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ABSTRACT
Traditional multi-task learning often relies on explicit task inter-
action mechanisms to enhance multi-task performance. However,
these approaches encounter challenges such as negative transfer
when jointly learning multiple weakly correlated tasks. Addition-
ally, these methods handle encoded features at a large scale, which
escalates computational complexity to ensure dense prediction task
performance. In this study, we introduce a Task-Interaction-Free
Network (TIF) for multi-task learning, which diverges from explic-
itly designed task interaction mechanisms. Firstly, we present a
Scale Attentive-Feature Fusion Module (SAFF) to enhance each
scale in the shared encoder to have rich task-agnostic encoded fea-
tures. Subsequently, our proposed task and scale-specific decoders
efficiently decode the enhanced features shared across tasks with-
out necessitating task-interaction modules. Concretely, we utilize a
Self-Feature Distillation Module (SFD) to explore task-specific fea-
tures at lower scales and the Low-To-High Scale Feature Diffusion
Module (LTHD) to diffuse global pixel relationships from low-level
to high-level scales. Experiments on publicly available multi-task
learning datasets validate that our TIF attains state-of-the-art per-
formance.

CCS CONCEPTS
• Computing methodologies → Scene understanding; Hierar-
chical representations.

KEYWORDS
Multi-Task Learning, Dense Prediction, Vision Transformer, Multi-
Scale Features

1 INTRODUCTION
Multi-task learning (MTL) involves the joint estimation of multi-
ple dense prediction tasks, which facilitating vision-based scene
understanding. MTL addresses pixel-level dense estimation tasks
such as semantic segmentation [33], depth estimation [9], boundary
detection, and saliency detection [15] within a single unified model.
This unified approach effectively achieves high performance across
multiple tasks by leveraging task-sharing and task-interaction tech-
niques. Consequently, MTL finds widespread application in various
computer vision projects, including Robotics [19] and SLAM [28].
Unlike straightforward MTL methods used for image classification
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[27], MTL for dense prediction tasks [8, 32, 38, 40] presents more
complexity due to the intricacies of pixel-level classification and
regression.

To address the complexity of learning dense prediction multi-
tasks and effectively modeling and training such challenging tasks,
researchers have explored MTL through the development of spe-
cialized architectures [14, 17, 22, 32, 35, 38, 40, 42] and optimization
strategies [3, 10, 11, 18]. Architectural design of MTL primarily
comprised of two directions, (i) encoder-focused MTL [8, 16, 17, 24]
and (ii) decoder-focused MTL [32, 35]. Encoder-focused MTL meth-
ods [8] typically involve a vast number of parameters due to the
absence of a shared encoder, requiring separate encoders for each
task. Decoder-focused MTL methods [32] achieve high perfor-
mance by using a shared encoder and a task interaction mechanism.
The shared encoder extracts task-agnostic features from an image,
which individual decoders convert into task-specific features. The
task interaction module then refines these features using multi-
modal distillation methods.

However, current decoder-focused methods encounter two pri-
mary challenges when processing dense prediction tasks.

Firstly, many task interaction modules in decoder-based methods
[1, 32, 35, 38, 43, 45] encounter the negative transfer [44] problem
due to the uncertainty regarding the similarity between each pixel
of the target task and the source tasks. Several research efforts
[1, 26] aim to address this issue. For instance, PADNet [32], PSDNet
[45], and MTI-Net [26] have introduced local structures to handle
task interaction, ensuring only small spatial relationships between
tasks. Leveraging self-attention and Vision Transformers (ViT) [4],
methods like InvPT [38], DeMT [36], and TaskPrompter [40] design
global relationships between tasks. However, they still struggle to
accurately model task interaction and fully resolve negative trans-
fer. We believe one major factor to negative transfer is the potential
negative influence of one of the irrelevant source tasks on target
tasks through task interaction modules. In Figure 1, we illustrate
two tasks, semantic segmentation (SemSeg) and surface normal es-
timation (Normals). We analyze scenes with task interaction (Model
1) and without task interaction (Model 2). In Model 1, both SemSeg
and Normals features are involved to refine Normals task features.
Consequently, Model 1 influences the updating weights of SemSeg
task, thereby affecting both SemSeg and Normals features if task
interaction modules are not well-designed. Conversely, both tasks
remain unaffected if all source tasks are SemSeg, as depicted in
Model 2 of Figure 1. To prove the observation, we implement the
comparison experiment between Model 1 and Model 2. As shown
in Table 1, global self attention without other tasks obtains better
results compared to global task interaction cross multi-tasks. We
compare these models based on different task numbers, which all
indicate task interaction encounter the negative transferring.

The second challenge faced by current multi-scale decoder-based
MTL methods [26, 38, 40] is the significant computational burden

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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Figure 1: An example of a factor contributing to negative
transfer during task interaction.

arising from the complexity of pixel-level tasks. For example, de-
signing decoders and task interaction modules at a quarter of input
image scale results in high computational resource requirements
for pixel-level processing.

Based on these observations, we propose the Task-Interaction-
Free Network (TIF) for multi-task learning.

