
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046

Under review as a conference paper at ICLR 2026

ONLINE LEARNING WITH RECENCY: ALGORITHMS FOR
SLIDING-WINDOW STREAMING MULTI-ARMED BANDITS

Anonymous authors
Paper under double-blind review

ABSTRACT

Motivated by the recency effect in online learning, we study algorithms for single-pass
sliding-window streaming multi-armed bandits (MABs) in this paper. In this setting, we are
given n arms with unknown sub-Gaussian reward distributions and a parameter W . The
arms arrive in a single-pass stream, and only the most recent W arms are considered valid.
The algorithm is required to perform pure exploration and regret minimization with limited
memory. The model is a natural extension of the streaming multi-armed bandits model
(without the sliding window) that has been extensively studied in recent years. We provide a
comprehensive analysis of both the pure exploration and regret minimization problems with
the model. For pure exploration, we prove that finding the best arm is hard with sublinear
memory while finding an approximate best arm admits an efficient algorithm. For regret
minimization, we explore a new notion of regret and give sharp memory-regret trade-offs
for any single-pass algorithms. We complement our theoretical results with experiments,
demonstrating the trade-offs between sample, regret, and memory.

1 INTRODUCTION

The stochastic multi-armed bandits (MABs) model is a fundamental model extensively studied in machine
learning (ML) and theoretical computer science (TCS). In its most common form, we are given n arm with
unknown sub-Gaussian reward distributions, and we could learn the instance by sampling from the arms.
The most important problems in the model include pure exploration, where the goal is to identify the best or
a near-optimal arm, and regret minimization, where the aim is to devise a sampling strategy that performs
competitively against the best arm in hindsight. The multi-armed bandits model has found broad applications
in experiment design and clinical trials (Robbins, 1952; Pallmann et al., 2018; Simchi-Levi & Wang, 2023),
financial strategies (Shen et al., 2015; Trovò et al., 2018), information retrieval (Radlinski et al., 2008; Losada
et al., 2017), algorithm design (Bouneffouf et al., 2017; Gullo et al., 2023), to name a few.

Classical algorithms for MABs often assume the entire set of n is stored in the memory for repeated access.
However, this assumption can be unrealistic in modern online learning and large-scale applications, where
arms may arrive sequentially in a stream, and the available memory is insufficient to store all of them. To
address this challenge, the work of Liau et al. (2018); Assadi & Wang (2020) introduced the streaming
multi-armed bandits model. In this model, the arms arrive one after another in a stream, and the algorithm
would ideally maintain a memory substantially smaller than the total number of arms. The maximum number
of arms maintained in the memory is defined as the space complexity of the algorithm. The streaming MABs
model has attracted considerable attention since its introduction, and a flurry of work has established near-tight
trade-offs for pure exploration (Assadi & Wang, 2020; Jin et al., 2021; Maiti et al., 2021; Assadi & Wang,
2022; 2024; Karpov & Wang, 2025) and regret minimization (Liau et al., 2018; Maiti et al., 2021; Agarwal
et al., 2022; Wang, 2023; He et al., 2025) in various settings.

1

047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093

Under review as a conference paper at ICLR 2026

While most work on streaming MABs targets global objectives, such as identifying the best arm overall, many
applications exhibit a recency effect, where recent arms matter more. For example, movie recommendation
systems must adapt quickly to shifting trends. A related motivation comes from privacy constraints: regula-
tions and policies often mandate data deletion after limited periods. GDPR requires data retention only for
the “necessary” duration (GDPR, 2016), Apple retains user data for 6 months (Apple Inc., 2021), and Google
limits anonymized advertising data to 9 months (Google LLC, 2025). Alas, streaming MABs algorithms
usually do not take any recency effect into consideration. For instance, the pure exploration algorithms, e.g.,
the ones in Assadi & Wang (2020); Jin et al. (2021); Maiti et al. (2021), may output an arm that arrives very
early in the stream, which is far from being recent. Similarly, the regret minimization algorithms in Maiti
et al. (2021); Wang (2023); He et al. (2025) may commit to an arm that is outside the pool of recent arms1.
As such, the following motivating open question could be asked: could we design efficient streaming MABs
algorithms that incorporate the recency effect?

Sliding-window streaming multi-armed bandits. One of the most common models that capture the recency
effect is the sliding-window streaming model (Datar et al., 2002; Datar & Motwani, 2016). In a typical
sliding-window stream, a total of n data items (arms in the context of MABs) are arriving in a stream, and
only the past W items are considered valid. The sliding-window streams have been extensively studied in
various contexts, including frequency estimation (Datar et al., 2002; Braverman & Ostrovsky, 2007), graph
algorithms (Crouch et al., 2013; Crouch & Stubbs, 2014; Zhang et al., 2024), clustering (Braverman et al.,
2016; Borassi et al., 2020; Epasto et al., 2022; Woodruff et al., 2023; Cohen-Addad et al., 2025), among
others (Tao & Papadias, 2006; Zhang et al., 2016).

Inspired by the success of sliding-window streams on various problems, we define the natural notion of
sliding-window streaming MABs to explore the recency effect. Here, we are given n arms arriving in a
(single-pass) stream, and we are additionally given a window size W . When the t-th arm arrives, the arms
with the arrival orders in [t−W + 1, t] are considered the valid set of arms at this point. The algorithm is
allowed to store any arm (not limited to the window) regardless of whether the arm is valid 2. The central
problems here are therefore the pure exploration and regret minimization in sliding-window streaming MABs.

1.1 OUR CONTRIBUTIONS

We give a comprehensive analysis of pure exploration and regret minimization algorithms for sliding-window
streaming MABs in this paper.

Pure explorations. For pure explorations, we studied both pure exploration, where the goal is to return the
exact best arm, and ε exploration, where the goal is to return an arm whose mean is ε-close to the best. In
both notions, the best arm is defined as the arm with the highest mean reward in the sliding window. Our
main conceptual message is that finding the exact best arm is hard unless using Ω(W) arms of memory space,
but finding the approximation best arm is possible with sample and space efficiency.

Result 1 (Informal of Theorems 1 and 2). Any algorithm that finds the best arm at any step with
probability at least 99/100 in the sliding-window streaming multi-armed bandits requires Ω(W) arm
memory, even with an unlimited number of arm pulls. On the other hand, there exists an algorithm that
finds an ε-best arm with probability at least 1− δ at any steps with O(1ε) arm memory and O(n

ε2 log
W
δ)

arm pulls.

By a standard probability boosting argument, the success probability of 99/100 generalizes to any probability
of 1/2 + Ω(1). On the other hand, our results demonstrate that we can identify an approximate best arm with
arbitrary constant accuracy using only O

(
1
ε

)
memory.

1This intuitively means the algorithm incurs large regret, although the definition of regret has more nuance in such
cases. See Section 1.1 and Section 2 for details.

2The arms outside the sliding window could still be useful in various subroutines, e.g., comparing the means.

2

094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140

Under review as a conference paper at ICLR 2026

Given that there are at most W valid arms at any given time, the lower bound implies that exact pure
exploration would require the algorithm to store everything. However, since ε is typically set to a constant,
the algorithm shows that approximate pure exploration essentially requires only constant memory.

Regret minimization. The second part of our paper is for regret minimization. A significant challenge here is
how we should define regret in the sliding-window model. The most natural definition would be to define the
regret as the cumulative gap between µ∗(t,W) and the means of the pulled arms in each window, and the
only restriction is that the total number of arm pulls should be T . Here, µ∗(t,W) is the mean reward of the
optimal arm in the window W at time t. However, such a definition has a fatal issue: since the algorithm could
control the number of arm pulls before the window moves, the definition of the regret becomes a function of
the algorithm, which means it could not be well-defined.

To bypass the challenge, we introduce the notion of epoch-wise regret such that the optimal reward sequences
are independent of the arm pulls used by the algorithm. Our notion of regret minimization is to divide the
total number of arms pulls T to equal-sized epochs. In particular, there will be n−W + 1 epochs, and each
epoch will contain T

n−W+1 arm pulls. Total regret is defined as cumulative regret across epochs, and the
algorithm is required to pull arms a constrained number of times in each time window. A formal definition of
our regret notion can be found in Definition 6,

We believe that the introduction of the regret notion is a significant contribution; otherwise, there is no
obvious way to study regret minimization in sliding-window streaming MABs. Moreover, the epoch-wise
regret definition captures many practical scenarios. For instance, in the case of movie recommendations for
entertainment companies, we treat the “sliding window” as time periods of, e.g., 1-2 months. Old movies
eventually get taken off the theater; furthermore, assuming the theater visits are roughly the same in each
time period, we can divide the total visits into the time periods to conduct epoch-wise regret minimization.

Our main conceptual finding for regret minimization is that a memory of Ω(W) arms is necessary to achieve
o(T) regret; furthermore, there is a sharp memory-regret transition around the Θ(W) arm memory.

Result 2 (Informal of Theorem 3). Any algorithm that achieves o(T) regret in the epoch-wise regret
setting requires Ω(W) arm memory. Furthermore, there exist algorithms that given a stream of n arms
and parameters T and W , with O(W) memory achieve O(

√
W · (n−W) · T) regret.

In the centralized setting, the tight bound for regret minimization is O(
√
nT), even with unlimited memory.

Since O(
√
W (n−W)T) = O(

√
nT) when W is considered a constant, this shows that our bound for

epoch-wise regret setting is indeed tight for the general case. While the low-regret algorithms in Result 2 are
relatively straightforward, our lower bounds show that, perhaps surprisingly, these are essentially the best
we could do. We find the conceptual message quite interesting, and we believe it could serve as important
guidelines for related applications. A variant of our regret setting is when the best arm does not expire with
the movement of the sliding window. While the setting is less interesting, we do believe it has applications as
well. A discussion of this setting can be found in Section D.

Experiments. We conducted experiments for both pure exploration and regret minimization applications3.
For pure exploration, we implemented the ε-best pure exploration algorithm, and for regret minimization, we
used the O(W)-memory algorithms outlined in Result 2. These are the first algorithms designed to work with
multi-armed bandits (MABs) under a sliding-window setting.

In our pure exploration experiments, we tested configurations with n ∈ {1000, 2000, 5000} and n ∈
{10, 20, 50}. The results indicate a relatively smooth trade-off between the quality of the returned arm and
the memory used. The error exceeded 0.6 in all settings when we employed a memory size of 0.05W ;

3Our code is available on anonymous Github: https://anonymous.4open.science/r/
sliding-window-MABs-CF74/.

3

https://anonymous.4open.science/r/sliding-window-MABs-CF74/
https://anonymous.4open.science/r/sliding-window-MABs-CF74/

141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187

Under review as a conference paper at ICLR 2026

however, it dropped to below 0.3 with a memory size of 0.3W . On the other hand, we can easily show
that existing algorithms could result in 0.6 error (Section E) , and our empirical results essentially mean
that with 0.3W memory, the error could be reduced by 50%. For the regret minimization experiments, we
tested configurations with n ∈ {500, 1000, 2000} and n ∈ {10, 20, 50}, while setting the number of pulls
for each epoch to T

n−W+1 = 1000. The results revealed sharp changes in regret around the memory size W ,
confirming our theoretical predictions. The total regret decreased by more than 50% for most configurations
when the memory size increased from 0.05W to W .

2 PROBLEM DEFINITION AND PRELIMINARIES

In this section, we give the formal definition of the problems we investigated and some standard technical
tools. We start with a formal definition of stochastic MABs.
Definition 1 (Stochastic multi-armed bandits (MABs) model). In the stochastic multi-armed bandits model,
we have a collection of n arms {armi}ni=1, and each arm follows a distribution with mean µi ∈ [0, 1]. Each
pull of armi returns a sample from the distribution with mean µi.

