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ABSTRACT

Rotating the activation and weight matrices to reduce the influence of outliers in
large language models (LLMs) has recently attracted significant attention, par-
ticularly in the context of model quantization. Prior studies have shown that
in low-precision quantization scenarios, such as 4-bit weights and 4-bit activa-
tions (W4A4), randomized Hadamard transforms can achieve significantly higher
accuracy than randomized orthogonal transforms. Notably, the reason behind this
phenomena remains unknown. In this paper, we find that these transformations
show substantial improvement in eliminating outliers for common tokens and
achieve similar quantization error. The primary reason for the accuracy differ-
ence lies in the fact that randomized Hadamard transforms can slightly reduce
the quantization error for tokens with massive activations while randomized or-
thogonal transforms increase the quantization error. Due to the extreme rarity
of these tokens and their critical impact on model accuracy, we consider this
a long-tail optimization problem, and therefore construct a simple yet effective
method: a weighted loss function. Additionally, we propose an optimization
strategy for the rotation matrix that involves alternating optimization of quan-
tization parameters while employing orthogonal Procrustes transforms to refine
the rotation matrix. This makes the distribution of the rotated activation val-
ues more conducive to quantization, especially for tokens with massive activa-
tions. Our method enhances the Rotated LLMs by achieving dual free, Outlier-
Free and Massive Activation-Free, dubbed as DFRot. Extensive experiments
demonstrate the effectiveness and efficiency of DFRot. By tuning the rotation
matrix using just a single sample, DFRot achieves a perplexity improvement of
0.25 and 0.21 on W4A4KV4 and W4A4KV16, respectively, for LLaMA3-8B, a
model known for its quantization challenges. Code is anonymously available at
https://anonymous.4open.science/r/DFRot-8FE3.

1 INTRODUCTION

Large Language Models (LLMs) have shown exceptional abilities across numerous domains.
Cutting-edge open-source models like LLaMA (Touvron et al., 2023) and Mistral (Jiang et al.,
2023), along with proprietary LLMs such as GPT (Achiam et al., 2023) and Gemini (Team et al.,
2023), are now being applied in a wide range of applications, including natural language understand-
ing (Zellers et al., 2019; Hendrycks et al., 2020), machine translation (Zhang et al., 2023), content
generation (Mo et al., 2024), and recommendation systems (Wu et al., 2023).

However, the remarkable success of LLMs is largely reliant on significant computational resources.
LLMs often consist of billions of parameters, making them not only resource-intensive to train but
also challenging to deploy on devices with limited computational capacity, such as mobile phones
and edge devices. Additionally, the high memory and processing demands not only drive up hard-
ware costs but also significantly increase energy consumption, leading to serious deployment con-
cerns. To address these challenges, researchers and engineers are actively exploring various model
compression techniques (Frantar et al., 2022; Xiao et al., 2023; Lin et al., 2024a; Yao et al., 2022;
Frantar & Alistarh, 2023; Ashkboos et al., 2024a). These techniques aim to reduce the size of
LLMs while maintaining their performance as effectively as possible, achieving a balance between
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efficiency and accuracy. Among the various methods, Post-Training Quantization (PTQ) provides a
training-free approach, or one with minimal training cost for calibration purposes Nagel et al. (2019);
Li et al. (2021), allowing for rapid and efficient quantization. Compared to Quantization-Aware
Training (QAT), which requires multiple rounds of fine-tuning, PTQ incurs significantly lower com-
putational costs. This makes it an appealing option for quantizing LLMs.

Unfortunately, the presence of outliers in the activations (Dettmers et al., 2022; Zeng et al., 2022)
often leads to a significant reduction in model accuracy when PTQ is applied directly. To address
this problem, earlier approaches have either scaled weights and activations (Xiao et al., 2023; Wei
et al., 2023; Shao et al., 2023), shifting the quantization challenges from activations to weights, or
employed mixed-precision techniques to isolate outliers (Dettmers et al., 2022), thereby minimizing
the LLM’s quantization error.

Recent research (Ashkboos et al., 2024b) has demonstrated that rotating activations in LLMs can ef-
fectively eliminate most outliers while preserving computational invariance, ensuring that the LLM’s
output remains identical to its original results. Moreover, the rotation matrices can be merged into
the weights, imposing no additional burden on network inference. This innovative computational
invariance (Ashkboos et al., 2024a) has garnered significant attention from researchers.

Although rotation is widely recognized as an important method for the quantization of LLMs, there
remain many unresolved issues. For example, as shown in Table 1, when activations are reduced to 4
bits, the reasons why randomized Hadamard transforms (RH) often achieve significant improvement
compared to randomized orthogonal transforms (RO) (Ashkboos et al., 2024b; Liu et al., 2024) have
not yet been fully understood. However, while directly training rotation matrices can yield good
results (Liu et al., 2024), the training process will cause substantial computational resources and
adds complexity to the quantization process.

In this paper, we first investigate the underlying reasons why RH outperforms RO. We find that for
ordinary tokens consisting primarily of outliers (Achiam et al., 2023), both RO and RH transfor-
mations can equally reduce quantization error when applied to these tokens. In contrast, for special
tokens with massive activations (Sun et al., 2024), using RO on these activations surprisingly leads
to an increase in quantization error. Our experiments show that this inability to efficiently manage
massive activations greatly restricts the accuracy of quantized LLMs. On the other hand, while
RH performs better than RO, it only manages to maintain or slightly reduce the quantization error
for these large activations. This observation indicates that both transformation methods struggle to
effectively manage massive activations in LLM quantization.

Building on these insights, we propose a novel optimization method to enhance the performance of
quantized LLMs, achieving both Outlier-Free and Massive Activation-Free, e.g. dual free (DFRot).
By treating scarce tokens with massive activations as long-tail distributed data, we develop a simple
yet effective weighted loss function. Additionally, we introduce an alternating optimization ap-
proach to refine the rotation matrices and quantization parameters, further minimizing quantization
error. Extensive experiments demonstrate the effectiveness of our proposed method. Specifically,
by tuning the rotation matrix with just a single sample and additional 8 minutes, DFRot achieves
a PPL improvement of 0.25 and 0.21 on W4A4KV4 and W4A4KV16 for LLaMA3-8B, a model
recognized for its quantization challenges (Huang et al., 2024).

