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A APPENDIX

Section [A.T|contains two external theorems and lemmas that we use. Section[A.2]is about our proofs.

A.1 EXTERNAL THEOREMS AND LEMMAS

In this section two theorems and lemmas are recalled for self-completeness, Theorem is about bounding the error
of Nystrom mean embeddings [Chatalic et al., 2022} Theorem 4.1], Theorem @] is a well-known result [Serfling, 1980,
Section 5.6, Theorem A] for bounding the deviation of U-statistics. Lemma E] is about connection between U- and
V-statistics. Lemma[A.2]recalls Markov’s inequality.

Theorem A.1 (Bound on mean embeddings). Let X be a locally compact second-countable topological space, X a random
variable supported on X with Borel probability measure P, and let Hy, be a RKHS on X with kernel k : X x X — R,
and feature map ¢y. Assume that there exists a constant K € (0,00) such that sup,c v +/k(z,2) < K. Let C}, =

E[¢n(X)® gbk( )]. Furthermore, assume that the data points ®,, = {x1, ..., x,} are drawn i.i.d. from the distribution P

and that n' < n subsamples P = {Z1,...,Zn} are drawn uniformly with replacement from the dataset P,. Then for any
0€(0,1)ir holds that

e, «/log (' /5) \/N 12K21og( f/5))

w8 = (Be) |, < b

with probability at least 1 — & provided that
/ 2 -1 n'
n' > max (67, 12K7 ||Ck| Op) log 5 )

where c; = 2K+/210g(6/6), ca = 4v/3K log(12/6), and c3 = 124/31og(12/0) K.

Recall that a U-statistic is the average of a (symmetric) core function h = h(xy,...,2,,) over the observations
X1,..., X, ~ P (n = m) with form

Up=U(X1,..., Xm) Zh i Xin)s (1)
where c is the set of the (;’1) combinations of m distinct elements {il, ooyim} from {1,...,n}. U, is an unbiased estimator

of § = O(P) = Ep[h(X1,. ... Xpm)].

Theorem A.2 (Hoeffding’s inequality for U-statistics). Let h = h(x1,...,x.,) be a core function for § = (P) =
Ep [h(X1, ..., Xn)] witha < h(x1,...,2m) < b Then, forany u > 0 and n > m,
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Similar to (T)) one can consider an alternative (slightly biased) estimator of 6, which is called V-statistic:
1
Vi =V(X1,..., Xp) = — > (X, X)), 2)
(i1,0-5m )€Tm (n)

where T, (n) is the m-fold Cartesian product of the set [n].

There is a close relation between U- and V-statistics, as it is made explicit by the following lemma [Serfling} [1980|
Lemma, Section 5.7.3].

Lemma A.1 (Connection between U- and V-statistics). Let P be a probability measure on a metric space X. Let (X;)e[n] HR
P. Let m denote any element of [n]. Let h be a core function satisfying E[|h(X1, ..., Xmn)|"] < 0o with some r € Z .. Let

Uy, and V,, denote the U and V-statistic associated to h as defined in (1)) and @), respectively. Then it holds that
E[|U, — Vo] = O (n™").

Lemma A.2 (Markov inequality). For a real-valued random variable X with probability distribution P and a > 0, it holds
that

E (X))

a

P(|X]|>a) <

A.2 PROOFS

This section is dedicated to proofs. Lemma[4.2]is derived in Section[A.2.1] Proposition[4.1]is proved in Section[A.2.3|relying
on two lemmas shown in Section[A-2.2] Lemma[4.4]is proved in Section[A.2.3] with an auxiliary result in Section[A.2.4]

A.2.1 Proof of Lemma

Let puy, (Ry) =" ab @M | ¢ (i), and let py,, (I@,,W) =2 A o, (xh,) form e [M]. We write

HSICE x (Ba) = | (Bur) = @My (B )

2

Hi
~ 2 - -
Pl 5 ) e o) )
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=TA =:C

and continue term-by-term. Using the definition of the tensor product, we have for term A that

A:<“’“( )“’“( )> 22%%<®m 1P (1), O 1 Ok (0) 5, = ZZ%%Hk Lims Tm)

i=1j5=1 i=1j5=1

= a; (Oﬂ]\f=1 Kkm) L.

Similarly, we obtain for term B that

_< M Z akm ¢k ( (m)) Z ak(m) (xﬁfln))>

im) =1 j<m> 1 e

W L X (m) ;(m) (m)  i(m) M

* itm) gim im m T

21T X X ek ad ki (a0l ) = T of, Ku, o,
m=1

m=1j(m)=1 j(m)=1

where in (*) we used (T)), the linearity of the inner product, and the reproducing property.



Last, we express term C' as
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where (a) follows from the linearity of the inner product, (b) holds by (I)), (c) is implied by the linearity of the inner product,
(d) is valid by the reproducing property, and we refer to the i-th row of K, as (K, ),.