Note that by the central limit theorem, sampling from arbitrary distributions over [0, 1] is essentially the
same as sampling from an arbitrary sub-Gaussian distribution (up to a scaling factor). The sliding-window
streaming MABs could therefore be defined as follows.
Definition 2 (The sliding-window streaming MABs model.). In the sliding-window streaming MABs model,
we have a collection of n arms {armi}ni=1 arranged in order and a window size W 4. Each arm follows a
distribution with mean µi ∈ [0, 1]. The arms arrive one by one in the stream, and we let {armi}ti=t−W+1 be
the set of valid arms that arrived in the W latest steps. When a new arm arrives, the algorithm can pull the
arriving arm and the arms in memory. The algorithm can also decide whether to store the new arm in memory
or discard it, and the algorithm can discard some arms stored in memory to free up space. At any point, the
collection of arms that the algorithm could access are the arms in memory and the arriving arm.

We can now define the sample and space complexity of a sliding-window streaming MABs algorithm.
Definition 3 (Sample complexity). The sample complexity of a sliding-window streaming MABs algorithm is
defined as the total number of pulls of the algorithm.
Definition 4 (Space complexity). The space complexity of a sliding-window streaming algorithm is defined
as the maximum number of arms that we store in the memory at any time during the algorithm.

Pure exploration. One of the most natural problems in the MABs problem in the sliding-window model
is the pure exploration problem, where the algorithm is asked to return the best or near-best arms. In what
follows, we discuss the necessary notions before formally defining the pure exploration problems.
Definition 5 (Best arm in the window). Assume that we have a collection of n arms {armi}ni=1 with means
µi and arranged in the streaming arriving ordered. Let W be the window size and t be the index of the current
arriving arm. Then, for any t ∈ [n], the best arm in the window arm∗(W, t) is the arm with the highest mean
µ∗(W, t) among the W latest arms {armi}ti=t−W+1.

Note that the notation arm∗(W, t) is a function of t and W . We also call the set of arms {armi}ti=t−W+1
valid at time step t for fixed t and W .

We are ready to introduce the pure exploration problem for the sliding-window streaming MABs model.
Problem 1 (Exact pure exploration in sliding-window MABs). Given a stream of n arms {armi}ni=1 and a
window size W , we say a sliding-window streaming MABs algorithm ALG solves

4We emphasize that the parameter W is an input parameter (not the algorithm’s choice).

4

188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234

Under review as a conference paper at ICLR 2026

• weak pure exploration with probability 1 − δ if at any time t ∈ [n], ALG can output the best arm in the
window with probability at least 1− δ.

• strong pure exploration with probability 1 − δ if ALG can output the best arm in the window at all time
t ∈ [n] with probability 1− δ.

Next, we could analogously define the ε exploration problem in both the weak and the strong versions for the
sliding-window streaming MABs.
Problem 2 (ε exploration in sliding-window MABs). Given a stream of n arms {armi}ni=1, a window size
W , and a parameter ε, we say a sliding-window streaming MABs algorithm ALG solves

• weak ε exploration with probability 1− δ if at any time t ∈ [n], ALG is able to output an arm with mean
reward µ such that µ ⩾ µ∗(t,W)− ε with probability at least 1− δ.

• strong ε exploration with probability 1− δ if ALG is able to output an arm with mean reward µ such that
µ ⩾ µ∗(t,W)− ε at all time t ∈ [n] with probability 1− δ.

Here, as defined in Definition 5, µ∗(t,W) is the mean reward of the best arm in the window.

Regret minimization. In Section 1.1, we have discussed the high-level definition for our regret notion in
sliding windows, i.e., the epoch-wise regret. We now introduce the formal definition as follow.
Definition 6 (Regret minimization with epoch-wise regrets). Let {armi}ni=1 be a collection of n arms, and
let W and T be the window size and the total number of trials. We divide T into (n−W + 1) equal-sized
epochs with T

n−W+1 in each epoch. Let t be the variable for the index of the arriving arm, and for any t, the
algorithm is required to conduct exactly T

n−W+1 arm pulls among {armi}ti=t−W+1. We define the regret

of the j-th epoch as RE(j) =
∑T/(n−W+1)

τ=1 (arm∗(W, t)− armi(τ)), where i(τ) is the arm index pulled by
the algorithm. The total regret is defined as RT =

∑T/(n−W+1)
j=1 RE(j), i.e., the regret over the epochs.

3 A LOWER BOUND FOR PURE EXPLORATION IN SLIDING-WINDOW MABS

The most natural pure exploration problem is pure exploration which asks to return the best arm. In the vanilla
streaming multi-armed bandits (MABs) model, pure exploration can be solved with O(n/∆2

[2]) samples and
a single-arm memory, where ∆[2] represents the difference between the mean of the best and the second-best
arms. As such, one would naturally wonder whether the same story applies to the sliding-window model. In
this section, we will show that pure exploration is surprisingly much harder in the sliding-window streams:
unless the algorithm uses Ω(W) space, we cannot obtain any algorithm that solves pure exploration.

The hard instance for our lower bound is a stream with descending mean rewards of arms, i.e., µ1 > µ2 >
· · · > µn for arms . The optimal solution for the sliding-window MABs would be to select armn−W+1,
which is the oldest non-expired arm. However, to always keep the oldest arm that has not expired in the
memory, we would naturally need W memory. The following theorem formalizes the above intuitions.
Theorem 1. Any algorithm that given n arms in a sliding-window stream with a window size of W , solves the
weak or strong pure exploration problem in sliding-window streaming multi-armed bandits with a probability
of at least 99/100 has a space complexity of at least Ω(W), even if the sample complexity is unbounded.

Proof. We prove the theorem for weak pure exploration, since the task of strong pure exploration is only
harder. In other words, since the answer for strong exploration is always valid for weak exploration, the
former task should use at least the same amount of memory and samples.

By Yao’s minimax principle (Yao, 1977), it is sufficient to prove the lower bound for deterministic algorithms
over a challenging distribution of inputs. Let n = 2W . We construct the instance {arm1}ni=1 such that
µi = 1− i

3W . To solve the weak pure exploration problem with a probability of at least 99
100 , the algorithm

5

235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281

Under review as a conference paper at ICLR 2026

must correctly identify at least 49
50 of the best arms in the second half of the stream {armi}ni=1. If the algorithm

fails to do this, the overall success probability would drop below 1 · 12 + 49
50 ·

1
2 = 99

100 .

Let T ⊂ {W + 1,W + 2, . . . , 2W} represent the collection of times when the algorithm correctly identifies
the best arm in the window during the second half of the stream. Define A = {arm∗(W, t)|t ∈ T} as the
set of best arms in the window at times t ∈ T . For any t ∈ {W + 1,W + 2, . . . , 2W}, the best arm in the
window arm∗(W, t) should be armt−W+1 because the expected values of the arms monotonically decrease
in this instance. Therefore, we have A = {armt−W+1|t ∈ T}. Given that T ⊂ {W + 1,W + 2, . . . , 2W}
and |T | ⩾ 49

50W , it follows that A ⊂ {arm2,arm3, . . . ,armW+1} and |A| = |T | ⩾ 49
50W .

For any W + 1 ⩽ t < 2W , arm∗(W, t) = armt−W+1 has already arrived by time W + 1. Therefore, for
any t ∈ T ∩ [2W − 1], arm∗(W, t) must be stored in memory by time W + 1 so that it can be returned at
time t. This means that at least |A| − 1 = 49

50W − 1 arms must be stored in memory at time W + 1. Hence,
according to Yao’s minimax principle, the algorithm must have a space complexity of at least Ω(W).

Note that the success probability of 99/100 in the theorem is not inherently special: by a simple probability
boosting argument, we can always maintain O(1) copies of the algorithm and output the majority with
asymptotically the same memory and number of samples. As such, our lower bound in Theorem 1 applies to
any success probability of 1/2 + Ω(1).

4 SLIDING-WINDOW ALGORITHMS AND LOWER BOUNDS FOR ε-PURE EXPLORATION

Section 3 depicts a very pessimistic picture for the pure exploration of the best arm in sliding-window
streaming MABs. A natural question to follow is whether we could get positive results using a relaxed notion.
A natural candidate for this purpose is the ε exploration under the (ε, δ)-PAC framework. Here, instead of
returning the single best arm, we are allowed to obtain an arm whose gap is within ε additive to the best, i.e.,
return an arm with mean reward µ ⩾ µ∗ − ε. In this section, we present the bounds for both strong and weak
ε exploration. Our main results are:

• A pure exploration algorithm that solves weak ε exploration with probability 1− δ in the sliding-window
streaming MABs model with O

(
n
ε2 log

W
δ

)
sample complexity and O

(
1
ε

)
space complexity.

• A lower bound shows that for any algorithm to solve strong ε exploration with probability 99/100 in the
sliding-window streaming MABs model, the algorithm has to use Ω(n

ε2 log
n
W) sample complexity. Since

n ≫ W in most cases, the lower bound separated the weak and strong ε exploration problems in the
sliding-window streaming MABs model.

• Finally, we give a nearly-matching algorithm for strong ε exploration with probability 1− δ in the sliding-
window streaming MABs model with O

(
n
ε2 log

n
δ

)
sample complexity and O

(
1
ε

)
space complexity.

4.1 AN EFFICIENT ALGORITHM FOR WEAK ε-PURE EXPLORATION

We start with introducing a streaming algorithm designed for weak ε exploration.
Theorem 2. There exists a streaming algorithm that, given n arms arriving in a sliding-window stream with
a window size W and a confidence parameter δ, solves weak ε exploration with a probability of at least 1− δ
using a sample complexity of O

(
n
ε2 log

W
δ

)
and a space complexity of O

(
1
ε

)
.

At a high level, the algorithm follows the idea of partitioning the range [0, 1] into O
(
1
ε

)
segments (“buckets”)

of equal length. An arm is considered to belong to a bucket if its mean value falls within the range of that
segment. For an arm armi that belongs to bucket B, any arm arm′ that is in a nearby bucket would serve as
an ε-approximation of armi. If we pull each arm an adequate number of times, we can ensure that any arm is
placed into a bucket that is close enough to its mean; thus, the non-expired arm from the highest bucket will
be an ε-best arm. To optimize memory usage, we store only the latest arm for each bucket instead of all the

6

282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328

Under review as a conference paper at ICLR 2026

arms that belong to that bucket. Our algorithm for weak ε exploration is presented in Algorithm 1, with the
pulling size set to s = (9/2ε2) · ln 6W/δ.

Algorithm 1: Efficient Algorithm for ε exploration in Sliding-window Streaming MABs: BUCKET(s)

Input: Data stream {armi}ni=1, window size W , confidence parameter δ and accuracy parameter ε;
Input: Sample complexity: s = 9

2ε2 ln
6W
δ for weak exploration and s = 9

2ε2 ln
6n
δ for strong

exploration;
Output: ε-best arms {ârmi}ni=1;
N ← 3

ε ;
Generate N buckets B1, B2, · · · , BN ;
for each arriving arm armi do

Pull armi for s times and evaluate empirical mean µ̂i;
Store armi in Bj such that (j − 1) ε3 < µ̂i ⩽ j ε

3 and discard the arms stored in Bj previously;
Discard all stored arms that are expired;
ârmi ← the arm stored in Bk such that k = maxi⩽N{Bi ̸= ∅}

end
return {ârmi}ni=1

4.2 A LOWER BOUND FOR STRONG ε-PURE EXPLORATION

We will now discuss the lower bound for strong ε exploration that has an extra log n factor. In particular,
if we show that when W ≪ n (e.g., W = log n), there is a lower bound of Ω(n

ε2 log n) samples for strong
exploration, it would imply a separation between the weak and strong ε exploration since the weak exploration
only requires Ω(n

ε2 logW) samples by Algorithm 1 BUCKET
(

9
2ε2 ln

6W
δ

)
. Then we have:

Lemma 4.1. For infinitely many choices of parameters n, ε, and W ⩽ n0.99, there exists a distribution of
arms D(n,W, ε) such that any algorithm that solves the strong ε exploration with probability at least 99/100
on D(n,W, ε) requires at least Ω(n

ε2 log n) samples. The lower bound holds even if the algorithm is with
unbounded memory.

The technical statement for Lemma 4.1 is more general and gives Ω(n
ε2 log

n
W) samples for W ∈ [1, n/8],

although the bound is less informative when W is large. At a high level, our lower bound works by reducing
solving independent copies of the ε-best arm identification to the sliding-window streaming ε exploration
case. Mannor & Tsitsiklis (2004) proved that O

(
n
ε2 log

(
1
δ

))
pulls are necessary to identify an ε-best arm

among n arms with a probability of at least 1− δ.

