
HyperTime: Hyperparameter Optimization for Combating Temporal Distribution Shi�s MM ’24, October 28-November 1, 2024, Melbourne, VIC, Australia

Appendix of “HyperTime:
Hyperparameter Optimization for
Combating Temporal Distribution

Shifts”
This appendix is organized into several sections that provide addi-
tional details and information related to the main paper:

(1) Section A presents the details of the hyperparameter optimiza-
tion algorithm in our method.

(2) Section B includes a theoretical analysis in this paper.
(3) Section C shows detailed information on the search space used

in the paper.
(4) Section D provides additional empirical evaluation results.
(5) Section E provides detailed information on the datasets used in

the paper.

A DETAILS OF LEXIFLOW

LexiFlow is a randomized direct search based HPO algorithm, which
is able to direct the search to the optimum based on lexicographic
comparisons over pairs of con�guration. It start from a initial hy-
perparameter con�guration and gradually move to the optimal
point by making comparisons with nearby con�gurations in the
search space. More details about LexiFlow could be found in the
paper [60].

Algorithm 1 LexiFlow
Input: Objectives L(·) , tolerances (optional).

1 Initialization: Initial con�guration 20, C 0 = A = B = 0, X = X8=8C ;
2 Obtain L(20) , and 2⇤ 20, H {20}, /H L(20)
3 while C = 0, 1, ... do
4 Sample u uniformly from unit sphere S
5 if Update(L(2C + `u) , ! (2C) , /H) then 2C+1 2C + `u, C 0 C ;
6 else if Update(L(2C � `u) , ! (2C) , /H) then 2C+1 2C � `u, C 0 C ;
7 else 2C+1 2C , B B + 1 ;
8 H H [{2C+1}, and update /H according to (9)
9 if B = 23�1 then B 0,X X

p
(C 0 + 1)/(C + 1) ;

10 if X < X;>F4A then
// Random Restart

11 A A + 1, 2C+1 # (20, �) , X X8=8C + A

12 Procedure Update(L(20) , L(2) , /H):
13 if L(20) �(/H) L(2) Or

�
L(20) =(/H) L(2) and L(20) �; L(2

�
) then

14 if L(20) �(/H) L(2⇤) Or
�
L(20) =(/H) L(2⇤) and L(20) �; L(2⇤)

�
then

15 2⇤ 20

16 Return True
17 else
18 Return False
19 Output: A lexi-optimal con�guration 2⇤

1We adjust LexiFlow and make such changes: 1. Remove the optional input targets 2.
Adjust tolerance from an absolute value to a relative value in percentage.

Given any two hyperparameter 20 and 2 , the targeted lexicographic
relations =(/) , �(/) and �(/) in Algorithm 1 are de�ned as:

L(20) =(/) L(2) , ! (8) (20) = ! (8) (2)_ (6)

(! (8) (20)  I (8) ^ ! (8) (2)  I (8)) 88 2 [1, ..., �],

L(20) �(/) L(2) , 98 2 [�] : ! (8) (20) < ! (8) (2)^ (7)

! (8) (2) > I (8) ^ !8�1 (2) =(/) !8�1 (2
0
),

L(20) �(/) L(2) , L(20) �(/) L(2) _ L(20) =(/) L(2), (8)

Where !8�1 (2) denotes the a vector with the �rst 8 � 1 dimensions
of L(2), i.e., !8�1 (2) = [! (1) (2), ..., ! (8�1) (2)]. 88 2 [1, ..., �], I (8)
are computed based on historically evaluated pointsH . ⇠0

H
= H ,

88 2 [1, ..., �]:

I (8) = ! (8)
H
⇤ (1 + ^ (8)

),⇠8
H

:= {2 2 ⇠8�1
H

|! (8) (2)  I (8) },

! (8)
H

:= min
22⇠8�1

H

! (8) (2).
(9)

B THEORETICAL ANALYSIS

(1) We denote the :-th validation set as: D1, D2, ..., D .
(2) We use 3 to denote the a data instance pair (x,~) in a particular

validation set D in general.
(3) We use ;2 (3) to denote the loss of a particular ML model con-

�gured 2 on data instance 3 .
(4) We use P to denote the test data distribution.

