Figure 3: Classification Performance on Nonlinear Models v.s. Linear Models (Pv v.s. P lv). LEFT:
Homophily + Limited Attr. Info.; MIDDLE: Homophily + Suff. Attr. Info.; RIGHT: Heterophily +
Fixed Attr. Info.. m = 10 and other parameters are listed in the figures.
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Figure 4: Perturbation Intensity (1 − ⟨µ′ − ν′, µ − ν⟩/∥µ − ν∥22) v.s. Perturbation Error Ratio
(∆ξr/∆ξl) with Different Node Numbers. Other parameters are: p = 2

√
n/n, q =

√
n/n; Limited

Attr. Info. ∥µ− ν∥2 = 0.3 log2 n/
√
n; Suff. Attr. Info. ∥µ− ν∥2 = 0.1

√
log n.

accuracy results (#correctly classified nodes / #total nodes). We compare the nonlinear v.s. linear
models under three different CSBM-G settings. Fig. 3 shows the results.

All three cases satisfy the separability condition in Theorem 1, so, as n increases, the accuracy
progressively increases to 1. Our results also match well with the implications provided by Theorem 2.
In the regime with limited attribute information (Fig. 1 LEFT) where ρr = Θn(ρ

∗
l ) as proved, the

nonlinear model and the linear model behave almost the same (performance gap < 0.15% for
n ≥ 105). In the regime with sufficient attribute information (Fig. 1 MIDDLE) where ρr = ωn(ρ

∗
l )

as proved, we may observe that the nonlinear model can significantly outperform the linear model
as n → ∞. Fig. 1 RIGHT is to show the heterophilic graph case (p < q). If we switch the values
of p, q (and also change the models correspondingly), we obtain the exactly same figure up to some
experimental randomness (see Appendix H.1.2). Also, Fig. 1 RIGHT considers a boundary case of
sufficient attributed information, i.e.,

√
m∥µ− ν∥2 = Θn(1). We observe that Theorem 2 still well

describes the asymptotic performance when n→ ∞.
We further study the transferability for the non-linear model and the linear model. We follow the
setting in Theorem 3 by rotating µ, ν → µ′, ν′. Fig. 4 shows the result and well matches Theorem 3.
In the regime of limited attributed information, the two models have the almost same transferability,
i.e., the perturbation error ratio is close to 1. In contrast, with sufficient attributed information, the
non-linear model is more transferrable than the linear counterpart as the ratio is smaller than 1.

5.2 Transition Curve

Our second experiment studies the tradeoff between attributed information and structural information.
We fix the graph size n = 2× 104 and get the averaged classification accuracy based on 5 generated
graphs. For the homophilic case, we test different levels of attributed information (∥µ − ν∥ from
10−4 to 10 with m = 10) and structural information (fixing q = 5 × 10−3 and increasing p from
p = q to 1). The intermediate testing points are sampled in log scales. Fig. 5 LEFT shows the results.
When structural information is limited and attributed information is sufficient, the non-linear model
shows significant advantage over the linear model while for most other parameter settings, these two
models share similar performance. Fig. 5 RIGHT shows the heterophilic case, where we observe a
similar pattern. In the heterophilic case, we fixing p = 5× 10−3 and increasing q from q = p to 1.
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Figure 6: Averaged one-vs-all Classification Accuracies on Citation Networks of Different Nonlinear
Models v.s. Linear Models. Node attributes in or out of the one class are generated from Laplace
distributions with different means ±µ and b = 1 (Example 1). The optimal non-linear model has
advantage over the models with only nonlinear attribute transformation (ψlap), with only nonlinear
information propagation (ϕ), the linear model.

5.3 Real-world Network Experiments

This experiments compare non-linear models and linear models under Gaussian and Laplacian
attributes on three benchmark citation networks PubMed, Cora, and CiteSeer [92]. In these three
networks, nodes denote papers and edges denote the citation relationships between the papers. The
statistics (# nodes, # edges, # classes) of these three networks are: PubMed (19,717, 44,338, 3);
Cora (2,708, 5,428, 7); CiteSeer (3,327, 4,732, 6).

Experimental Settings. We carry out one-v.s.-all and several-v.s.-several classification tasks. After
nodes are put into two classes, we generate two graphs independently with attributes according to
Gaussian (or Laplace) distributions. One graph is used for training and the other one for testing. For
the Gaussian case, we use a nonlinear model by following Eq. 4 with ψ = ψGau while the parameters
such as log(p/q), µ−ν and other biases need to be learned. For the Laplacian case, we consider three
nonlinear models by following the form of (a) full Eq. 4 with ψ = ψlap; (b) only nonlinear attribute
transformation ψ = ψlap; (c) only nonlinear propagation ϕ with linear attribute transformation.
Later, we call them nonlinear models (a), (b), (c), respectively. Similar to the Gaussian case, all the
parameters in these functions are obtained by training. The model is trained with Adam optimizer
(learning rate = 1e− 2, weight decay = 5e− 4). We give other details to Appendix H.2.1.

Result Analysis. We report the averaged results over 5 trials in Fig. 1 (Gaussian) and Fig. 6 (Lapla-
cian). Due to the space limit, we leave the results for the several-v.s.-several case in Appendix H.2.1.
The Gaussian case well matches our theory. Only when the node features are very informative, the
gaps between the nonlinear model and the linear model become significant. This is true for all three
networks.

The Laplacian case is more complicated. Non-linear model (a) outperforms the two non-linear models
(b) and (c). The two non-linear models both outperform the linear model. More specifically, when
attributed information is not very informative, i.e., small ∥µ∥2, attribute nonlinear transformation
function ψLap is more crucial, because in this regime, non-linear model (a) significantly outperforms
non-linear model (c) and non-linear model (b) significantly outperforms the linear model, while
two non-linear models (a) and (b) perform similarly, and non-linear model (c) and the linear model
perform similarly. With more informative attributed information, nonlinear propagation function
ϕ becomes more significant, because the gaps between two non-linear models (a) and (b) (also,
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non-linear model (c) and the linear model) are obvious, which again matches our Theorem 2 although
here we have Laplacian node attributes instead of Gaussian node attributes.

6 Conclusion
This work uses Bayesian methods to investigate the function of non-linearity in GNNs. Given a
graph generated from CSBM, we observe the optimal non-linearity to estimate a node label given
its own and neighbors’ attributes is in twofold: attribute non-linear transformation and non-linear
propagation. We further investigate the non-linear propagation by imposing Gaussian assumptions on
node attributes. We prove that non-linear propagation shares a similar performance (with or without
distribution shift) with linear propagation in most cases except when node attributes become very
informative. These findings explain many previous empirical observations in this domain and would
help researchers and practitioners to understand their GNNs’ behaviors in practice.
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A Preliminaries

A.1 Notations

In this section, we introduce additional notations for the convenience of presenting proofs. Let
A = (Aij) be the adjacency matrix of the graph. D is the degree matrix of A. a(n) ∼ b(n) denotes
a(n)/b(n) → 1 as n → ∞. X

p∼ PX denotes random variable X following distribution PX . Let
pX denote the density function for the random variable X . Let Φ(·;µ, σ2) denote the cumulative
distribution function for Gaussian distribution with mean µ and variance σ2. Particularly, standard
Gaussian distribution function is shorthand as Φ(·). δ(·) denote the Dirac function.

A.2 Graph Structure Concentration Properties

We first introduce the concept of concentration ball (B(δ1, δ2)), which is used to illustrate the
concentration of degrees and class sizes on CSBM(n, p, q,P1,P−1) and further helps with eliminating
the weak correlations of random variables after optimal non-linear propagation.