Firstly, instead of designing task interaction modules, we opt to
enhance the task-agnostic features from the task-sharing encoder.
This decision is motivated by the task sharing encoder typically
possesses high number of parameters compared to the decoder.
Specifically, the sharing encoder inherently possesses the capability
to implicitly achieve task interaction due to its high capacity. There-
fore, we propose a novel Scale Attentive-Feature Fusion Module
(SAFF) to enhance task-agnostic encoder features at each scale level
by utilizing all scale features.

Addressing the second observation for multi-scale decoder-based
MTLmethods, we introduce two novel modules: (1) the Self-Feature
Distillation Module (SFD) and the Low-To-High Scale Feature Dif-
fusion Module (LTHD). The SFD module is tasked with extracting
self-relative global relationships from task-specific features at the
lowest two scales. (2) To mitigate complexity at higher scale levels,
the LTHD module is proposed to diffuse global relationships from
lower to higher levels. This approach ensures that task-specific
features encompass both high semantic information and high struc-
tural information while maintaining relatively low computational
requirements.

In summary, our contributions are as follows:
• We propose the TIF for multi-task learning, comprised of
three modules: (1) the Scale Attentive-Feature Fusion Mod-
ule (SAFF); (2) the Self-Feature Distillation Module (SFD);
(3) and the Low-To High Scale Feature Diffusion Module
(LTHD). Through integrating these modules, TIF facilitates
the processing of multi-tasks without the need for explicit
task interaction design.

• We design the SAFF to augment the task-sharing informa-
tion from the encoder component. This enables the implicit
processing of task interaction and facilitates the extraction
of rich information from robust encoders.

• SFD and LTHD are proposed to address the computational
challenges inherent in current multi-scale based dense pre-
diction multi-tasks.

Table 1: Performance comparison on model 1 and model 2.

Methods SemSeg
(mIoU)↑

Depth
(RMSE)↓

Normals
(mErr)↓

Bound
(odsF)↑

w/ task interaction [1] 34.67 0.6383 - -
w/o task interaction 34.78 0.6273 - -
w/ task interaction [1] - 0.6346 21.19 -
w/o task interaction - 0.6292 21.06 -
w/ task interaction [1] 34.90 0.6412 21.15 76.34
w/o task interaction 34.43 0.6247 21.11 76.57

2 RELATEDWORK
Multi-task learning for dense prediction. Multi-task learning
(MTL) architectures are primarily categorized into two paradigms:
encoder-focused MTL approaches and decoder-focused MTL ap-
proaches [1, 32, 35, 38, 39, 43, 45]. Encoder-focused MTL methods
have demonstrated efficacy through the deployment of sophisti-
cated encoder-decoder networks [8, 16, 17, 24]. these methods of-
ten struggle to improve performance without incorporating task-
specific feature interactions at higher feature levels. In contrast,
decoder-focused MTL methods have distinguished themselves in
multi-task dense prediction scenarios by emphasizing task interac-
tion modules, seeking to excel with a shared encoder complemented
by task-specific decoders [25]. PAD [32], a pioneering method in
this domain, leverages interactions between auxiliary and target
tasks to achieve superior performance on the latter in a localized
manner. MTI-Net [26] introduces a novel multi-scale task-specific
feature interactionmechanism using amulti-modal distillationmod-
ule [32] at each scale. ATRC [1] has recently set a benchmark in
efficient decoder-focused MTL, harnessing the power of Neural
Architecture Search [31] to identify optimal contextual interactions
between tasks. InvPT [38] and TaskPrompter [40] achieves remark-
able performance by integrating multi-scale techniques [26] with
the visual transformer (ViT) architecture [4, 12, 23], showcasing
the synergistic potential of these complementary methodologies.

However, the task interaction manner of these methods encoun-
ters negative transfer problem. Therefore, we proposed TIF to en-
hance the task-agnostic features from the encoder and hierarchical
task-specific features from decoders, without explicit task interac-
tion.

Vision Transformer. The attention mechanism has become
increasingly prevalent in computer vision tasks [7], especially in
the wake of the transformative impact of Transformers in natural
language processing (NLP). This mechanism [13] has outperformed
conventional convolutional neural network (CNN)-based methods
in numerous dense prediction tasks by leveraging its strength in
capturing pixel-level relational information. For dense prediction
tasks, a multitude of Vision Transformer (ViT)-based approaches
have been developed, each introducing unique self-attention strate-
gies to encapsulate aggregated features across various scales [34],
global spatial relationships [30], channel-wise dependencies [6],
local contextual information [12], learnable attention weights [41],
and focal attention mechanisms [37]. These self-attention methods
are primarily designed for individual vision tasks and have not been
universally adapted for multi-task learning scenarios. Multi-task
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Figure 2: An overview of the proposed Task-Interaction-Free Network (TIF). TIF consists of a task-sharing encoder and 𝑁
task-specific decoders for all tasks. In the encoder, Scale Attentive-Feature Fusion Modules (SAFF) generate rich multi-scale
task-agnostic features 𝑋 0, 𝑋 1, 𝑋 2, 𝑋 3. In each decoder, Self-Feature Diffusion modules (SFD) model global relationships at the
low scales, while Low-To-High Scale Feature Diffusion modules (LTHD) diffuse the global relationships to the high scales.
Finally, all low and high scales are fused to generate the final prediction.

learning methods [36, 38] also utilize the cross-task attention to
model global relationships between tasks.

