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A Implementation Details1

In this section, we provide a detailed description of our prompt construction and instantiate instruc-2

tions examples.3

Task instructions As is shown in Table 1, the specific task instructions start with verbalized de-4

scriptions of the task and are followed by the formal definition of the CSS style. As for the indoor5

scene synthesis, we additionally provide a list of available furniture and the normalized frequency6

distribution for fair comparisons with the supervised method. Yet we discover that the provided7

frequency distribution has little effect on the generation results, based on the trivial change in the KL8

divergence. In some cases, it is important to make LLMs sample from a defined distribution instead9

of learning the distribution from in-context exemplars, which we leave for future work.10

Table 1: The prepending instructions provided to GPT-3.5/4 during our LayoutGPT’s 2D and 3D
layout planning process. The instructions listed here are for the setting with CSS structure and with
normalization.
Task Instruction for GPT-3.5/4
2D Layout
Planning

Instruction:
Given a sentence prompt that will be used to generate an image, plan the layout of the image. The
generated layout should follow the CSS style, where each line starts with the object description and is
followed by its absolute position.
Formally, each line should be like "object {width: ?px; height: ?px; left: ?px; top: ?px; }". The
image is 64px wide and 64px high. Therefore, all properties of the positions should not exceed 64px,
including the addition of left and width and the addition of top and height.

3D Layout
Planning

Instruction:
Synthesize the 3D layout of an indoor scene from the bottom-up view. The generated 3D layout
should follow the CSS style, where each line starts with the furniture category and is followed by the
3D size, orientation, and absolute position.
Formally, each line should follow the template: FURNITURE {length: ?px: width: ?px; height: ?px;
left: ?px; top: ?px; depth: ?px; orientation: ?degrees;} All values are in pixels but the orientation
angle is in degrees.

Available furniture: armchair, bookshelf, cabinet, ceiling_lamp, chair, children_cabinet, cof-
fee_table, desk, double_bed, dressing_chair, dressing_table, floor_lamp, kids_bed, nightstand,
pendant_lamp, shelf, single_bed, sofa, stool, table, tv_stand, wardrobe
Overall furniture frequencies: (armchair: 0.0045; bookshelf: 0.0076; cabinet: 0.0221; ceiling_lamp:
0.062; chair: 0.024; children_cabinet: 0.0075; coffee_table: 0.0013; desk: 0.0172; double_bed:
0.1682; dressing_chair: 0.0063; dressing_table: 0.0213; floor_lamp: 0.0093; kids_bed: 0.0079;
nightstand: 0.2648; pendant_lamp: 0.1258; shelf: 0.0086; single_bed: 0.0211; sofa: 0.0018; stool:
0.012; table: 0.0201; tv_stand: 0.0308; wardrobe: 0.1557)

Submitted to 37th Conference on Neural Information Processing Systems (NeurIPS 2023). Do not distribute.



Base LLMs We use four variants of GPT models, (1) Codex [2] (code-davinci-002), an LLM11

that is fine-tuned with large-scale code datasets and can translate natural language into functioning12

code snippets; (2) GPT-3.5 [8] (text-davinci-003), which is trained to generate text or code13

from human instructions; (3) GPT-3.5-chat (gpt-3.5-turbo) and (4) GPT-4 [7] (gpt-4), which14

are both optimized for conversational tasks. For the last two models, we first feed the in-context15

exemplars as multiple turns of dialogues between the user and the model to fit into the API design.16

However, we generally observe that GPT-3.5-chat and GPT-4 are not as strong as GPT-3.5 in learning17

from the in-context demonstrations, especially when the dialogue format follows a certain structure18

instead of free-form descriptions.19

Hyperparameters For all LLMs, we fix the sampling temperature to 0.7 and apply no penalty to20

the next token prediction. For image layouts evaluation in main paper Table 2, we fix the number21

of exemplars to 16 for numerical reasoning, and 8 for spatial reasoning, based on the best results of22

a preliminary experiment. However, we do not observe significant gaps in evaluation results when23

using different amounts of exemplars (see Sec. B.4). For each prompt, we generate five different24