P���� �� L���� 1. We denote by P the data distribution on which
Dtest andDval is drawn from.Without loss of generality, we assume
the loss function is Mean squared Error, i.e., for any validation set
D, !>BB (52 ,D) = 1

|D |

Õ
32D ;2 (3) = 1

|D |

Õ
(x,~)2D(52 (x) � ~)2.

We further assume a bounded loss: 83 ⇠ P, ;2 (3) < V . We have:

|Loss(52 ,Dval) � E[Loss(52 ,Dtest)] | = |
1

|Dval |

|Dval |’
8=1

;2 (38) (10)

� E3⇠P [;2 (3)] |,

where38 is the 8-th data instance inDval and thus38 ⇠ P. According
to Hoe�ding’s inequality [22], we have:

%A (|Loss(52 ,Dval) � E[Loss(52 ,Dtest)] | > n) = (11)

|
1

|Dval |

|Dval |’
8=1

;2 (38) � E3⇠P [;2 (3)] | 

2 exp
�2|Dval |n

2

1
|Dval |

Õ |Dval |
8=1 V

= 2 exp
�2|Dval |n

2

V
.

By letting 2 exp �2 |Dval |n2

V = n , we have with probability at least
1 � n .

|Loss(52 ,Dval) � E[Loss(52 ,Dtest)] | 

s
V ln(2/n)
2|Dval |

.

Which completes the proof. É

MM ’24, October 28-November 1, 2024, Melbourne, VIC, Australia Shaokun Zhang et al.

P���� �� T������ 2. Proof sketch. We consider the following
two cases: (I) !:⇤ (2̂)  !0E6 (2̂); (II) !:⇤ (2̂) > !0E6 (2̂).

It is easy to prove that under case (I), we have !:⇤ (2̂)  !avg (2̂) 
(1+^)!⇤avg  (1+^)!avg (2⇤:⇤), in which the last inequality is based
on the de�nition of !⇤avg.

Under case (II), when ^ �
!avg (2⇤:⇤)
!⇤avg

� 1, we have 2⇤:⇤ 2 C
(0)
⇤ , i.e.,

2⇤:⇤ is within the ^ (0) -tolerance from the best average validation
loss, and thus

!:⇤ (2̂)  !worst (2̂)  !worst (2
⇤

:⇤),

in which the last inequality is based on the fact that 2⇤:⇤ is within
the ^ (0) -tolerance from the best average validation loss. We choose
the best con�guration according to the performance on !worst, and
thus !worst (2̂) < !worst (2̃) for all 2̃ 2 C

(0)
⇤ .

Combining the conclusions under both cases and high probability
concentration of !:⇤ (2̂) to E[Loss(52̂ ,Dtest)] �nishes the proof. We
provide a more rigorous proof below.

Case 1: !:⇤ (2̂)  !0E6 (2̂).

In this case, we have,

!:⇤ (2̂)  !avg (2̂)  (1 + ^)!⇤avg  (1 + ^)!avg (2⇤:⇤) . (12)

Case 2: !:⇤ (2̂) > !0E6 (2̂):

When ^ �
!avg (2⇤:⇤)
!⇤avg

� 1, we have 2⇤:⇤ 2 C
1
⇤ , and thus

!:⇤ (2̂)  !worst (2̂)  !worst (2
⇤

:⇤), (13)

in which the last inequality is based on the fact that when 2⇤:⇤ 2 C
1
⇤ ,

we choose the best con�guration according to the performance on
!worst, and thus !worst (2̂) < !worst (2̃) for all 2̃ 2 C1

⇤ .