In the slide-window setting, since arms will expire after W time, the information from one window does
not affect another disjoint window. There are Θ(n

W) windows in a sliding-window stream that are disjoint.
Since each window requires at least O

(
W
ε2 log

(
n
W

))
pulls to solve its exploitation with a probability of at

least 1−Θ
(
W
n

)
, it follows that O

(
n
ε2 log

(
n
W

))
pulls are necessary to achieve strong ε exploration with a

probability of at least 99/100.

4.3 AN EFFICIENT ALGORITHM FOR STRONG ε-PURE EXPLORATION

We introduce a streaming algorithm for strong ε exploration. The algorithm uses essentially the same
subroutine as in Algorithm 1, but it uses a larger pulling size of s = 9

2ε2 ln
6n
δ to beat a union bound.

Lemma 4.2. There exists a streaming algorithm that, given n arms arriving in a sliding-window stream with
a window size W and a confidence parameter δ, solves strong ε exploration with a probability of at least
1− δ. This algorithm achieves a sample complexity of O

(
n
ε2 log

n
δ

)
and a space complexity of O

(
1
ε

)
.

7

329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375

Under review as a conference paper at ICLR 2026

5 REGRET MINIMIZATION IN SLIDING-WINDOW STREAMING MABS

In this section, we investigate regret minimization for sliding-window streaming multi-armed bandits (MABs).
Recall that in Definition 6, we defined regret minimization with the concepts of epoch-wise regret. Here, we
have n−W + 1 equal-sized epochs, and we must perform T

n−W+1 pulls in each epoch. The question is how
to minimize the cumulative regret over the entire horizon [T].

The most natural idea is to adapt strategies in streaming MABs, e.g., (Wang, 2023), to get a low regret
algorithm. In particular, when a new arm arrives, we can use Algorithm 1 to pull the arm O(1

ε2 log n) times
and place it in the bucket. By the guarantees of Algorithm 1, we will be able to get ε-best arms at any step
with high probability. This strategy incurs a regret of O(1

ε2 log n) when identifying the ε-best arm during
each epoch. Additionally, there is a regret of O(ε T

n−W+1) for the remaining pulls on the ε-best arm we
identify within each epoch. As a result, the total regret is O(n

ε2 log n + εT). The regret is minimized by

choosing ε = O(3

√
n logn

T), which gives a total regret of O(T
2
3 (n logn)

1
3).

Alas, this strategy has a fatal issue: Algorithm 1 requires O
(
1
ε

)
memory space; and since in most cases

T ≫ n≫W , the memory of 1/ε = O(3

√
T

n logn) could be way bigger than the window size W . Thus, it is
not immediately clear whether we could get low-regret algorithms with small memory in this setting. In this
section, we show that the issue of the aforementioned algorithm is not an artifact: we prove a strong lower
bound showing that a total regret of O

(
T
W 2

)
is unavoidable if we only have o(W) space.

Theorem 3. There exists a family of streaming stochastic multi-armed bandit instances such that, for any
given parameters T , n, and W , where T ⩾ n ⩾ 16W , any single-pass streaming algorithm for a sliding-
window stream of length n with a window size W and a memory capacity of W−1

2 arms must incur a total
expected regret given by E [RT] ⩾ T

64W 2 .

Furthermore, there exists an algorithm that given n arms arriving in a stream and parameters W and T ,
achieves O(

√
W · (n−W) · T) total regret with W memory.

At a high level, our lower bound is obtained by constructing W arms whose means decrease by 1
W and W

arms with the same mean, and the pattern is repeated over the stream. Since we can only store at most half of
these arms, if the best arm in the epoch is missed, the regret for each pull will be at least 1

2W . This leads to a
total regret of Ω

(
T
W 2

)
. Our upper bound is obtained by running UCB-based algorithms on each window.

6 EXPERIMENTS

We conduct experiments for both ε-exploration and regret minimization in the sliding-window streaming
setting. Our main empirical finding is that, consistent with our theoretical results, both the ε-exploration
and regret minimization algorithms demonstrate trade-offs between memory and quality/regret. The regret
minimization algorithm demonstrates a sharp change around the O(W)-arm memory. We will briefly
demonstrate the experiments of the ε-exploration and regret minimization algorithms in epoch-wise settings.
Additional experimental results can be found in Section F.

The data. We use synthetic data with streams of arms to conduct our experiments. We use different types of
instances for exploration and regret minimization as follows.

• For exploration, we sample n arms with the distribution Bern(p) such that p is from a uniform distribution5.
We note that the “uniform” type of instances are more suitable for ε-exploration since the quality decrement

5We use Bern(p) to denote Bernoulli distribution with mean p.

8

376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422

Under review as a conference paper at ICLR 2026

of the returned arms could be better captured. We use n ∈ {1000, 2000, 5000} and W ∈ {10, 20, 50} for
ε-exploration experiments.

• For regret minimization, we need instance distributions consistent with our instance distribution in Section 5.
For the epoch-wise regret minimization, we sample n− n/W arms with distribution Bern(0.25) and n/W
arms with distribution Bern(0.95). We then permute the arms uniformly. Due to constraints on running
time, we use n ∈ {500, 1000, 2000} and W ∈ {10, 20, 50} for ε-exploration experiments.

To mitigate the noise from randomness, for each parameter setting with fixed memory size, we conduct
10 independent runs of experiments and take the average. For the quality of the arm and the regret
minimization, we also report error bars and the ranges of the regrets.

The algorithms. We conduct experiments with the following algorithms: for ε-exploration, we use the
Algorithm 1. For regret minimization, we adapt the algorithm with W -arm memory discussed in Section 5.
To handle the case of m < W -arm memory, we simulate the reservoir sampling: after the memory is full, for
each arriving arm, we toss a fair coin with bias m/t for the t-th arriving arm to decide whether we admit the
new arm to the memory (by uniformly at random discarding an arm existing in the memory).

Figure 1: The performances of ε-exploration and regret minimization, n = 2000, W = 20.

Summary of the experiments. A sample of the performances for ε-exploration and regret minimization is
given in Figure 1 (for n = 2000 and W = 20; see Section F for more parameter settings). As we can observe
from the figures, for all the experiments, there is generally a trade-off between the arm quality/regret and
memory. The trade-off in ε-exploration is generally smoother, and the regret minimization for the everlasting
best arm demonstrates a sharp drop of regret around the W -memory point. These results are consistent with
our theoretical findings for sliding-window streaming MABs algorithms.

7 CONCLUSION AND FUTURE WORK

In this work, we initiated the study of multi-armed bandits (MABs) in the sliding-window model. Our results
built the fundamental hardness of online learning in the sliding-window MABs model, and we provided
important insights for related applications, e.g., using ε-exploration rather than pure exploration in practice.
There are several open directions to follow up on our work. For instance, one appealing question is the
multi-pass setting: if the algorithm is allowed to make multiple passes over the stream, it might be possible
for the algorithm to achieve better memory efficiency. The sliding-window model for other variants of MABs,
e.g., the linear bandits, can be another interesting direction to pursue.

9

423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469

Under review as a conference paper at ICLR 2026

REFERENCES

Arpit Agarwal, Sanjeev Khanna, and Prathamesh Patil. A sharp memory-regret trade-off for multi-pass
streaming bandits. In Po-Ling Loh and Maxim Raginsky (eds.), Conference on Learning Theory, 2-5 July
2022, London, UK, volume 178 of Proceedings of Machine Learning Research, pp. 1423–1462. PMLR,
2022. URL https://proceedings.mlr.press/v178/agarwal22a.html.

Apple Inc. Differential privacy overview. Apple, 2021. URL https://www.apple.com/privacy/
docs/Differential_Privacy_Overview.pdf.

Sepehr Assadi and Chen Wang. Exploration with limited memory: streaming algorithms for coin tossing, noisy
comparisons, and multi-armed bandits. In Konstantin Makarychev, Yury Makarychev, Madhur Tulsiani,
Gautam Kamath, and Julia Chuzhoy (eds.), Proccedings of the 52nd Annual ACM SIGACT Symposium on
Theory of Computing, STOC 2020, Chicago, IL, USA, June 22-26, 2020, pp. 1237–1250. ACM, 2020. doi:
10.1145/3357713.3384341. URL https://doi.org/10.1145/3357713.3384341.

Sepehr Assadi and Chen Wang. Single-pass streaming lower bounds for multi-armed bandits exploration
with instance-sensitive sample complexity. In NeurIPS, 2022.

Sepehr Assadi and Chen Wang. The best arm evades: Near-optimal multi-pass streaming lower bounds for pure
exploration in multi-armed bandits. In Shipra Agrawal and Aaron Roth (eds.), The Thirty Seventh Annual
Conference on Learning Theory, June 30 - July 3, 2023, Edmonton, Canada, volume 247 of Proceedings
of Machine Learning Research, pp. 311–358. PMLR, 2024. URL https://proceedings.mlr.
press/v247/assadi24a.html.

Jean-Yves Audibert and Sébastien Bubeck. Minimax policies for adversarial and stochastic bandits. In COLT,
pp. 217–226, 2009.

Michele Borassi, Alessandro Epasto, Silvio Lattanzi, Sergei Vassilvitskii, and Morteza Zadimoghaddam.
Sliding window algorithms for k-clustering problems. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia
Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin (eds.), Advances in Neural Information Processing
Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December
6-12, 2020, virtual, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/
631e9c01c190fc1515b9fe3865abbb15-Abstract.html.

Djallel Bouneffouf, Irina Rish, Guillermo A. Cecchi, and Raphaël Féraud. Context attentive bandits: Contex-
tual bandit with restricted context. In Carles Sierra (ed.), Proceedings of the Twenty-Sixth International
Joint Conference on Artificial Intelligence, IJCAI 2017, Melbourne, Australia, August 19-25, 2017, pp.
1468–1475. ijcai.org, 2017. doi: 10.24963/IJCAI.2017/203. URL https://doi.org/10.24963/
ijcai.2017/203.

Vladimir Braverman and Rafail Ostrovsky. Smooth histograms for sliding windows. In 48th Annual IEEE
Symposium on Foundations of Computer Science (FOCS 2007), October 20-23, 2007, Providence, RI,
USA, Proceedings, pp. 283–293. IEEE Computer Society, 2007. doi: 10.1109/FOCS.2007.55. URL
https://doi.org/10.1109/FOCS.2007.55.

Vladimir Braverman, Harry Lang, Keith D. Levin, and Morteza Monemizadeh. Clustering problems on
sliding windows. In Robert Krauthgamer (ed.), Proceedings of the Twenty-Seventh Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2016, Arlington, VA, USA, January 10-12, 2016, pp. 1374–
1390. SIAM, 2016. doi: 10.1137/1.9781611974331.CH95. URL https://doi.org/10.1137/1.
9781611974331.ch95.

10

https://proceedings.mlr.press/v178/agarwal22a.html
https://www.apple.com/privacy/docs/Differential_Privacy_Overview.pdf
https://www.apple.com/privacy/docs/Differential_Privacy_Overview.pdf
https://doi.org/10.1145/3357713.3384341
https://proceedings.mlr.press/v247/assadi24a.html
https://proceedings.mlr.press/v247/assadi24a.html
https://proceedings.neurips.cc/paper/2020/hash/631e9c01c190fc1515b9fe3865abbb15-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/631e9c01c190fc1515b9fe3865abbb15-Abstract.html
https://doi.org/10.24963/ijcai.2017/203
https://doi.org/10.24963/ijcai.2017/203
https://doi.org/10.1109/FOCS.2007.55
https://doi.org/10.1137/1.9781611974331.ch95
https://doi.org/10.1137/1.9781611974331.ch95

470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516

Under review as a conference paper at ICLR 2026

Houshuang Chen, Yuchen He, and Chihao Zhang. On the problem of best arm retention. In Bo Li,
Minming Li, and Xiaoming Sun (eds.), Frontiers of Algorithmics - 18th International Joint Conference,
IJTCS-FAW 2024, Hong Kong SAR, China, July 29-31, 2024, Proceedings, volume 14752 of Lecture
Notes in Computer Science, pp. 1–20. Springer, 2024. doi: 10.1007/978-981-97-7752-5\ 1. URL
https://doi.org/10.1007/978-981-97-7752-5_1.