layouts/images using baselines or LayoutGPT and thus result in 3810 images for numerical reasoning25

and 1415 images for spatial reasoning in all reported evaluation results. As for indoor scene synthesis,26

we fix the number of exemplars to 8 for bedrooms and 4 for living rooms to reach the maximum27

allowed input tokens. We set the maximum output token as 512 for bedrooms and 1024 for living28

rooms as bedrooms have „5 objects per room while living rooms have „11 objects per room. We29

generate one layout for each rectangular floor plan for evaluation.30

B LayoutGPT for 2D Layout Planning31

B.1 NSR-1K Benchmark Construction32

We rely on the MSCOCO annotations to create NSR-1K with ground-truth layout annotations. Note33

that each image in COCO is paired with a set of captions and a set of bounding box annotations.34

Numerical Reasoning We primarily focus on the competence of T2I models to count accurately,35

i.e., generate the correct number of objects as indicated in the input text prompt. The prompts for36

this evaluation encompass object counts ranging from 1 to 5. To design the template-based T2I37

prompts, we initially sample possible object combinations within an image based on the bounding38

box annotations. We only use the bounding box annotation of an image when there are at most two39

types of objects within the image. As a result, the template-based prompts consist of three distinct40

types: (1) Single Category, wherein the prompt references only one category of objects in varying41

numbers; (2) Two Categories, wherein the prompt references two categories of distinct objects in42

varying numbers; and (3) Comparison, wherein the prompt references two categories of distinct43

objects but specifies the number of only one type of object, while the number of the other type is44

indicated indirectly through comparison terms including “fewer than”, “equal number of”, and “more45

than”. As for natural prompts, we select COCO captions containing one of the numerical keywords46

from “one” to “five” and filter out those with bounding box categories that are not mentioned to avoid47

hallucination.48

Spatial Reasoning We challenge LLMs with prompts that describe the positional relations of49

two or more objects. Our spatial reasoning prompts consist of template-based prompts and natural50

prompts from COCO. To construct template-based prompts, we first extract images with only two51

ground-truth bounding boxes that belong to two different categories. Following the definitions from52

PaintSkill [3], we ensure the spatial relation of the two boxes belong to (left, right, above,53

below). Specifically, given two objects A,B, their bounding box centers pxA, yAq, pxB , yBq and54

the Euclidean distance d between two centers, we define their spatial relation RelpA,Bq as:55

RelpA,Bq “

$

’

’

&

’

’

%

B above A if yB´yA

d ě sinpπ{4q

B below A if yB´yA

d ď sinp´π{4q

B on the left of A if xB´xA

d ă cosp3π{4q

B on the right of A if xB´xA

d ą cospπ{4q

(1)

The definition basically dissects a circle centered at A equally into four sectors that each represent56

a spatial relation. While the definition may not stand for all camera viewpoints, it allows us to57
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mainly focus on the front view of the scene. Then, we utilize the category labels and the pre-defined58

relations to form a prompt, as is shown in main paper Table 1. As for the natural COCO prompts,59

we select prompts that contain one of the key phrases (the left/right of, on top of,60

under/below) and ensure that the bounding box annotations align with our definition.61

B.2 Evaluation Metrics62

We denote the set of n object categories in the ground truth annotation as CGT “ c1, c2, . . . , cn,63

where xc1 , xc1 , . . . , xcn represent the number of objects for each category. Additionally, we denote64

the set of m object categories mentioned in GPT-3.5/4’s layout prediction as Cpred “ c1
1, c

1
2, . . . , c

1
m,65

where x1
c1
1
, x1

c1
2
, . . . , x1

c1
m

represent the number of objects for each category accordingly. If a category66

ci is not mentioned in Cpred, then x1
ci is assigned a value of 0, and vice versa.67
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Figure 1: An closeup example of how we compute the layout automatic evaluation metrics for
numerical reasoning.