2 RELATED WORK

Reducing quantization error is essential for model quantization. However, as reported by
LLM.int8() (Dettmers et al., 2022), simply quantizing LLM to INT8 results in significant accuracy
degradation due to the presence of outliers. To handle emerging outliers, LLM.int8() introduces a
mixed-precision decomposition scheme. Although it can preserve the model’s accuracy, the com-
plexity of fine-grained decomposition always leads to computational overhead and potential perfor-
mance bottlenecks. Currently, research in LLM quantization predominantly focuses on eliminating
outliers through scale invariance and rotation invariance.

2.1 ELIMINATING OUTLIERS VIA SCALE INVARIANCE

The initial idea behind suppressing outliers through scale invariance stems from the observation that
weights are easier to quantize than activations, and outliers in activations often appear in a few fixed
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Figure 1: An illustration of rotational invariance in the LLaMA architecture. The rotation matrix
R1 can be integrated into the residual connection, ensuring the network retains rotational invariance.
The rotation inner the block can further reducing outliers in the block. Both of them make LLM
fewer outliers and be easier to quantize. The rotation matrix R1, RT

1 , R2, RT
2 and RT

4 can be
integrated with the adjunct weights. R3 and R4 need to compute online.

channels Dettmers et al., 2022. Based on this, SmoothQuant (Xiao et al., 2023) first proposes that
we can offline migrate the quantization difficulty from activations to weights via scale invariance.
SmoothQuant enables an INT8 quantization of both weights and activations for all the matrix multi-
plications in LLMs. Furthermore, Outlier Suppression+ (Wei et al., 2023) proposes a fast and stable
scheme to effectively calculate scaling values, achieving a better balance in quantization burden. To
reduce manual design and further enhance quantization performance in extremely low-bit quantiza-
tion, OmniQuant (Shao et al., 2023) introduces Learnable Weight Clipping and Learnable Equivalent
Transformation, efficiently optimizing the quantization process for both weight-only and weight-
activation quantization. In the clipping W4A8 quantization, QQQ (Zhang et al., 2024) proposes
to dynamically handle outliers through adaptive smoothing. QServe (Lin et al., 2024b) proposes
SmoothAttention to effectively mitigate the accuracy degradation caused by 4-bit KV quantization.
Both QQQ and QServe have effectively enhanced the performance of LLMs in W4A8 quantization.

2.2 ELIMINATING OUTLIERS VIA ROTATION INVARIANCE

Although scale invariance can reduce outliers and improve quantization performance, it merely
transfers the outliers from activations to weights and has not eliminated them fundamentally. When
the magnitude of the outliers is large, scaling struggles to achieve an effective balance between
weights and activations. Recently, researchers have found that applying rotation matrices to net-
works can effectively reduce outliers without increasing the complexity of LLMs. QuIP Chee et al.
(2024) is the first to suggest that quantization can benefit from the incoherence between weight and
Hessian matrices. It employed randomized orthogonal matrices generated by Kronecker product to
enhance their incoherence. QuIP# (Tseng et al., 2024) replaces the randomized orthogonal matri-
ces with randomized Hadamard matrices, which are faster and possess better theoretical properties.
QuaRot (Ashkboos et al., 2024b) is the first work to apply rotational invariance (Ashkboos et al.,
2024a) for model quantization. QuaRot finds that randomized Hadamard transformations yield bet-
ter results compared to randomized orthogonal transformations. SpinQuant (Liu et al., 2024) further
extends the rotation matrices to a trainable space and applied Cayley optimization (Li et al., 2020)
to refine them, achieving significant improvements across diverse datasets.

3 METHODOLOGY

3.1 PRELIMINARY

To remove outliers in the input activations X1, a rotation matrix R1 is applied to the input matrix
X1, resulting in a new input activation X1R1. R1 satisfies R1R

T
1 = RT

1 R1 = I and |R1| =
1. Using the LLaMA architecture as an example, X1R1 is then passed to the RMSNorm, which
satisfies the commutation property: RMSNorm(X1R1) = RMSNorm(X1)R1 (Ashkboos et al.,
2024a). Here, we assume that RMSNorm operates on each row i of the activations X1 as X1,i ←
X1,i/ |X1,i|. This commutation property implies that multiplying the input of RMSNorm by R1 is
equivalent to multiplying the RMSNorm output by R1 as well.

3
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Table 1: WikiText-2 perplexity (↓) results for RO and RH for LLaMA and Mistral models. The
4-4-4, 4-4-16, 4-8-16 represent W4A4KV4, W4A4KV16, W4A8KV16 respectively. We show the
failed GPTQ using NaN and the perplexity results>100 by Inf. QuaRot.FP16() denotes retaining
tokens with massive activations as FP16.

Method LLaMA2-7B LLaMA2-13B LLaMA3-8B Mistral-7B-v0.3

4-4-4 4-4-16 4-8-16 4-4-4 4-4-16 4-8-16 4-4-4 4-4-16 4-8-16 4-4-4 4-4-16 4-8-16

GPTQ NaN NaN NaN Inf Inf 6.01 Inf Inf 7.29 Inf Inf 8.39

(RO) QuaRot 7.96 7.71 5.61 6.00 5.92 4.99 10.54 10.15 6.52 6.05 5.98 5.40
(RO) QuaRot.FP16() 6.17 6.10 - 5.38 5.34 - 7.83 7.68 - 5.79 5.73 -

(RH) QuaRot 6.27 6.20 5.61 5.51 5.46 5.01 8.20 8.02 6.52 5.81 5.75 5.40
(RH) QuaRot.FP16() 6.17 6.10 - 5.40 5.37 - 7.82 7.67 - 5.78 5.73 -

The output of LayerNorm is then passed into the subsequent linear blocks. With the introduction
of R1, the input to these linear layers is altered. To ensure that the output from the linear layers
remains unchanged, RT

1 is multiplied by the weight matrix W , resulting in a new weight matrix
RT

1 W , which can be calculated offline. Since RT
1 R1 = I , the output from the linear layer remains

unaffected. This computational invariance property of LLMs ensure the introduction of the rotation
matrices without changing the original results.