Combining Case 1 and Case 2, we have,

!:⇤ (2̂) 

(
(1 + ^)!0E6 (2⇤:⇤), if !:⇤ (2̂)  !0E6 (2̂)

!worst (2⇤:⇤), Otherwise
(14)

According to the conclusion from Lemma 1, we have,

E[LossDtest (2̂)]  !:⇤ (2̂) +

s
V ln(1/X)
2|DE0; |

. (15)

Combining Eq. (14) and Eq. (15) �nishes the proof. É

C SEARCH SPACE

C.1 Search Space of gradient-boosting tree
Table 7: Hyperparameters tuned in XGboost.

hyperparameter type range
estimators number int [4, min(32768, train_datasize)]

max leaves int [4, min(32768, train_datasize)]
max depth int [0, 6, 12]

min child weight �oat [0.001, 128]
learning rate �oat [1/1024, 1.0]
subsample �oat [0.1, 1.0]

colsample by tree �oat [0.01, 1.0]
colsample by level �oat [0.01, 1.0]

reg alpha �oat [1/1024, 1024]
reg lambda �oat [1/1024, 1024]

Table 8: Hyperparameters tuned in LGBM.

hyperparameter type range
estimators number int [4, min(32768, train_datasize)]

leaves number int [4, min(32768, train_datasize)]
min child sample int [2, 129]

learning rate �oat [1/1024, 1.0]
log_max_bin int [3, 11]

colsample by tree �oat [0.01, 1.0]
reg alpha �oat [1/1024, 1024]

reg lambda �oat [1/1024, 1024]

C.2 Search Space of neural network

We use the same neural network backbone as the Wild-Time [55]
benchmark for di�erent datasets based on its source code https:
//github.com/huaxiuyao/Wild-Time. We list the detailed search
space used in di�erent datasets in Table 9.

Table 9: Hyperparameters tuned in neural networks.

Dataset Hyparameter type Range

Yearbook

Training iteration int [3000, 5000]
learning rate �oat [1e-4,1e-1]
batch size int {32, 64, 128, 256}
n_conv_channels int [16, 512]
kernel_size int {2, 3, 4, 5}
has_max_pool bool True or Flase

FMoW-Time

Training iteration int [3000, 6000]
learning rate �oat [1.5e-5,3e-4]
batch size int {32, 64, 128, 256}
weight_decay �oat [0, 0.03]

MIMIC-IV Training iteration int [3000, 5000]
learning rate �oat [5e-4,5e-2]
n_head int {2, 3, 4, 5}
n_layer int {2, 3, 4, 5}
hidden_size int {64, 128, 256, 512}

Hu�post Training iteration int [6000, 8000]
learning rate �oat [1e-5,1e-4]
weight_decay �oat [0.01, 0.03]

arXiv Training iteration int [6000, 8000]
learning rate �oat [1e-5,1e-4]
weight_decay �oat [0.01, 0.03]

https://github.com/huaxiuyao/Wild-Time
https://github.com/huaxiuyao/Wild-Time

HyperTime: Hyperparameter Optimization for Combating Temporal Distribution Shi�s MM ’24, October 28-November 1, 2024, Melbourne, VIC, Australia

Table 10: The number of validation folds and test folds for
each dataset of the Wild-Time benchmark in our experi-
ments.

Yearbook FMoW-Time MIMIC-IV Hu�post arXiv
Val. num 8 11 2 4 10
Tes. num 9 5 2 3 6

 � �
 � �
�)&!,

	�
�

	�

	�
�

	�
�

	��	

	���

�)
,,
��

��
�
��

��
��

�&" -+% %-.

�����"%#$-"!�)'�%("������
�.*"+�%'"

 � �
 � �
�)&!,

	�
�

	�

	�
�

	�
�

	��	

	���
�)

,,
��

��
�
��

��
��

�&" -+% %-.

�����"%#$-"!�)'�%("����
	�
�.*"+�%'"

 � �
 � �
�)&!,

	�
�

	�

	�
�

	�
�

	��	

�)
,,
��

��
�
��

��
��

�&" -+% %-.

�����"%#$-"!�)'�%("����
��
�.*"+�%'"

 � �
 � �
�)&!,

	�
�

	�

	�
�

	�
�

	��	

	���

�)
,,
��

��
�
��

��
��

�&" -+% %-.