Lemma A1 (Concentration Ball). We define the concentration ball B(δ1, δ2) as:

B(δ1, δ2) =
{
|C1|, |C−1| ∈ [

n

2
(1− δ1),

n

2
(1 + δ1)]

}
(13)⋂

u∈[n]

{
Duu ∈ [

(p+ q)(n− 1)

2
(1− δ2),

(p+ q)(n− 1)

2
(1 + δ2)]

}
(14)

⋂
u∈[n]

j∈{−1,1},j=Yu

{
|Cj ∩Nu|
|Duu|

∈ [
p

p+ q
(1− δ2),

p

p+ q
(1 + δ2)]

}
(15)

⋂
u∈[n]

j∈{−1,1},j ̸=Yu

{
|Cj ∩Nu|
|Duu|

∈ [
q

p+ q
(1− δ2),

q

p+ q
(1 + δ2)]

}
(16)

For any small ϵ > 0, choose δ1 = nϵ−1/2 , δ2 = (np)ϵ−1/2, then for any c1 > 0, there exists a
constant c2 > 0 , such that

P(B(nϵ−1/2, (np)ϵ−1/2)) ≥ 1− c1 exp(−c2nϵ) (17)

Lemma Proof A1. Consider two equi-probable classes C = {−1, 1}, let {Iu} be a set of Ber(1/2)
variables where Iu = 1 if u ∈ C1, otherwise, Iu = 0. By the Chernoff bound for bounded variables,
there is a constant κ1 > 0 such that

P[| 1
n

n∑
u=1

Iu −
1

2
| ≥ δ1

2
] ≤ 2 exp(−κ1nδ21) (18)

Since |C1|+ |C−1| = n, the above implies

P[
1

2
(1− δ1) ≤

|C1|
n
,
|C−1|
n

≤ 1

2
(1 + δ1)] ≥ 1− 2 exp(−κ1nδ21) (19)

The expected degrees for each node are:

E[Duu] =
(n− 1)

2
(p+ q) (20)

Since degrees of each node are sums of Bernoulli random variables, by the Chernoff bound, there
exist a constant κ2 > 0 such that

P[|Duu − E[Duu]| ≥ δ2E[Duu]] ≤ 2 exp(−κ2E[Duu]δ
2
2) (21)

Therefore, there exist constants κ3 > 0 and c > 0 such that

P[
p+ q

2
(1− δ2) ≤

Duu

n
≤ p+ q

2
(1 + δ2)] ≥ 1− c exp(−κ3n(p+ q)δ22) (22)
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Similarly, since

E[|Cj ∩Nu|] =
p(n− 1)

2
, when j ∈ {−1, 1} , j = Yu (23)

E[|Cj ∩Nu|] =
q(n− 1)

2
, when j ∈ {−1, 1} , j ̸= Yu (24)

(25)

by the Chernoff bound, there exist constants κ4 > 0 and c′ > 0 such that

(1) when j ∈ {−1, 1} , j = Yu

P[
|Cj ∩Nu|
|Duu|

∈ [
p

p+ q
(1− δ2),

p

p+ q
(1 + δ2)]] ≥ 1− c′ exp(−κ4pn(δ2 + o(δ2))

2), (26)

(2) and when j ∈ {−1, 1} , j ̸= Yu

P[
|Cj ∩Nu|
|Duu|

∈ [
q

p+ q
(1− δ2),

q

p+ q
(1 + δ2)]] ≥ 1− c′ exp(−κ4pn(δ2 + o(δ2))

2) (27)

By the union bound, since (p, q) satisfies Assumption 1, for any ϵ > 0, choose δ1 = nϵ−1/2,
δ2 = (np)ϵ−1/2, there exist constants c1 > 0 and c2 > 0 such that

P(B(nϵ−1/2, (np)ϵ−1/2)) ≥ 1− c1 exp(−c2nϵ) (28)

Lemma A1 reveals the structural concentration properties of CSBM and our following analysis will
continuously using the above results.

A.3 Understanding the Weight Parameter in the Linear Model

In this discussion, we will highlight the role of the weight parameter in linear model. The linear
model aggregation is fundamentally the convolution of Gaussian random variables. From graph
structure concentration Lemma A1, for a single node, there will be np/2(1 + on(1)) same class
Gaussian attributes and nq/2(1 + on(1)) different class Gaussian attributes. Therefore, for large
graph node n,

P lv(w)
p∼ N ([1 + w(p− q)n(1 + on(1))/2]E[ψGau(Xv)], [1 + (n− 1)w2]var[ψGau(Xv)]) (29)

where sgn[w · (p− q)] = 1. From the above, ρl(w) can be directly calculated as: let Yu ̸= Yv , if there
exist a constant c > 0 such that |w| > c, and |p− q| = ωn(

log2 n
n ) due to Assumption 1, we have

ρl(w) =
[1 + w(p− q)n(1 + on(1))/2]|E[ψGau(Xv)]− E[ψGau(Xu)]|√

[1 + w2(p+ q)n(1 + on(1))/2]var[ψGau(Xv)]
(30)

∼|p− q|n/2|E[ψGau(Xv)]− E[ψGau(Xu)]|√
n(p+ q)/2var[ψGau(Xv)]

(31)

As we can see that no matter how we choose weight parameter w, unless its absolute value is greater
than a positive constant, the aggregation of neighbor attributes will dominate ρl(w). To this end,
in the following analysis, we can simply let ρl(w∗) denote the SNR of the aggregated neighbor
attributes, i.e. w → ∞, formulated in Equation 31.

B Proof of Proposition 1

Proof. From Section 3, the MAP estimation f∗(Xv, {Xu}u∈Nv ) can be formulated as

f∗(Xv, {Xu}u∈Nv
) = argmax

Yv∈C
PYv

(Xv)
∏
u∈Nv

max
Yu∈C

PYu
(Xu) p

(1+YvYu)/2q(1−YvYu)/2 (32)

Let ΨMAP(Yv, Xv, {Xu}u∈Nv
) = PYv

(Xv)
∏
u∈Nv

maxYu∈C PYu
(Xu) p

(1+YvYu)/2q(1−YvYu)/2,
and we consider the function in the log regime, the above MAP is equivalent to
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argmaxYv∈C logΨMAP(Yv, Xv, {Xu}u∈Nv ). Therefore, we have

f∗(Xv, {Xu}u∈Nv ) =sgn[logΨMAP(1, Xv, {Xu}u∈Nv )− logΨMAP(−1, Xv, {Xu}u∈Nv )] (33)

=sgn[logP1(Xv)− logP−1(Xv) +
∑
u∈Nv

g(Xu)] (34)

where g(Xu) = max{log(p·P1(Xu)), log(q·P−1(Xu))}−max{log(q·P1(Xu)), log(p·P−1(Xu))}.
Our next discussion assumes that p ≥ q and the case when p < q can be derived in a similar way.

(1) If max {p · P1(Xu), q · P−1(Xu)} = p ·P1(Xu), max {q · P1(Xu), p · P−1(Xu)} = q ·P1(Xu):

p · P1(Xu) ≥ q · P−1(Xu) ⇔ log
p

q
+ log

P1(Xu)

P−1(Xu)
≥ 0 ⇔ log

P1(Xu)

P−1(Xu)
≥ − log

p

q
(35)

q · P1(Xu) ≥ p · P−1(Xu) ⇔ − log
p

q
+ log

P1(Xu)

P−1(Xu)
≥ 0 ⇔ log

P1(Xu)

P−1(Xu)
≥ log

p

q
(36)

In this case, when log P1(Xu)
P−1(Xu)

≥ log p
q , g(Xi) = log p

q

(2) If max {p · P1(Xu), q · P−1(Xu)} = p · P1(Xu), max {q · P1(Xu), p · P−1(Xu)} = p ·
P−1(Xu):

p · P1(Xu) ≥ q · P−1(Xu) ⇔ log
P1(Xu)

P−1(Xu)
≥ − log

p

q
(37)

p · P−1(Xu) ≥ q · P1(Xu) ⇔ log
P1(Xu)

P−1(Xu)
≤ log

p

q
(38)

In this case, when log P1(Xu)
P−1(Xu)

∈ (− log p
q , log

p
q ), g(Xu) = log P1(Xu)

P−1(Xu)
.

(3) If max {p · P1(Xu), q · P−1(Xu)} = q·P−1(Xu), max {q · P1(Xu), p · P−1(Xu)} = q·P1(Xu):
This case does not exist.

(4) If max {p · P1(Xu), q · P−1(Xu)} = q · P−1(Xu), max {q · P1(Xu), p · P−1(Xu)} = p ·
P−1(Xu): From (1)(2), we know when log P1(Xu)

P−1(Xu)
≤ − log p

q , g(Xu) = − log p
q .

Now we define the optimal nonlinear propagation Pv as:

Pv = ψ (Xv;P1,P−1) +
∑
u∈Nv

ϕ (ψ (Xu;P1,P−1) ; log(p/q)) (39)

where ψ (a;P1,P−1) = log P1(a)
P−1(a)

and ϕ(a; log p
q ) = ReLU(a+log p

q )−ReLU(a− log p
q )− log p

q .