A similar approach can be applied to rest layers within an LLM block. As shown in Figure 1, by
transforming the weight matrices in the Multi-Head Attention (MHA) as RT

1 Wq , RT
1 Wk, RT

1 Wv ,
and WoR1, and the weights in the Feed-Forward Network (FFN) as RT

1 Wup, RT
1 Wgate, and

WdownR1, the hidden features within both MHA and FFN remain unchanged. Consequently, the
output feature Y1 is transformed into Y1R1, which will sum with the residual input X1R1 satisfies
X1R1 + Y1R1 = (X1 + Y1)R1 = X2R1. The output will serve as the input for the next
LLM block. Similarly, by transforming Wlm head to RT

1 Wlm head, the network output will remain
unchanged.

Moreover, we can introduce additional rotation matrices to further mitigate outliers between layers.
As illustrated in Figure 1, head-wise rotation matrices R2 and RT

2 can be applied to Wv and Wo,
while R3 can be inserted for Query and Key after RoPE. Additionally, R4 and RT

4 can be placed
between the Swish activation and Wdown. These strategies help further suppress outliers and reduce
quantization error without affecting the block’s output. In this paper, we focus exclusively on R1.
For R2, R3, and R4, we adopt the settings from QuaRot (Ashkboos et al., 2024b) by setting them
to random Hadamard matrices.

3.2 WHY THE RANDOMIZED HADAMARD IS BETTER?

Based on the computational invariance described in Section 3.1, it is evident that the choice of rota-
tion matrices is critical for ensuring the accuracy performance of the quantized model. Therefore, a
natural question arises: What type of rotation matrix offers the most advantageous properties? We
begin by focusing on RO and RH, as both QuaRot (Ashkboos et al., 2024b) and SpinQuant (Liu
et al., 2024) have shown that the latter delivers substantial improvements over the former in LLMs.
We conducted experiments by applying RO and RH to the LLaMA and Mistral models, followed
by weight quantization using GPTQ under various settings. The results are shown in Table 1, ben-
efiting from the outlier elimination through rotation, we find that for 8-bit activation quantization,
both RO and RH lead to significant performance improvements compared to standard quantization.
Additionally, no substantial difference is observed between the two methods. However, under 4-bit
token-wise activation quantization, RH significantly outperforms RO.

To investigate the performance differences between RH and RO under 4-bit activation setting, we
plot the corresponding quantization error after applying 4-bit quantization to the multiple tokens.
We also display the quantization error for the baseline setting where quantization is applied without
rotating the activation to better understand the impact of using the rotation matrix. As shown in
Figure 2, compared to the no rotation (NR), both RO and RH effectively reduce the quantization
error for most tokens across different models. While RH slightly lowers the quantization error,
the difference between the two methods is minimal for the majority of tokens. This leads to the
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Figure 2: Comparison of 4-bit activation quantization error E(·) for each token with NR, RO and
RH for (a) LLaMA2-7B, (b) LLaMA-2-13B, (c) LLaMA3-8B and (d) Mistral-7B-v0.3. The tokens
are from model.layers.6.post attention layernorm. Best viewed in color.
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Figure 3: Comparison of 2D 4-bit quantization errors for tokens with NR, RO and RH for LLaMA3-
8B from Figure 2.
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Figure 4: Comparison of 4-bit quantization error for the token with massive activation with NR, RO
and RH for LLaMA3-8B from Figure 2.

question: What explains the significant difference in accuracy during quantization when their
quantization errors are so similar?

To answer this question, we turn our attention to massive activation (Sun et al., 2024), a rare but sig-
nificant feature in LLMs. Since each token has a fixed L2 norm after RMSNorm processing, tokens
with massive activation naturally exhibit smaller quantization errors when quantized to 4-bit. As
shown in Figure 2, the red points represent tokens with massive activation. While most tokens show
large quantization errors under NR, these special tokens display significantly smaller errors, which
can be observed from Figure 3. Figure 4 presents the quantization error distribution for tokens with
massive activation after applying RO, RH, and NR. Surprisingly, the rotation operations do not sig-
nificantly reduce quantization errors for these tokens. In fact, compared to NR, RO greatly increases
their quantization error, while RH only marginally reduces it. This leads us to question whether to-
kens with massive activation are the primary cause of the significant accuracy discrepancies between
RH and RO.

To investigate this further, we build upon QuaRot by retaining tokens with massive activations in
FP16 format for both RO and RH, while applying 4-bit quantization to the remaining input tokens.
Therefore, we can conclude that the fundamental reason for the performance disparity between RO
and RH is that RH more effectively reduces the quantization error for tokens with massive
activations in 4-bit activation quantization.

3.3 OPTIMIZATION OBJECTIVES AND CALIBRATION DATA SELECTION

The evaluation results in Section 3.2 show that applying 4-bit quantization to activations leads to
significant quantization errors due to the large volume of activations, ultimately causing accuracy
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degradation. While encoding these activations more precisely could alleviate the issue, it results in
a mixed quantization approach that is not well-suited for current GPU platforms. A good rotation
matrix R1 should minimize the different between the original input x and its quantized version,
namely:

L(R1, g) = Ex

[
∥xR1 −Qg(xR1)∥22

]
, (1)

where x ∈ RC is the token vector from a calibration dataset Xcal, C is the number of channels. R1

satisfies R1R
T
1 = I , g is the quantization parameters and Qg(x) is the quantization representation

of the x. The size of Qg(x) is the same to the x. The expectation E [·] is taken over the token
distribution. For simplicity in analysis, we utilize the mean squared error, denoted as ∥ · ∥2.

To better adapt R1 to the massive activations, we adjust it by optimizing the following loss function:

L(R1, g) = Ex∈Xcal\Xm

[
∥xR1 −Qg(xR1)∥22

]
+ γEx∈Xm

[
∥xR1 −Qg(xR1)∥22

]
. (2)

where Xm ⊆Xcal denotes the subset of tokens with massive activations, while Xcal \Xm repre-
sents the remaining tokens. During calibration, we apply a weighted loss to prioritize the quantiza-
tion error on tokens with massive activations, with γ representing the weight.

The motivation behind this principle stems from the observations in Table 1. Since Xm is the
key factor contributing to the performance gap between RO and RH. Simply optimizing R1 over
the entire Xcal fails to specifically target Xm. Additionally, compared to the NR approach in
Table 1, RO also significantly improves performance, indicating that reducing the outliers on Xcal \
Xm can enhance the performance of the quantization method. However, optimizing only for Xm

risks overfitting, which could increase the quantization error for X \ Xm, ultimately degrading
the model’s overall performance. Hence, it is crucial to optimize both Xm and X \Xm. Using a
weighted approach to optimize the quantization loss is a straightforward yet highly effective method.
Ablation studies in Section 4.2 further demonstrate the advantages of this strategy.

