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A APPENDICES

A.1 PROOF OF THEOREM 2

Proof. Let’s try expanding ∂2L(θ̂ε̃,D)
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To go on, we need to expand ∂2θ̂ε̃
∂ε2 , which is as follows:
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Finally, let b′′ε̃ =
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which concludes the proof.

A.2 PROOF OF THEOREM 3

Proof. According to the assumptions in Theroem 3, the error bound depends on b′ε̃,b
′′
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′
θ̂ε̃

and
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.

We first bound b′ε̃ and b′′ε̃ . Note that βε is defined as 4 and b′ε̃ can be calculated by 13, it is easy to
figure out the following: ||b′ε|| = O( 1
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Finally, we get our error bound as follows:
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,

which concludes the proof.
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A.3 SUPPLEMENTARY EXPERIMENTAL RESULTS

Table 2: Average error of estimated loss for measuring point from ε = 0.05 to ε = 0.35.

ε 0.05 0.10 0.15 0.20 0.25 0.30 0.35

Adlut-LR 0.01982 0.00823 0.00908 0.00408 0.00003 0.00033 0.00004
Adlut-SVM 0.08188 0.02052 0.00327 0.00315 0.00445 0.00367 0.00385
Kddcup-LR 0.05884 0.02393 0.00930 0.00721 0.00763 0.00845 0.00960

Kddcup-SVM 0.04735 0.00866 0.00798 0.00793 0.00851 0.01052 0.01143
Gisette-LR 0.18427 0.01482 0.01181 0.02125 0.01931 0.00302 0.00810

Gisette-SVM 0.16245 0.00571 0.02480 0.00822 0.00567 0.01023 0.00550

Table 3: Average error of estimated loss for measuring point from ε = 0.40 to ε = 0.70.

ε 0.40 0.45 0.50 0.55 0.60 0.65 0.70

Adlut-LR 0.00037 0.00293 0.00309 0.00283 0.00339 0.00623 0.00643
Adlut-SVM 0.00558 0.00298 0.00585 0.00890 0.00833 0.00711 0.00546
Kddcup-LR 0.00677 0.00283 0.00778 0.00442 0.00768 0.01010 0.01274

Kddcup-SVM 0.00954 0.00848 0.00967 0.00486 0.00363 0.00154 0.00200
Gisette-LR 0.00372 0.00394 0.01361 0.01420 0.01423 0.02461 0.03560

Gisette-SVM 0.00712 0.00823 0.00823 0.00961 0.00926 0.01188 0.01327

Table 4: Average error of estimated loss for measuring point from ε = 0.75 to ε = 1.

ε 0.75 0.80 0.85 0.90 0.95 1.00

Adlut-LR 0.00649 0.01169 0.01480 0.01485 0.01675 0.02276
Adlut-SVM 0.00770 0.00780 0.00840 0.01142 0.01053 0.01020
Kddcup-LR 0.01186 0.01288 0.01200 0.01149 0.01147 0.01213

Kddcup-SVM 0.00112 0.00137 0.00038 0.00134 0.00192 0.00250
Gisette-LR 0.04637 0.04476 0.03693 0.03683 0.03308 0.03828

Gisette-SVM 0.01745 0.03641 0.02911 0.03548 0.04540 0.03603
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(a) Gisette-LR (b) Gisette-SVM

Figure 3: Performance of our approximation approach on Gisette with logistic regression (LR) loss
and Huber SVM (SVM) loss
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