The numerical reasoning ability of GPT-3.5/4 on layout planning is assessed using the following68

metrics: (1) precision: calculated as
řn

k“1 minpxck
,x1

ck
q

řm
k“1 x1

c1
k

, is an indication of the percentage of predicted69

objects that exist in the groundtruth; (2) recall: calculated as
řn

k“1 minpxck
,x1

ck
q

řn
k“1 xck

, indicates the percent-70

age of ground-truth objects that are covered in the prediction; (3) accuracy: In the “comparison”71

subtask, an accuracy score of 1 is achieved when the predicted relation, whether it is an inequality or72

equality, between the two objects is accurately determined. For all other numerical subtasks, accuracy73

equals to 1 if the predicted categories and object numbers precisely match the ground truth. In other74

cases, the accuracy is 0. Fig. 1 shows an example of how we compute the precision and recall. The75

accuracy for this single example is 0 since the predicted object distribution does not match the ground76

truth in every category.77

For spatial reasoning, we evaluate spatial accuracy based on the LLM-generated layouts and GLIP-78

based layouts. We adopt [4] finetuned on COCO to detect involved objects from the generated79

images and obtain the bounding boxes. For both types of layouts, we categorize the spatial relation80

based on the above definition and compute the percentage of predicted layouts with the correct81

spatial relation. For all evaluation benchmarks, we measure the CLIP similarity, which is the cosine82

similarity between the generated image feature and the corresponding prompt feature.83

B.3 GPT-3.5/4 Prompting84

In main paper Sec. 4.4, we investigate the impact of three components in the structured prompts: (1)85

Instruction, which examines whether detailed instructions explaining the task setup and the format86

of the supporting examples are included in the prompt. (2) Structure, which evaluates the impact of87

different formatting settings on the presentation of the bounding box aspects of height, width, top,88

and left. The “w/ CSS” setting formats the aspects in CSS, while the “w/o CSS” setting presents the89

four aspects in a sequence separated by a comma. (3) Normalization, which investigates the effects90

of rescaling the bounding box aspects to a specified canvas size and presenting them as integers in91

pixels in the “w/ Norm.” setting, while the “w/o Norm.” setting presents the aspects as relative scales92

to the canvas size in floats that range from (0, 1).93

Table 1 shows the detailed prepending instructions LayoutGPT provided to GPT-3.5/4 models during94

2D layout planning. Table 2 compares the formats of supporting examples with ablated structures95

and normalization settings.96
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Table 2: Closeup of various in-context example formats with ablated CSS structure and normalization
for 2D layout planning.

CSS Structure Normalization In-context Example Format Demo

Prompt: a teddy bear to the right of a book
Layout:
teddy bear: 0.50, 0.71, 0.50, 0.15
book: 0.50, 0.61, 0.00, 0.26

✓

Prompt: a teddy bear to the right of a book
Layout:
teddy bear {width: 0.50; height: 0.71; left: 0.50; top: 0.15; }
book {width: 0.50; height: 0.61; left: 0.00; top: 0.26; }

✓

Prompt: a teddy bear to the right of a book
Layout:
teddy bear: 32, 45, 31, 9
book: 31, 38, 0, 16

✓ ✓

Prompt: a teddy bear to the right of a book
Layout:
teddy bear {width: 32px; height: 45px; left: 31px; top: 9px; }
book {width: 31px; height: 38px; left: 0px; top: 16px; }

Table 3: The automatic metric scores of LayoutGPT (GPT-3.5) with different in-context sample
selection approaches. All values are in percentage (%).

#
Exemplar
Selection

# In-Context
Exemplars

Numerical Reasoning Spatial Reasoning

PrecisionÒ RecallÒ Layout
AccuracyÒ

GLIP
AccuracyÒ

Layout
AccuracyÒ

GLIP
AccuracyÒ

1 Fixed Random 16 64.83 92.71 87.66 47.10 80.14 47.07

2
Retrieval

4 88.93 95.02 76.17 50.20 85.30 51.66
3 8 93.32 95.63 82.68 50.58 82.54 52.86
4 16 94.81 96.49 86.33 51.25 82.40 51.09