Vincent Cohen-Addad, Shaofeng Jiang, Qiaoyuan Yang, Yubo Zhang, and Samson Zhou. Fair clustering
in the sliding window model. In Proceedings of the Thirteenth International Conference on Learning
Representations (ICLR 2025, to appear), 2025.

Michael Crouch and Daniel S. Stubbs. Improved streaming algorithms for weighted matching, via
unweighted matching. In Approximation, Randomization, and Combinatorial Optimization. Algo-
rithms and Techniques, APPROX/RANDOM 2014, September 4-6, 2014, pp. 96–104, 2014. doi:
10.4230/LIPIcs.APPROX-RANDOM.2014.96.

Michael S. Crouch, Andrew McGregor, and Daniel M. Stubbs. Dynamic graphs in the sliding-window
model. In Hans L. Bodlaender and Giuseppe F. Italiano (eds.), Algorithms - ESA 2013 - 21st Annual
European Symposium, Sophia Antipolis, France, September 2-4, 2013. Proceedings, volume 8125 of
Lecture Notes in Computer Science, pp. 337–348. Springer, 2013. doi: 10.1007/978-3-642-40450-4\ 29.
URL https://doi.org/10.1007/978-3-642-40450-4_29.

Mayur Datar and Rajeev Motwani. The sliding-window computation model and results. In Minos N.
Garofalakis, Johannes Gehrke, and Rajeev Rastogi (eds.), Data Stream Management - Processing High-
Speed Data Streams, Data-Centric Systems and Applications, pp. 149–165. Springer, 2016. doi: 10.1007/
978-3-540-28608-0\ 7. URL https://doi.org/10.1007/978-3-540-28608-0_7.

Mayur Datar, Aristides Gionis, Piotr Indyk, and Rajeev Motwani. Maintaining stream statistics over
sliding windows. SIAM J. Comput., 31(6):1794–1813, 2002. doi: 10.1137/S0097539701398363. URL
https://doi.org/10.1137/S0097539701398363.

Alessandro Epasto, Mohammad Mahdian, Vahab S. Mirrokni, and Peilin Zhong. Improved sliding window
algorithms for clustering and coverage via bucketing-based sketches. In Joseph (Seffi) Naor and Niv
Buchbinder (eds.), Proceedings of the 2022 ACM-SIAM Symposium on Discrete Algorithms, SODA 2022,
Virtual Conference / Alexandria, VA, USA, January 9 - 12, 2022, pp. 3005–3042. SIAM, 2022. doi:
10.1137/1.9781611977073.117. URL https://doi.org/10.1137/1.9781611977073.117.

GDPR. Regulation (eu) 2016/679 of the european parliament and of the council of 27 april 2016 on the
protection of natural persons with regard to the processing of personal data and on the free movement
of such data, and repealing directive 95/46/ec (general data protection regulation), 2016. URL https:
//eur-lex.europa.eu/eli/reg/2016/679/oj.

Google LLC. How google retains data we collect. Google, 2025. URL https://policies.google.
com/technologies/retention?hl=en-US. Accessed January 29, 2025.

Francesco Gullo, Domenico Mandaglio, and Andrea Tagarelli. A combinatorial multi-armed ban-
dit approach to correlation clustering. Data Min. Knowl. Discov., 37(4):1630–1691, 2023. doi:
10.1007/S10618-023-00937-5. URL https://doi.org/10.1007/s10618-023-00937-5.

Yuchen He, Zichun Ye, and Chihao Zhang. Understanding memory-regret trade-off for streaming stochastic
multi-armed bandits. In Proceedings of the 2025 ACM-SIAM Symposium on Discrete Algorithms, SODA
2025, 2025. doi: 10.48550/ARXIV.2405.19752. URL https://doi.org/10.48550/arXiv.
2405.19752.

11

https://doi.org/10.1007/978-981-97-7752-5_1
https://doi.org/10.1007/978-3-642-40450-4_29
https://doi.org/10.1007/978-3-540-28608-0_7
https://doi.org/10.1137/S0097539701398363
https://doi.org/10.1137/1.9781611977073.117
https://eur-lex.europa.eu/eli/reg/2016/679/oj
https://eur-lex.europa.eu/eli/reg/2016/679/oj
https://policies.google.com/technologies/retention?hl=en-US
https://policies.google.com/technologies/retention?hl=en-US
https://doi.org/10.1007/s10618-023-00937-5
https://doi.org/10.48550/arXiv.2405.19752
https://doi.org/10.48550/arXiv.2405.19752

517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563

Under review as a conference paper at ICLR 2026

Tianyuan Jin, Keke Huang, Jing Tang, and Xiaokui Xiao. Optimal streaming algorithms for multi-armed
bandits. In Marina Meila and Tong Zhang (eds.), Proceedings of the 38th International Conference
on Machine Learning, ICML 2021, 18-24 July 2021, Virtual Event, volume 139 of Proceedings of Ma-
chine Learning Research, pp. 5045–5054. PMLR, 2021. URL http://proceedings.mlr.press/
v139/jin21a.html.

Nikolai Karpov and Chen Wang. Nearly tight bounds for exploration in streaming multi-armed bandits with
known optimality gap. In Toby Walsh, Julie Shah, and Zico Kolter (eds.), AAAI-25, Sponsored by the
Association for the Advancement of Artificial Intelligence, February 25 - March 4, 2025, Philadelphia,
PA, USA, pp. 17788–17796. AAAI Press, 2025. doi: 10.1609/AAAI.V39I17.33956. URL https:
//doi.org/10.1609/aaai.v39i17.33956.

David Liau, Zhao Song, Eric Price, and Ger Yang. Stochastic multi-armed bandits in constant space. In
Amos J. Storkey and Fernando Pérez-Cruz (eds.), International Conference on Artificial Intelligence and
Statistics, AISTATS 2018, 9-11 April 2018, Playa Blanca, Lanzarote, Canary Islands, Spain, volume 84 of
Proceedings of Machine Learning Research, pp. 386–394. PMLR, 2018. URL http://proceedings.
mlr.press/v84/liau18a.html.

David E Losada, Javier Parapar, and Alvaro Barreiro. Multi-armed bandits for adjudicating documents in
pooling-based evaluation of information retrieval systems. Information Processing & Management, 53(5):
1005–1025, 2017.

Arnab Maiti, Vishakha Patil, and Arindam Khan. Multi-armed bandits with bounded arm-
memory: Near-optimal guarantees for best-arm identification and regret minimization. In
Marc’Aurelio Ranzato, Alina Beygelzimer, Yann N. Dauphin, Percy Liang, and Jennifer Wort-
man Vaughan (eds.), Advances in Neural Information Processing Systems 34: Annual Conference
on Neural Information Processing Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual,
pp. 19553–19565, 2021. URL https://proceedings.neurips.cc/paper/2021/hash/
a2f04745390fd6897d09772b2cd1f581-Abstract.html.

Shie Mannor and John N Tsitsiklis. The sample complexity of exploration in the multi-armed bandit problem.
Journal of Machine Learning Research, 5(Jun):623–648, 2004.

Philip Pallmann, Alun W Bedding, Babak Choodari-Oskooei, Munyaradzi Dimairo, Laura Flight, Lisa V
Hampson, Jane Holmes, Adrian P Mander, Lang’o Odondi, Matthew R Sydes, et al. Adaptive designs in
clinical trials: why use them, and how to run and report them. BMC medicine, 16:1–15, 2018.

Filip Radlinski, Robert Kleinberg, and Thorsten Joachims. Learning diverse rankings with multi-armed
bandits. In William W. Cohen, Andrew McCallum, and Sam T. Roweis (eds.), Machine Learning,
Proceedings of the Twenty-Fifth International Conference (ICML 2008), Helsinki, Finland, June 5-9,
2008, volume 307 of ACM International Conference Proceeding Series, pp. 784–791. ACM, 2008. doi:
10.1145/1390156.1390255. URL https://doi.org/10.1145/1390156.1390255.

Herbert Robbins. Some aspects of the sequential design of experiments. Bulletin of the American Mathemati-
cal Society, 55:527–535, 1952.

Weiwei Shen, Jun Wang, Yu-Gang Jiang, and Hongyuan Zha. Portfolio choices with orthogonal bandit
learning. In Qiang Yang and Michael J. Wooldridge (eds.), Proceedings of the Twenty-Fourth International
Joint Conference on Artificial Intelligence, IJCAI 2015, Buenos Aires, Argentina, July 25-31, 2015, pp. 974.
AAAI Press, 2015. URL http://ijcai.org/Abstract/15/142.

David Simchi-Levi and Chonghuan Wang. Multi-armed bandit experimental design: Online decision-making
and adaptive inference. In Francisco J. R. Ruiz, Jennifer G. Dy, and Jan-Willem van de Meent (eds.),

12

http://proceedings.mlr.press/v139/jin21a.html
http://proceedings.mlr.press/v139/jin21a.html
https://doi.org/10.1609/aaai.v39i17.33956
https://doi.org/10.1609/aaai.v39i17.33956
http://proceedings.mlr.press/v84/liau18a.html
http://proceedings.mlr.press/v84/liau18a.html
https://proceedings.neurips.cc/paper/2021/hash/a2f04745390fd6897d09772b2cd1f581-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/a2f04745390fd6897d09772b2cd1f581-Abstract.html
https://doi.org/10.1145/1390156.1390255
http://ijcai.org/Abstract/15/142

564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610

Under review as a conference paper at ICLR 2026

International Conference on Artificial Intelligence and Statistics, 25-27 April 2023, Palau de Congressos,
Valencia, Spain, volume 206 of Proceedings of Machine Learning Research, pp. 3086–3097. PMLR, 2023.
URL https://proceedings.mlr.press/v206/simchi-levi23a.html.

Yufei Tao and Dimitris Papadias. Maintaining sliding window skylines on data streams. IEEE Trans. Knowl.
Data Eng., 18(2):377–391, 2006. doi: 10.1109/TKDE.2006.48. URL https://doi.org/10.1109/
TKDE.2006.48.

Francesco Trovò, Stefano Paladino, Marcello Restelli, and Nicola Gatti. Improving multi-armed bandit
algorithms in online pricing settings. International Journal of Approximate Reasoning, 98:196–235, 2018.

Chen Wang. Tight regret bounds for single-pass streaming multi-armed bandits. In Andreas Krause, Emma
Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), International
Conference on Machine Learning, ICML 2023, 23-29 July 2023, Honolulu, Hawaii, USA, volume 202
of Proceedings of Machine Learning Research, pp. 35525–35547. PMLR, 2023. URL https://
proceedings.mlr.press/v202/wang23a.html.

David P. Woodruff, Peilin Zhong, and Samson Zhou. Near-optimal k-clustering in the sliding win-
dow model. In Alice Oh, Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and
Sergey Levine (eds.), Advances in Neural Information Processing Systems 36: Annual Conference
on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December
10 - 16, 2023, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/
476ab8f369e489c04187ba84f68cfa68-Abstract-Conference.html.

Andrew Chi-Chih Yao. Probabilistic computations: Toward a unified measure of complexity. 18th Annual
Symposium on Foundations of Computer Science (sfcs 1977), pp. 222–227, 1977. URL https://api.
semanticscholar.org/CorpusID:143169.

Chao Zhang, Angela Bonifati, and M. Tamer Özsu. Incremental sliding window connectivity over streaming
graphs. Proc. VLDB Endow., 17(10):2473–2486, 2024. doi: 10.14778/3675034.3675040. URL https:
//www.vldb.org/pvldb/vol17/p2473-zhang.pdf.

Liangwei Zhang, Jing Lin, and Ramin Karim. Sliding window-based fault detection from high-dimensional
data streams. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 47(2):289–303, 2016.