3.4 SOLUTION METHODS

Optimizing R1 is a challenging task. Since R1 influences every MHA and FFN in the network,
adjusting the activation distribution in one layer impacts the quantization outcomes across all layers.
This makes it difficult to optimize layer by layer or block by block (Shao et al., 2023; Wei et al.,
2023). A straightforward approach is to use training methods for quantization-aware fine-tuning of
the rotation matrix across the entire network (Liu et al., 2024). However, this approach necessitates
fine-tuning the entire network. Although it does not require retaining the gradients of the weights or
the corresponding states in the optimizer, it still demands substantial computational resources during
the quantization process.

In this paper, we focus on improving the effectiveness of rotation matrices in mitigating outliers in
activation values. Intuitively, we hypothesize that a rotation matrix that minimizes quantization error
will lead to fewer activation outliers and, consequently, better performance. Drawing inspiration
from Simsiam (Chen & He, 2021), we propose to regard quantization representation Qg(xR1) as
cluster centroids ηx. In the context, optimizing R1 and g is equivalent to optimizing R1 and η,
which can be viewed as an implementation of an Expectation-Maximization (EM)-like algorithm,
as shown in the following equation:

minR1,η L(R1,η) = Ex∈Xcal\Xm

[
∥xR1 − ηx∥22

]
+ γEx∈Xcal

[
∥xR1 − ηx∥22

]
, (3)

where ηx = Qg(xR1). This formulation is analogous to k-means clustering (Macqueen, 1967),
and R1 acts like the kernel function, representing the learnable rotation matrix. Similar to k-means
clustering, the problem described in Eq 3 can be approached using an alternating algorithm, where
one set of variables is fixed while solving for the other. Formally, we can alternate between solving
these two subproblems:

ηt ← argmin
η
L
(
Rt−1

1 ,η
)

(4)

Rt
1 ← argmin

R1

L
(
R1,η

t
)

(5)

where t represents the iteration index of the alternating rounds, and ηt and Rt
1 denote the values of

η and R1 at round t.

6
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Solving for the cluster centroids ηx The set of quantization parameters g{s, z} further contains
the quantization scale s and zero point z. Assume we apply the static quantization, the st, zt and ηx

can be solved by the following equations:

st, zt ← argmins,z Ex

[∥∥xRt−1
1 −Qs,z(xR

t−1
1 )

∥∥2
2

]
,ηt

x ← Qst,zt(xRt−1
1 ) (6)

In the case of dynamic asymmetric per-token quantization, we can independently determine the
optimal quantization scheme for solving sx and zx for each xR1:

ηx = Qg(xR1) = clamp
(⌊

xR1

s

⌉
+ z, 0, 2N − 1

)
,

where sx =
αmax(xR1)− βmin(xR1)

2N − 1
, zx = −

⌊
βmin(xR1)

sx

⌉ (7)

where ⌊·⌉ indicates round operation, N is the bitwidth, and α and β is the clip ratio for upper bound
and lower bound of quantization, respectively.

Solving for R1. Eq 5 is well-known as Procrustes problem (Mulaik, 2009). which involves find-
ing the optimal rotation matrix R1 that best aligns two sets of points, minimizing the Frobenius
norm of their difference. The solution to this problem can be obtained through Singular Value De-
composition (SVD). Specifically, given input matrices X = {x} and its quantized version Qg(X)
= {Qg(x)}, the optimal R1 can be found:

R1 = UV T ,where U ,Σ,V T = SVD(XTQgt(X)). (8)

where we treat the quantization parameters gt as a constant.

One-step optimization. To find an improved rotation matrix R1 and quantization parameters g,
we perform the iterative process shown in Eq 4 and Eq 5 with just one round, which already yields
significantly better performance, as demonstrated in the evaluation (Section 4). Specifically, a cali-
bration set Xcal is randomly sampled from X , the iterative process can be specified as:

st, zt ← argmins,z
∑

x∈Xcal

[∥∥xRt−1
1 −Qs,z(xR

t−1
1 ))

∥∥2
2

]
,ηt

x ← Qst,zt(xRt−1
1 ), (9)

then the resulting quantization parameters will be used to produce the rotation matrix:

Rt
1 ← argmin

R1

∑
x∈Xcal

[∥∥xR1 − ηt
x

∥∥2
2

]
(10)

The detailed algorithm is provided in Algorithm 1 in Appendix.

4 EXPERIMENTS

Experiment settings. We implemented DFRot based on QuaRot1. In this paper, to simplify the
problem, we apply dynamic asymmetric per-token quantization for activation values without search-
ing for clip ratios, and we fix (α, β) to (1.0, 1.0). The KV-cache is quantized using asymmetric
quantization with a group size of 128 and a constant clipping ratio of 1.0. RTN and GPTQ (Frantar
et al., 2022) are used for weight with per-channel symmetric quantization, where a linear search
for the clipping ratio is applied to minimize squared error. We use 128 samples from the WikiText-
2 (Merity et al., 2016) training set, each with a sequence length of 2048, as the calibration dataset for
GPTQ quantization. We use a RH to initialize the rotation matrix and optimize it for 100 iterations.

4.1 MAIN RESULTS

Language Generation Task. Firstly, we evaluate DFRot on a language generation task and com-
pare it with QuaRot. We quantize the weights using both the RTN and GPTQ methods. Table 2
shows the perplexity of LLaMA and Mistral models. As shown, compared to QuaRot, DFRot

1https://github.com/spcl/QuaRot
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Table 2: WikiText-2 perplexity (↓) results for LLaMA and Mistral. The 4-4-4 and 4-4-16 represent
W4A4KV4, W4A4KV16, respectively. We show the failed GPTQ experiments using NaN and the
perplexity results>100 by Inf.

Method LLaMA2-7B LLaMA2-13B LLaMA3-8B Mistral-7B-v0.3

Baseline 5.47 4.88 6.14 5.32

Extra Time +8min +20min +8min +8min

4-4-4 4-4-16 4-4-4 4-4-16 4-4-4 4-4-16 4-4-4 4-4-16

RTN NaN NaN Inf Inf Inf Inf Inf Inf
QuaRot-RTN 9.04 8.69 6.31 6.23 11.06 10.47 6.38 6.29
DFRot-RTN 7.68 7.47 6.21 6.12 9.67 9.35 6.36 6.27

GPTQ NaN NaN Inf Inf Inf Inf Inf Inf
QuaRot-GPTQ 6.27 6.20 5.51 5.47 8.20 8.02 5.81 5.75
DFRot-GPTQ 6.21 6.14 5.47 5.39 7.95 7.81 5.81 5.76

Table 3: Zero-shot accuracy (↑) of LLaMA and Mistral with GPTQ on PIQA (PQ), Wino-
Grande (WG), HellaSwag (HS), Arc-Easy (A-e), Arc-Challenge (A-c), and LAMBADA (LA).