Hence, the Bayes optimal classifier f∗(Xv, {Xu}u∈Nv
) = sgn[Pv]

C Proof of Lemma 1

Before getting into the proof of Lemma 1, we first embark on bridging the relationship between SNRs
and error tail bounds. We will present results on the mean and variance estimation over the attributes
under the nonlinear model.
Lemma C1. Suppose that (p, q) satisfies Assumption 1, let Z follow Gaussian distribution
N (µ, I/m). The behaviors of expectation and variance of Z̃ := ϕ(ψGau(Z;µ,−µ), log p

q ) are
given as follows:

1. When
√
m∥µ∥2 = on(log

p
q ), we have the following

E[Z̃] = Θn(m∥µ∥2) (40)

var[Z̃] = Θn(m∥µ∥2) (41)

2. When
√
m∥µ∥2 = Ωn(log

p
q ) and

√
m∥µ∥2 = on(1), we have the following

E[Z̃] = Θn(
√
m∥µ∥2 · log

p

q
) (42)

var[Z̃] = Θn((log
p

q
)2) (43)
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3. When
√
m∥µ∥2 = Ωn(1)

E[Z̃] = Θn(log
p

q
) (44)

var[Z̃] = Θn(
exp(− 1

2m∥µ∥22)√
m∥µ∥2

· (log p
q
)2) (45)

Lemma Proof C1. We defer the long proof to Section I.

Now in order to better characterize the behavior of attribute random variable under nonlinearities, we
introduce a new concept called overlapping index to quantify the agreement between two random
variables. Let X,Y be two independent random variables defined over measurable space (Rn,F)
with probability density function pX ,pY . For X and Y , the overlapping index η : Rn×Rn → [0, 1]
is defined as follows:

η(X,Y ) =

∫
min {pX(x),pY (y)} dxdy (46)

With the definition of overlapping index η, the behavior of the above random variable Z̃ can be
characterized in the following lemma:

Lemma C2. Suppose that (p, q) satisfies Assumption 1, let Z
p∼ N (µ, I/m), Z̃ :=

ϕ(ψGau(Z;µ,−µ), log p
q ). A random variable τ satisfy

η(Z̃, τ) → 1 (47)
where τ takes different forms in different settings:

• Case I: When
√
m∥µ∥2 = on(log

p
q ), τ = ψGau(Z, µ,−µ).

• Case II: When
√
m∥µ∥2 = Ωn(log

p
q ),

√
m∥µ∥2 = On(1), τ/ log p

q is a Rademacher random
variable.

• Case III: When
√
m∥µ∥2 = ωn(1), let τ be a degenerated random variable, i.e. P(τ = log p

q ) =
1.

Lemma Proof C2. Let ψ(Z) = ψGau(Z, µ,−µ) and pψ(Z)1[a,b] be the density function constrained
on interval [a, b]. From Lemma C1,

• In Case I: Most Gaussian mass lands on the linear part of non-linear propagation function
ϕ(·; log p

q ). Therefore, the probability of landing on boundary points shrinks to zero:

P(Z̃ = − log
p

q
) ∼

√
2

π
·
√
mµTµ

log p
q

· exp(−
(log p

q )
2

8mµTµ
) (48)

P(Z̃ = log
p

q
) ∼

√
2

π
·
√
mµTµ

log p
q

· exp(−
(log p

q )
2

8mµTµ
) (49)

Hence, the overlapping index between Z̃ and ψ(Z) is given as:

η(Z̃, ψ(Z)) =

∫
R
min

{
pZ̃ ,pψ(Z)

}
dz (50)

∼1− 4

√
2

π
·
√
mµTµ

log p
q

· exp(−
(log p

q )
2

8mµTµ
) → 1 (51)

• In Case II: When the major mass falls on the threshold part of the function (i.e.
√
mµTµ =

Ωn(log
p
q ),
√
mµTµ = On(1)), the probability mass of boundary points are:

P(Z̃ = − log
p

q
) ∼ 1

2
− 1

2
√
2π

·
log p

q√
mµTµ

(1 + on(1)) (52)

P(Z̃ = log
p

q
) ∼ 1

2
− 1

2
√
2π

·
log p

q√
mµTµ

(1 + on(1)) (53)
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Hence, the density function of Z̃ is:

pZ̃ = (
1

2
− on(1))δ(− log

p

q
) + pψ(Z)1[− log p

q ,log
p
q ]
+ (

1

2
− on(1))δ(log

p

q
) (54)

Define τ/(log p
q ) to be the Rademacher random variable under this setting. Then, the overlapping

index between Z̃ and τ is given as:

η(Z̃, τ) =

∫
R
min

{
fZ̃ ,

1

2
[δ(− log

p

q
) + δ(log

p

q
)]

}
dz (55)

∼1−
√

2

π
·

log p
q√

mµTµ
→ 1 (56)

• In Case III: The third case is straight forward from Lemma C1.

The above lemma characterizes the behavior of attribute random variable under the nonlinear model,
and to further relate the SNR (ρr) of nonlinearized attribute feature with mis-classification error ξr,
we introduce the following proposition for tail bound estimation.
Proposition C1 (Reverse Chernoff-Cramer Bound [82]). Let Z be a random variable with moment
generating function ϕZ(λ) = E exp(λZ) defined on a set Λ ∈ R. For any t > 0, we have the
following lower bounds:

P(Z ≥ t) ≥
sup

α,β>1,λ>λ′≥0,
λα∈Λ

{ϕZ(λ) exp(−βλt)− ϕZ(αλ) exp(−αβλt)− exp(−(βλ− λ′)t)ϕZ(λ− λ′)},

(57)
P(Z ≤ −t) ≥

sup
α,β>1,λ>λ′≥0,

−λα∈Λ

{ϕZ(−λ) exp(−βλt)− ϕZ(−αλ) exp(−αβλt)− exp(−(βλ− λ′)t)ϕZ(λ
′ − λ)}.

(58)

Proposition C1 provides a Chernoff-type lower bound that can be leveraged in the analysis of node
attribute nonlinear propagation. From Lemma C2, the behavior of nonlinearized attribute can be
interpreted as either Gaussian or Rademacher random variables in the limited attributed information
setting. Follow the derivation of Theorem 9 in [82] and leverage the (reversed) Chernoff-Cramer
inequality for upper bound, we have the following results:
Proposition C2 (Approximate Lower and Upper Tail Bounds for Nonlinearized Attributes).
Suppose Z1, Z2, ..., Zn are i.i.d random variables with normal distribution N (µ, Id ). Let Z̃i :=
ϕ(ψGau(Zi;µ,−µ); log p

q ) be the nonlinearized attributes. We have the following tail bounds:

• When
√
m∥µ∥2 = on(log

p
q ),

P(
n∑
i

Z̃i ≤ −λ) ∼ P(
n∑
i

Z̃i ≥ λ) ∼ exp(− λ2

4nmµTµ
), ∀λ ≥ 0 (59)

• When
√
m∥µ∥2 = Ωn(log

p
q ),

√
m∥µ∥2 = On(1) and log p

q = ωn(
1
n ), there exist a parameter ζ

and two constants Cζ , C ′
ζ that only depend on ζ, such that for ∀0 ≤ λ ≤ n log p

q

ζ , we have

C ′
ζ exp(−Cζ

λ2

n(log p
q )

2
) ≤ P(

n∑
i

Z̃i ≤ −λ) ∼ P(
n∑
i

Z̃i ≥ λ) ≤ exp(− λ2

n(log p
q )

2
) (60)

As we can see from Proposition C2 that the propagated attributes can be lower and upper bounded by
the same denominator in the exponential term by neglecting the constant, i.e. node number times sin-
gle node attribute variance (from Lemma C1). Besides, under Assumption 1, by leveraging the lower
& upper bounds from Proposition C2, we can easily show that ρr ∼ (E[

∑
u∈N M(Xu, p, q)|Yu =
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1]− E[
∑
u∈N M(Xu, p, q)|Yu = −1])/var(

∑
u∈N M(Xu, p, q)|Yu = 1) as n→ ∞, i.e. the SNR

of nonlinear model is dominated by the SNR of propagated attributes from neighbor nodes.