13

https://proceedings.mlr.press/v206/simchi-levi23a.html
https://doi.org/10.1109/TKDE.2006.48
https://doi.org/10.1109/TKDE.2006.48
https://proceedings.mlr.press/v202/wang23a.html
https://proceedings.mlr.press/v202/wang23a.html
http://papers.nips.cc/paper_files/paper/2023/hash/476ab8f369e489c04187ba84f68cfa68-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/476ab8f369e489c04187ba84f68cfa68-Abstract-Conference.html
https://api.semanticscholar.org/CorpusID:143169
https://api.semanticscholar.org/CorpusID:143169
https://www.vldb.org/pvldb/vol17/p2473-zhang.pdf
https://www.vldb.org/pvldb/vol17/p2473-zhang.pdf

611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657

Under review as a conference paper at ICLR 2026

A TECHNICAL PRELIMINARIES

We give some technical preliminaries of our paper in this section.

Concentration inequalities. We use some standard concentration inequalities in the proof of our results.
We provide these inequalities for completeness.

Proposition A.1 (Chernoff-Hoeffding bound). Let X1, X2, · · · , Xm be a sequence of independent discrete
random variables bounded in the range [0, 1]. Define Sm =

∑m
i=1 Xi, then

Pr [|Sm − E [Sm] | ⩾ t] ⩽ 2 · exp
(
−2t2

m

)
.

We also use the following direct corollaries of the Chernoff-Hoeffding bound.

Proposition A.2. Let arm be an arms with mean µ. We pull the arm K
θ2 times to obtain empirical mean µ̂.

Then,
Pr [|µ− µ̂| ⩾ θ] ⩽ 2 · exp (−2K) .

Proposition A.3. Let arm1 and arm2 be two different arms with means µ1 and µ2. Suppose µ1−µ2 ⩾ θ > 0
and we pull each arm K

θ2 times to obtain empirical rewards µ̂1 and µ̂2. Then,

Pr [µ̂1 ⩽ µ̂2] ⩽ 2 · exp
(
−K

4

)
.

B THE COMPLETE DETAILS FOR RESULTS IN SECTION 4

In this section, we provide the complete details (missing algorithms and analysis) we discussed in Section 4.

B.1 THE ANALYSIS OF THEOREM 2 AND ALGORITHM 1

We now proceed to the analysis of Algorithm 1. The following lemma establishes the space complexity of the
algorithm.

Lemma B.1. The space complexity of BUCKET
(

9
2ε2 ln

6W
δ

)
is O

(
1
ε

)
.

Proof. Since we discard the previous arm when storing a new arm in a bucket, each bucket will contain at
most one arm during the execution of the algorithm. Therefore, the space complexity of the algorithm is
bounded by N = 3

ε , which is O
(
1
ε

)
.

The following lemma provides a bound on the sample complexity of the algorithm.

Lemma B.2. The sample complexity of BUCKET
(

9
2ε2 ln

6W
δ

)
is O

(
n
ε2 log

W
δ

)
.

Proof. Since we sample each arm l = 9
2ε2 ln

6W
δ times within the algorithm, the sample complexity is given

by n · l = O
(

n
ε2 log

W
δ

)
.

Finally, we prove the correctness of the algorithm.

Lemma B.3. At any time t ∈ [n], the arm ârmt outputted by the algorithm BUCKET
(

9
2ε2 ln

6W
δ

)
is an ε-best

arm for arm∗(t,W) with a probability of at least 1− δ.

14

658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704

Under review as a conference paper at ICLR 2026

Proof. At any time t ∈ [n], let arm∗(t,W) = armk and ârmt = armm. Additionally, let bi be the index of
the correct bucket to which armi belongs; that is, µi ∈ (bi − 1) ε3 , bi

ε
3]. We also define b′i as the index of the

bucket where armi is stored upon arrival; thus, µ̂i ∈ ((b′i − 1) ε3 , b
′
i
ε
3].

Let Ei be the event that |bi − b′i| ⩽ 1, indicating that armi is stored in a bucket close to its correct bucket. By
Lemma A.2, we have

Pr [¬Ei] = Pr [|bi − b′i| > 1]

⩽ Pr
[
|µ̂i − µi| >

ε

3

]
⩽ 2 · exp

(
−2l · ε

2

9

)
=

δ

3W
.

The output ârmt must be an ε-best arm if the following events occur at time t:

• F1: There exists some arms stored in Bbk−1 ∪Bbk ∪Bbk+1;

• F2: All the bucket Bj for j > bk + 1 are empty;

• F3: |bm − b′m| ⩽ 1.

We will output an arm from {Bbk−1, Bbk , Bbk+1} if both F1 and F2 hold. F3 guarantees that the output
ârmt is stored in a bucket close to its correct bucket. If all three events occur simultaneously, we have
b′m ∈ {bk − 1, bk, bk + 1} and |b′m − bm| ⩽ 1. Therefore, |bm − bk| ⩽ 2, leading to |µk − µm| ⩽ 3 · ε3 = ε.
This means that ârmt is an ε-approximation of arm∗(t,W).

We can analyze the probabilities of each event:

Pr [F1] ⩾ Pr [Ek] ⩾ 1 − δ
3W . This is because if Ek occurs, we will store arm∗(t,W) = armk in bucket

Bb′k
, where |b′k − bk| ⩽ 1. Since arm∗(t,W) is the best arm at time t, it cannot expire, implying we will not

drop the arm stored in Bb′k
due to expiration. Thus,Bb′k

remains non-empty.

Pr [F2] ⩾ Pr
[
∪tj=t−W+1Et

]
⩾ 1−W · δ

3W . If all Ej , j ∈ [t−W + 1, t] occur, each arm will be stored in
a bucket near its correct bucket. Since arm∗(t,W) = armk is the best arm at time t, we have bj ⩽ bk for
any j ∈ [t−W + 1, t]. Therefore, b′j ⩽ bk + 1 for any j when Ej occurs, thus ensuring all buckets Bj for
j > bk + 1 are empty.

F3 is simply the same event as Em, so Pr [F3] ⩾ 1− δ
3W .

Consequently, we obtain:

Pr [F1 ∩ F2 ∩ F3] ⩾ 1− (2 +W) · δ

3W
⩾ 1− δ.

B.2 THE ANALYSIS OF LEMMA 4.1

We now prove Lemma 4.1 with the general Ω(n
ε2 · log

n
W) sample lower bound (this directly implies the lower

bound when W ⩽ n0.99). We will employ the sample complexity lower bound established by Mannor &
Tsitsiklis (2004) to prove our lemma. We provide the proposition for completeness.

15

705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751

Under review as a conference paper at ICLR 2026

Proposition B.4 (Mannor & Tsitsiklis (2004)). There exist positive constants c1, c2, ε0 and δ0, such that for
every n ⩾ 2, ε ∈ (0, ε0) and δ ∈ (0, δ0), and for every algorithm outputs ε-best arm with probability at least
1− δ, there exists some µ = (µ1, µ2, · · · , µn) ∈ [0, 1]n such that

Eµ [T] ⩾ c1
n

ε2
log

(c2
δ

)
.

T is the number of pulls used in the algorithm. Eµ [T] is the expectation of T when arms have means
µ = (µ1, µ2, · · · , µn).

In particular, ε0 and δ0 can be taken equal to 1/8 and e−4

4 , respectively.

We assert that any algorithm capable of solving the strong ε exploration for a stream of n arms, with a window
size W , and achieving a success probability of at least 99/100, modified to create an algorithm that addresses
Θ
(

n
W

)
independent ε exploration of W arms concurrently, also with a success probability of at least 99/100.

Moreover, the sample complexity of the latter algorithm will be less than or equal to the sample complexity of
the former algorithm.

Specifically, consider sets Xi, for i ∈
[

n
2W

]
, are n

2W sets, where each set Xi consists of W arms. Let
Z denote a set that contains W arms, each of which consistently returns 0. We can construct a stream
S = (Z,X1, Z,X2, · · · , Z,X n

2W
). By employing an algorithm designed to solve the strong ε exploration

task on the stream S, we can simultaneously solve the ε exploration problem for all sets Xi.
Lemma B.5. If an algorithm ALG exists that successfully solves the strong ε exploration problem for a
stream of n arms with a window size W with a probability of at least 99/100, and has a sample complexity
m, then there exists another algorithm ALG′ that can solve n

2W independent ε exploration problems for W
arms simultaneously. This new algorithm ALG′ will have a sample complexity m′ such that m′ ⩽ m, while
also achieving a success probability of at least 99/100.

Proof. We demonstrate the lemma by providing a framework, Algorithm 2, which generates the algorithm
ALG′ based on the algorithm ALG.

Algorithm 2: ALG′: Algorithm Transformation
Input: Arms {armi,j}i∈[n

2W],j∈[W], algorithm ALG;
Output: A set of arms {ârmi}i∈[n

2W], where ârmi is an ε-best arm of {ârmi,j}j∈[W];
Let arm0 be the arm always return 0;
for i← 1 to n

2W do
for j ← 1 to W do

arm′
(i−1)·2W+j ← arm0;

arm′
i·2W+j ← armi,j ;

end
end
Build stream S = {arm′

k}nk=1;
{ãrmk}nk=1 ← ALG(S);
for i← 1 to n

2W do
ârmi ← ãrmi·2W ;

end
return {ârmi}i∈[n

2W]

By the construction of S, an ε-best arm at time i·2W must also be an ε-best arm among the set {ârmi,j}j∈[W].
Consequently, if ALG successfully solves the strong ε exploration problem on S, then the set {ârmi}i∈[n

2W]

16

752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798

Under review as a conference paper at ICLR 2026

must be the ε-best arm for the arms {armi,j}i∈[n
2W],j∈[W]. Since ALG accomplishes the strong ε exploration

task on S with a probability of at least 99/100, it follows that ALG′ solves the pure exploration problem on
the arms {armi,j}i∈[n

2W],j∈[W] with the same probability.

Furthermore, since arm0 is merely a virtual arm, the actual number of pulls by ALG′ is equivalent to the pulls
used on the real arms {armi,j}i∈[n

2W],j∈[W]. Therefore, the number of pulls made by ALG′ is at most equal
to the number of pulls made by ALG when solving the strong ε exploration problem on S. Hence, we can
conclude that m′ ⩽ m.

The following is a technical lemma that states a “direct sum” type of bound for solving k independent copies
of the same problem.
Lemma B.6. Let f be a function to compute, and let H be a distribution from which the inputs of f are
sampled. Suppose that solving f over the distributionH with probability 1− δ takes Ω(q · log(1δ)) queries on
the input. Furthermore, let H̃ = (H1,H2, · · · ,Hk) be a distribution over k independent copies ofH. Then,
any algorithm ALG that computes f on all copies with probability at least 99/100 has to make Ω(k · q · log k)
total queries.

Proof. The lemma follows from a direct calculation of the success probability, and we provide the proof for
the purpose of completeness. Define Ei, i ∈ [k] as the event that ALG successfully computes f on the i-th
copy ofH, and define E as the event that all copies of f are correctly computed. We have that

Pr (E) = Pr
(
∩ki=1Ei

)
=

k∏
i=1

Pr
(
Ei | ∩i−1

j=1Ej
)

(by the law of total probability)

=

k∏
i=1

Pr (Ei) . (by the independence)

Therefore, by using the condition that success probability is at least 99/100, we have that

k∑
i=1

log (Pr (Ei)) = log (Pr (E)) ⩾ σ − 1

for some σ ∈ (0.9, 1). We claim that for each least k/100 indices of i ∈ [k], there must be log(Pr(Ei)) ⩾
log(1− σ

k). Otherwise, the total success probability is at most

99k

100
· log(1− σ

k
) +

k

100
· log(1) = 99k

100
·
(
ln(1− σ

k)

ln 2

)
⩽

99k

100 ln 2
·
(
−σ

k

)
(using ln(1 + x) ⩽ x)

= − 99σ

100 ln 2
< −1.28 < σ − 1. (by σ > 0.9)

Since solving each f with probability 1 − δ requires Ω(q · log(1δ)) queries, solving k/100 indices with
probability at least 1− σ/k requires

k

100
· q · log(k

σ
) = Ω(k · q · log k)

queries, which is as desired.