Model Method W-A-KV PQ WG HS A-e A-c LA Avg.

LLaMA2-7B

FP16 16-16-16 79.11 68.98 75.99 74.54 46.42 73.88 69.82

QuaRot 4-4-16 76.06 65.67 73.00 69.82 42.24 69.42 66.03
4-4-4 76.33 64.96 72.69 68.60 41.64 68.58 65.47

DFRot 4-4-16 77.15 65.82 73.17 69.78 44.37 70.66 66.83
4-4-4 76.22 64.96 72.41 70.75 42.66 69.92 66.15

LLaMA2-13B

FP16 16-16-16 80.52 72.22 79.39 77.48 49.15 76.75 72.58

QuaRot 4-4-16 77.91 68.51 75.94 73.57 46.25 72.97 69.19
4-4-4 78.73 70.40 75.82 73.74 46.33 72.73 69.63

DFRot 4-4-16 78.73 69.30 76.99 72.69 45.82 75.41 69.82
4-4-4 79.82 68.43 76.70 72.64 46.59 75.33 69.92

LLaMA3-8B

FP16 16-16-16 80.79 72.85 79.16 77.78 53.33 76.03 73.32

QuaRot 4-4-16 74.92 66.61 73.39 70.29 44.54 67.71 66.24
4-4-4 75.14 66.54 72.32 68.64 42.41 66.04 65.18

DFRot 4-4-16 76.22 68.03 73.92 70.41 45.65 68.87 67.18
4-4-4 75.68 66.77 73.56 70.29 45.14 68.99 66.74

Mistral-7B-v0.3

FP16 16-16-16 82.26 73.88 80.41 78.20 52.30 75.32 73.73

QuaRot 4-4-16 79.54 69.30 77.81 75.51 47.95 73.76 70.65
4-4-4 79.38 69.06 77.36 74.54 48.29 73.55 70.36

DFRot 4-4-16 79.87 69.53 78.24 75.88 48.46 73.01 70.83
4-4-4 80.36 69.61 78.01 75.55 47.95 72.39 70.65

achieves improvements in most cases. Notably, DFRot achieves the most significant improvement
on the LLaMA3-8B model with W4A4KV4 and W4A4KV16 using GPTQ, outperforming QuaRot
by 0.25 and 0.21, respectively. Similar to QuaRot, DFRot does not require any retraining process
and only needs an additional sample to optimize the rotation matrix. On a single NVIDIA A100
GPU, optimizing the rotation matrix takes an extra 8 minutes for embeddings of 4096 (LLaMA2-
7B, LLaMA3-8B & Mistral-7B-v0.3) and 20 minutes for 5120 (LLaMA2-13B), resulting in minimal
overhead. It demonstrates that DFRot has wide applicability and can serve as a cost-effective method
to enhance the quantization performance of rotated LLMs.

Zero-Shot Tasks. Following QuaRot, we also evaluate DFRot on the following six important
zero-shot tasks: PIQA (Bisk et al., 2020), WinoGrande (Sakaguchi et al., 2021), HellaSwag (Zellers
et al., 2019), Arc (Easy and Challenge) (Clark et al., 2018) and LAMBADA (Radford et al., 2019).
We used lm eval==0.4.3 (Gao et al., 2024) and GPTQ for our experiments, with default parameters
and weight quantization, respectively. Table 3 shows the accuracy of DFRot on the above tasks as
well as the average score. As can be seen, DFRot consistently achieves improvements compared to
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QuaRot across all tasks. For example, DFRot achieves a 1.56% accuracy improvement compared to
QuaRot on the LLaMA3-8B model with W4A4KV4 quantization settings.

4.2 ABLATION STUDIES
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Figure 5: (RH) Comparison of WikiText-2 perplexity results under different γ for W4A4KV4.
Weight is quantized via GPTQ. γ →∞ denotes we only optimize quantization error for Xm.
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Figure 6: (RH) Comparison of WikiText-2 perplexity results under different γ for W4A4KV16.
Weight is quantized via GPTQ. γ →∞ denotes we only optimize quantization error for Xm.
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Figure 7: (RO) Comparison of WikiText-2 perplexity results under different γ for W4A4KV4.
Weight is quantized via GPTQ. γ →∞ denotes we only optimize quantization error for Xm.
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Figure 8: (RO) Comparison of WikiText-2 perplexity results under different γ for W4A4KV16.
Weight is quantized via GPTQ. γ →∞ denotes we only optimize quantization error for Xm.

Choice of γ. To further understand the effect of hyperparameters in DFRot, we conducted an
ablation study on Wikitext-2 PPL to investigate the impact of different γ settings for W4A4KV4
and W4A4KV16. As seen in Figures 5 and 6, when γ ranges between 50 and 200, DFRot achieves
significant improvements across various LLaMA models using RH. Notably, on the LLaMA3-
8B model, known for its quantization challenges, we observed a PPL improvement of over 0.2.
If we set γ = 1 and treat Xm and X \ Xm equally to minimize their quantization errors, it
may reduce the quantization loss of X \Xm but increase the quantization loss of Xm, ultimately
resulting in a performance decline on the LLaMA2-13B. Conversely, if we set γ → ∞ and only
optimize the quantization error for Xm, it will increase the quantization error of X \Xm, resulting
in an accuracy drop across the LLaMA2-7B, LLaMA2-13B, and LLaMA3-8B. It is also worth
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mentioning that the trend observed in the Mistral-7B-v0.3 model significantly differs from that of
the LLaMA models. We believe this is primarily because, compared to the LLaMA models, the RH
has effective in reducing the quantization error on Xm as shown in Figure 13. Therefore, optimizing
the quantization error of Xm does not have a noticeable impact on the Mistral-7B-v0.3.

Initialize with Randomized Orthogonal. We conducted an ablation study on the use of RO with
varying γ values. From Figure 7 and Figure 8, it can be observed that, compared to using RH for
initialization, our method achieved significant improvements in RO scenarios. However, due to the
exceptional performance of RH, initialization and optimization using RH often yield superior final
results compared to those obtained with random initialization.