Proof of Lemma 1: In the proof, without loss of generality, we assume the symmetric case, i.e.
µ = −ν, since we can simply construct a linearly transformation (T ) that map two Gaussians to be
symmetrical about the origin, i.e. T : x 7→ x− (∥µ∥22 − ∥ν∥22)/2 and further analysis can be directly
apply to non-symmetric case under inverse mapping T−1. Let n1(u) define the number of nodes in
the same class with node u, and n2(u) define the number of nodes in the opposite class of node u.
When n→ ∞,

n1(u) = |Cj ∩Nu| =
n− 1

2
p(1 + on(1)), where j = Yu (61)

n2(u) = |Cj ∩Nu| =
n− 1

2
q(1 + on(1)), where j ̸= Yu (62)

n1(u), n2(u) are abbreviated as n1, n2. Hence, ξl(w) and ξr can be interpreted as:

ξl(w) = P


Z + w[

n1∑
j=1

Zj +

n2∑
t=1

Z̃t] ≤ 0|Z,Z1, Z2, ..., Zn1

i.i.d∼ N (µTµ,
µTµ

d
);

Z̃1, Z̃2, ..., Z̃n2

i.i.d∼ N (−µTµ, µ
Tµ

d
);n1 =

n− 1

2
p(1 + on(1)), n2 =

n− 1

2
q(1 + on(1))


(63)

ξr = P


2mZ +

n1∑
j=1

ϕ(ψGau(Zj)) +

n2∑
t=1

ϕ(ψGau(Z̃t)) ≤ 0|Z,Z1, Z2, ..., Zn1

i.i.d∼ N (µTµ,
µTµ

d
);

Z̃1, Z̃2, ..., Z̃n2

i.i.d∼ N (−µTµ, µ
Tµ

d
);n1 =

n− 1

2
p(1 + on(1)), n2 =

n− 1

2
q(1 + on(1))


(64)

where ϕ, ψ are the shorthand for ϕ(·; log p
q ), ψGau(·;µ,−µ). For standard Gaussian distribution, we

have the well-known tail bound: for X
p∼ N (0, 1), λ > 0

(
1

λ
− 1

λ3
)
exp(−λ2

2 )
√
2π

≤ P(X > λ) ≤ 1

λ

exp(−λ2

2 )
√
2π

(65)

i.e. P(X > λ) ∼ 1
λ

exp(−λ2

2 )√
2π

as λ → ∞. Consider (p, q) satisfies Assumption 1, by Gaussian

additivity, the linear model P lv(w)
p∼ N (2mµTµ(1 + n1w − n2w)Yv, 4m(1 + (n − 1)w2)µTµ)

where n1 = p(n−1)
2 (1 + on(1)), n2 = q(n−1)

2 (1 + on(1)). Hence,

ξl(w) = P(P lv(w) · Yv < 0) ∼
√
4m(1 + (n− 1)w2)µTµ)

2mµTµ(1 + n1w − n2w)
·
exp(− [2mµTµ(1+n1w−n2w)]2

8m(1+(n−1)w2)µTµ)
)

√
2π

(66)

=
1

ρl(w)

exp(−ρl(w)2

2 )
√
2π

= exp(−ρl(w)
2(1 + on(1))

2
) (67)

Now consider nonlinear model mis-classification error ξr.

1. When attributed information is very limited, i.e.
√
mµTµ = on(log

p
q ), according to Proposi-

tion C2, ρr ∼ ρl(w
∗) and ξr ∼ ξl(w∗) ∼ exp(−ρ2r(1 + on(1))/2).

2. When attributed information limited, i.e.
√
mµTµ = Ωn(log

p
q ),mµ

Tµ = On(1), according to
Proposition C2, when n→ ∞, there exist two constants C > 0, C ′ > 0 such that

ξr ∈ [C exp(−C ′ρ2r
var(Pv|Yv = 1)

2(log p
q )

2
), exp(−ρ2r

var(Pv|Yv = 1)

2(log p
q )

2
)] (68)

From Lemma C1, var(Pv|Yv = 1) = (log p
q )

2, we have

ξr ∈ [C exp(−C ′ ρ
2
r

2
), exp(−ρ

2
r

2
)] (69)
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3. When attributed information is sufficient, i.e.
√
mµTµ = on(1), as n→ ∞, Pv will be highly

concentrated on E[Pv] with Gaussian upper tail bound. Further, we have ξr ≤ exp(−ρ2r/2).

D Proof of Theorem 1

Proof. Similar to the argument made in the proof of Lemma 1, we can assume the symmetric
case, i.e. µ = −ν. First, we consider the nonlinear model. Let A = {∃u ∈ C−1,Pu > 0},
B = {∃u ∈ C−1,Pu < 0}, by lemma 1, for any small ϵ > 0 choose δ1 = nϵ−1/2, δ2 = (np)ϵ−1/2,
we have

P(∃v ∈ V,Pv · Yv < 0) =P(A ∨B) (70)
=P(A ∨B|B(δ1, δ2))P(B(δ1, δ2)) + P(A ∨B|Bc(δ1, δ2))P(Bc(δ1, δ2))

(71)
≤P(A ∨B|B(δ1, δ2)) + c1 exp(−c2nϵ) (72)

Therefore, by the union bound, we have the bound

P(∃v ∈ V,Pv · Yv < 0) ≤nP(Pu · Yu < 0) + c1 exp(−c2nϵ) (73)
=nξr + c1 exp(−c2nϵ) (74)

From Lemma 1, ξr is upper bounded by exp(−ρ2r/2) under all attribute settings, and hence

P(∃v ∈ V,Pv · Yv < 0) ≤ n exp(−ρ2r/2) + c1 exp(−c2nϵ) (75)

Letting the right hand side diminish to zero as n→ ∞, we need

n exp(−ρ2r/2) = on(1) (76)

1. When mµTµ = on(log
p
q ), under Assumption 1, from Lemma C1,

Equation 76 ⇔ n2(p− q)2(mµTµ)2

(p+ q)mµTµn log n
= ωn(1) ⇔

√
m∥µ∥2 = ωn(

√
log n

S(p, q)n
) (77)

2. When mµTµ = Ωn(log
p
q ) and mµTµ = On(1), under Assumption 1, from Lemma C1, we have

the similar results:

Equation 76 ⇔
n2(p− q)2(

√
mµTµ log p

q )
2

(p+ q) log(pq )
2n log n

= ωn(1) ⇔
√
m∥µ∥2 = ωn(

√
log n

S(p, q)n
) (78)

3. When mµTµ = ωn(1), Z̃, Equation 76 is naturally satisfied.

Summarizing the above results, when
√
m∥µ∥2 = ωn(

√
log n/S(p, q)n), P(∀v ∈ V,Pv · Yv >

0) = 1− P(∃v ∈ V,Pv · Yv < 0) = 1− on(1).

The above analysis can directly applies to any linear model with the given qualified weight parameter
w, i.e., |w| → c > 0 and sgn(w) = sgn(p− q). According to Section A.3,

n exp(−ρ2l (w∗)/2) = on(1) ⇔
n2(p− q)2(mµTµ)2

n log n(p+ q)mµTµ
= ωn(1) ⇔

√
m∥µ∥2 = ωn(

√
log n

S(p, q)n
)

(79)

E Proof of Theorem 2

Suppose that (p, q) satisfies Assumption1, and the separable condition in Theorem 1 is satisfied.
Proposition C2 actually implies that Lyapunov’s central limit theorem provides uniformly tight tail
bounds for Pv and Gaussian approximation error can be neglected. Hence, by leveraging Lemma C1,
and ρl(w∗) discussed in Section A.3,
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1. When mµTµ = on(log
p
q ):

ρr/ρl(w
∗) ∼ n(p− q)(2mµTµ)√

n log n(p+ q)4mµTµ
/

n(p− q)(µTµ)√
n log n(p+ q)µTµ/m

= 1 (80)

2. When mµTµ = Ωn(log
p
q ) and mµTµ = On(1):

ρr/ρl(w
∗) = Θn(

n(p− q)(
√
mµTµ log p

q )√
n log n(p+ q)(log p

q )
2
/

n(p− q)(µTµ)√
n log n(p+ q)µTµ/m

) = Θn(1) (81)

3. When mµTµ = ωn(1), and mµTµ/ exp(− 1
2mµ

Tµ) = On(nS(p, q))

ρr/ρl(w
∗) = Θn(

√
exp( 12mµ

Tµ)

4
√
mµTµ

) (82)

4. When mµTµ = on(log
2 n), and mµTµ/ exp(− 1

2mµ
Tµ) = ωn(nS(p, q))

ρr/ρl(w
∗) = Θn(

√
n(p+ q) · log p

q

mµTµ
) (83)

Further, to unify the sufficient attributed setting mµTµ = ωn(1), we have ρr/ρl(w
∗) =

ωn(min{exp(m∥µ− ν∥22/3), nS(p, q)m−1∥µ− ν∥−2
2 }).