B.4 Additional Experiments97

Random In-Context Exemplars Empirically, selecting in-context exemplars can be critical for the98

overall performance of LLMs. Apart from our retrieval-augmented method in main paper Sec. 3, we99

also experiment with a fixed random set of in-context exemplars. Specifically, we randomly sample k100

examples from the training (support) set D to form a fixed set of in-context demonstrations for all test101

conditions Cj . Therefore, the fixed random setting results in in-context exemplars that are unrelated102

to the test condition Cj . The minor gap between lines 1&5 in Table 3 verifies that LayoutGPT is not103

directly copying from the in-context exemplars in most cases. Fig. 2 further justifies the argument104

with layout visualization of the most similar in-context exemplars and the LayoutGPT outputs.105

Number of In-Context Exemplars We take a closer look at the effects of the number of in-context106

exemplars in the prompt as shown in Table 3. For counting, we observe that the number of exemplars107

is positively correlated with the counting accuracy. We conjecture that LLMs learn to make more108

accurate predictions for challenging prompts (e.g., comparison) by learning from more few-shot109

exemplars. As the layout accuracy also accounts for results where CSS parsing fails, we observe that110

the LLMs generate more consistent CSS-style code by learning from more examples. However, we111

cannot observe a similar trend in spatial reasoning prompts. We conjecture that LLMs only require as112

few as four demonstrations to learn the differences between the four types of spatial relations. The113

small optimal number of in-context exemplars implies that LLMs already have 2D spatial knowledge114

and can map textual descriptions to corresponding coordinate values. Yet it is important to find a115

proper representation to elicit such knowledge from LLMs as implied in main paper Sec. 4.4.116

Performance on Numerical Subtasks Table 4 presents the performance of layout generation in117

various numerical reasoning subtasks. Regarding template-based prompts, the LayoutGPT demon-118

strates superior performance in the “Single Category” numerical reasoning task, exhibiting precision,119

recall, and accuracy values around 86%. However, when it comes to the “Two Category” numerical120

reasoning task, while precision and recall experience minimal changes, the accuracy drops to 66%.121
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Figure 2: Comparison between the most similar in-context exemplar and the generation results of
LayoutGPT.

Table 4: The layout performance on each numerical reasoning subtask. Results reported on Layout-
GPT (GPT-4).

Prompt Source Subtask Precision Recall Accuracy

Template
Single Category 85.96 85.96 85.96
Two Categories 85.14 85.04 66.60
Comparison - - 77.80

Natural Prompts from MSCOCO 72.08 87.1 82.79

- Total 78.36 86.29 78.43

For the “Comparison” subtask, the accuracy hovers around 78%. These outcomes indicate that Lay-122

outGPT encounters greater challenges when confronted with multi-class planning scenarios, whether123

the number of objects is explicitly provided or indirectly implied through comparative clauses.124

For natural prompts extracted from MSCOCO, a noteworthy observation is the high recall accom-125

panied by relatively lower precision. This discrepancy arises due to the ground truth bounding126

box annotations encompassing only 80 object classes, whereas the natural prompts may mention127

objects beyond the annotated classes. Consequently, our LayoutGPT may predict object layouts128

corresponding to classes not present in the ground truth, which, despite lowering precision, aligns129

with the desired behavior.130

Failure cases Fig. 3 shows typical failure cases in numerical and spatial relations. As previously131

discussed, we observe in Table 4 that numerical prompts that involves two type of objects (“Two132

Categories” and “Comparison”) are more challenging to LayoutGPT and the image generation model.133

In these subtasks, LayoutGPT tends to predict much smaller bounding boxes to fit all objects within134

the limited image space. The small boxes further challenge GLIGEN to fit the object within the135

limited region, as shown in Fig. 3 (right).136

C LayoutGPT for 3D Scene Synthesis137

Due to the limitation in datasets, the conditions are room type and room size instead of text descrip-138

tions. While ATISS [9] utilizes the floor plan image as the input condition, LLMs are not compatible139

with image inputs. Therefore, we convert the floor plan image into the specification of the room size.140

Therefore, the input conditions are similar to “Room Type: Bedroom, Room Size: max length 256px,141

max width 256px”.142
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“Four zebras grazing in enclosed area with shade trees”“A light shines on five clocks 
showing times in different zones”

“A vintage photo of a dog laying 
on a couch”

Numerical failure Spatial failure Incompatible layouts

Figure 3: Typical failure cases of LayoutGPT and the generation results using GLIGEN.

