-

™)

=
°

HyperTime: Hyperparameter Optimization for Combating Temporal Distribution Shifts

Appendix of “HyperTime:
Hyperparameter Optimization for

Combating Temporal Distribution
Shifts”

This appendix is organized into several sections that provide addi-
tional details and information related to the main paper:

(1) Section A presents the details of the hyperparameter optimiza-
tion algorithm in our method.

(2) Section B includes a theoretical analysis in this paper.

(3) Section C shows detailed information on the search space used
in the paper.

(4) Section D provides additional empirical evaluation results.

(5) Section E provides detailed information on the datasets used in
the paper.

A DETAILS OF LEXIFLOW

LexiFlow is a randomized direct search based HPO algorithm, which
is able to direct the search to the optimum based on lexicographic
comparisons over pairs of configuration. It start from a initial hy-
perparameter configuration and gradually move to the optimal
point by making comparisons with nearby configurations in the
search space. More details about LexiFlow could be found in the

paper [60].

Algorithm 1 LexiFlow

Input: Objectives L(-), tolerances K (optional).

Initialization: Initial configuration co, ' =r =5 =0, 8 = Sinis;
Obtain L(cp), and ¢* « co, H «— {co}, Zgy < L(co)

while t =0, 1, ... do

Sample u uniformly from unit sphere S

if Update(L(cs + pu), L(ct), Zg) then cppq — cp +pu, t/ — t;

else if Update(L(c; — pu), L(c;), Zg¢) then cpyq «— ¢p —pu, t/ — ¢
else c;41 «—cp, s —s+1;
H — H U {css1}, and update Zgy according to (9)
if s=29"1thens — 0,6 — 8(t' +1)/(t +1) ;
if § < 81owver then
// Random Restart
rer+1,ce1 < N(co,I), 8 « Sinir +1
Procedure Update(L(c”), L(¢), Zy):
if L(¢") <z, L(c) Or (L(¢") =(z,) L(c) andL(c’) <; L(c)) then
if L(c¢’) <(zqp L(c*) Or (L) =z L(c") andL(c’) <y L(c*))
then
‘ ¢ e—c

Return True
else
‘ Return False
Output: A lexi-optimal configuration c*

'We adjust LexiFlow and make such changes: 1. Remove the optional input targets 2.
Adjust tolerance from an absolute value to a relative value in percentage.

MM 24, October 28-November 1, 2024, Melbourne, VIC, Australia

Given any two hyperparameter ¢’ and c, the targeted lexicographic
relations =(z), <(z) and =(z) in Algorithm 1 are defined as:

L(¢') =(z) L(¢) & LD () = LD (c)v (6)
LD () <z ALD () < 2Dy vie[1,..1],
L(¢') <(z) L(c) & Fi € [1] : LD (') < LD (c)A 7)

L(i) (C) > Z(i) /\L,-,1(c) =(2) Lifl(cl),

L() Z(z2) L(0) & L(¢) <(z) L) VL) =(z) L), ()
Where L;_1(c) denotes the a vector with the first i — 1 dimensions
of L(c), ie., Li—1(c) = [LM (¢), ... LUV ()]. Vi € [1,.... 1], 2D
are computed based on historically evaluated points H. C9H =H,
Viell,..,I]:

2 = Lffi{) w (1+ K(i)),C;,_(={ce Cf;{1|L(i)(c) < z(i)},

LY = min L0 (c). ©

i-1
ceCyy

B THEORETICAL ANALYSIS

(1) We denote the k-th validation set as: D1, Dy, ..., Dk.

(2) We use d to denote the a data instance pair (x, y) in a particular
validation set O in general.

(3) We use I¢(d) to denote the loss of a particular ML model con-
figured c on data instance d.

(4) We use P to denote the test data distribution.