�����"%#$-"!�)'�%("�����	�
�.*"+�%'"

� 	
 � �
 �
�*'"-

���

����

����

�	��

�
��

����

����

�*
--
���

�
��

�

�#--#'��*/#,��-.&(.&*)
�����#&$%.#"�*(!&)#������
�0+#,�&(#

� 	
 � �
 �
�*'"-

���
����
����
�	��
�
��
����
����
�
��

�*
--
���

�
��

�

�#--#'��*/#,��-.&(.&*)
�����#&$%.#"�*(!&)#�������
�0+#,�&(#

� 	
 � �
 �
�)&!,

����

�	��

����

�
��

�)
,,
���

�
��
�

�",,"&��)."+��,-%'�-%)(
�����"%#$-"!�)' %("�������
�/*"+�%'"

� 	
 � �
 �
�*'"-

���

����

����

�	��

�
��

����

����

�*
--
���

�
��

�

�#--#'��*/#,��-.&(.&*)
�����#&$%.#"�*(!&)#����	��
�0+#,�&(#

Figure 6: Per fold test loss (lower the better) for Hypertime
and CFO_WeightedCombine on Electricity and Vessel Power
Estimation datasets with di�erent weight settings. The re-
sults are averaged over �ve random seeds.

Figure 7: Per fold test accuracy for a state-of-the-art robust
training method LISA [56], our method HyperTime, and the
methods combining LISA and CFO and HyperTime respec-
tively. The results are from the same set of experiments with
that in Table 6. All the numbers are the higher the better.

D ADDITIONAL EMPIRICAL RESULTS

Per fold performance in Table 6. In Figure 7, we present the per-
fold test performance for di�erent methods in Table 6. Our observa-
tions indicate that the combination of HyperTime and Lisa achieves
the best performance compared to other methods. It demonstrates
that the combination of HyperTime and other non-HPO solutions
overall further boost the model performance.

Supplementary results of CFO_WeightedCombine. In this sec-
tion, we conduct additional experiments to compare HyperTime
with CFO_WeightedCombine, which set the optimization objectives
as a weighted combination of average validation loss and the worst
fold validation loss in CFO. To represent the weights assigned to
the worst fold validation loss, we use the symbol _. Consequently,
we set the weight for the average validation loss as 1 � _. We use
four di�erent _ settings for CFO_WeightedCombine: 5%, 10%, 15%,
and 20%. Figure 6 shows the per-fold test loss of these two methods.
We observe that HyperTime outperforms CFO_WeightedCombine
under all four weight settings. This further demonstrates the im-
portance of formulating the optimization of these two objectives as
a lexicographic optimization problem.

E DATASET DETAILS

E.1 More details about Temperature prediction
dataset

Temperature prediction is a synthetic data for urban climate re-
search, which includes 75 years of urban climate condition infor-
mation in speci�c areas. It has distribution shifts as mentioned
in existing urban climate research works [28, 40]. Here we se-
lect 16 gridcells of data according to [65], with the latidude of
35.34, 36.28, 37.23, 38.17 and longitude of 115.0, 116.2, 117.5, 118.8.
It includes ten features including near-surface humidity, eastward
near-surface wind, precipitation, etc. In our experiment, we predict
the urban daily maximum of average 2-m temperature which could
be regarded as a regression task. More information about this data
is available at [65].

E.2 More information about fold splitting

To ensure fair and consistent comparisons, we use the same valida-
tion/test folds splitting setting as theWild-Time benchmark. We list
the number of training and test folds in Table 10. More information
can be found in [55].

	Abstract
	1 Introduction
	2 Related Work
	3 Method
	3.1 Notions, Notations, and Background
	3.2 Robust HPO by Imposing Lexicographic Objectives

	4 Theoretical Analysis
	5 Experiments
	5.1 Datasets
	5.2 Effectiveness
	5.3 Further Investigation

	6 Conclusion
	References
	A Details of LexiFlow
	B Theoretical Analysis
	C Search Space
	C.1 Search Space of gradient-boosting tree
	C.2 Search Space of neural network

	D Additional Empirical Results
	E Dataset Details
	E.1 More details about Temperature prediction dataset
	E.2 More information about fold splitting