Modification based on 

exemplars

Duplication

from exemplars
Generation

(new objects, significant differences in object sizes or locations)

In-context exemplar LayoutGPT In-context exemplar LayoutGPT In-context exemplar LayoutGPT

Figure 4: Sorted scene differences between LayoutGPT generated scenes and the most similar in-
context exemplars of 423 testing bedroom samples. We partition the distribution into three segments
representing different behaviors of LayoutGPT. Duplication: The generated scene is a duplication
of the exemplar. Modification: LayoutGPT slightly modifies one exemplar as the generated layout.
Generation: LayoutGPT generates novel scenes that are highly different from the exemplars.

C.1 Exemplar Selection143

Similar to Sec. B.4, we investigate the effect of using a random set of in-context exemplars for144

indoor scene synthesis. When we apply 8 random bedroom layouts from the training set as in-context145

exemplars, the out-of-bound rate increases from 43.26% in main paper Table 4 to 85.58%. The146

significant differences suggest that LayoutGPT heavily relies on rooms with similar floor plans to147

maintain objects within the boundary. Yet we verify that the generated layouts from LayoutGPT are148

not duplicates of the in-context exemplars in most cases.149

We first define a training scene layout as a set of objects St “ tot
1, . . . ,o

t
mu, and a generated scene150

layout as Sg “ tog
1, . . . ,o

g
nu. Note that oj consists of category cj , location tj P R3, size sj P R3,151

and orientation rj P R, i.e. oj “ pcj , tj , sj , rjq We define the scene difference Dp¨|¨q between St152

and St as153

DpSt|Sgq “

n
ÿ

i“1

min
j,ct

j“cg
i

p}ttj ´ tgi }1 ` }stj ´ sgi }1q. (2)

We set ttj , s
t
j to 0 if St does not have a single object that belongs to the same category as cgi . For154

each testing sample of the bedroom, we compute the scene differences between the generated layout155

and all eight in-context exemplars and use the minimum value as the final scene difference. Note that156

all parameters used for computation are in “meters” instead of “pixels”.157

We plot the scene differences of all 423 testing samples in Fig. 4. We empirically discover that a158

scene difference below 1.0 means Sg is highly similar to St, which we conclude as duplication from159

in-context exemplars. A scene difference below 6.0 shows moderate differences in object sizes or160

locations between two scenes, representing a modification based on St to generate Sg. Finally, a161

scene difference larger than 6.0 represents new objects or significant differences in object sizes or162

6



Out-of-Bound Furniture Overlapped Objects Inharmonious placement

Figure 5: Typical failure cases of LayoutGPT.

StableDiffusion v2.1 Attend-and-Excite

A close up of a monkey driving a motorcycle on a road
LayoutGPT + GLIGENStableDiffusion v2.1 Attend-and-Excite

A chimpanzee holds a toothbrush in their hand
LayoutGPT + GLIGEN

A person is standing in some water flying a kite

LayoutGPT + GLIGENStableDiffusion v2.1 Attend-and-Excite

A woman in glasses holding a laptop on a couch
LayoutGPT + GLIGENStableDiffusion v2.1 Attend-and-Excite

Figure 6: Plausible examples of LayoutGPT(GPT-4) planning keypoints distributions before conduct-
ing text-conditioned image generation.

locations between the exemplar and the generated layouts, i.e. true generation. Fig. 4 shows that163

34/111/278 scenes belong to duplication/modification/generation. Among each category, 30/67/143164

scenes have no out-of-bound furniture. Therefore, LayoutGPT is performing generation instead of165

duplicating in-context exemplars in most cases.166

C.2 Failure Cases167

While LayoutGPT achieves comparable results as ATISS, LayoutGPT cannot avoid typical failure168

cases as shown in Fig. 5, such as out-of-bound furniture and overlapped objects. Fig. 5 (right) shows169

an incorrect placement of nightstands on the same side of the bed while they are commonly placed on170

each side of the bed headboard. Future work could focus on more sophisticated in-context learning or171

fine-tuning methods to improve the LLMs’ understanding of 3D concepts.172

D LayoutGPT for 2D Keypoint Planning173

In addition to its application in 2D and 3D layout planning, we investigate the feasibility of leveraging174