PROOF OF LEMMA 1. We denote by P the data distribution on which
Drest and Dy, is drawn from. Without loss of generality, we assume
the loss function is Mean squared Error, i.e., for any validation set
D, Loss(fe, D) = ﬁ Zdep le(d) = ﬁ Yxyenfe(x) -y
We further assume a bounded loss: Vd ~ P, I.(d) < . We have:

[Dyl
1
ILoss(fe, Dyal) — E[Loss(fe, Drest)]| = 75— E le(d;) (10)
[Dyall i=1

—Eq-plle(d)]l,
where d; is the i-th data instance in D, ,) and thus d; ~ P. According
to Hoeffding’s inequality [22], we have:

Pr(|Loss(fe, Dyal) — E[Loss(fe, Drest)]] > €) = (11)
|Dva1|

- le(di) —Egpllc(d)]] <

|Dval| ; o Fle

2 _2|DVa1|62 _ _2|Dval|62

XP Dl Dl 2 2ex —,3 .
[Dyar | Zi:l ﬂ

_2|Z)val|€2

By letting 2 exp

1
[Loss(fe, Dyal) — E[Loss(fe, Drest)]| < %‘Z]:j)

Which completes the proof. O

= €, we have with probability at least
1-e

MM °24, October 28-November 1, 2024, Melbourne, VIC, Australia

Proor oF THEOREM 2. Proof sketch. We consider the following
two cases: (I) Lg+ (¢) < Laog(€); () L+ (€) > Laug ().

It is easy to prove that under case (I), we have L+ (¢) < Lavg(¢) <
(1+ K)L;Vg < (1+K)Lavg (c]’:*), in which the last inequality is based
on the definition of Lj,.

Lavg (¢jx)
L;vg
¢y is within the k(9 -tolerance from the best average validation

loss, and thus

Under case (II), when k > — 1, we have c;;* € C*(O), ie.,

L (€) < Lworst(€) < Lworst(‘ﬁt*l
in which the last inequality is based on the fact that c]’:* is within

the (%) -tolerance from the best average validation loss. We choose
the best configuration according to the performance on Lyorst, and

thus Lyorst (€) < Lworst (€) for all é € C©.

Combining the conclusions under both cases and high probability
concentration of Ly« (¢) to E[Loss(fz, Dhest)] finishes the proof. We
provide a more rigorous proof below.

Case 1: L+ () < Laog(0).

In this case, we have,

L () < Lavg(§) < (1+0)Ligg < (1+0)Lavg(cl). (12)

Case 2: L+ (€) > Lapg(6):
Lavg(c;;*)
L;vg

L (€) < Lworst(€) < Lworst(CZ*)> (13)

in which the last inequality is based on the fact that when ¢, € cl,
we choose the best configuration according to the performance on
Lyorst, and thus Lyorst (¢) < Lworst(€) for all ¢ € CL.

When x > — 1, we have CZ* € Cl, and thus

Combining Case 1 and Case 2, we have,

(1+ K)Lavg(c;;«)a if L« () < Lavg(é)

Li+(¢) < . 14

k(&) Lworst(cl);*), Otherwise (14)
According to the conclusion from Lemma 1, we have,

E[Lossp,,, (6)] < L= (&) + (15)

Combining Eq. (14) and Eq. (15) finishes the proof. |

Shaokun Zhang et al.

C SEARCH SPACE

C.1 Search Space of gradient-boosting tree
Table 7: Hyperparameters tuned in XGboost.

hyperparameter | type | range
[4, min(32768, train_datasize)]
max leaves | int [4, min(32768, train_datasize)]
max depth | int [0, 6, 12]
min child weight | float | [0.001, 128]
learning rate | float | [1/1024, 1.0]
subsample | float | [0.1, 1.0]
colsample by tree | float | [0.01, 1.0]
colsample by level | float | [0.01, 1.0]
reg alpha | float | [1/1024, 1024]
reg lambda | float | [1/1024, 1024]

estimators number | int

Table 8: Hyperparameters tuned in LGBM.

hyperparameter | type | range
estimators number | int [4, min(32768, train_datasize)]
leaves number | int [4, min(32768, train_datasize)]
min child sample | int [2, 129]
learning rate | float | [1/1024, 1.0]
log_max_bin | int [3,11]
colsample by tree | float | [0.01, 1.0]
reg alpha | float | [1/1024, 1024]
reg lambda | float | [1/1024, 1024]

C.2 Search Space of neural network

We use the same neural network backbone as the Wild-Time [55]
benchmark for different datasets based on its source code https:
//github.com/huaxiuyao/Wild-Time. We list the detailed search
space used in different datasets in Table 9.