3 METHODS
3.1 Overview
The proposed framework is composed of a task-sharing encoder
in conjunction with 𝑁 task-specific decoders, as shown in Figure
2. The task-sharing encoder incorporates two principal modules: a
feature extractor and the Scale-Attentive Feature Fusion Module
(SAFF). The SAFF is further subdivided into two sub-modules: Scale
Alignment (SA) and Scale Enhanced Feature Fusion (SEFF). The
feature extractor can be any pre-trained visionmodel [4, 12, 29] with
four blocks. Given an image 𝐼 ∈ 𝑅𝐻×𝑊 ×𝐶 , the feature extractor
generates four scale features:

𝑋 0, 𝑋 1, 𝑋 2, 𝑋 3 = 𝐹𝐸𝑋 (𝐼 ), 𝑋 𝑖 ∈ 𝑅𝐻/2𝑖+2×𝑊 /2𝑖+2×𝐶𝑖

(1)

where 𝑋 𝑖 represents 𝑖th scale level task sharing feature. 𝐹𝐸𝑋 de-
notes the feature extractor function. To refine each scale level 𝑋 𝑖 ,
we process it through the SAFF modules in conjunction with all
four scale features. Initially, the SA modules are employed to align
all scale features to the target scale, which is equivalent to the
scale of𝑋 𝑖 . Subsequently, SEFF modules are utilized to augment the
target scale feature with the aligned multi-scale features, thereby
producing a scale-enhanced feature, denoted as 𝑋 𝑖 . As a result, the
encoder component generates a rich set of multi-scale task-sharing
features, encompassing 𝑋 0, 𝑋 1, 𝑋 2, 𝑋 3.

In contrast to existing decoder-focused MTL methods, our ap-
proach is characterized by the design of efficient and effective task-
specific decoders for the target tasks. The decoder component of
our framework comprises two innovative modules: the Self-Feature

Table 2: Parameter usage on different backbones.

Methods Backbone Encoder (M) Decoders (M)

MQT [35] Swin-T 27.52 7.83
DeMT[36] Swin-T 27.52 4.55
MQT [35] Swin-S 48.84 7.83

Distillation Module (SFD) and the Low-To High Scale Feature Diffu-
sion Module (LTHD). Within our framework, we assign 𝑋 2 and 𝑋 3

as the low-scale features and 𝑋 1 and 𝑋 0 as the high-scale features.
The SFD modules are introduced to exploit long-range global rela-
tionships among these features in a novel and efficient manner. The
SFD modules yield two principal outputs: task-specific low-scale
features and intra-task affinities. For the high-scale features, the
LTHD module is introduced to facilitate the diffusion of intra-task
affinities from the low-scale to the high-scale levels. Ultimately, the
task-specific high-scale features and low-scale features are concate-
nated to produce the final task-specific features, which are then
utilized for the respective task predictions.

3.2 Scale Attentive Feature Fusion
In the realm of multi-task learning, it is a common observation that
the parameters of the encoder are significantly larger than those
of the decoders, as illustrated in Table 2. Moreover, encoders are
typically pre-trained on extensive image datasets, endowing them
with a wealth of image representation information compared to
the more lightweight decoders. In light of this, we introduce the
Scale Attentive Feature Fusion Module (SAFF) to harness the rich
information embedded within the task-sharing feature extractor
(Figure 3). The SAFF module comprises two key sub-modules: Scale
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Figure 3: Illustration of Scale Attentive-Feature Fusion mod-
ule.

Alignment (SA) and Scale Enhanced Feature Fusion (SEFF). As
depicted in our framework (Figure 2), all high and low-level features
(𝑋 0, 𝑋 1, 𝑋 2, 𝑋 3) are refined by the SAFF modules.

Scale Alignment. Given a task-sharing feature 𝑋 𝑖 at the target
scale level 𝑖 , SA modules align all other source scale features to the
same scale with the scale 𝑖:

𝑌 𝑖 =𝑊𝑖 × 𝑓𝑐𝑎𝑡 {P𝐻 𝑖×𝑊 𝑖 (𝑿𝒋)}, 𝑗 ≠ 𝑖, (2)

where𝑌 𝑖 denotes the 𝑖th scale feature that contains all scale features
except scale 𝑖 . 𝑿𝒋 denotes a feature set contains three source scales.
P𝐻 𝑖×𝑊 𝑖 denotes that changes input scales to the same scale with𝑋 𝑖 .
𝑓𝑐𝑎𝑡 denotes the concatenation on the channel size.𝑊𝑖 denotes the
reshape dimension operation with learnable weights. To avoid high
computational problems, we reduce the dimension of 𝑋 𝑖 to the low
dimension 𝑋𝐿𝑖 with a 1 × 1 convolution and batch normalization.
𝑊𝑖 reduces the dimension of the other scale information 𝑌 𝑖 to the
same dimension with 𝑋𝐿𝑖 , otherwise high dimension of 𝑌 𝑖 lead to
model losing the target scale information.