LayoutGPT for 2D keypoint planning to facilitate text-conditioned image generation. In this approach,175

we utilize LayoutGPT to predict keypoint distributions based on a given text prompt, and subsequently176

employ GLIGEN [5] for keypoint-to-image generation. The keypoint format used aligns with the177

specifications outlined in MSCOCO2017 [6], focusing on 17 keypoints that correspond to the human178

skeleton. Similar to our methodology for selecting supporting examples in the context of 2D layout179

planning (Section B), we retrieve the k-most similar examples from the training set of MSCOCO2017180

and utilize these examples to provide keypoint distributions as input to GPT-3.5/4. Table 5 presents181

an illustrative example of the input format employed for keypoint planning with GPT-3.5.182

Fig. 6 presents several illustrative examples that compare the images generated by conditioning on key-183

points planned by our LayoutGPT with those generated by end-to-end models such as StableDiffusion-184

v2.1 [10] and Attend-and-Excite [1]. In this preliminary demonstration, we observe that LayoutGPT185
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Table 5: The prompting input provided to GPT-3.5 for LayoutGPT keypoint planning.
Instruction:
Given a sentence prompt that will be used to generate an image, plan skeleton keypoints layout of the mentioned
objects. The skeleton keypoints include the following 17 nodes: nose, left_eye, right_eye, left_ear, right_ear,
left_shoulder, right_shoulder, left_elbow, right_elbow, left_wrist, right_wrist, left_hip, right_hip, left_knee,
right_knee, left_ankle, right_ankle. The generated keypoints layout should follow the CSS style, where each line
starts with the keypoint node name and is followed by its absolute position.
Formally, each line should be like "node_name {left: ?px; top: ?px; }". Please follow this format strictly. Do not
display in other variation of formats. Notice that some keypoint nodes may not be visible on the canvas. In such
cases, simply put "node_name {left: 0px; top: 0px; }" for the invisible nodes. The image is 64px wide and 64px
high. Therefore, all properties of the positions should not exceed 64px.

Prompt: a man on a surfboard in a river near a couple of trees and branches
Keypoints:
person#1:
nose {left: 36px; top: 33px; }
left_eye {left: 36px; top: 33px; }
right_eye {left: 36px; top: 33px; }
left_ear {left: 37px; top: 33px; }
right_ear {left: 0px; top: 0px; }
left_shoulder {left: 38px; top: 34px; }
right_shoulder {left: 36px; top: 35px; }
left_elbow {left: 35px; top: 34px; }
right_elbow {left: 35px; top: 38px; }
left_wrist {left: 33px; top: 32px; }
right_wrist {left: 33px; top: 39px; }
left_hip {left: 39px; top: 39px; }
right_hip {left: 37px; top: 40px; }
left_knee {left: 38px; top: 44px; }
right_knee {left: 37px; top: 44px; }
left_ankle {left: 39px; top: 49px; }
right_ankle {left: 37px; top: 48px; }

[MORE SUPPORTING EXAMPLES]

Prompt: a man leaning on a surfboard in the water riding a wave
Keypoints:

exhibits promising potential in offering inherent control over specific movements or actions through186

keypoint planning.187

Nevertheless, it is worth noting that keypoints planning presents considerably greater challenges188

compared to bounding box layout planning, attributable to several evident factors. Firstly, keypoints189

planning necessitates the prediction of the positions of 17 nodes, which is significantly more complex190

than the 2D layout planning involving four aspects or the 3D layout planning encompassing seven191

aspects. Secondly, the distribution of keypoints encompasses a much larger array of spatial relations192

due to the numerous possible body movements. In contrast, previous 2D layout planning tasks only193

involve four types of spatial relations. These inherent complexities render keypoint planning heavily194

reliant on in-context demonstrations. However, the limited availability of annotations pertaining to195