Table 9: Hyperparameters tuned in neural networks.

Dataset Hyparameter type Range
Training iteration int [3000, 5000]
learning rate float [le-4,1e-1]
Yearbook batch size int {32,64, 128,256}
n_conv_channels int [16,512]
kernel_size int {2,3,4,5}
has_max_pool bool True or Flase
Training iteration int [3000, 6000]
learning rate float [1.5e-5,3e-4]
FMoW-Time batch size int {32, 64,128,256}
weight_decay float [0,0.03]
Training iteration int [3000, 5000]
MIMIC-IV
¢ learning rate float [5e-4,5e-2]
n_head int {2,3,4,5}
n_layer int {2,3,4,5}
hidden_size int {64, 128,256,512}
Training iteration int [6000, 8000]
Huffpost learning rate float [le-5,1e-4]
weight_decay float [0.01,0.03]
. Training iteration int [6000, 8000]
arXiv X
learning rate float [le-5,1e-4]
weight_decay float [0.01,0.03]

https://github.com/huaxiuyao/Wild-Time
https://github.com/huaxiuyao/Wild-Time

HyperTime: Hyperparameter Optimization for Combating Temporal Distribution Shifts

Table 10: The number of validation folds and test folds for
each dataset of the Wild-Time benchmark in our experi-
ments.

| Yearbook | FMoW-Time | MIMIC-IV | Huffpost | arXiv

Val. num 8 11 2 4 10
Tes. num 9 5 2 3 6
0.22 Electricity Electricity
- P 0.22 PN
Tozof ™" TTA N [} I AP SN
5% N D 0201 = ¥ TAC N
< N\, \ < N AN
10.18 N, 10.18 AN
8 AR 8 - AN
\,
& 0.16 \\ X £ 0.16 \\
— K, — \,
=014 N =014 ANEA'Y
@ A | 4 NN
S 0.12{ +— CFO_WeightedCombine: A =5% *1 9 o0.12] + cro_weightedCombine:1=10% - %
—&— HyperTime ‘~\\‘ —— HyperTime Te—a
1 3 2 5 6 1 2 3] 5 6
Folds Folds
Electricity 0.22 Electricity
I~ R
. SN . _ZASIIN
G020 77 N Go.20{ 5" AN
2 v NS 2 N
10.18 % 10.18 N \\
5 W 5 N
\
Qo6 LN & 0.16 \\ \
! N, -
~0.14 N N »| —o014 NN
N — s \ e
w \ v \ >
G 0.12{ - CFo_weightedCombine: A =15% G 0.12{ - CFO_WeightedCombine: A = 20%
—& HyperTime ™~ —&— HyperTime e
1 3 2 6 1 2 3 2 6
Folds Folds
Vessel Power Estimation Vessel Power Estimation
15007 4 cFo_weightedCombine: A=5% A 1600] —& CFO_WeightedCombine: A=10% £
== H Ti / - H i /
w00 iyperTime /rl _1s00 yperTime /
i 1300 /| W00 /
g I‘l g ll//>
= 1200 F = 1300 ,’/ /
~ ~ 1200 ==
“ 1100 \ AN //F a A N s *’-‘/
] \ | 211001 R\, /Xy S
S 1000] N A S N\ AR N4
\ W 1000 N, / N
900 §y’ 900 \YI
i 2 3 4 5 6 7 i 2 3 4 5 6 7
Folds Folds
Vessel Power Estimation Vessel Power Estimation