0.60 0.64 0.68 0.72 0.76 0.80 0.84 0.88 0.92 0.96 1.00
activation clip ratio

8

10

12

14

16

18

20

PP
L

RO
RH
(RO) DFRot
(RH) DFRot

(a) LLaMA2-7B
0.60 0.64 0.68 0.72 0.76 0.80 0.84 0.88 0.92 0.96 1.00

activation clip ratio

6.5

7.0

7.5

8.0

8.5

PP
L

RO
RH
(RO) DFRot
(RH) DFRot

(b) LLaMA2-13B
0.60 0.64 0.68 0.72 0.76 0.80 0.84 0.88 0.92 0.96 1.00

activation clip ratio

10

12

14

16

18

PP
L

RO
RH
(RO) DFRot
(RH) DFRot

(c) LLaMA3-8B
0.60 0.64 0.68 0.72 0.76 0.80 0.84 0.88 0.92 0.96 1.00

activation clip ratio

6.2

6.3

6.4

6.5

6.6

6.7

6.8

6.9

PP
L

RO
RH
(RO) DFRot
(RH) DFRot

(d) Mistral-7B-v0.3

Figure 9: Comparison of WikiText-2 perplexity results under different activation clip ratio for
W4A4KV4. Weight is quantized via RTN.
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Figure 10: Comparison of WikiText-2 perplexity results under different activation clip ratio for
W4A4KV16. Weight is quantized via RTN.

Ablation studies for activation clip ratio for RTN. Activation clipping is a widely used quan-
tization optimization technique, particularly effective for RTN. As shown in Figures 9 and 10, we
conducted an experiment to investigate the effectiveness of DFRot for RTN quantization. The ex-
perimental results show DFRot always achieves better PPL at appropriate activation clip ratios.
When the rotation matrix is initialized with RH, DFRot also achieves better results compared to
RO. Additionally, we find that compared to GPTQ, which updates weights through compensation
mechanisms, DFRot has a more pronounced effect on RTN quantization as it directly optimizes
quantization errors. We believe that DFRot can further enhance the performance of methods like
QServe, which do not incorporate GPTQ.

5 CONCLUSION

Eliminating outliers in LLMs through rotational invariance can significantly improve model quan-
tization accuracy. In this paper, we find that in the context of 4-bit activation quantization, the
fundamental reason for the difference in effectiveness between RO and RH is their performance on
tokens with massive activations. Specifically, randomized Hadamard transformations perform better
on these tokens. Based on this observation, we treat the problem as a long-tail optimization and
construct a simple yet effective weighted quantization loss function to balance the importance of
tokens. Furthermore, by alternately optimizing quantization parameters and employing orthogonal
Procrustes transformations to refine the rotation matrix, our method, named DFRot, enhances the
Rotated LLMs by achieving Dual Free, including Outlier-Free and Massive Activation-Free. DFRot
significantly improves model accuracy in 4-bit activation quantization with just a single data sample
and extra 8 minutes, achieving PPL improvements of 0.25 and 0.21 on W4A4KV4 and W4A4KV16,
respectively, for the LLaMA3-8B, which is notable for its quantization challenges.
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A QUANTIZATION ERROR FOR TOKENS WITH MASSIVE ACTIVATION IN
LLAMA2-7B, LLAMA2-13B AND MISTRAL-7B-V0.3

More quantization results for LLaMA2-7B, LLaMA2-13B and Mistral-7B-v0.3:
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Figure 11: Comparison of 2D 4-bit quantization errors for tokens with NR, RO and RH for
LLaMA2-7B from Figure 2.
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Figure 12: Comparison of 2D 4-bit quantization errors for tokens with NR, RO and RH for Mistral-
7B-v0.3 from Figure 2.
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Figure 13: Comparison of 2D 4-bit quantization errors for tokens with NR, RO and RH for Mistral-
7B-v0.3 from Figure 2.
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B QUANTIZATION ERROR BETWEEN VANILLA, RANDOM AND HADAMARD

More 2D quantization error visualization are shown as follows:
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Figure 14: Comparison of 4-bit quantization error for the token with massive activation with NR,
RO and RH for LLaMA2-7B from Figure 2.
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Figure 15: Comparison of 4-bit quantization error for the token with massive activation with NR,
RO and RH for LLaMA2-13B from Figure 2.
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Figure 16: Comparison of 4-bit quantization error for the token with massive activation with NR,
RO and RH for Mistral-7B-v0.3 from Figure 2.
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Table 4: WikiText-2 perplexity (↓) results for LLaMA2-7B. The 4-4-4 and 4-4-16 represent
W4A4KV4, W4A4KV16, respectively. We show the failed GPTQ experiments using NaN and
the perplexity results>100 by Inf.

Method LLaMA2-7B Method LLaMA2-7B

Baseline 5.47 Baseline 5.47

4-4-4 4-4-16 4-4-4 4-4-16

RTN NaN NaN GPTQ NaN NaN
QuaRot-RTN 9.04 8.69 QuaRot-GPTQ 6.27 6.20
SpinQuant-RTN 6.20 6.17 SpinQuant-GPTQ 5.94 5.91
OFMAF-RTN 7.68 7.47 OFMAF-GPTQ 6.21 6.14

Table 5: Zero-shot accuracy (↑) of LLaMA2-7B with GPTQ on PIQA (PQ), WinoGrande (WG),
HellaSwag (HS), Arc-Easy (A-e), Arc-Challenge (A-c), and LAMBADA (LA).

Model Method W-A-KV PQ WG HS A-e A-c LA Avg.

LLaMA2-7B

FP16 16-16-16 79.11 68.98 75.99 74.54 46.42 73.88 69.82

QuaRot 4-4-16 76.06 65.67 73.00 69.82 42.24 69.42 66.03
4-4-4 76.33 64.96 72.69 68.60 41.64 68.58 65.47

SpinQuant 4-4-16 75.24 66.14 72.82 68.77 40.44 70.88 65.72
4-4-4 76.66 65.98 72.78 70.92 42.06 70.12 66.42

DFRot 4-4-16 77.15 65.82 73.17 69.78 44.37 70.66 66.83
4-4-4 76.22 64.96 72.41 70.75 42.66 69.92 66.15

C COMPARE TO SPINQUANT

Here, we present a detailed comparison between DFRot and SpinQuant (Liu et al., 2024):

• Motivation. The motivations behind SpinQuant and DFRot are entirely different. SpinQuant
maintains the orthogonality of matrices throughout the training process using Cayley Optimiza-
tion (Li et al., 2020), representing an end-to-end approach. In contrast, DFRot finds the fundamen-
tal reasons for performance differences in RO and RH is the quantization errors of tokens with
massive activation. Recognizing the rarity of such tokens, it considers this a long-tail optimization
problem and introduces a weighted loss function.