17

799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845

Under review as a conference paper at ICLR 2026

Finalizing the proof of Lemma 4.1. Consider any algorithm ALG that successfully solves the strong ε ex-
ploration problem with a probability of at least 99/100 on D(n,W, ε). Let TALG represent the number of
pulls executed by this algorithm. We will define ALG′ as the algorithm derived from ALG using Algorithm 2,
and let TALG′ be the corresponding number of pulls for ALG′.

According to Lemma B.5, ALG′ is capable of solving n
2W independent ε exploration tasks involving W arms

simultaneously, and it holds that E [TALG′] ⩽ E [TALG].

Since it is necessary to make Ω
(
W
ε2 · log

(
1
δ

))
pulls to solve the ε exploration of W arms with a probability

of at least 1 − δ, we can employ Lemma B.6 to conclude that Ω
(

n
ε2 log

n
W

)
samples are required for the

algorithm ALG.

B.3 THE ANALYSIS FOR LEMMA 4.2

The algorithm is still Algorithm 1. We employ a larger pulling size of l = 9
2ε2 ln

6n
δ compared to the weak

exploration. This adjustment allows us to effectively apply a union bound across n arms. The increased
pulling size not only ensures that we can accurately identify all the ϵ-best arms simultaneously with high
probability, but it also results in higher sample complexity.

The following claim establishes bounds on both the space complexity and sample complexity of this algorithm.
Lemma B.7. The space complexity of the BUCKET

(
9

2ε2 ln
6n
δ

)
is O

(
1
ε

)
, and the sample complexity is

O
(

n
ε2 log

n
δ

)
.

The proof follows the same reasoning as the proofs of Lemma B.1 and Lemma B.2, and we skip the details to
avoid repetitions. Next, we will demonstrate the correctness of the algorithm. We use the notation µ(arm) to
denote the mean of the arm.
Lemma B.8. Let A = {ârmt}nt=1 be the set of arms outputted by the algorithm, and let A′ =
{arm∗(W, t)}nt=1 represent the set of best arms. Then, with a probability of at least 1 − δ, it holds that
µ(ârmt) ⩾ µ(arm∗(W, t))− ε for all time t ∈ [n].

Proof. Let bi denote the index of the correct bucket to which arm armi belongs. In other words, we have
µi ∈

(
(bi − 1) ε3 , bi

ε
3

]
. We define b′i as the index of the bucket where armi is stored upon its arrival, which

implies µ̂i ∈
(
(b′i − 1) ε3 , b

′
i
ε
3

]
.

Let Ei be the event that |bi − b′i| ⩽ 1, indicating that armi is stored in a bucket close to its correct bucket.
According to Lemma A.2, we have:

Pr [¬Ei] = Pr [|bi − b′i| > 1] ⩽ Pr
[
|µ̂i − µi| >

ε

3

]
⩽ 2 · exp

(
−2l · ε

2

9

)
=

δ

3n
.

By applying the union bound, we can express this as:

Pr [∩ni=1Ei] = 1−Pr [¬ ∩ni=1 Ei] = 1−Pr [∪ni=1¬Ei] (By De Morgan’s Law)

⩾ 1−
n∑

i=1

Pr [¬Ei] ⩾ 1−
n∑

i=1

δ

3n
= 1− δ

3
.

If the event ∩ni=1Ei occurs, it means each arm is placed in a bucket b′i that is close to its correct bucket bi,
satisfying |bi − b′i| ⩽ 1.

For any t ∈ [n], suppose that ârmt = armit and arm∗(W, t) = armjt . Therefore, we have |bit − b′it | ⩽ 1
and |bjt − b′jt | ⩽ 1. Additionally, since arm∗(W, t) = armjt does not expire at time t, it follows that the

18

846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892

Under review as a conference paper at ICLR 2026

bucket Bjt ̸= ∅ at time t. Given that the arm returned by the algorithm at time t is ârmt = armit , it must be
that b′it ⩾ b′jt . Thus, we can derive:

bit ⩾ b′it − 1 ⩾ b′jt − 1 ⩾ bjt − 2.

Consequently, we obtain µ(ârmt) ⩾ µ(arm∗(W, t))− 2
3ε.

C THE COMPLETE DETAILS FOR RESULTS IN SECTION 5

We provide the proof of Theorem 3 in this section.

Proof. We proceed with the lower bound proof first. According to Yao’s minimax principle Yao (1977), it is
sufficient to establish the lower bound for deterministic algorithms under a challenging distribution of inputs.
Consider the following distribution of n arms.

EPOCH(n,W): A hard distribution with n arms for epoch-wise regret minimization

1. For i = k · 2W + j, where j ∈ [W], µi = 1− j
W .

2. With probability 1
W , choose h ∈ [W] uniformly. For i = k · 2W + W + j, where j ∈ [W],

µi = 1− 2h+1
2W .

Since we have only W−1
2 space available, there exists an arm armi where i ∈ [k · 2W + 1, k · 2W +W]

that we cannot store at time k · 2W +W . Let Ei be the event where the W subsequent arms all have the
same mean of 1− 2h+1

2W , with h ≡ i (mod 2W), but armi is not stored at time k · 2W +W . When event Ek
occurs, armi is the best arm at time i+W − 1. As we missed armi, this will induce at least 1

2W ·
T

n−W+1
regret during this epoch.

Let

Fk =

k·2W+W⋃
i=k·2W+1

Ei.

The event Fk represents that at least one of the events Ei occurs between the times [k · 2W +1, (k+1) · 2W].
Since at least half of the arms among {armk·2W+1, · · · ,armk·2W+W } are not stored at time k · 2W +W ,
we have Pr [Fk] ⩾ 1

2 .

Let Xk be the random variable indicating whether Fk occurs. The total number of such events that occur is
Y =

∑m
k=1 Xk, where m = ⌊ n

2W ⌋. Since Xi are independent Bernoulli random variables with probability
p ⩾ 1

2 , Y follows a binomial distribution Y ∼ Bino(m, p). Let Z ∼ Bino(m, 1
2).

We can analyze the probability as follows:

Pr
[
Y ⩽

m

4

]
⩽ Pr

[
Z ⩽

m

4

]
(since p ⩾ 1

2)

⩽ Pr
[∣∣∣Z − m

2

∣∣∣ ⩾ m

4

]
⩽

4

m
(by Chebyshev’s inequality)

⩽
1

2
. (because m = ⌊ n

2W ⌋ and n ⩾ 16W)

19

893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939

Under review as a conference paper at ICLR 2026

Let G be the event that Y ⩾ m
4 . Then we have:

E [RT] = E [RT | G] ·Pr [G] + E [RT | ¬G] ·Pr [¬G] ⩾ E [RT | G] ·
1

2
.

Since at least m
4 of the events Fk occur when G occurs, and each event Fk induces at least 1

2W ·
T

n−W+1
regret, we have:

E [RT | G] ⩾
m

4
· 1

2W
· T

n−W + 1
.

Hence, we find:

E [RT] ⩾
m

4
· 1

2W
· T

n−W + 1
· 1
2
⩾

m · T
16 ·W · n

⩾
n

4W
· T

16 ·W · n
(because m = ⌊ n

2W ⌋ ⩾
n

4W)

=
T

64 ·W 2
.

For the upper bound, we proceed by running epoch-wise UCB using the W memory size. There are algorithms,
such as INF Audibert & Bubeck (2009), that can achieve a total regret of O(

√
nT) in a centralized setting

with n arms. We can utilize such an algorithm as a black box to attain a total regret of O(
√
W · (n−W) · T).

The strategy is straightforward: we apply the INF algorithm to each epoch of the stream. Since we need to
pull T

n−W+1 times for each epoch, this approach will result in a total regret of O(
√

WT/(n−W)) for each
epoch. Consequently, the overall total regret will be O(

√
W · (n−W) · T). Theorem 3 □

D REGRET MINIMIZATION WITH AN EVERLASTING BEST ARM

Our main regret notion is based on the epoch-wise regret. However, in some practical scenarios, there are cases
where the most popular item is not limited by the time horizon. Consider, again, the task of recommending
movies to users for entertainment companies. On average, a movie remains in theaters for about 1 to 2
months. However, some exceptionally popular pieces can have a much longer run. For example, The Sound
of Music was screened in theaters for 4 years and 6 months, while Avatar stayed for 34 weeks. Therefore,
when designing a recommendation system for currently showing movies, we can assume a sliding window of
2 months, but there are some enduring ones that remain popular even after this window has passed.

Similar situations occur in other contexts as well. For instance, the song Lose Control set a new record by
spending 107 weeks on the Billboard Hot 100 chart, whereas the average lifespan of a song on the chart is
typically between 6 and 7 weeks.

Inspired by these applications, we also propose another regret model, which we refer to as regret minimiza-
tion with an everlasting best arm. In the scenario where there is an everlasting best arm, we can pull this
best arm even if it appears more than W time units earlier in the stream. For situations involving such an
everlasting best arm, there are two slightly different scenarios to consider: whether we are allowed to pull a
sub-optimal expired arm and get 1 regret, or we could simply get a signal that a sub-optimal arm is expired
and the sampling operation is disallowed.

D.1 REGRET MINIMIZATION WITH EVERLASTING BEST ARM AND EXPLICIT VALID FLAG

The first scenario is when we cannot pull an expired arm other than the best arm. This means that the only
arms available for pulling are the everlasting best arm and the W most recent arms, and all expired arms

20

940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986

Under review as a conference paper at ICLR 2026

(other than the best) in the memory will carry a flag of “being invalid”. A practical example of this scenario
might be recommending currently showing movies. If a movie is still being presented by the theater after the
sliding-window period, it indicates that the movie has not expired and can still be selected. Therefore, in this
setting, we can assume the existence of a flag for each arm indicating whether it is valid for pulling. Only the
everlasting best arm and the W most recent arms will have a positive flag.

Definition 7 (Valid flag). Let {armi}ni=1 be a collection of n arms with an everlasting best arm denoted as
arm∗, and let W be the window size. The valid flag is a function flag(armi, t) that returns True if armi

is arm∗ or if i ⩾ t −W + 1 (indicating that armi is one of the W most recent arms); it returns False
otherwise.

In simpler terms, flag(armi, t) = True if and only if armi is valid at time t.

Next, we define regret minimization with an everlasting best arm and an explicit valid flag. In this setting,
the flag function is accessible to the algorithm, allowing it to determine whether an arm is valid without
needing to pull it. This aligns with scenarios such as recommending movies that are currently showing, where
we can ascertain whether a movie is still valid (i.e., still being presented in the theater) without any action.

Definition 8 (Regret minimization with everlasting best arm and explicit valid flag). Let {armi}ni=1 represent
a collection of n arms with an everlasting best arm, arm∗. Let W be the window size and T be the total
number of trials. Denote µ∗ as the mean reward of the best arm arm∗ (among all arms), and let t denote the
variable for the index of the arriving arm. In this scenario, there exists an explicit flag function, and an arm
armi can be pulled at time t only if flag(armi, t) = True. Let {i(τ)}Tτ=1 be the set of indices of arms
pulled by some algorithm, and the regret is defined as RT :=

∑T
τ=1(µ

∗ − µi(τ)).

If we have W memory, a straightforward algorithm is to not pull any arm until W steps and check whether
the arm is still valid. The arm is valid if and only if it is the best arm, and we could therefore commit to the
arm to achieve 0 regret. 6 As such, a natural question is whether we could do better with o(W) memory. In
what follows, we will show that the answer to the above question is negative: we will show that Ω(W) space
is necessary to achieve a total regret of o(T), essentially indicating that the W -memory algorithm is optimal.

Theorem 4. For any given parameters T , n, and W such that T ⩾ n ⩾ 4W , there exists a family of
streaming stochastic multi-armed bandit instances such that any single-pass streaming algorithm designed
for a sliding-window stream of length n with a window size W and a memory of W

8 arms must incur a total
expected regret of at least

E [RT] ⩾
T

120
.

Furthermore, there exists an algorithm that given a stream of n arms and parameters W and T , achieves 0
regret with a memory of W arms.