—&- CFO_WeightedCombine: A=15% /' — CFO_WeightedCombine: A =20%

1500

~»— HyperTime ~»— HyperTime /
__ 1600 i / — 1400 e /v
m / [y !/
] / 0 !/
S 1400 Sl = 1300 /4
= e 4 & 1200 (

/ =
3 12007 & iy g 2 11001 &, N F
3 \, NS /o 3 \ s |
1 N\ VNN S o0o] N S
1000 AL . ¥
\\/ 900 jS
1 2 3 42 5 6 1 1 2 3 4 5 6 1
Folds Folds

Figure 6: Per fold test loss (lower the better) for Hypertime
and CFO_WeightedCombine on Electricity and Vessel Power
Estimation datasets with different weight settings. The re-
sults are averaged over five random seeds.

o1 Yearbook
9.0 /{,///“Q s
7 \, X
L /K e
8.5{ & 1174 N
> |4 ¥4
gsol i
3 \ 4
2 /
<751k / LISA
\\.’ / —a CFO+LISA
7.0 VoA —e— HyperTime
\x’/ —e—- HyperTime+LISA
6.5
0 1 2 3 4 5 6 7 8
Folds

Figure 7: Per fold test accuracy for a state-of-the-art robust
training method LISA [56], our method HyperTime, and the
methods combining LISA and CFO and HyperTime respec-
tively. The results are from the same set of experiments with
that in Table 6. All the numbers are the higher the better.

MM 24, October 28-November 1, 2024, Melbourne, VIC, Australia

D ADDITIONAL EMPIRICAL RESULTS

Per fold performance in Table 6. In Figure 7, we present the per-
fold test performance for different methods in Table 6. Our observa-
tions indicate that the combination of HyperTime and Lisa achieves
the best performance compared to other methods. It demonstrates
that the combination of HyperTime and other non-HPO solutions
overall further boost the model performance.

Supplementary results of CFO_WeightedCombine. In this sec-
tion, we conduct additional experiments to compare HyperTime
with CFO_WeightedCombine, which set the optimization objectives
as a weighted combination of average validation loss and the worst
fold validation loss in CFO. To represent the weights assigned to
the worst fold validation loss, we use the symbol A. Consequently,
we set the weight for the average validation loss as 1 — 1. We use
four different A settings for CFO_WeightedCombine: 5%, 10%, 15%,
and 20%. Figure 6 shows the per-fold test loss of these two methods.
We observe that HyperTime outperforms CFO_WeightedCombine
under all four weight settings. This further demonstrates the im-
portance of formulating the optimization of these two objectives as
a lexicographic optimization problem.

E DATASET DETAILS

E.1 More details about Temperature prediction
dataset

Temperature prediction is a synthetic data for urban climate re-
search, which includes 75 years of urban climate condition infor-
mation in specific areas. It has distribution shifts as mentioned
in existing urban climate research works [28, 40]. Here we se-
lect 16 gridcells of data according to [65], with the latidude of
35.34,36.28,37.23,38.17 and longitude of 115.0,116.2,117.5,118.8.
It includes ten features including near-surface humidity, eastward
near-surface wind, precipitation, etc. In our experiment, we predict
the urban daily maximum of average 2-m temperature which could
be regarded as a regression task. More information about this data
is available at [65].

E.2 More information about fold splitting

To ensure fair and consistent comparisons, we use the same valida-
tion/test folds splitting setting as the Wild-Time benchmark. We list
the number of training and test folds in Table 10. More information
can be found in [55].

	Abstract
	1 Introduction
	2 Related Work
	3 Method
	3.1 Notions, Notations, and Background
	3.2 Robust HPO by Imposing Lexicographic Objectives

	4 Theoretical Analysis
	5 Experiments
	5.1 Datasets
	5.2 Effectiveness
	5.3 Further Investigation

	6 Conclusion
	References
	A Details of LexiFlow
	B Theoretical Analysis
	C Search Space
	C.1 Search Space of gradient-boosting tree
	C.2 Search Space of neural network

	D Additional Empirical Results
	E Dataset Details
	E.1 More details about Temperature prediction dataset
	E.2 More information about fold splitting