• Optimization Methods. SpinQuant optimizes rotation matrices using Cayley optimization, which
necessitates loading the entire model and completing both forward and backward to obtain gradi-
ents during the training process. In contrast, DFRot regards the optimization of rotation matrices
and quantization parameters as an implementation of an Expectation-Maximization (EM) like al-
gorithm, employing Procrustes transformation to solve it, requiring only a single forward.

• Optimization Cost. To load and train the LLM, an NVIDIA A100 GPU with 80GB is almost
essential for SpinQuant. In contrast, DFRot has lower hardware requirements than SpinQuant and
can even optimize on RTX4090 24GB. For the training time, as metioned by SpinQuant, it takes
∼1.39 hours for LLaMA-3 8B, ∼1.25 hours for the LLaMA-2 7B, ∼2.36 hours for LLaMA-2
13B on 8 NVIDIA A100 GPUs. However, our DFRot only take ∼8 minutes for the LLaMA2-7B,
∼20 minutes for the LLaMA-2 7B, ∼8 minutes for LLaMA-2 13B on 1 NVIDIA A100 GPU.
Therefore, DFRot is more efficient.

• Performance. Benefit from fine-tuning rotation matrices across the entire network through gra-
dients, SpinQuant outperforms DFRot on the WikiText-2 PPL, as shown in Table 4, particulary
in RTN quantization. However, we find for zero-shot tasks, DFRot still performs on par with
SpinQuant as seen in Table 5. This indicates that the model’s zero-shot capability does not have
a direct correlation with its performance on the calibration dataset. By implementing Outlier-
Free and Massive Activation-Free, DFRot also effectively enhances the performance of quantized
LLMs. On the other hand, the goal of DFRot is not to achieve state-of-the-art performance. In
contrast, it aims to highlight the significant importance of tokens with massive activation and ex-
plains the fundamental reasons why RH performance better than RO. Based on this finding, we
propose an efficient and feasible solution to address the problem.
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Algorithm 1 Optimization of Quantization Parameters and Rotation Matrix
Require: Token x, initial rotation matrix R1, quantization function Q
Ensure: Optimized rotation matrix R1 and quantization parameters ηx

1: Initialize R1 with randomized Hadamard matrix, t = 0
2: while not converged do
3: // Step 1: Optimize Quantization Parameters ηx

4: for each token x do
5: Compute quantization parameters s, z via argmins,z ∥xRt−1

1 −Q(xRt−1
1 , s, z)∥22

6: Update ηt
x = Q(xRt−1

1 , st, zt)
7: end for
8: // Step 2: Optimize Rotation Matrix R1

9: Solve the Procrustes problem to update Rt
1: Rt

1 = argminR ∥XR− ηt
X∥2F

10: t = t+ 1
11: end while
12: return Optimized R∗

1

D CALIBRATION DATA

In this section, we explain the reason why we only used a single data sample to calibrate the rotation
matrix R1 in DFRot, and don not attempt to use more data:

• In LLMs, outliers and massive activations often appear in some fixed channels. Therefore, the
process of optimizing the rotation matrix can be seen as an optimization of the distribution patterns
of outliers and massive activations. We have simply use ten samples to calibrate the rotation matrix
for LLaMA2-7B, but no significant improvement in accuracy was observed.

• Our calibration data is a sample with a length of 2048 tokens. Since we obtain the calibration
set from each MHA and FFN, taking LLaMA2-7B as an example, we can obtain 2048 × 32 ×
2 = 131072 tokens as calibration tokens. This is relatively sufficient to statistically analyze the
distribution patterns of outliers and massive activations.

E ALGORITHM

F RESULTS FOR QWEN2-7B

To further investigate the significance of massive activation on the final performance of the model,
we conducted experiments using the recently renowned open-source model QWen2-7B. We find
that the QWen2-7B model exhibits several different properties compared to LLaMA2-7B, LLaMA2-
13B, LLaMA3-8B, and Mistral-7B-v0.3:

Language Generation Task and Zero-Shot tasks. Compared Table 1 to Table 6, when we used
QuaRot.FP16() to retain the tokens with massive activation in FP16, although both of the perfor-
mance of the RO and RH improved, the performance of RH still surpassed that of RO, which is
inconsistent with the results in Table 1. For language generation task, similar to Mistral-7B-v0.3,
DFRot does not achieve PPL improvement for QWen2-7B as shown in Table 7. However, from
Table 8, we find it still improves accuracy for zero-shot tasks, which demonstrates the effectiveness
of DFRot again.

Quantization error and performance improvement. We visualize the quantization error for
QWen2-7B. As shown in Figure 17 and Figure 19, compared to previous models, QWen2-7B ex-
hibits massive activation across multiple dimensions, which leads to a larger quantization error for
the previous model. Based on this, both RO and RH effectively reduce the quantization error for
tokens with massive activation, e.g. there is no red point in Figure 17 for QWen2-7B. This also
explains why the PPL improvement of RO after using QuaRot.FP16() is not as pronounced as in
previous models. Additionally, by comparing the quantization error between RO and RH in Fig-
ure 18, we observe that for QWen2-7B, the quantization error of RH slightly outperforms that of RO.
Therefore, the performance of (RH) QuaRot.FP16() still surpasses that of (RO) QuaRot.FP16() .
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Quantize KV-Cache to 4-bit. We find QWen2-7B is highly sensitive to the quantization of KV-
Cache. When KV-Cache is quantized to 4 bits, the model performance completely collapses, even
with W4A8KV4, which is significantly different from previous models. We find that this is due to
QWen2-7B employs bias for Q, K, V module and some biases is large. This can lead to significant
outliers for some specific channels and result in severe quantization errors for the KV-Cache quanti-
zation, even with rotation. Exploring how to better integrate rotation matrices with smooth methods
for the quantization of KV-Cache is also an important research direction.