Theorem 4 shows an extremely sharp “phase transition” for the memory-regret trade-off: with o(W) memory,
we have to suffer Ω(T) regret. On the other hand, if we slightly increase the memory to W , we could achieve
0 total regret.

6In this scenario, we assume that time continues to pass even when there are no more input arms available. Therefore,
every arm, except for the everlasting best arm— including arm armn—may eventually expire as time goes on. Thus, we
can simply wait long enough and use the flag function to identify the everlasting best arm, which will be the only valid
arm remaining.

An alternative assumption is that time ceases to progress when there are no new arms in the stream. In this case, the
final valid arms will consist of the everlasting best arm plus the last W arms, which are {armn−W+1, · · · ,armn}. If the
everlasting best arm is not included among the last W arms, we can identify it directly. If it is among the last W arms, the
problem then shifts to a centralized regret minimization problem with those W arms. This represents a combination of our
initial setting and the centralized regret minimization framework, so we will forego further discussion of this assumption.

21

987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033

Under review as a conference paper at ICLR 2026

To prove Theorem 4 we will utilize the following result on the sample-memory trade-offs for storing an arm
in the memory from Assadi & Wang (2022).

Proposition D.1 (Assadi & Wang (2022), cf. Chen et al. (2024)). Consider the following distribution of m
arms.

DIST(m,σ, β): A hard distribution with m arms for trapping the best arm
1. An index i∗ sampled uniform at random from [m].

2. For i ̸= i∗, let the arms be with reward µi = σ.

3. For i = i∗, let the arm be with reward µi∗ = σ + β.

Any algorithm that outputs (the indices of) m
8 arms that contain the best arm on DIST with a probability of at

least 2
3 has to use at least 1

1200 ·
m
β2 arm pulls.

The intuition behind our proof is that it is crucial not to overlook the best arm in a stream of options. By
utilizing the distribution DIST, we can construct scenarios where it requires a considerable number of pulls
to identify the best arm. Additionally, we can create instances that include multiple distributions of DIST,
making it challenging to determine the best arm.

In these scenarios, an algorithm that uses a large number of arm pulls on earlier arms risks the possibility that
the best arm may appear later in the stream. If the algorithm has already made too many pulls on suboptimal
arms, it will incur substantial regret. Conversely, if the algorithm decides to conserve its pulls and primarily
engages with the later part of the stream, there is a risk that the best arm could arrive early on, leading the
algorithm to miss it entirely. As a result, any algorithm faces the inherent risk of missing the best arm, which
can lead to significant regret.

The proof of Theorem 4. In the discussion by the start of Section D.1, we have already introduced the
relatively simple algorithm that uses W arm memory and achieves 0 regret. We focus on proving the lower
bound in the proof.

According to Yao’s minimax principle Yao (1977), it is sufficient to establish the lower bound for deterministic
algorithms over a challenging distribution of inputs.

We will first introduce the CONST distribution for clarity.

CONST(m,σ): A distribution with m arms with the same means

1. ∀i ∈ [m], µi = σ.

Let β = min{
√

W
1200T ,

1
10}. Consider the following distribution of n arms.

22

1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080

Under review as a conference paper at ICLR 2026

SIGNAL(n,W, β): A hard distribution with n arms for regret minimization with an everlasting
best arm with expiation signal

1. The first W arms of SIGNAL(n,W, β) is DIST(W, 3
5 , β).

2. The W + 1-th to 2W -th arms are CONST(W, 1
5).

3. With probability of 1
2 , 2W + 1-th to 3W -th arms are DIST(W, 2

5 , β), otherwise, DIST(W, 4
5 , β).

4. The remaining n− 3W arms are CONST(n− 3W, 1
5).

For any deterministic algorithm ALG, let TALG denote the number of pulls it uses until time 2W . Since ALG
is a deterministic algorithm and the first 2W arms are the same in both scenarios, TALG remains consistent
regardless of whether the arms from 2W +1 to 3W follow the distribution DIST(W, 2

5 , β) or DIST(W, 4
5 , β).

Let E1 be the event that the arms from 2W + 1 to 3W are DIST(W, 2
5 , β) and E2 be the event that they are

DIST(W, 4
5 , β). If TALG ⩽ T

2 , then we have:

E [RT] = E [RT |E1] ·Pr [E1] + E [RT |E2] ·Pr [E2] ⩾ E [RT |E1] ·Pr [E1] .

Since 1
1200 ·

W
β2 ⩾ T > 1

2T ⩾ TALG , by Lemma D.1, the probability that the best arm is stored in memory at
time W + 1 is at most 2

3 . Let F be the event that the best arm is stored in memory at time W + 1. Then,

E [RT | E1] = E [RT | E1 ∩ F] ·Pr [F] + E [RT | E1 ∩ ¬F] ·Pr [¬F] ⩾ E [RT | E1 ∩ ¬F] ·Pr [¬F] .

When the event E1 ∩ ¬F occurs, the best arm is not stored in memory at time 2W + 1, and all the arms with
means 3

5 have expired. The remaining arms have means at most 2
5 + β ⩽ 2

5 + 1
10 = 1

2 . Since we can only
pull valid arms, the arms we can pull have a mean reward of at most 1

2 . Thus, the regret for each pull after
time 2W is at least

3

5
+ β − 1

2
⩾

1

10
.

Therefore, we have:

E [RT | E1 ∩ ¬F] ⩾ (T − TALG) ·
1

10
⩾

(
T − T

2

)
· 1
10

=
T

20
.

Thus,

E [RT] ⩾ E [RT | E1] ·Pr [E1] ⩾ E [RT | E1 ∩ ¬F] ·Pr [¬F] ·Pr [E1] ⩾
T

20
· 1
3
· 1
2
=

T

120
.

On the other hand, if TALG ⩾ T
2 , then we have:

E [RT] ⩾ E [RT | E2] ·Pr [E2] .

When event E2 occurs, the best arm has a mean of 4
5 + β. The regret for each pull on the first 2W arms would

be at least
4

5
+ β − 3

5
− β =

1

5
.

23

1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127

Under review as a conference paper at ICLR 2026

Therefore,

E [RT] ⩾
1

2
· E [RT | E2] ⩾

1

2
TALG ·

1

5
⩾

T

20
.

In conclusion, since E [RT] ⩾ T
120 regardless of whether TALG ⩾ T

2 or not, we have completed our proof.
Theorem 4 □

D.2 REGRET MINIMIZATION WITH EVERLASTING BEST ARM AND IMPLICIT VALID FLAG

The second scenario is when we can still pull an expired arm, but doing so incurs a significant penalty. In this
situation, any arm can be pulled at any time; however, if an expired arm is selected, a regret penalty of 1 is
incurred.

Furthermore, we assume that the penalty associated with pulling an expired arm is not immediately known. If
we were to be instantly informed about any penalties, the scenario could be simplified: we would incur a 1
regret penalty for all non-best arms in an effort to identify the best arm. This would lead to a total regret of
n− 1, which is negligible given that T ≫ n.

In this context, we can still assume the existence of a valid flag function, denoted as flag, to indicate whether
an arm is valid. However, the algorithm cannot access this flag; therefore, it cannot determine whether an arm
is valid.

Definition 9 (Regret minimization with an everlasting best arm and implicit valid flag). Let {armi}ni=1
represent a collection of n arms with an everlasting best arm, arm∗. Let W be the window size and T be
the total number of trials. Denote µ∗ as the mean reward of the best arm arm∗ (among all arms), and let t
denote the variable for the index of the arriving arm. In this scenario, an implicit flag function exists. Any
arm armi can be pulled at any time t, but if the flag indicates it is invalid (i.e., flag(armi, t) = False),
a regret of 1 is incurred. Let {i(τ)}Tτ=1 be the set of indices of arms pulled by a given algorithm, and let
{flagτ = flag(armi(τ), t)}Tτ=1 represent the validity flag for the arms that were pulled. The total regret
is defined as RT :=

∑
flagτ=True(µ

∗ − µi(τ)) +
∑

flagτ=False 1.

In this setting, an Ω(W) memory is still necessary to achieve a total regret of o(T). Although there is an
everlasting best arm, the lack of a signal about whether an arm has expired makes this setting strictly more
challenging than the one in which we receive an expiry signal. Thus, the claims and proofs applicable to the
setting with signals also remain valid in this case.

Lemma D.2. There exists a family of streaming stochastic multi-armed bandit instances such that, for any
given parameters T , n, and W , where T ⩾ n ⩾ 4W , any single-pass streaming algorithm for a sliding-
window stream of length n with a window size W and a memory of W

8 arms must incur a total expected regret
of at least

E [RT] ⩾
T

120
.

However, in this setting, the upper bound of total regret with trivial space complexity W − 1 is no longer
On,W (1). Since we are not informed whether an arm is expired, it becomes challenging to identify the best
arm easily. When arms have means close to the best arm, we must pull these arms numerous times, which
leads to significant regret, as each pull on an expired arm incurs a regret penalty of 1. Furthermore, even after
many pulls on these arms, we may still incorrectly identify the best arm, resulting in additional regret. In fact,
achieving o(T) total regret is impossible even with a memory capacity of n− 1, which is an even stronger
condition than W − 1 memory.

Lemma D.3. There exists a family of streaming stochastic multi-armed bandit instances such that, for any
given parameters T , n, and W with T ⩾ n ⩾ 8W , any single-pass streaming algorithm for a sliding window

24

1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174

Under review as a conference paper at ICLR 2026

stream of length n, with a window size W and a memory of n− 1 arms, must incur

E[RT] ⩾
T

1800

total expected regret.

The intuition behind this is that we cannot identify the best arm even after T pulls in DIST(W, 3
5 , β) with

β = O
(
1
T

)
, since O

(
W
ε2

)
pulls are required to identify the ε-best arm among W arms. In this scenario, when

the arm is not expired, it will incur β regret per pull, while an expired arm incurs a regret of 1. Thus, a sound
strategy would be to pull the arms before they expire. However, if there are two such distributions in the
stream, we cannot determine in advance which distribution contains the best arm. Consequently, we risk
either overspending pulls on the wrong distribution or incurring 1 regret per pull by not allocating most pulls
to the correct distribution. This results in a total regret of Θ(T) in either situation.

Proof. By Yao’s minimax principle Yao (1977), it is sufficient to demonstrate the lower bound for determinis-
tic algorithms in the face of a challenging distribution of inputs. Let’s consider the following distribution:

SIGNAL′(n,W, β): A hard distribution with n arms for regret minimization with an everlasting
best arm with expiation signal

1. The first W arms of SIGNAL(n,W, β) is DIST(W, 3
5 , β).

2. The W + 1-th to 2W -th arms are CONST(W, 1
5).

3. With probability of 1
2 , 2W + 1-th to 3W -th arms are DIST(W, 2

5 , β), otherwise, DIST(W, 4
5 , β).

4. The remaining n− 3W arms are CONST(n− 3W, 1
5).

According to Lemma B.4, there exist constants c1 and c2 such that any algorithm using no more than
c1

W
β2 log c2 pulls will not reliably return the β

2 -best arm with a probability of at least 3
4 . We set β =

min{ 1
10 ,

c1W
2T log c2}.

Now, consider SIGNAL′(n,W, β). Let T1 denote the number of pulls made before time 2W + 1, T2 the
number of pulls made between times 2W + 1 and 4W , and T3 the number of pulls made after time 4W . Let
Ei represent the event that Ti ⩾ T

3 . Since T1 + T2 + T3 = T , at least one of the events Ei must occur. Thus,
we have:

E [RT] = E [RT | Ei] ·Pr [Ei] + E [RT | ¬Ei] ·Pr [¬Ei] ⩾ E [RT |Ei] ·Pr [Ei] .

Therefore, it suffices to show that E [RT | Ei] ⩾ T
600 for each i ∈ [3].

Case 1: E1 occurs. Let F1 be the event that the arms from 2W + 1 to 3W are drawn from DIST(W, 2
5 , β),

and let F2 be the event that these arms are drawn from DIST(W, 4
5 , β). Hence,

E [RT | E1] ⩾ E [RT | E1 ∩ F2] ·Pr [F2] = E [RT | E1 ∩ F2] ·
1

2
.