F Proof of Theorem 3

In order to further compare the transferability of both nonlinear and linear models, we introduce
several results for the proof of Theorem 3.

Lemma F1 (Error Gap Under Mean Perturbations). Let X1, X2 follow Gaussian distributions
N (µ, σ2) and N (−µ, σ2) respectively, and µ, σ2 are all the function of node number n. Exerting
mean perturbations on two distributions, which gives N (µ−∆µ1, σ

2) and N (−µ+∆µ2, σ
2). Let

X̃1, X̃2 be the random variables that follow the perturbed distributions. When µ
σ → ∞, ∆µ1 ·

µ,∆µ2 · µ ≈ 0, we have the estimation on the following error gap:

∆ξ = P({X1 < 0} ∪ {X2 > 0})− P({X̃1 < 0} ∪ {X̃2 > 0}) (84)

∼
exp(− µ2

2σ2 )√
2π

· (∆µ1

σ
+

∆µ2

σ
) (85)

Lemma Proof F1. First, define the tail function f(x) = 1
x exp(−

x2

2 ). When x→ ∞ and ∆x ·x ≈ 0,
the value gap between f(x+∆x) and f(x):

f(x+∆x)− f(x) (86)

=
1

x+∆x
exp(− (x+∆x)2

2
)− 1

x
exp(−x

2

2
) (87)

=
1

x+∆x
[exp(− (x+∆x)2

2
)− exp(−x

2

2
)] +

∆x

x+∆x
exp(−x

2

2
) (88)

∼− (∆x+
∆x

x
) · exp(−x

2

2
) (89)

∼−∆x · exp(−x
2

2
) (90)
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Table 1: Datasets statistics

Dataset # Nodes # Edges # Features # Class # Nodes in Each Class
Cora 2,708 5,428 1,433 7 351 217 418 818 426 298 180
CiteSeer 3,327 4,732 3,703 6 264 590 668 701 596 508 /
PubMed 19,717 44,338 500 3 4103 7739 7875 / / / /

From above, we have

P(X1 < 0)− P(X2 > 0)− P(X̃1 < 0) + P(X̃2 > 0) (91)

=Φ(
µ−∆µ2

σ
)− 1− Φ(−µ−∆µ1

σ
)− [Φ(

µ

σ
)− 1] + Φ(−µ

σ
) (92)

∼− 1√
2π

[
σ

µ−∆µ2
exp(−1

2
(
µ−∆µ2

σ
)2) +

σ

µ−∆µ1
exp(−1

2
(
µ−∆µ1

σ
)2)− 2σ

µ
exp(− µ2

2σ2
)]

(93)

∼
exp(− µ2

2σ2 )√
2π

· (∆µ1

σ
+

∆µ2

σ
) (94)

Proof of Theorem 3: Suppose that (p, q) satisfies Assumption1, and the separable condition in
Theorem 1 is satisfied. As stated in the proof of Theorem E, as n → ∞, the nonlinear model Pv
will approximate Gaussian distributions with similar tail bounds except high order small quantities.
For any given |w| > c, let ∆ρr = (E[Pv|Yv = 1,G] − E[Pv|Yv = −1,G] − E[Pv|Yv = 1,G′] +

E[Pv|Yv = −1,G′])/
√

var(Pv|Yv = 1,G),∆ρl(w∗) = (E[P lv(w∗)|Yv = 1,G] − E[P lv(w∗)|Yv =

−1,G]− E[P lv(w∗)|Yv = 1,G′] + E[P lv(w∗)|Yv = −1,G′])/
√

var(P lv(w∗)|Yv = 1,G). Hence, by
leveraging Lemma F1

∆ξr ∼ exp(−ρ2r)√
2π

·∆ρr (95)

∆ξl(w∗) ∼ exp(−ρ2l (w∗))√
2π

·∆ρl(w∗) (96)

Hence, in the limited attribute setting, i.e. mµTµ = on(log
p
q ), by Theorem 2, we have ρr ∼ ρl(w

∗).
From Lemma C1, ϕ will almost behave like a linear function when the mean perturbation is small,
and hence ∆ρr/∆ρl(w∗) ∼ [1− ⟨µ′ − ν′, µ− ν⟩/∥µ− ν∥22]/[1− ⟨µ′ − ν′, µ− ν⟩/∥µ− ν∥22] = 1.
Thus, ∆ξr/∆ξl(w∗) → 1. In the sufficient attribute setting, i.e. mµTµ = ωn(1), since ρr =
ωn(ρl(w

∗)) and ϕ(E[Pv|Yv = 1,G] − E[Pv|Yv = 1,G′]) + ϕ(E[Pv|Yv = −1,G] − E[Pv|Yv =
−1,G′]) ∼ E[Pv|Yv = 1,G]−E[Pv|Yv = 1,G′] +E[Pv|Yv = −1,G]−E[Pv|Yv = −1,G′], which
implies ∆ρr/∆ρl(w∗) → 1. Therefore, the exponential term will dominate the error gap, we have
∆ξr/∆ξl(w∗) → 0.

G Experimental Settings

G.1 Datasets

As mentioned in Section 5.3, this paper includes three real-world citation network datasets: Cora,
Citeseer and Pubmed. Their details are included in Table 1.

G.2 Environment

Experiments were performed on a server with four Intel 24-Core Gold 6248R CPUs, 1TB DRAM,
and eight NVIDIA QUADRO RTX 6000 (24GB) GPUs.

H Additional Experimental Results

In this section, we introduce detailed experimental settings and present additional experiments to
backup our main results in Section 4.
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Figure 7: Classification Performance on the Linear Model P lv(w) with Different Weight Param-
eter. Structural Information: p = 2

√
n/n, q =

√
n/n. LEFT: Limited Attr. Info. ∥µ − ν∥2 =

0.2 log n/
√
n; MIDDLE: Fixed Attr. Info. ∥µ − ν∥2 = 0.05; RIGHT: Sufficient Attr. Info.

∥µ− ν∥2 = 0.01
√
log n.
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Figure 8: Classification Performance on the Nonlinear Model v.s the Linear Model (Pv v.s. P lv) with
Heterophilic Graph Structure v.s. Homophilic Graph Structure. LEFT shows the heterophilic case
and RIGHT shows the homophilic case when we switch the values of p, q. Both settings are with
Gaussian node attributes. The parameter settings are: LEFT, p = 9/

√
n, q = 10/

√
n, ∥µ− ν∥2 =

0.5, m = 10; RIGHT, p = 10/
√
n, q = 9/

√
n, ∥µ− ν∥2 = 0.5, m = 10.

H.1 Synthetic Experiments

H.1.1 Analysis on Linear Model Hyper-parameter w

In this experiment, we testify the choice of weight parameter w in the linear model on CSBM-G with
limited, fixed, and sufficient attributed information. The increase in the w from 0.5 to 10. The results
are presented in Fig H.1.1. All three settings satisfy the separability condition given in Theorem 1.
The accuracy will progressively increase with respect to n. Under three settings (Fig. H.1.1 LEFT,
MIDDLE, RIGHT), the linear model with different weight parameter w’s behave almost the same
(performance gap < 0.1% for n = 2× 105).

H.1.2 Comparison between Heterophilic Graphs and Homophilic Graph

Here, we show the symmetric patterns between the cases with heterophilic graph structures and
homophilic graphs structures by switching the structural parameters p and q. Note that the nonlinear
model Pv can naturally take care of the heterophilic case, because ϕ(x; log p/q) = −ϕ(x; log q/p).
For the linear model P lv(w), we use positive or negative w to make the model fit the homophilic
case or the heterophlic case, respectively. We follow the experiment setting in Sec. 5.1 while testing
different models on two CSBM-Gs by switching their parameters p and q. The results are shown in
Fig. 8. The two curves are almost the same up-to some experimental randomness.