Table 6: WikiText-2 perplexity (↓) results for RO and RH for QWen2-7B. The 4-4-4, 4-4-16, 4-8-16
represent W4A4KV4, W4A4KV16, W4A8KV16 respectively. We show the perplexity results>100
by Inf. QuaRot.FP16() denotes retaining tokens with massive activations as FP16.

Method QWen2-7B

4-4-4 4-4-8 4-4-16 4-8-16

GPTQ Inf Inf Inf 7.57

(RO) QuaRot Inf 8.07 8.07 7.25
(RO) QuaRot.FP16() Inf 7.98 7.97 -

(RH) QuaRot Inf 7.95 7.95 7.24
(RH) QuaRot.FP16() Inf 7.91 7.91 -

Table 7: WikiText-2 perplexity (↓) results for QWen2-7B. The 4-4-4, 4-4-8, 4-4-16 represent
W4A4KV4, W4A4KV8, W4A4KV16 respectively. We show the perplexity results>100 by Inf.

Method QWen2-7B Method QWen2-7B

Baseline 7.14 Baseline 7.14

Extra Time +6min Extra Time +6min

4-4-4 4-4-8 4-4-16 4-4-4 4-4-8 4-4-16

RTN Inf Inf Inf GPTQ Inf Inf Inf
QuaRot-RTN Inf 8.41 8.41 QuaRot-GPTQ Inf 7.95 7.95
DFRot-RTN Inf 8.40 8.43 DFRot-GPTQ Inf 7.96 7.94

Table 8: Zero-shot accuracy (↑) of QWen2-7B with GPTQ on PIQA (PQ), WinoGrande (WG),
HellaSwag (HS), Arc-Easy (A-e), Arc-Challenge (A-c), and LAMBADA (LA).

Model Method W-A-KV PQ WG HS A-e A-c LA Avg.

QWen2-7B

FP16 16-16-16 81.07 72.45 78.83 74.66 49.83 71.82 71.44

QuaRot
4-4-16 78.02 68.11 75.16 72.22 45.56 66.83 67.65
4-4-8 78.02 66.38 75.24 71.34 46.76 67.13 67.48
4-4-4 57.18 49.09 28.56 31.99 25.94 0.45 32.20

DFRot
4-4-16 78.73 69.30 75.59 74.12 49.40 67.63 69.13
4-4-8 78.51 66.93 75.06 72.18 49.06 66.85 68.10
4-4-4 55.88 49.17 27.79 34.34 25.60 0.50 32.21

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

0
1000

2000E(NR) 50

150

250

E(R
O)

20

120

E(
RH

)

(a) LLaMA2-7B

0
1000

2000E(NR) 50

150

250

E(R
O)

40

140

240

E(
RH

)

(b) LLaMA2-13B

0
1000

2000E(NR) 50

150

250

E(R
O)

20

120

220

E(
RH

)

(c) LLaMA3-8B

0
1000

2000E(NR) 50

150

250

E(R
O)

20

120

220

E(
RH

)

(d) Mistral-7B-v0.3

0
1000

2000
E(NR) 50

150

250

E(R
O)

20

120

220

E(
RH

)

(e) QWen2-7B

E(NR) > E(RO) > E(RH) E(NR) > E(RH) > E(RO) E(RO) > E(NR) > E(RH)

Figure 17: Comparison of 4-bit activation quantization error E(·) for each token with NR, RO and
RH for (a) LLaMA2-7B, (b) LLaMA-2-13B, (c) LLaMA3-8B and (d) Mistral-7B-v0.3, (e) QWen2-
7B. The tokens are from model.layers.6.post attention layernorm. Best viewed in color.
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Figure 18: Comparison of 2D 4-bit quantization errors for tokens with NR, RO and RH for QWen2-
7B.
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Figure 19: Comparison of 4-bit quantization error for token with massive activation without rota-
tion (Vanilla), with RO and RH for QWen2-7B.

G VISUALIZATION FOR DIFFERENT LAYERS
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Figure 20: The tokens are from model.layers.2.input layernorm
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Figure 21: The tokens are from model.layers.2.post attention layernorm
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Figure 22: The tokens are from model.layers.5.input layernorm

0
1000

2000E(NR) 50

150

250

E(R
O)

20

120

E(
RH

)

(a) LLaMA2-7B

0
1000

2000E(NR) 50

150

250

E(R
O)

40

140

240

E(
RH

)

(b) LLaMA2-13B

0
1000

2000E(NR) 50

150

250

E(R
O)

20

120

220

E(
RH

)

(c) LLaMA3-8B

0
1000

2000
E(NR) 50

150

250

E(R
O)

20

120

220

E(
RH

)

(d) Mistral-7B-v0.3

0
1000

2000
E(NR) 50

150

250
E(R

O)
20

120

220

E(
RH

)

(e) QWen2-7B

E(NR) > E(RO) > E(RH) E(NR) > E(RH) > E(RO) E(RO) > E(NR) > E(RH)

Figure 23: The tokens are from model.layers.5.post attention layernorm
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Figure 24: The tokens are from model.layers.7.input layernorm
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Under review as a conference paper at ICLR 2025

0
1000

2000E(NR) 50

150

250

E(R
O)

20

120

E(
RH

)
(a) LLaMA2-7B

0
1000

2000E(NR) 50

150

250

E(R
O)

40

140

240

E(
RH

)

(b) LLaMA2-13B

0
1000

2000E(NR) 50

150

250

E(R
O)

20

120

220

E(
RH

)

(c) LLaMA3-8B

0
1000

2000E(NR) 50

150

250

E(R
O)

20

120

220

E(
RH

)

(d) Mistral-7B-v0.3

0
1000

2000
E(NR) 50

150

250

E(R
O)

20

120

220

E(
RH

)

(e) QWen2-7B

E(NR) > E(RO) > E(RH) E(NR) > E(RH) > E(RO) E(RO) > E(NR) > E(RH)

Figure 25: The tokens are from model.layers.7.post attention layernorm
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Figure 26: The tokens are from model.layers.9.input layernorm
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Figure 27: The tokens are from model.layers.9.post attention layernorm
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Figure 28: The tokens are from model.layers.11.input layernorm
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Figure 29: The tokens are from model.layers.11.post attention layernorm
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Figure 30: The tokens are from model.layers.13.input layernorm
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Figure 31: The tokens are from model.layers.13.post attention layernorm
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Figure 32: The tokens are from model.layers.15.input layernorm
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Figure 33: The tokens are from model.layers.15.post attention layernorm
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