Scale Enhanced Feature Fusion. SEFF module incorporates
the information from other scales 𝑌 𝑖 to the target scale 𝑋 𝑖 . In this
way, target scale features contain rich semantic and structural in-
formation from other scales. The architectural design of the SEFF
module is inspired by the structure of the Transformer block. The
inclusion of convolution to capture more nuanced structural infor-
mation, as convolution has been observed to excel in this regard
compared to attention mechanisms. In our approach, unlike conven-
tional Transformer-based methods, we fusion the benefits of both
the Transformer block and convolution. Firstly, given the feature
𝑋𝐿𝑖 from scale 𝑖 and 𝑌 𝑖 from other scales, SEFF learns a a uni-
fied feature representation for scale 𝑖 with a Scale features fusion
module. Subsequently, to preserve the integrity of the information
specific to the target scale 𝑖 , 𝑋𝐿𝑖 are added to the fused feature:

𝑆𝐹𝑋 𝑖 = 𝑆𝐹𝐹 (𝑋𝐿𝑖 , 𝑌 𝑖 ) + 𝑋𝐿𝑖 , (3)

where 𝑆𝐹𝐹 () is the Scale features fusion function. In this paper,
we utilize two convolution layers and ReLU activation function to
achieve 𝑆𝐹𝐹 (). With this function, we obtain well-learned scale
fused feature 𝑆𝐹𝑋 𝑖 with rich information from target scale 𝑖 and
other scales. Subsequently, we enhance the feature learning process
by introducing a dedicated spatial feature learner and a channel

Flatten

Flatten

Flatten

K

LP

Softmax

LN

LN

LN

LP

LP Q

FFN

V

Global
Relationship

Self-features Combination

LP

LN

FFN

Layer Normalization

Linear Projection

Feed Forward Network

Figure 4: Illustration of Self-Feature Distillation module.

feature mixer, which collectively refine both the spatial and channel
dimensions for scale 𝑖 . For the spatial feature learner, we have
crafted a group-wise 3×3 convolution, which is specifically aimed at
capturing local spatial structures. In parallel, for the channel feature
mixer, we utilize a 1× 1 convolution to adeptly blend and refine the
channel-wise information derived from the spatial features. This
dual approach ensures a comprehensive learning process that attend
to both the spatial and channel aspects of the feature representation,
thereby enhancing the overall discriminative power of the scale-
specific features.

𝑆𝑃𝑖 = 𝑅𝑒𝐿𝑈 (𝑓𝑔𝑟𝑜𝑢𝑝 (𝑆𝐹𝑋 𝑖 )), (4)
𝑋 𝑖 = 𝑓1×1 (𝑆𝑃𝑖 ), (5)

where 𝑆𝑃𝑖 denotes 𝑖th scale enhanced spatial features. 𝑓𝑔𝑟𝑜𝑢𝑝 de-
notes group-wise convolution with a group equal to the input chan-
nel number. 𝑓1×1 () means 1 × 1 convolution function for mixing
channel. 𝑋 𝑖 represents the 𝑖th scale feature with enhanced by the
other scale levels. As a result, 𝑋 𝑖 is enriched with information not
only from scale 𝑖 but also from the other scales, which collectively
offer a broad spectrum of semantic and spatial insights from the
shared feature extractor. To amplify the characteristics of each tar-
get scale feature, we design a SEFF module for each individual scale.
Through the application of these specialized modules, we procured
four sets of enhanced scale features: 𝑋 0, 𝑋 1, 𝑋 2, 𝑋 3. These compre-
hensive feature sets lay the foundation for the robust multi-task
learning capabilities of our framework.

3.3 Self-Feature Distillation for Low Scales
Traditional dense prediction methods [1, 36] process high scale
features on the decoder part. The scale of the highest level feature is
generally𝐻/4×𝑊 /4, while the lowest level feature is𝐻/32×𝑊 /32.
The complexity of the highest scale is precisely 64 times that of
the lowest when self-attention is applied to them. Additionally,
the inter-pixel relationships at the highest scale level often yield
global relationships that are predominantly zero. This suggests
that high scales may predominantly encode structural information
rather than global relationships. Hence, we introduce a Self-Feature
Distillation Module (SFD) to extract global relationships from the
lowest two scale features, as depicted in Figure 4.

Unlike current decoder-focused MTL methods, the input to each
SFD is restricted to the low-scale target task-specific features, ex-
cluding any other source task features. Consequently, SFD modules
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Table 3: Comparison results on NYUD-v2 dataset. ’↑’ means higher is better and ’↓’ means lower is better.

Type Method Backbone Param(M) GFLOPS(G) SemSeg(mIoU)↑ Depth(RMSE)↓ Normals(mErr)↓ Bound(odsF)↑
Cross-Stitch [16] HRNet18 4.52 17.59 36.34 0.629 20.88 76.38
PAD-Net [32] HRNet18 5.02 25.18 36.7 0.6264 20.85 76.5
NDDR-CNN [8] HRNet18 4.59 18.68 36.72 0.6288 20.89 76.32

PAP [43] HRNet18 4.54 53.04 36.72 0.6178 20.82 76.42
PSD [45] HRNet18 4.71 21.1 36.69 0.6246 20.87 76.38

Global-context [1] HRNet18 4.73 21.43 38.3 0.6007 20.6 76.26
ATRC [1] HRNet18 5.06 25.76 38.9 0.601 20.48 76.34

Single-Scale

DeMT [36] HRNet18 4.76 22.07 39.1 0.5922 20.21 76.4
MTI-Net [26] HRNet18 12.56 19.14 36.61 0.627 20.85 76.38
SATMTN [21] HRNet18 5.41 24.69 38.92 0.5952 20.29 76.77Multi-scale
TIF (ours) HRNet18 5.27 16.6 40.28 0.594 20.34 76.92