H.1.3 Transition Curves under Laplacian Assumption

We present an additional experiment to explore the tradeoff between attributed information and
structural information for CSBMs with Laplacian node attributes. Similar to the setting given in
Section 5.2, the graph size is fixed to n = 2 × 104, and we calculate the averaged result on 5
generated graphs. We test different levels of attributed information (∥µ∥2 from 10−4 to 10, m = 10)
and structural information (fixing q = 5 × 10−3 and increasing p from p = q to 1). The results
are given in Fig H.1.3, and similar to the case with Gaussian node attributes, when the attributed

25



Nonlinear Linear Performance Gap

0.0

0.2

0.4

0.6

0.8

1.0

Structure Information
At

tri
bu

te
d 

In
fo

rm
at

io
n

Figure 9: Transition Curves Attributed information (
√
m∥µ∥2) v.s. Structural Information

(| log(p/q)|) for CSBMs with Laplacian Node Attributions and Homophilic Graph Structures. The
values in Performance Gap are obtained by the nonlinear case subtracting the linear case.

103 104 105

Graph Nodes (n)
0.800

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000

Ac
cu

ra
cy

Sparse Regime + Limited Attr. Info.
Optimal Nonlinear Propogation
Linear Aggregation

103 104 105

Graph Nodes (n)

0.50

0.52

0.54

0.56

0.58

0.60
Ac

cu
ra

cy
Sparse Regime + Fixed Attr. Info.

Optimal Nonlinear Propogation
Linear Aggregation

103 104 105

Graph Nodes (n)
0.525

0.550

0.575

0.600

0.625

0.650

0.675

0.700

Ac
cu

ra
cy

Sparse Regime + Sufficient Attr. Info.
Optimal Nonlinear Propogation
Linear Aggregation

Figure 10: Classification Performance on Nonlinear Models v.s. Linear Models (Pv v.s. P lv) with
Sparse Graph Structures. Structural Information: p = 0.1 log4 n/n, q = 0.08 log4 n/n. LEFT:
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log n.

information is sufficient and the structural information is limited, the non-linear model outperforms
the linear model. For other cases, two models perform similar.

H.1.4 Sparse Regime

The experimental results shown in Section 5 are on dense graphs, i.e. p, q = Θn(
√
n/n). In this

section, we will consider more sparse graph that each node has approximately (log n)4 edges, which
satisfies Assumption 1. Similar to the settings presented in Section 5.1, the classification results under
three settings are shown in Fig. H.1.4. The results backup our Theorem 2 that nonlinear model will
outperform the linear model only when sufficient attributes are available.

H.2 Real Data Experiments

H.2.1 One-v.s.-all & Several-v.s.-several Experimental Setup and Results

Experimental Setup. We provide further details for the one-v.s.-all and several-v.s.-several classi-
fication tasks. According to Table 1, there are 3, 7, 6 classification classes in PubMed, Cora, and
CiteSeer datasets, respectively. As for the several-v.s.-several tasks, we group the original classes
into two with relatively balanced node numbers in either group. The separation details are given in
Table 2. Under the Gaussian attribute assumption, we generate attributes with dimension m = 10. In
the training procedure, we initialize the projection vector (µ− ν in the model) in ψGau with standard
Gaussian, and make it trainable. We also initialize the threshold in ϕ as 0.2 and make it trainable.
We train two functions using Adam optimizer with learning rate = 1e-2, weight decay = 5e-4 under
the binary cross-entropy loss with 500 epochs. Under the Laplacian attribute assumption, we stills
set m = 10. In the training procedure, ψLap, ϕ are all nonlinear functions. We train the optimal
projection vector with standard Gaussian initialization and threshold in ψLap (initialized as 0.2) and
train the threshold in ϕ with initial parameter 0.2. Further, we adopt Adam optimizer with learning
rate = 1e-2, weight decay = 5e-4 under binary cross-entropy loss with 500 epochs. We compare the
nonlinear propagation with models using only ψ, or ϕ, or the linear model.
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Table 2: Several-v.s.several Experiments

Dataset Class Separation
Cora Class 0, 1, 2 (# node: 1804) Class 3, 4, 5, 6 (# node: 904)
CiteSeer Class 0, 1, 2 (# node: 1522) Class 3, 4, 5 (# node: 1805)
PubMed Class 0, 1 (# node: 11842) Class 2 (# node: 7875)

Several-v.s.-Several Results. Fig 11 shows the averaged performance for several-v.s.-several results
over 5 trials under Gaussian node attributes. When sufficient attribute information is available, the
nonlinear model outperforms the linear model.
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Figure 11: Averaged Several-vs-several Classification Performance on Citation Networks of Different
Nonlinear Models v.s. Linear Models (Pv v.s. P lv). Node attributes in every class are generated from
the Gaussian distributions with different means µ, ν. The optimal non-linear model has advantage
over the linear model.

I Additional Lemma Proofs

Lemma I1. Let Z follow Gaussian distribution PZ = N (µ, σ2), we have the following:

p′
Z(z) = (−z − µ

σ2
)pZ(z) (97)

Lemma Proof I1. This above can be directly proved from definition

p′
Z(z) =

1√
2πσ2

exp(− (z − µ)2

2σ2
)(−z − µ

σ2
) = (−z − µ

σ2
)pZ(z) (98)

Lemma I2. Let Z follow standard Gaussian distribution N (0, 1). We have the following asymptotic
properties:

Φ(z) =


1√
2π

exp(−z
2

2
)(−1

z
+ o(

1

z
)),when z ≤ 0 & z → −∞

1− 1√
2π

exp(−z
2

2
)(
1

z
+ o(

1

z
)),when z > 0 & z → ∞

(99)

Lemma Proof I2. For any z > 0, according to the integration by parts formula,∫ +∞

z

exp(−s
2

2
)ds =(−1

s
) exp(−s

2

2
)

∣∣∣∣+∞

z

−
∫ +∞

z

1

s2
exp(−s

2

2
)ds (100)

=(−1

s
) exp(−s

2

2
)

∣∣∣∣+∞

z

− (− 1

s3
exp(−s

2

2
)

∣∣∣∣+∞

z

−
∫ +∞

z

3

s4
exp(−s

2

2
))

(101)

=(−1

s
) exp(−s

2

2
)

∣∣∣∣+∞

z

+
1

s3
exp(−s

2

2
)

∣∣∣∣+∞

z

− 3

s5
exp(−s

2

2
)

∣∣∣∣+∞

z

+ · · ·

(102)
When z → +∞, we have ∫ +∞

z

exp(−s
2

2
)ds = exp(−z

2

2
)(
1

z
+ o(

1

z
)) (103)
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For Φ(z), when z → −∞, i.e., −z → ∞, we have

Φ(z) =
1√
2π

∫ z

−∞
exp(−s

2

2
)ds =

1√
2π

∫ +∞

−z
exp(−s

2

2
)ds (104)

=
1√
2π

exp(−z
2

2
)(−1

z
+ o(

1

z
)) (105)

When z → +∞, similarly,

Φ(z) =
1√
2π

∫ z

−∞
exp(−s

2

2
)ds = 1− 1√

2π

∫ +∞

z

exp(−s
2

2
)ds (106)

=1− 1√
2π

exp(−z
2

2
)(
1

z
+ o(

1

z
)) (107)

Proof of Lemma C1: Since Z
p∼ N (µ, I/m), let Z̃ = µTZ

p∼ N (µTµ, µTµ/m) with density
function pZ̃(z).