body movements in the MSCOCO dataset further exacerbates the challenges associated with reliable196

keypoint planning. Therefore, we leave the exploration of this potential direction to future research197

endeavors.198

E Ethical Statement199

In addition to the layouts predicted by GPT-3.5/4, we also incorporate human-planned layouts as a200

natural baseline for comparative analysis. To facilitate this, we provide annotators with an interface201

featuring a blank square space where they can draw bounding boxes. Alongside the input text prompt,202

we also present the noun words or phrases from the prompt to human annotators, instructing them203

to draw a bounding box for each corresponding element. We intentionally refrain from imposing204

additional constraints, enabling annotators to freely exercise their imagination and create layouts205

based on their understanding of reasonable object arrangements. To compensate annotators for their206
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efforts, we offer a payment rate of $0.2 US dollars per Human Intelligence Task (HIT). The average207

completion time of approximately 30 seconds per HIT, which corresponds to an average hourly208

payment rate of $24.209

F Limitations210

The current work has several limitations that provide opportunities for future research. Firstly,211

while this work focuses on 2D and 3D bounding box layouts and makes a preliminary attempt at212

keypoints, there exist various other methods for providing additional spatial knowledge in image/scene213

generation, such as segmentation masks and depth maps. Future work could explore integrating214

LLMs with these alternative visual control mechanisms to broaden the scope of visual planning215

capabilities. Secondly, the current work primarily addresses visual generation tasks and lacks a unified216

framework for handling other visual tasks like classification or understanding. Extending the proposed217

framework to encompass a wider range of visual tasks would provide a more comprehensive and218

versatile solution. Thirdly, this work is a downstream application that attempts to distill knowledge219

from LLMs’ extensive knowledge bases. Future research could explore more fundamental approaches220

that directly enhance the visual planning abilities of various visual generation models. By developing221

specialized models that are explicitly designed for visual planning, it may be possible to achieve222

more refined and dedicated visual generation outcomes. Overall, while the current work demonstrates223

the potential of using LLMs for visual planning, there are avenues for future research to address the224

aforementioned limitations and further advance the field of visual generation and planning.225

G Broader Impact226

The utilization of LLMs for conducting visual planning in compositional 2D or 3D generation has227

significant broader impacts. Firstly, LLMs alleviate the burden on human designers by simplifying the228

complex design process. This not only enhances productivity but also facilitates scalability, as LLMs229

can efficiently handle large-scale planning tasks. Secondly, LLMs exhibit remarkable capabilities in230

achieving fine-grained visual control. By conditioning on textual inputs, LLMs can easily generate231

precise and detailed instructions for the desired visual layout, allowing for precise composition and232

arrangement of elements. Moreover, LLMs bring a wealth of commonsense knowledge into the233

planning process. With access to vast amounts of information, LLMs can incorporate this knowledge234

to ensure more accurate and contextually coherent visual planning. This integration of commonsense235

knowledge enhances the fidelity of attribute annotations and contributes to more reliable and realistic236

visual generation outcomes.237

It is worth noting that this work represents an initial foray into the realm of visual planning using238

LLMs, indicating the potential for further advancements and applications in this area. As research239

in this field progresses, we can anticipate the development of more sophisticated and specialized240

visual planning techniques, expanding the scope of LLMs’ contribution to diverse domains, such as241

architecture, virtual reality, and computer-aided design.242

H Additional Qualitative Examples243

We present additional visual showcases to demonstrate the capabilities of LayoutGPT in different244

contexts. Fig. 7 showcases examples related to 2D numerical reasoning, Fig. 8 illustrates examples of245

2D spatial reasoning, and Fig. 9 displays examples of 3D scene synthesis. These showcases offer246

further insights into the effectiveness and versatility of our approach across various domains.247
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Figure 7: Qualitative examples of variants of LayoutGPT on numerical reasoning prompts.
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Figure 8: Qualitative examples of variants of LayoutGPT on spatial reasoning prompts.
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GPT-3.5 GPT-3.5-chat GPT-4

Figure 9: Additional qualitative examples of variants of LayoutGPT in bedroom scene synthesis.
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