Single-Scale DeMT [36] Swin-T 32.07 100.7 46.36 0.5871 20.65 76.9

Multi-scale
InvPT [38] Swin-T - - 44.27 0.5589 20.46 76.10

MQTransformer [35] Swin-T 35.35 106.02 43.61 0.5979 20.05 76.90
TIF (ours) Swin-T 32.91 76.33(24.37↓) 47.42 0.5677 20.11 77.75

do not involve task interaction processes. We abuse 𝑋 𝑖
𝑡 to be the

task 𝑡 feature at scale 𝑖 . To extract the intra-task global relationships
from the low-scale features, we incorporate the self-attention mech-
anism within the SFD modules. Instead of gathering information
from other tasks, we focus on extracting diverse information from
the target task itself. Consequently, the key and value are derived by
self-feature combination, with a set of target task-specific features
serving as the input. Given a task-specific feature 𝑋 𝑖

𝑡 , 𝑖 ∈ {2, 3}:

𝐾𝑖
𝑡 = 𝑉

𝑖
𝑡 = 𝐹𝑙𝑎𝑡 (𝑋 𝑖

𝑡 )𝑊 𝑖
0 + 𝐹𝑙𝑎𝑡 (𝑋 𝑖

𝑡 )𝑊 𝑖
2 + · + 𝐹𝑙𝑎𝑡 (𝑋 𝑖

𝑡 )𝑊 𝑖
𝑁 , (6)

𝑄𝑖
𝑡 = 𝐹𝑙𝑎𝑡 (𝑋 𝑖

0)𝑊
𝑖
𝑡𝑞, (7)

𝐴𝑖𝑡 = 𝑄
𝑖
𝑡 × 𝐾𝑖

𝑡 , (8)

where, 𝑄,𝐾,𝑉 ∈ 𝑅𝐻 𝑖𝑊 𝑖×𝐶 denote the query, key, and value of the
SFD module. K is equal to V in our setting for the model efficiency.
Flat() function denotes the flatten and linear normalization pro-
cess to the input feature map. 𝑁 is the task number and𝑊 means
the learnable weights. Therefore, K and V are the combination
of various learned features from the 𝑡th target task feature itself.
𝐴𝑖𝑡 ∈ 𝑅𝐻

𝑖𝑊 𝑖×𝐻 𝑖𝑊 𝑖
denotes the global relationships of task 𝑡 from

the scale 𝑖 . In this way, 𝐴𝑖𝑡 from the low scales 2, 3 contains rich
long-range global relationships, which is designed to diffuse these
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Figure 5: Illustration of Low-To-High Scale Feature Diffusion
module.

relationships to the higher scales later, as illustrated by subsection
3.4. Then, we obtain the refined low scale task feature 𝑅𝑋 𝑖

𝑡 by:

𝑅𝑋 𝑖
𝑡 = 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝐴𝑖𝑡 ) ×𝑉 𝑖

𝑡 + 𝑋 𝑖
𝑡 , (9)

𝑅𝑋 𝑖
𝑡 = 𝐹𝐹𝑁 (𝑅𝑋 𝑖

𝑡 ) + 𝑅𝑋 𝑖
𝑡 (10)

where FFN() denotes the feed-forward network. With residual pro-
cess with 𝑋 𝑖

𝑡 , 𝑅𝑋
𝑖
𝑡 also contains the information from the encoder

part. SFD modules save the computational resources with self-
attention way on the low task-specific feature scales. Moreover,
SFD modules without cross-task information do not encounter the
problem mentioned from Figure 1 in section 1 , without using
task interaction. Finally, we process SFD modules to the low-scales
features to obtain refined task-specific features 𝑅𝑋 2

𝑡 and 𝑅𝑋 3
𝑡 .

3.4 Low-To-High Scale Feature Diffusion
Typically, high-scale features encapsulate rich structural informa-
tion, whereas low scales are characterized by high-level seman-
tic relationship information. Current multi-task learning methods
[1, 35, 36] typically process high-scale features that integrate infor-
mation from both high and low levels. This approach embodies a
rich mixture of semantic and structural information. However, the
model complexity for high-scale features is significantly greater
than that of low scales. Therefore, we introduce the Low-To High
Scale Feature Diffusion (LTHD) module to propagate the low-scale
global relationships to the high scales, as depicted in Figure 5.

Given the global relationships 𝐴2
𝑡 and 𝐴

3
𝑡 , the objective of LTHD

modules is to propagate these relationships to the high-scale fea-
tures 𝑋 0

𝑡 and 𝑋 1
𝑡 for task 𝑡 . The scale size of the high-level features

is substantially larger than that of the lower scales. Therefore, pro-
cessing the diffusion from 𝐴2

𝑡 and 𝐴
3
𝑡 to the high scales in the high

scale level increases the model complexity. Furthermore, most of
the global relationships between pixels on the high scales are close
to zero, necessitating a more refined approach to information dif-
fusion. To address these challenges, in LTHD, we first process the
pooling operation to the high-scale features 𝑋 0

𝑡 and 𝑋 1
𝑡 to produce

a lower-scale version of them. Since the scale levels of the global
relationships 𝐴2

𝑡 and 𝐴
3
𝑡 are are distinct, we upsample 𝐴3

𝑡 to match
the scale with 𝐴2

𝑡 . Subsequently, we employ a cross-scale attention
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Table 4: Performance comparison with large parameter multi-scale based SOTA methods on NYUD-V2 dataset.