Substituting terms A, B, and C concludes the proof.

A.2.2 Two Lemmas to the Proof of Proposition

Our main result relies on two lemmas.

Lemma A.3 (Error bound for Nystrém mean embedding of tensor product kernel). Let X = (X,,)M_, e X = xM_ &,
X ~Pe M{(X), and (X 'm)me[m) locally compact, second-countable topological spaces. Let ky, = X, ¥ X - R

be a bounded kernel, i.e. there exists ay, € (0,00) such that sup, .y ~/km(Zm,Tm) < a,, for m € [M]. Let
ap = H%zl ax,, k = @M_, k., Hy the RKHS associated to k, ¢, = @_,¢,., Cr = E[or(X) @ ¢ (X)], n' < n,
and P, defined according to (14). Then for any § € (0, 1) it holds that

e ®) — g (B i/ 0g(0'/3) ¢ iy (Lot

with probability at least 1 — §, provided that

Ch1 | Ch2
<=+ 22+

Hi \/ﬁ n'

_ n’
n' > max (67, 1242 HC’;CHOpl) log (5> )

where i1 = 2a/210g(6/6), cx.2 = 4v/3ay 1og(12/8), and i 3 = 124/3log(12/8)ax

Proof. With X = X,,,c[ar)Xm, noticing that X is locally compact second-countable iff. (Xm)me[ ) are so [Willard, |1970,

Theorem 16.2(c), Theorem 18.6], Hi, = @M_  Hy.,, o = @M _ ¢y, and \/k(z,z) = Hf\:{:l A km (T, T ) < ag, the
statement is implied by Theorem [A.T] O

Proof of Lemma[.3] To simplify notation, let py, = pk,, (Pm)s fik,, = fk,, (~m n/) Hy = QM_Hy, , and dy, =

is
k

M, The proof proceeds by induction on M: For M = 1 the Lh.s. =rh.s. = Hpkl (P1) — pig, (I@’Ln/> N

|k, — i,



satisfied, and we assume that the statement holds for M = M — 1, to obtain

| @tttk = Ot Fitin 5, = | @zt Mo — Ot 1k ® Fitear + i1 iy ® fikay — ®ipa— 1 iy
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(d)
<diy ] ar,+3 [ ok +di)— ] @k p (ks +diy)

me[M—1] me[M—1] me[M—1]

= di,, n ag, + H (ag,, +dg, ) — 1_[ ar,, — di,, 1_[ ag,.

me[M—1] me[M] me[M] me[M—1]

= I (@ +de)= J] @

me[M] me[M]
where (a) holds by the triangle inequality, (b) is implied by (2) and the definition of dj,,, (c) follows from

(e)
(77 Y =' L km(.,xm)d]Pm(xm)H < L [ (s ) g, AP (@) < 3)
m m Se—
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(d) is valid by the induction statement holding for M — 1, (e) is a property of Bochner integrals, (f) is implied by the
reproducing property, (g) comes from the definition of ay,,, the triangle inequality implies (h), (i) follows from (3) and the

definition of dy,, . O

A.2.3 Proof of Proposition

Let k = QM_,ky,, and let Hy, = QM_,H,y, . We note that X' = X me[M]Xm 18 locally compact second-countable as

(Xm)me[ar) are so [Willard, 1970, Theorem 16.2(c), Theorem 18.6].

We decompose the error of the Nystrom approximation as

”

HSIC, (P) — HSIC) x (]f»n)

) = @i Bl — [ (Br) - S, (o)

(2 ‘l‘k (P) - ®%:1/’Lkm (Pm) — Mk (Pn/> + ®%:1Nkm (Pm,n’) )Hk
< [ ® - (B, + @t () — @2, ()]

t1 ta
where (a) holds by the reverse triangle inequality, and (b) follows from the triangle inequality.

First term (¢;): One can bound the error of the first term by Lemma in other words, for any ¢ € (0, 1) with probability
at least (1 — ¢) it holds that

Ck1  Cka  Cr3n/log(n'/d) (1211% log(n’/6)>
- —= 4+ NX"L m -

~
‘Hk Voo n n

H#k(]}”) — Mk (E”n')



provided that n’ > max (677 12a2 HCk“o_;)log (%), with the constants cx1 = 2ax+/210g(6/0), cro2 =
4+/3ay, 1og(12/6), cx 3 = 124/31log(12/6)ax.

