
Published as a conference paper at ICLR 2025

NEW ALGORITHMS FOR THE LEARNING-AUGMENTED
k-MEANS PROBLEM

Junyu Huang
School of Computer Science and Engineering,
Central South University
Xiangjiang Laboratory
Changsha, China
junyuhuangcsu@foxmail.com

Qilong Feng ∗
School of Computer Science and Engineering,
Central South University
Xiangjiang Laboratory
Changsha, China
csufeng@mail.csu.edu.cn

Ziyun Huang
Department of Computer Science and
Software Engineering, Penn State
Erie, The Behrend College
Erie, United States
zxh201@psu.edu

Zhen Zhang
School of Advanced Interdisciplinary Studies,
Hunan University of Technology and Business
Xiangjiang Laboratory
Changsha, China
csuzz@foxmail.com

Jinhui Xu †
School of Information Science and Technology,
University of Science and Technology of China
Hefei, Anhui, China
jhxu00@gmail.com

Jianxin Wang ∗
School of Computer Science and Engineering,
Central South University
Hunan Provincial Key Lab on Bioinformatics
Xiangjiang Laboratory
Changsha, China
jxwang@mail.csu.edu.cn

ABSTRACT

In this paper, we study the clustering problems in the learning-augmented setting,
where predicted labels for a d-dimensional dataset with size m are given by an
oracle to serve as auxiliary information to enhance the clustering performance.
Following the prior work, the given oracle is parameterized by some error rate α,
which captures the accuracy of the oracle such that there are at most α fraction
of false positives and false negatives in each predicted cluster. In this setting, the
goal is to design fast and practical algorithms that can break the computational
barriers of inapproximability for clustering problems. The current state-of-the-art
learning-augmented k-means algorithm relies on sorting strategies to find coor-
dinates approximation, where a (1 + O(α))-approximation can be achieved with
near-linear running time in the data size. However, the sorting process may limit
the scalability of the algorithm for handling large-scale datasets. To address this
issue, in this paper, we propose new algorithms that can identify good coordinates
approximation using sampling-based strategies, where (1+O(α))-approximation
can be achieved with linear running time in the data size. To obtain a more practi-
cal algorithm for the problem with better clustering quality and running time, we
propose a sampling-based heuristic which can directly find center approximations
for each cluster. Empirical experiments show that our proposed methods are faster
than the state-of-the-art learning-augmented k-means algorithms with comparable
performances on clustering quality.

∗Corresponding Authors
†The research of Jinhui Xu was partially done at the State University of New York at Buffalo.

1

Published as a conference paper at ICLR 2025

1 INTRODUCTION

Clustering is a fundamental unsupervised learning task that has been extensively studied over the
past decades. Among different clustering objectives, one of the most commonly used clustering
formulations is the k-means clustering. In the k-means clustering, we are given a set P of data points
in a d-dimensional Euclidean space, and the goal is to compute a set C ⊂ Rd of centers with size at
most k such that the sum of the squared distances between data points in P to their closest centers
in C is minimized. The k-means problem has received significant attention in the literature and is
proven to be NP-hard (Dasgupta, 2008). Furthermore, Cohen-Addad and Karthik (Cohen-Addad
& Karthik, 2019) showed that even finding a solution for k-means with approximation ratio smaller
than 1.07 is NP-hard. The current best approximation ratio for the k-means problem is 5.912 (Cohen-
Addad et al., 2022), which is based on primal-dual and nested quasi-independent set methods. For
fixed dimensionality d or the number of clusters k, several (1 + ε)-approximation algorithms were
known (Jaiswal et al., 2014; Friggstad et al., 2019). However, these algorithms with relatively tight
approximation guarantees do not scale well for large-scale datasets. Thus, several practical methods
with linear running time in the data size have been proposed, such as the O(log k)-approximation k-
means++ method (Arthur & Vassilvitskii, 2007) and the O(1)-approximation local search methods
(Lattanzi & Sohler, 2019; Beretta et al., 2023; Fan et al., 2023; Choo et al., 2020). Although these
linear-time algorithms have been widely used in practice, their large approximation ratios could
potentially deteriorate the clustering performance in scenarios that require high-quality solutions.