Methods SemSeg (mIoU)↑ Depth (RMSE)↓ Normals(mErr)↓ Bound (odsF)↑ backbones Parameters (M) Flops (G)
InvPT[38] 53.56 0.5183 19.04 78.10 Vit-L 402.1 555.57
MQTransformer[35] 54.84 0.5325 19.67 78.20 Swin-L 204.3 365.25
TaskPrompter[40] 55.30 0.5152 18.47 78.20 Vit-L 392* 470*
TaskExpert[39] 55.35 0.5157 18.54 78.40 Vit-L 392+ 470+
TIF (ours) 56.80 0.5023 19.21 79.52 Swin-L 204.19 274.27 (90.98↓)

mechanism to diffuse the integrated global relationships to the high
scales. Specifically, for the scale 0 features of task 𝑡 𝑋 0

𝑡 :

𝐴0
𝑡 = 𝑓𝑢𝑝 (𝐴3

𝑡 ) +𝐴2
𝑡 , (11)

𝑅𝑋 0
𝑡 = 𝑃𝑜𝑜𝑙 (𝑋 0

𝑡 )𝑊 0
𝑡 × 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝐴0

𝑡 ), (12)

𝑅𝑋 0
𝑡 = 𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝐹𝑢𝑠𝑒 (𝐹𝐹𝑁 (𝑅𝑋 0

𝑡 ), 𝑋 0
𝑡 ), (13)

where, 𝐴0
𝑡 represents the approximate attention map for scale 0

of task 𝑡 . Instead of employing self-attention on high scales to
generate 𝐴0

𝑡 , we design it with low-scale global relationships. 𝑅𝑋 0
𝑡

denotes the refined features from scale 0. 𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝐹𝑢𝑠𝑒 () signifies
the fusion process using Convolutional layers followed by Batch
Normalization. By processing the LTHD modules on the highest
two scales, we obtain refined task-specific features 𝑅𝑋 0

𝑡 and 𝑅𝑋 1
𝑡 .

Finally, the ultimate task-specific features 𝐹𝑋𝑡 are obtained by:

𝐹𝑋𝑡 = 𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝐹𝑢𝑠𝑒 (𝑅𝑋 0
𝑡 , 𝑅𝑋

1
𝑡 , 𝑅𝑋

2
𝑡 , 𝑅𝑋

3
𝑡 ). (14)

The loss function of the proposed framework is the combination
of all task loss functions with different fixed weights. We follow
the current methods [1] to design the overall loss function.

4 EXPERIMENTS
4.1 Dataset
The PASCAL-Context dataset [2] is an extension of the PASCAL
VOC dataset [5]. It comprises 10,103 images, with 4,998 designated
for training and the remaining 5,105 for testing. This dataset is
annotated for five distinct tasks: boundary detection, surface normal
estimation, semantic segmentation, human part segmentation, and
saliency estimation. The NYUD-v2 dataset [20] focuses on indoor
scenes and includes 1,449 labeled RGB images. Of these, 795 are
randomly allocated for training, while 654 are reserved for testing.
Each image in NYUD-v2 is annotated for four dense prediction tasks:
semantic segmentation, depth estimation, boundary detection, and
surface normal estimation.

4.2 Implementation Details and Metrics
Implementation Details. To ensure a fair comparison, we use
identical experimental settings as other decoder-focusedMTLmeth-
ods [1]. Our backbone model employs HRNet18 [29], Swin Trans-
former [12] and Vit-B. For HRNet18 and Swin Transformer, we set
the learning rate to 0.01 and 0.001 for the NYUD-v2 dataset, and
0.0001 for the PASCAL-Context dataset. Across all experiments,
we maintain a batch size of 8 and train for 50k iterations with a
weight decay rate of 0.0005. All training processes are conducted
on NIVDIA RTX3090 GPUs. More details will be provided by the
source code.

Metrics. We follow the existing MTL methods [1, 35, 39] to
evaluate the performance of semantic segmentation (SemSeg) and
human parts segmentation (PartSeg) using the mean Intersection
over Union (mIoU) metric. For depth estimation (Depth), the root
mean square error (RMSE) is utilized, and saliency detection (Sal) is
measured by the maximal F-measure (maxF). Surface normal esti-
mation (Normals) is assessed using the mean angular error (mErr),
and boundary detection (Bound) employs the optimal-dataset-scale
F-measure (odsF). We evaluate the multi-task performance with

the per-task performance drop (Δ𝑚 = 1
𝑁

∑𝑁
𝑖=1

(𝑃𝑖
𝑚−𝑃𝑖

𝑏𝑎𝑠𝑒
)

𝑃𝑖
𝑏𝑎𝑠𝑒

(−1)𝑤𝑖 ),

where 𝑃𝑖𝑚 denotes the performance of MTL method on the 𝑖-th task
and 𝑃𝑖

𝑏𝑎𝑠𝑒
denotes the baseline performance of this task. (−1)𝑤𝑖

denotes the sign symbol, (−1)𝑤𝑖 = 1 if higher value performance is
better, and (−1)𝑤𝑖 = −1 if lower value performance is better.