Second term (¢5): Applying Lemma[d.3]to the second term gives

< H (akm + Hﬂkm (Pm) - Mk, (@m,n)

me[M]

@ oss (Pra) = @Y, (P

)nak

me[M]

We now bound the error of each of the M factors by Theorem i.e., for fixed m € [M]; particularly we get that for any
0 € (0,1) with probability at least 1 — ¢

Hi

5 Chpl | Chms2 | Cham,33/log(n'/6) 1247 log(n'/9)
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ak,, + Hukm (Prn) — bk, (]P’m 'n,) < g, + kol g k2 | B3 g('/9) Nx,, ke o (/o) ,
)y, n n' n' n'
and by union bound that their product is for any ¢ € (0, M) with probability at least 1 — M §
] [akm + Hukm (Pm) — bk, ( ) ]
me[M]
c log(n’/§ 12a2 log(n'/é
< 1—[ [ka n Ckypp,1 n Ckm/,Q n km,3 /g( / ) NXm ( K /( / ) 7
me[M] Vi " n n
I1 [akm + Hukm (Prm) — bt (I@m,n) ] H ag,, <
mE[M] knl ]
¢k, 34/log(n’ /6 12a2 log(n'/é
< 1—[ lakm n Cli,1 n Ckm/,2 I km,3 /g( /9) Nxm < km / (n'/0) B 1—[ an, |
me[M] \/ﬁ " " " me[M]

provided that ' > max (67,1202 |, |} ) log (%) for all m € [M], with Cy,, = E [¢y,, (Xn) ® B, (X,n)] and
constants cg,, 1 = 2ax, \/210g(6/9), cx,, 2 = 4v/3ay,, log(12/8), ck,, 3 = 124/3log(12/d)ay,,, with m € [M].

Combining the M + 1 terms by union bound yields the stated result.

A.2.4 Lemma to the Proof of Lemma

Lemma A.4 (Deviation bound for U-statistics based HSIC estimator). It holds that

\HSIC;U (B,) - msic (IP’)‘ - Op (\/15) :

where HSICﬁ,u is the U-statistic based estimator of HSIC}.

Proof. We show that (3] can be expressed as a sum of U-statistics and then bound the terms individually. First, square (3) to
obtain

HSICE(P) = B, ....on).(a) ooty B H K (Zms @7,) | 4 By ot ~By,..owar,afy, ~Bas H K (@m, @7,

/
_2E(J;1,...,IM)~IP’,J;'1~IP1,4..,:1;’M~]P’M n km(xmaxm) )
me[M]

~
C



where A, B, and C can be estimated by U-statistics A}, B, and C,, respectively. Let HSIC%M (I@’n) =Al + Bl —2C/,
and split ¢ as at + St + (1 — o — B)t, with o, f > 0 and & + 3 < 1. One obtains

P ()HSIC%(]P) — HSICZ, (Pn)

Doubling and rewriting Theorem we have that for U-statistics and any § € (0, 1)

m(b— a)? ln(%)

P||U,—06|>
| | o

< 4.

Now, choosing the (0, Uy, u) triplet to be (A, A!,, at), (B, B}, Bt), (C, cl, W) , respectively, setting m = 2M, and

observing that a < k(z,y) < b as k is bounded, we obtain that | A}, — A|y/n, | B}, — B|y/n, and |C!, — C|+/n are bounded
in probability and so is their sum. O

A.2.5 Proof of Lemma
We consider the decomposition

sIC? (B, ) - BSICE (P)| < [ms1CE (B,) — HSICE, (B2)

+[msict, (B,) - HsICE (@) “

t1 t2

by using the triangle inequality, where HSICy, ,, is the U-statistic based HSIC estimator.

Second term (¢2): Lemmaestablishes that to = Op (ﬁ)
First term (¢1): To bound ¢4, first, by Markov’s inequality (Lemma|[A.2) observe that

(’HSICQ (]f»n) — HSIC?, (Pn)

)

>t) <SP(|A-A)|=at)+ P(|B=B,|=pt)+P(2|C-C,|=(1—-a-p)).

]P’(’HSIC% (Pn) HSICZ, (]P)

2a) <

a
‘HSIC% (I@n) — HSICZ, (I@n) > - (‘Hsmi @n) - HSIC, P ) <e
msic (#,) - msic?, (B,)] < B ([Hs1ci (B.) - - HSICE () ) >1e
P (‘HSIC% (B.) -~ HSICE, f) Yy
P(‘HSIC% (ﬁ»n) HSICZ, ( ) > i) <e ©)

for constant C' > 0 and n large enough, where () follows from Lemma[A.1|(with » = 1). () implies that

. . 1
‘HSIC@ (Pn) — HSICZ, (Pn>‘ — Op () .
' n
Combining the terms (¢; + t2): Combining the obtained results for the two terms, one gets that

’HSIC% (frn) HSIC2 (P ‘ ’HSICQ ( ) — HSICZ, (Pn) 2 (@n) — HSICZ (P)

O RCORCOR

b



Hence

Op (%) @ ‘HSIC% (Pn) — HSIC? (P)) - ‘HSIC,C (fpn) _ HSIC,, (P)’ ‘HSICk (@n) + HSIC), (P)

=0
%

> ‘HSICk (1@”) — HSIC, (IP’)‘ HSIC), (P),

which by dividing with the constant HSICy, (P) > 0 implies the statement.
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