To overcome the barrier of inapproximability and develop more practical approximation algorithms,
a series of studies has focused on algorithms augmented with predictions (Mitzenmacher & Vassil-
vitskii, 2022; Ashtiani et al., 2016; Kraska et al., 2018; Mitzenmacher, 2018). For the clustering
problem, Gamlath et al. (Gamlath et al., 2022) proposed clustering recovery with noisy labels,
where predicted clustering labels are given as additional information to aid the clustering process.
The given predictor is parameterized by some error rate α ∈ [0, 1), such that the size of the symmet-
ric difference between the predicted cluster and its corresponding optimal cluster is bounded by α
times the size of the optimal cluster. Based on this model, Gamlath et al. developed a (1 + O(α))-
approximation algorithm with polynomial running time, assuming fixed k and d. Moreover, to
guarantee the approximation, the error rate α is required to satisfy the condition that α < 1/4. Er-
gun et al. (Ergun et al., 2021) introduced another learning-augmented clustering model, aiming at
designing fast and practical algorithms for clustering. In their setting, a given predictor also provides
auxiliary information for each data point in the form of predicted clustering labels. However, the
predictor’s reliability is parameterized by an error rate α ∈ [0, 1), ensuring that there are at most an
α fraction of false positives and false negatives in each predicted cluster. Based on this model, an
improved (1 +O(α))-approximation can be achieved with near-linear running time in the data size.

In this paper, we mainly focus on the learning-augmented clustering problem proposed by Ergun
et al. (2021). The motivation for studying the learning-augmented clustering problem is as follows.
From a theoretical perspective, learning-augmented k-means can overcome the inapproximability
barriers, enabling the development of algorithms that can achieve tight clustering quality guarantees
with strong scalability. From a practical perspective, as pointed out by Ergun et al. (2021), reliable
predictors are available for a wide range of natural datasets. For instance, in datasets with training
labels, these labels can act as auxiliary information to enhance the clustering quality on testing
datasets. Furthermore, when the clustering instances adhere to specific distributions, the efficient
acquisition of a robust predictor is proved to be feasible (Ergun et al., 2021). Even if the instances
are not generated from such distributions, empirical evidence (Ergun et al., 2021; Nguyen et al.,
2022) suggests that labels produced by the existing clustering methods, such as k-means++ (Arthur
& Vassilvitskii, 2007) or heuristic approaches (Lloyd, 1982), can serve as good predictors. However,
as pointed out in Nguyen et al. (2022), even when the auxiliary labeling partition (or the predictor)
is nearly optimal, a single false positive located far from the true clustering centers can significantly
influence the clustering structures. Therefore, a key challenge in the learning-augmented clustering
problem is to design robust algorithms that can minimize the impact of false positives.

Based on statistical methods, Ergun et al. (Ergun et al., 2021) proposed a randomized algorithm that
can achieve a (1 + 20α)-approximation in time O(md logm), where m and d are the data size and
dimension, respectively. However, to guarantee the approximation loss, it is required that the label
error rate α should be bounded by α ∈ [10 logm/

√
m, 1/7], and each optimal cluster should have

size Ω(k/α). To overcome the label error rate and cluster size constraints, Nguyen et al. (2022) pro-

2

Published as a conference paper at ICLR 2025

posed a deterministic searching method, where an improved (1 +O(α))-approximation result with
better approximation guarantees can be obtained in timeO(md logm) for α ∈ [0, 1/2). The current
learning-augmented clustering algorithms (Ergun et al., 2021; Nguyen et al., 2022) primarily rely on
sorting strategies to approximate the optimal clustering centers. However, since sorting processes
require near-linear running time in the data size, this can limit the scalability of the existing algo-
rithms for handling large-scale datasets. Moreover, it is well known that comparison-based sorting
has a lower bound running time of O(m logm). As a result, achieving a time complexity better
than O(md logm) using sorting-based strategies is a non-trivial task. It is also worth mentioning
that the time complexity of Ergun et al. (2021) and Nguyen et al. (2022) cannot be further improved
through dimensionality reduction techniques, such as the JL-method. As pointed out in Theorem
3.4 of Ergun et al. (2021), the JL-method embeds a clustering instance from Rd into a space of
dimension O(logm) and O(log k) in O(md logm) and polynomial time, respectively. Thus, the
total running time of using JL-method is still at least O(md logm). A central challenge in design-
ing faster algorithms for the learning-augmented k-means problem is to efficiently approximate the
optimal clustering centers in each dimension without using sorting-based strategies.

1.1 OUR CONTRIBUTION

In this paper, we aim to further enhance the efficiency of learning-augmented clustering algorithms
by proposing new sampling-based methods. A key challenge here is to identify high-quality coor-
dinates without relying on sorting-based strategies. To overcome this challenge, we first propose
a sampling-based algorithm called Fast-Sampling. For each dimension of each predicted cluster,
Fast-Sampling can identify intervals that contain coordinates sufficiently close to the coordinates
of the optimal clustering centers. High-quality coordinates are then constructed within linear run-
ning time in the data size through fine-grained divisions of the intervals. With these techniques, a
(1 + O(α))-approximate solution for the learning-augmented k-means problem can be obtained in
time O(md log(kd)). To further improve the running time and eliminate the additional O(log(kd))
term, we propose another algorithm called Fast-Estimation. Fast-Estimation accelerates coordinate
approximation by designing estimators that provide accurate clustering cost estimates in sublinear
time, assuming a bounded aspect ratio (the ratio of the maximum to minimum pairwise distances)
in each dimension. Then, the constructed estimators can be used to guide the coordinates selection
process, yielding a (1 +O(α))-approximation in time O(md) + Õ(kd/α) 1.