When F2 occurs, each pull on the first 2W arms results in at least 1
10 regret. Since we spend at least T

3 pulls
on these first 2W arms when E1 occurs, we have:

E [RT | E1] ⩾ E [RT | E1 ∩ F2] ·
1

2
⩾

1

10
· T
3
· 1
2
=

T

60
.

25

1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221

Under review as a conference paper at ICLR 2026

Case 2: E2 occurs. Similarly,

E [RT | E2] ⩾ E [RT | E2 ∩ F1] ·Pr [F1] = E [RT | E2 ∩ F1] ·
1

2
.

When F1 occurs, each pull on the arms from 2W + 1 to 4W leads to at least 1
10 regret. Since we make at

least T
3 pulls in this range when E2 occurs,

E [RT | E2] ⩾ E [RT | E2 ∩ F1] ·
1

2
⩾

1

10
· T
3
· 1
2
=

T

60
.

Case 3: E3 occurs. Given that β = c1W
2T log c2, it is impossible to return the β

2 -best arm (which is the exact
best arm in this distribution) with a probability of at least 3

4 by using a maximum of T pulls. Let G be the
event that we pull at most T

6 times on the best arm after time 4W . If Pr [G] ⩽ 1
10 , we can devise a strategy

that distinguishes the best arm from the others, which is impossible. Hence, Pr [G] ⩾ 1
10 .

After time 4W , pulling a valid arm with a mean of 1
5 results in at least 1

10 regret, while pulling from an
expired arm incurs a regret of 1. Thus, we incur at least 1

10 regret if we do not pull the best arm after time 4W .
When G occurs, we will spend at least T

6 pulls on arms other than the best arm beyond time 4W , leading to:

E [RT | E3] ⩾ E [RT | E3 ∩ G] ·Pr [G] ⩾ 1

10
· T
6
· 1
10

=
T

600
.

Since at least one of the events Ei must occur, we have:

max
i∈[3]
{Pr [Ei]} ⩾

1

3
.

Therefore,

E [RT] ⩾ max
i∈[3]
{E [RT | Ei] ·Pr [Ei]} ⩾

T

600
·max
i∈[3]
{Pr [Ei]} ⩾

T

600
· 1
3
=

T

1800
.

E FAILURE OF STATE-OF-THE-ART ALGORITHMS IN VANILLA STREAMING MABS

In this section, we will provide simple counterexamples and proofs to illustrate why the state-of-the-art
algorithms used in vanilla streaming multi-armed bandits (MABs) do not perform well in sliding-window
MABs.

It is important to note that, based on Theorems 1 and 3 that we have established, we have demonstrated that
any single-pass streaming algorithm utilizing o(W) memory will fail to address both the weak and strong
exploration problems or achieve a regret of o(T). Consequently, the state-of-the-art algorithms from vanilla
streaming MABs will also fail in the sliding-window setting, as supported by our theorems. While we have
already established this in a general context, we believe that providing a simpler, specific proof related to these
algorithms will help readers better understand why algorithms with o(W) memory fail in sliding-window
scenarios.

The state-of-the-art algorithm for streaming exploration was proposed by Assadi & Wang (2020). This
algorithm can identify the best arm with a probability of at least 1 − δ using only 1 unit of memory and

26

1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268

Under review as a conference paper at ICLR 2026

O

(
n
ε2 log

(
1
δ

)
+ log2(n) · log

2(1
δ)

ε3

)
pulls. However, we will present a counterexample demonstrating that

the algorithm by Assadi & Wang (2020) cannot effectively address weak exploration in the sliding-window
setting, even with a success probability of at least 0.6.
Lemma E.1. There exists a data stream such that the algorithm by Assadi & Wang (2020) cannot resolve the
weak exploration for this stream with a probability of at least 0.6.

Proof. Consider the data stream defined by µi = 1− i−1
n , which has a decreasing mean. In this scenario, the

best arm from time t = 1 to W is arm1, while the best arm at time t = i for i > W is armi−W+1.

If the algorithm can correctly identify the best arm from time t = 1 to W with a probability of at least 0.6,
since it has only 1 unit of memory, the arm stored at that time must be arm1. Consequently, at time t = W ,
only arm1 will be stored in memory, causing us to lose access to arm2 indefinitely, which is the best arm
at time t = W + 1. Thus, it becomes impossible for the algorithm to return the correct best arm at time
t = W + 1 with a probability greater than 1− 0.6 = 0.4. This indicates that the algorithm fails to resolve
weak exploration with a probability of at least 0.6.

Conversely, if the algorithm fails to return the correct best arm from time t = 1 to W with a probability of at
least 0.6, it also indicates a failure in solving weak exploration with a probability of at least 0.6.

Therefore, it is impossible for the algorithm to successfully resolve weak exploration with a probability of at
least 0.6.

The state-of-the-art algorithm for regret minimization was proposed by Wang (2023). This algorithm achieves
a total regret of O

(
n1/3T 2/3

)
, which matches the lower bound of regret for streaming multi-armed bandits

(MABs), using ⌈log∗ n⌉ + 1 units of memory. The key idea behind their algorithm is to first identify an
ε-best arm for the entire stream and then allocate the remaining pulls to that ε-best arm. By choosing

ε = O

(
3

√
n logn

T

)
, this approach minimizes the total regret to O

(
n1/3T 2/3

)
.

However, their algorithm cannot be applied to the sliding-window setting. The strategy of locating an
ε-best arm and dedicating all remaining pulls to it is flawed, as the ε-best arm can expire over time, making
it unavailable for pulling when it does. Therefore, the algorithm proposed by Wang (2023) is not even
well-defined in the sliding-window context.

A natural attempt to adapt the algorithm for the sliding-window setting would be to identify an ε-best arm for
each epoch and allocate all remaining pulls for that epoch to the identified arm. However, we will demonstrate
that there exist data streams that require the algorithm to utilize at least O

(
1
ε

)
memory to return the ε-best

arm for each epoch.
Lemma E.2. There exist data streams and ε ∈ (0, 1) such that it is impossible to return the ε-best arm at
any time t with a probability of at least 0.6 using only o

(
1
ε

)
memory.

Proof. Let ε = 1
100·W . Define the means of the arms as follows:

µi = 1− 2ε ·
(
i− 1− 50 ·W ·

⌊
i

50 ·W

⌋)
.

This means the data stream consists of arms with decreasing means, where each subsequent arm has a mean
2ε smaller than the previous arm. The mean of an arm is reset to 1 when it reaches 0.

For this type of data stream, since each subsequent arm has a mean 2ε lower than its predecessor, the ε-best
arm at any time t is actually the best arm at that time. Consequently, the algorithm must store the best arm to

27

1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315

Under review as a conference paper at ICLR 2026

accurately return the ε-best arm. Given the decreasing nature of the arm means, it is necessary to keep track
of all arms in the window, requiring a memory size of W = Ω

(
1
ε

)
.

Thus, since certain data streams exist where W = o

(
3

√
n logn

T

)
, it follows that the adapted algorithm cannot

operate with o(W) memory for such streams.

F ADDITIONAL SETTINGS AND RESULTS OF THE EXPERIMENTS

We provide additional details and results of the experiments with simulations in different settings (including
the regret minimization problem with the everlasting arm regret notion).

F.1 EXPERIMENTAL RESULTS ON PURE EXPLORATION

We implement Algorithm 1 for the ε exploration over the streams. Here, if we have m memory, then our
input to Algorithm 1 is ε = O(1/m). We report the mean, median, and maximum gaps over the n−W + 1
steps for different sizes of memories. The illustration of the results could be shown as in Figures 2 to 4. For
the trade-offs between the memory and the number of arm pulls, we only report the W = 50 case since it
contains the cases for W ∈ {10, 20} up to a very small constant factor.

From the figures, it could be observed that there are generally trade-offs between memory/quality and
memory/samples. The trade-off curve for the memory/quality is mostly stable: for the mean and median
statistics, the error bar obtained from 10 runs is quite narrow. The sample complexity scales quadratically
with the memory, which is consistent with the 1/ε2 term in the sampling rate. Finally, note that the sample
complexity does not change significantly w.r.t. the number of arms, which is also consistent with the fact that
the asymptotic number of arm pulls on each arm is O(logW/ε2), which is independent of n.

28

1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362

Under review as a conference paper at ICLR 2026

Figure 2: An illustration of the memory-quality trade-off in ε exploration for n = 1000.

Figure 3: An illustration of the memory-quality trade-off in ε exploration for n = 2000.

29

1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409

Under review as a conference paper at ICLR 2026

Figure 4: An illustration of the memory-quality trade-off in ε exploration for n = 5000.

30

1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456

Under review as a conference paper at ICLR 2026

F.2 EXPERIMENTAL RESULTS ON REGRET MINIMIZATION

We implement our W -memory algorithms for both the everlasting regret (the algorithm in Theorem 4) and
epoch-wise regret (the algorithm in Theorem 3) cases. The purpose of the experiments is to show that the
regret drops sharply once we have W arm memory. To this end, we need to define how to proceed with
the W -memory algorithms when we only have o(W) arm memory. A natural approach is to simulate the
reservoir sampling: after the memory is full, for each arriving arm, we toss a fair coin with bias m/t for the
t-th arriving arm to decide whether we admit the new arm to the memory (by uniformly at random discarding
an arm existing in the memory).

Experiments for regret with the everlasting best arm. The experimental results for regret minimization
with the everlasting best arm are shown as Figures 5 to 7. Here, we commit to any arm in the end if we do not
have the best arm in the memory. With 10 independent runs of the algorithm, we report both the mean regret
and the range of the regrets.

Figure 5: An illustration of the memory-regret trade-off for the everlasting best arm setting with n = 500.

Figure 6: An illustration of the memory-regret trade-off for the everlasting best arm setting with n = 1000.

As we could observe in the figures, among the 10 executions of the algorithm, although the algorithm might
get “lucky” with o(W) memory, the range of the regret before reaching the W memory is always wide, and
the regret could always be high. On the other hand, after we have W memory, we could easily identify the
best arm and achieve 0 memory. The ranges observe a sharp drop at the W -memory point, which validates
our theoretical results.

31

1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503

Under review as a conference paper at ICLR 2026

Figure 7: An illustration of the memory-regret trade-off for the everlasting best arm setting with n = 2000.

Experiments for regret with the epoch-wise regret. The experimental results for regret minimization in
the epoch-wise regret setting are shown as Figures 8 to 10. If m < W , we will run UCB-based algorithms on
the arms in the memory. Again, with 10 independent runs of the algorithm, we report both the mean and the
range of the regrets.

Figure 8: An illustration of the memory-regret trade-off for the epoch-wise regret setting with n = 500.

Figure 9: An illustration of the memory-regret trade-off for the epoch-wise regret setting with n = 1000.

From the figures, it could be observed that although the memory-regret trade-offs are smoother than in the
case of the everlasting-regret setting, the trend still follows our result in Theorem 3. Furthermore, after
reaching the memory of W arms, the regret basically does not change with more memory, and the variances
become much smaller.

32

1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550

Under review as a conference paper at ICLR 2026

Figure 10: An illustration of the memory-regret trade-off for the epoch-wise regret setting with n = 2000.

33

	Introduction
	Our contributions

	Problem Definition and Preliminaries
	A Lower Bound for pure exploration in Sliding-window MABs
	Sliding-window Algorithms and Lower Bounds for eps-pure exploration
	An efficient algorithm for weak eps-pure exploration
	A lower bound for strong eps-pure exploration
	An efficient algorithm for strong eps-pure exploration

	Regret Minimization in Sliding-window Streaming MABs
	Experiments
	Conclusion and Future Work
	Technical Preliminaries
	The Complete Details for Results in eps-pure exploration
	The analysis of pointer and pointer
	The analysis of pointer
	The analysis for pointer

	The Complete Details for Results in pointer
	Regret minimization with an everlasting best arm
	Regret minimization with everlasting best arm and explicit valid flag
	Regret minimization with everlasting best arm and implicit valid flag

	Failure of State-of-the-Art Algorithms in Vanilla Streaming MABs
	Additional Settings and Results of the Experiments
	Experimental Results on pure exploration
	Experimental Results on Regret Minimization