By the change of variables formula,

E[Z̃] =
∫ − 1

2m log p
q

−∞
(− log

p

q
)pZ̃dz +

∫ 1
2m log p

q

− 1
2m log p

q

2mzpZ̃dz +

∫ +∞

1
2m log p

q

(log
p

q
)pZ̃dz (108)

=(− log
p

q
)Φ(− 1

2m
log

p

q
;µTµ,

µTµ

m
) + log

p

q
[1− Φ(

1

2m
log

p

q
;µTµ,

µTµ

m
)]

+ 2m

∫ 1
2m log p

q

− 1
2m log p

q

zpZ̃dz (109)

Now, consider
∫ 1

2m log p
q

− 1
2m log p

q

zpZ̃dz, let t =
√

m
µTµ

(z − µTµ).∫ 1
2m log p

q

− 1
2m log p

q

zpZ̃dz =

∫ 1
2m log p

q

− 1
2m log p

q

z

√
m

2πµTµ
exp(−m(z − µTµ)2

2µTµ
)dz (110)

=

√
m

2πµTµ

∫ M

N

(

√
µTµ

m
t+ µTµ) exp(− t

2

2
)

√
µTµ

m
dt (111)

=

√
µTµ

2πm

∫ M

N

t exp(− t
2

2
)dt+

µTµ√
2π

∫ M

N

exp(− t
2

2
)dt (112)

=

√
µTµ

2πm
(exp(−N

2

2
)− exp(−M

2

2
)) + µTµ(Φ(M)− Φ(N)) (113)

where

M =

√
m

µTµ
(
1

2m
log

p

q
− µTµ) = − 1

2
√
mµTµ

log
p

q
−
√
mµTµ (114)

N =

√
m

µTµ
(− 1

2m
log

p

q
− µTµ) =

1

2
√
mµTµ

log
p

q
−
√
mµTµ (115)

Since
√
m/(µTµ)(Z − µTµ) ∼ N (0, 1), therefore

Φ(− 1

2m
log

p

q
;µTµ,

µTµ

m
) = Φ(

√
m

µTµ
(− 1

2m
log

p

q
− µTµ)) = Φ(N) (116)

Φ(
1

2m
log

p

q
;µTµ,

µTµ

m
) = Φ(

√
m

µTµ
(
1

2m
log

p

q
− µTµ)) = Φ(M) (117)

Hence,

E[Z̃] =(log
p

q
) · [1− Φ(M)− Φ(N)] + 2mµTµ[Φ(M)− Φ(N)]

+

√
2mµTµ

π
[exp(−N

2

2
)− exp(−M

2

2
)] (118)
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We further calculate the second order moment of Z̃:

E[Z̃2] =

∫ − 1
2m log p

q

−∞
(− log

p

q
)2pZ̃dz +

∫ +∞

1
2m log p

q

(log
p

q
)2pZ̃dz +

∫ 1
2m log p

q

− 1
2m (log p

q )

(2mz)2pZ̃dz

(119)

=(log
p

q
)2[1 + Φ(N)− Φ(M)] + 4m2

∫ 1
2m log p

q

− 1
2m log p

q

z2pZ̃dz (120)

To make the formula looks clean, let σ2 = µTµ
m , µ′ = µTµ, and a = 1

2m log p
q . By applying

Lemma I1, we have

∫ 1
2m log p

q

− 1
2m log p

q

=

∫ a

−a
z2pZ̃dz (121)

=(−σ2)

∫ a

−a
z(−z − µ′

σ2
)pZ̃dz + µ′

∫ a

−a
zpZ̃dz (122)

=(−σ2)

∫ a

−a
zf ′z(z)dz + (−µ′σ2)

∫ a

−a
f ′z(z)dz + µ′2

∫ a

−a
pZ̃dz (123)

=− σ2[afz(a) + afz(−a)− ΦZ(a) + ΦZ(−a)]
− µσ2[fz(a)− fz(−a)] + µ′2[ΦZ(a)− ΦZ(−a)] (124)

=(µ′2 + σ2)[ΦZ(a)− ΦZ(−a)]− µ′σ2[fz(a)− fz(−a)]− aσ2[fz(a) + fz(−a)]
(125)

=[(µTµ)2 +
µTµ

m
][Φ(M)− Φ(N)]− µTµ · µ

Tµ

m
[fz(a)− fz(−a)]

− 1

2d
log

p

q
· µ

Tµ

m
· [fz(a) + fz(−a)] (126)

By combing all the terms together, we get

E[Z̃2] =(log
p

q
)2 + (log

p

q
)2[Φ(N)− Φ(M)] + 4m2[(µTµ)2 +

µTµ

m
][Φ(M)− Φ(N)]

− 4mµTµ · µTµ · [fz(a)− fz(−a)]−
1

2m
log

p

q
· µ

Tµ

m
· 4m2 · [f(a) + f(−a)] (127)

=(log
p

q
)2 + [4(mµTµ)2 + 4mµTµ− (log

p

q
)2][Φ(M)− Φ(N)]

− 4mµTµ · µTµ
√
2π ·

√
µTµ
m

· [exp(−M
2

2
)− exp(−N

2

2
)]

−
2 log p

q · µ
Tµ

√
2π ·

√
µTµ
m

[exp(−M
2

2
) + exp(−N

2

2
)] (128)

=(log
p

q
)2 + [4(mµTµ)2 + 4mµTµ− (log

p

q
)2][Φ(M)− Φ(N)]

− 4mµTµ ·
√
mµTµ√

2π
· [exp(−M

2

2
)− exp(−N

2

2
)]

−
2 log p

q ·
√
mµTµ

√
2π

[exp(−M
2

2
) + exp(−N

2

2
)] (129)

Now, we will use Equation 118 and Equation 129 for further discussion. By Lemma I2,
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Case I: When
√
mµTµ = on(log

p
q ),

Φ(N) =Φ(− 1

2
√
mµTµ

log
p

q
−
√
mµTµ) (130)

∼ 1√
2π

exp(−N
2

2
)[

1
1

2
√
mµTµ

log p
q +

√
mµTµ

+ o(
1

N
)] (131)

∼ 1√
2π

exp(−N
2

2
)[
2
√
mµTµ

log p
q

+ o(

√
mµTµ

log p
q

)] (132)

Φ(M) =Φ(
1

2
√
mµTµ

log
p

q
−
√
mµTµ) (133)

∼1− 1√
2π

exp(−N
2

2
)[

1
1

2
√
mµTµ

log p
q −

√
mµTµ

+ o(
1

M
)] (134)

∼1− 1√
2π

exp(−M
2

2
)[
2
√
mµTµ

log p
q

+ o(

√
mµTµ

log p
q

)] (135)

exp(−N
2

2
) = exp(−

(log p
q )

2

8mµTµ
) · exp(−1

2
log

p

q
) · exp(−1

2
mµTµ) (136)

=exp(−
(log p

q )
2

8mµTµ
) · exp(−1

2
mµTµ) · (1− 1

2
log

p

q
+ on(log

p

q
)) (137)

exp(−M
2

2
) = exp(−

(log p
q )

2

8mµTµ
) · exp(1

2
log

p

q
) · exp(−1

2
mµTµ) (138)

=exp(−
(log p

q )
2

8mµTµ
) · exp(−1

2
mµTµ) · (1 + 1

2
log

p

q
+ on(log

p

q
)) (139)

From above, we have

Φ(M)− Φ(N) ∼ 1− 2
√
2√
π

·
√
mµTµ

log p
q

exp(−
(log p

q )
2

8mµTµ
) ∼ 1 (140)

1− Φ(M)− Φ(N) ∼
√

2

π
·
√
mµTµ

log p
q

· log p
q
· exp(−

(log p
q )

2

8mµTµ
) ∼ on(1) (141)

exp(−N
2

2
)− exp(−M

2

2
) ∼ − log

p

q
· exp(−

(log p
q )

2

8mµTµ
) (142)

In this case,

E[Z̃] = log
p

q
[1− Φ(M)− Φ(N)] + 2mµTµ[Φ(M)− Φ(N)]

+

√
2mµTµ

π
[exp(−N

2

2
)− exp(−M

2

2
)] (143)

∼2mµTµ (144)

30



E[Z̃2] =(log
p

q
)2 + [4(mµTµ)2 + 4mµTµ− (log

p

q
)2][Φ(M)− Φ(N)]

− 4mµTµ ·
√
mµTµ√

2π
· [exp(−M

2

2
)− exp(−N

2

2
)]

−
2 log p

q ·
√
mµTµ

√
2π

[exp(−M
2

2
) + exp(−N

2

2
)] (145)

∼(log
p

q
)2 + [4(mµTµ)2 + 4mµTµ− (log

p

q
)2][1− 2

√
2√
π

· mµ
Tµ

log p
q

exp(−
(log p

q )
2

8mµTµ
)]

− 4mµTµ ·
√
mµTµ√

2π
· log p

q
· exp(−

(log p
q )

2

8mµTµ
)−

4 log p
q ·
√
mµTµ

√
2π

· exp(−
(log p

q )
2

8mµTµ
)

(146)

∼4(mµTµ)2 + 4mµTµ (147)

var(Z̃) = E[Z̃2]− (E[Z̃])2 ∼ 4mµTµ. (148)