4.3 Comparison with the state-of-the-arts
We implement the comparison experiments with existing MTL
methods [1, 32, 35, 38, 39, 43, 45] on both multi-task datasets NYUD-
v2 and PASCAL-Context.

NYUD-v2. As shown in Table 3, the proposed TIF surpasses
the current methods both on CNN and Transformer backbones
without using any explicit task interaction methods. Meanwhile,
the model complexity of the proposed method also achieves better
performance with the current efficient single-scale decoder-based
MTL methods such as DeMT [36]. It indicates that task-specific de-
coders with the proposed SFD and LTHD modules can achieve high
accuracy on multi-tasks as well as high efficiency. Furthermore, as
shown in Table 4, we compare our method with the large-scale MTL
methods (multi-scale decoder-based) such as TaskPrompter [40],
TaskExpert [39], InvPT [38], MQT [35]. The results show that the
proposed TIF achieves SOTA performance with small parameters
and FLOPs. PASCAL-Context. We further evaluate our works with
the existing methods on the PASCAL-Context dataset. As shown in
5, our method surpasses the current MTL methods both on the effi-
cient CNN and effective Transformer backbones. Particularly, the
performance of our method surpasses DeMT 2.95%, 2.86% on the
PartSeg task with Swin-B and Swin-T backbones. It also surpasses
DeMT on Bound task 2.42%, 2.17% on Swin-B and Swin-T.

The comparison results on both two public datasets and Table 1
denotes that the task interaction technique used by current methods
still has negative transfer problems. The proposed TIF with a sim-
ple encoder-decoder design achieves state-of-the-art performance
without using task interaction modules. Instead, we replace it by
strengthening the task interaction by enhancing the task-sharing en-
coder, which is also demonstrated by Table 1. By designing efficient
decoders without explicit task interaction, the model complexity
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Table 5: Comparison Results on PASCAL-Context dataset.

Methods Backbone SemSeg(mIoU)↑ PartSeg(mIoU)↑ Sal(maxF)↑ Normals(mErr)↓ Bound(odsF)↑
ATRC [1] HRNet18 57.89 57.33 83.77 13.99 69.74
MQTransformer [35] HRNet18 58.91 57.43 83.78 14.17 69.8
DeMT [36] HRNet18 59.23 57.93 83.93 14.02 69.80
TIF (ours) HRNet18 58.24 57.92 84.55 13.91 70.89

MQTransformer [35] Swin-T 68.24 57.05 83.40 14.56 71.10
DeMT [36] Swin-T 69.71 57.18 82.63 14.56 71.20
TIF (ours) Swin-T 69.22 60.04 84.05 13.92 73.37

DeMT [36] Swin-B 75.33 63.11 83.42 14.54 73.20
TIF (ours) Swin-B 74.89 66.06 84.30 13.80 75.62

Table 6: Effectiveness of proposed modules.

SAFF SFD LTHD SemSeg
(mIoU)↑

Depth
(RMSE)↓

Normals
(mErr)↓

Bound
(odsF)↑

✗ ✗ ✗ 45.42 0.5864 20.48 77.41
✔ ✗ ✗ 46.56 0.5901 20.62 77.76
✔ ✔ ✗ 46.71 0.5766 20.29 77.78
✔ ✔ ✔ 47.42 0.5677 20.11 77.75

Table 7: Effectiveness of proposed SFD modules.

SFD SemSeg
(mIoU)↑

Depth
(RMSE)↓

Normals
(mErr)↓

Bound
(odsF)↑

Δ𝑚

(%) ↑

Baseline 42.98 0.6012 21.39 65.15 0.0
W/1 SFD 46.93 0.5741 20.20 77.81 5.70
W/2 SFD 47.42 0.5677 20.11 77.75 6.34

surpass remarkably compared to multi-scale decoder-based meth-
ods [35, 38–40] and the efficient SOTA methods such as DeMT[36].

4.4 Ablation Study
4.4.1 Effectiveness of the proposed modules. As reported in Table
6, we conduct an ablation study on our proposed methods with
the Swin-T backbone on the NYUD-V2 dataset. The optimal per-
formance is achieved when all modules SAFF, SFD, and LTHD are
included. The results indicate that SemSeg and Depth performance
notably degrades when LTHD is excluded, underscoring the signif-
icance of both the global dependency propagated to the high scales
and the local details at those scales for these tasks. SFD extracts the
inner-task global relationships, suggesting that tasks like Depth
are sensitive to the global dependency at lower scales. The perfor-
mance of SemSeg notably drops without SAFF, highlighting the
importance of the rich information from the task-sharing encoder.

4.4.2 Effectiveness of the SFD modules. Table 7 demonstrates that
applying SFD modules to the two lowest scales outperforms using
it on a single scale. This indicates that the global relationships at
both scales are advantageous for the performance of most tasks.

Table 8: Performance comparison between cross-task inter-
action and self-distillation.

Distillation SemSeg
(mIoU)↑

Depth
(RMSE)↓

Normals
(mErr)↓

Bound
(odsF)↑

Δ𝑚

(%) ↑

Baseline 42.98 0.6012 21.39 65.15 0.0
Cross-distill 45.79 0.5738 20.57 77.20 4.41
Self-distill 46.71 0.5766 20.29 77.78 5.35

(a) Between-task distance on Scale3 (b) Between-task distance on Scale2

Figure 6: Between-task distance on Scale3 and Scale2 for the
SFD modules.