Case II: When
√
mµTµ = Θ(log p

q ), We define λ as:

λ =
log p

q√
mµTµ

(149)

where λ ∈ [C1, C2]. By definition, we know

Φ(M) = Φ(
λ

2
−
√
mµTµ) = Φ(

λ

2
(1 + on(1))) (150)

Φ(N) = Φ(−λ
2
−
√
mµTµ) = Φ(−λ

2
(1 + on(1))) (151)

exp(−N
2

2
) = exp(−1

8
λ2) · exp(−1

2
log

p

q
) · exp(−1

2
mµTµ) (152)

exp(−M
2

2
) = exp(−1

8
λ2) · exp(1

2
log

p

q
) · exp(−1

2
mµTµ) (153)

Now, we go further for detailed analysis: On the one hand,

1− Φ(M)− Φ(N) =1− Φ(
λ

2
−
√
mµTµ)− Φ(−λ

2
−
√
mµTµ) (154)

=Φ(−λ
2
+
√
mµTµ)− Φ(−λ

2
−
√
mµTµ) (155)

=
1√
2π

∫ − 1
2λ−

√
mµTµ

−λ
2 −

√
mµTµ

exp(− t
2

2
)dt (156)

∀ small ϵ > 0,
√
mµTµ < ϵ satisfies when n is large enough.

1− Φ(M)− Φ(N) ≥ 1√
2π

exp(− (1/2C2 + ϵ)2

2
) · 2

√
mµTµ (157)

=

√
2

π

√
mµTµ exp(− (1/2C2 + ϵ)2

2
) (158)

On the other hand,

1− Φ(M)− Φ(N) ≤
√

2

π

√
mµTµ exp(− (1/2C1 − ϵ)2

2
) (159)

Hence,

1− Φ(M)− Φ(N) = K1

√
mµTµ (160)
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where K1 ∈ [
√

2
π exp(− (1/2C2+ϵ)

2

2 ),
√

2
π exp(− (1/2C1−ϵ)2

2 )].

Similarly, we have the upper and lower bound for Φ(M)− Φ(N):

λ√
2π

exp(− (1/2C2 + ϵ)2

2
) ≤ Φ(M)− Φ(N) ≤ λ√

2π
(161)

Hence,

Φ(M)− Φ(N) = K2λ (162)

where K2 ∈ [ 1√
2π

exp(− (1/2C2+ϵ)
2

2 ), 1√
2π

]. Besides, we have

exp(−N
2

2
)− exp(−M

2

2
) ∼ − log

p

q
exp(−1

8
λ2) (163)

Therefore,

E[Z̃] ∼ log
p

q

√
mµTµ(K1 + 2K2 −

√
2

π
exp(−1

8
λ2)) (164)

From the proof, it is not hard to see K1 ∼
√

2
π exp(− 1

8λ
2), and further shows

E[Z̃] = Θ(
√
mµTµ · log p

q
) (165)

Applying the above analysis on E[Z̃2] using Equation 129, and we get the variance:

var[Z̃] = E[Z̃]2 − (E[Z̃])2 = Θ((log
p

q
)2) (166)

Case III: When
√
mµTµ = ωn(log

p
q ),
√
mµTµ = on(1),

Φ(N) = Φ(−
log p

q

2
√
mµTµ

(1 + on(1))) (167)

Φ(M) = Φ(
log p

q

2
√
mµTµ

(1 + on(1))) (168)

From above, we have

Φ(M) + Φ(N) =Φ(
log p

q

2
√
mµTµ

−
√
mµTµ) + Φ(−

log p
q

2
√
mµTµ

−
√
mµTµ) (169)

=Φ(
log p

q

2
√
mµTµ

−
√
mµTµ) + 1− Φ(

log p
q

2
√
mµTµ

+
√
mµTµ) (170)

=1− [Φ(
log p

q

2
√
mµTµ

+
√
mµTµ)− Φ(

log p
q

2
√
mµTµ

−
√
mµTµ)] (171)

∼1− 1√
2π

· 2 ·
√
mµTµ = 1−

√
2

π
·
√
mµTµ (172)

Φ(M)− Φ(N) =Φ(
log p

q

2
√
mµTµ

−
√
mµTµ)− Φ(−

log p
q

2
√
mµTµ

−
√
mµTµ) (173)

∼ 1√
2π

·
log p

q√
mµTµ

(174)

Besides, we can show the difference between the exponential term

exp(−N
2

2
)− exp(−M

2

2
) ∼ − log

p

q
(175)

exp(−N
2

2
) + exp(−M

2

2
) ∼ 2 (176)
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In this case,

E[Z̃] = log
p

q
[1− Φ(M)− Φ(N)] + 2mµTµ[Φ(M)− Φ(N)]

+

√
2mµTµ

π
[exp(−N

2

2
)− exp(−M

2

2
)] (177)

∼
√

2

π
·
√
mµTµ · log p

q
(178)

E[Z̃]2 =(log
p

q
)2 + [4(mµTµ)2 + 4mµTµ− (log

p

q
)2][Φ(M)− Φ(N)]

− 4mµTµ ·
√
mµTµ√

2π
· [exp(−M

2

2
)− exp(−N

2

2
)]

−
2 log p

q ·
√
mµTµ

√
2π

[exp(−M
2

2
) + exp(−N

2

2
)] (179)

∼(log
p

q
)2 − 1√

2π
·

log p
q√

mµTµ
· (log p

q
)2 ∼ (log

p

q
)2 (180)

var[Z̃] = E[Z̃]2 − (E[Z̃])2 ∼ (log
p

q
)2 (181)

Case IV: When mµTµ = Θ(1) (suppose mµTµ ∈ [C̃1, C̃2]), for any small ϵ > 0, we have√
2

π
·
√
mµTµ · exp(− (C̃2 + ϵ)2

2
) ≤ 1− Φ(M)− Φ(N) ≤

√
2

π
·
√
mµTµ (182)

1√
2π

exp(− (C̃2 + ϵ)2

2
)λ ≤ Φ(M)− Φ(N) ≤ 1√

2π
exp(− (C̃1 − ϵ)2

2
)λ (183)

exp(−N
2

2
)− exp(−M

2

2
) ∼ − log

p

q
· exp(−1

2
mµTµ) (184)

In this case, since mµTµ = Θn(1), we have

E[Z̃] = Θn(log
p

q
) (185)

var[Z̃] = var[Z̃] = E[Z̃]2 − (E[Z̃])2 = Θn((log
p

q
)2) (186)

Case IV: When mµTµ = ωn(1),

N ∼ −
√
mµTµ→ −∞ (187)

M ∼ −
√
mµTµ→ −∞ (188)

Similar to the previous proof, we have

Φ(M) + Φ(N) ∼ 1√
2π

· exp(−1

2
mµTµ) · 2√

mµTµ
(189)

Φ(M)− Φ(N) ∼ 1√
2π

· exp(−1

2
mµTµ) ·

log p
q√

mµTµ
(190)

exp(−N
2

2
)− exp(−M

2

2
) ∼ − log

p

q
· exp(−1

2
mµTµ) (191)

exp(−N
2

2
) + exp(−M

2

2
) ∼ 2 exp(−1

2
mµTµ) (192)
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In this case,

E[Z̃] = log
p

q
[1− Φ(M)− Φ(N)] + 2mµTµ[Φ(M)− Φ(N)]

+

√
2mµTµ

π
[exp(−N

2

2
)− exp(−M

2

2
)] (193)

= log
p

q
−
√

2

π
· exp(−1

2
mµTµ) ·

log p
q√

mµTµ
∼ log

p

q
(194)

E[Z̃2] =(log
p

q
)2 + [4(mµTµ)2 + 4mµTµ− (log

p

q
)2][Φ(M)− Φ(N)]

− 4mµTµ ·
√
mµTµ√

2π
· [exp(−M

2

2
)− exp(−N

2

2
)]

−
2 log p

q ·
√
mµTµ

√
2π

[exp(−M
2

2
) + exp(−N

2

2
)] (195)

∼(log
p

q
)2 − 1√

2π
·
(log p

q )
3√

mµTµ
· exp(−1

2
mµTµ) (196)

Hence,

var[Z̃] = E[Z̃]2 − (E[Z̃])2 ∼
√

8

π
· exp(−1

2
mµTµ) ·

(log p
q )

2√
mµTµ

(197)
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