Furthermore, the model complexity is notably reduced when ap-
plying SFD to the two lowest scales compared to using it on the
higher scales. Consequently, we exclusively utilize SFD on the two
lowest scales.

4.4.3 Analysis on task interaction. As shown in Table 8, we imple-
ment the SFD in twoways: cross-task distillation and self-distillation.
Cross-task distillation is widely used by current MTL methods to
achieve task interaction globally, while self-distillation means the
proposed SFD modules. The results show that self-distillation has
better performances compared to the cross-distillation. The results
also are consistent with Table 1. Therefore, such task interaction
manner still causes negative transfer problems. It also indicates that
cross-task messages should be precisely transferred to the target
tasks, otherwise, it will encounter negative transfer problems. Be-
sides, the parameter and FLOPs of cross-task distillation are 31.56
M and 62.89 G, while SFD modules take 31.78 M and 62.49 G. It
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Table 9: Effectiveness of proposed SAFF modules.

SAFF SemSeg
(mIoU)↑

Depth
(RMSE)↓

Normals
(mErr)↓

Bound
(odsF)↑

Δ𝑚

(%) ↑

Baseline 42.98 0.6012 21.39 65.15 0.0
W/O SAFF 46.12 0.5678 20.03 77.34 5.53
W/2 SAFF 46.29 0.5675 20.03 77.34 5.64
W/4 SAFF 47.42 0.5677 20.11 77.75 6.34

Table 10: Results onmulti-scale decoder-basedMTLmethods.

Methods backbone SemSeg
(mIoU)↑

Depth
(RMSE)↓

Normals
(mErr)↓

Bound
(odsF)↑ param

MTI-Net HRNet18 36.61 0.6270 20.85 76.38 12.56
TIF(ours) HRNet18 40.28 0.5940 20.34 76.92 5.27

TaskPromter Vit-B 50.40 0.5402 18.91 77.60 350*
TIF (ours) Vit-B 52.57 0.5360 18.78 77.16 124

shows that the proposed SFD modules have the comparable model
complexity with the cross-task distillation.

4.4.4 The importance of SAFF modules. As shown in Table 9, we
implement different numbers of SAFF to different scales. Specif-
ically, W/o SAFF means without using SAFF to the multi-scales.
W/2 SAFF means only using SAFF on the lowest two scales. W/4
SAFF means the full model. It shows that W/4 SAFF improves the
performance of W/2 SAFF thanW/2 SAFF toW/O SAFF. It indicates
that multi-scale fusion to the high scales is much better than to the
low scales for dense prediction tasks. Therefore, high scales still
are important features for dense predictions.

4.4.5 Analysis on multi-scale MTL methods. As shown in Table
10, we compare multi-scale MTL methods, assessing model pa-
rameters and performance with HRNet18 and Vit-B backbones.
TaskPromoter [40] and MTI-Net [26] are SOTA MTL methods
based on multi-scale decoders. Our TIF method also follows this
approach. TIF outperforms TaskPromoter in performance with a
smaller model size, demonstrating remarkable MTL performance
without task interaction modules or complex high-scale global and
local dependencies.

4.5 Qualitative study
In this section, we conduct three qualitative studies on the proposed
TIF. Firstly, we conduct task similarity experiments, as illustrated
in Figure 6, revealing that task similarity varies across the SFD
modules at scales 2 and 3. The lower scale exhibits higher task
similarity than the higher scale, validating the introduction of SFD
modules at the lowest two scales. Moreover, different tasks exhibit
varying task similarities at both scales 2 and 3, with some tasks
exhibiting high dissimilarity. This dissimilarity can lead to nega-
tive transfer when implementing task interaction. Additionally, we
observe that different input images display distinct task similari-
ties, making it challenging to model an explicit and accurate task
interaction method for dense prediction multi-tasks. Secondly, we

Image Baseline W/O LTHD W/ LTHD

Figure 7: Feature visualization for LTHD modules.
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Figure 8: Visual comparison of the proposed ATMPNet with
ATRC [1] and MQT [35] in complex scenes.

conduct qualitative experiments to underscore the significance of
LTHD modules. As depicted in Figure 7, models with LTHD mod-
ules achieve more precise predictions for multiple and large objects
compared to those without LTHD, indicating that LTHD modules
enhance performance by diffusing global relationships in SemSeg
tasks. This aligns with the quantitative results presented in Table 6.
Thirdly, we compare our method with the current CNN-based ap-
proach ATRC [1] and the transformer-based method MQT [35]. As
shown in Figure 8, our method demonstrates superior performance
on most tasks without relying on task interaction.

5 CONCLUSION
In this paper, we introduce a Task-Interaction-Free Network (TIF)
for multi-task learning. Unlike traditional methods rely on task
interaction modules, TIF leverages a novel task-agnostic SAFF to
enhance task interaction by task sharing information the encoder
part. This approach avoids the negative transfer commonly en-
countered in task interaction strategies. Additionally, to mitigate
the computational complexity of multi-scale decoder-based MTL
methods, we propose two complementary modules: the SFD and
LTHD modules. The SFD modules extract rich inner-task global
dependencies for low-scales, while the LTHD modules propagate
these dependencies from the lower scales to the higher scales.
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