While the proposed sampling-based algorithms can achieve faster running time compared to other
learning-augmented k-means methods, the improvements come with slight compromises in cluster-
ing quality guarantees. To benefit more from the sampling-based strategies, we propose a heuristic
algorithm (called Fast-Filtering) to better preserve the clustering quality while maintaining the im-
proved running time. Instead of enumerating all the dimensions of the predicted clusters for coordi-
nates approximation, the Fast-Filtering algorithm directly identifies approximate clustering centers
by constructing estimators that can provide accurate clustering cost estimates in sub-linear running
time. By filtering out data points that are far from the selected centers, the Fast-Filtering algorithm
can obtain high-quality clustering centers while avoiding the loss in clustering quality that arises
from integrating coordinate information across all the dimensions.

Table 1 provides a detailed comparison of the results for the learning-augmented k-means problem.
In the Appendix, we also give a plot (Figure 1 in Appendix) of approximation ratios vs. the error
rate α. It can be seen from the table that the current best result achieves a (1+O(α))-approximation
with α ∈ [0, 1/2) (Nguyen et al., 2022). Both of our proposed algorithms, Fast-Sampling and Fast-
Estimation, achieve linear running time in the data size. Compared to the state-of-the-art results,
the Fast-Sampling algorithm can achieve nearly the same theoretical guarantee on clustering quality
(i.e., (1 + O(α))-approximation) while providing faster running time when the number of clusters
k and the dimensionality d are much smaller than data size m, which is natural in real-world ap-
plications. Furthermore, our Fast-Estimation algorithm provides much faster running time while
maintaining clustering quality guarantees comparable to other learning-augmented algorithms.

1Throughout this paper, we use Õ(.) notations to suppress polylog(m, d) factors.

3

Published as a conference paper at ICLR 2025

Table 1: Comparison results of learning augmented k-means algorithms

Methods and References Approximation Ratio Label Error Range Time Complexity

Partitioning and Sorting (Ergun et al., 2021) 1 + 20α [10 logm√
m

, 1/7] O(md logm)

Sorting (Nguyen et al., 2022) 1 + α
1−α + 4α

(1−2α)(1−α) [0, 1/2) O(md logm)

Fast-Sampling (Ours) 1 + α
1−α + 4α+αε

(1−2α)(1−α) [0, 1/2) O(ε−1md log(kd))

Fast-Estimation (Ours) 1 + α
1−α + 13α−15α2

(1−3α−ε)(1−2α−ε) (0, 1/3− ε) O(md) + Õ(ε−5kd/α)

2 PRELIMINARIES

We use P ⊂ Rd and k to denote the given dataset and the number of clusters, respectively. Let m
be the data size. For any two points p, q ∈ Rd, let δ(p, q) and δ2(p, q) denote their distance and
squared distance, respectively. Given a point p ∈ Rd and a set C = {c1, c2, ..., ck} of centers, we
also use δ(p, C) = minc∈C δ(p, c) to denote the distance from p to its closest center in C. We use
C∗ = {c∗1, ..., c∗k} and P(C∗) = {P ∗1 , ..., P ∗k } to denote the set of the optimal clustering centers
and the optimal clustering partition, respectively. For each c∗i ∈ C∗, c∗i can be represented by
d coordinates, i.e., c∗i = (c∗i1, c

∗
i2, ..., c

∗
id). We define the clustering cost of P with respect to C

as δ2(P,C) =
∑
x∈P δ

2(x,C). Given a collection L(P) = {P1, P2, ..., Pk} as the predictor, let
Qi = Pi∩P ∗i be the set of data points in Pi that belong to P ∗i . Denote the projections of data points
in Pi and Qi onto the j-th dimension as Pij and Qij , respectively. Let P ∗ij be the projections of data
points in P ∗i onto the j-th dimension. Let mi and m be the size of Pi and P , respectively. For a set
V ⊂ Rd of data points, let V be the geometric center for V . Denote P (j) as the projections of points
in P onto the j-th dimension. Let ∆max be the maximum aspect ratio of the projected data points,
i.e., ∆max = max

1≤j≤d

maxx,y∈P (j) δ(x,y)

minx,y∈P (j),x 6=y δ(x,y)
2. For a positive integer t, let [t] be the set {1, 2, ..., t}.

Learning-Augmented k-means Problem. Given a dataset P ⊂ Rd of m points, let C∗ and
P(C∗) = {P ∗1 , P ∗2 , ..., P ∗k } be an arbitrary optimal solution and its corresponding partition, re-
spectively. In the learning-augmented setting, it is assumed that we have access to a predictor in
the form of a labeling partition L(P) = {P1, P2, ..., Pk} parameterized by some label error rate
α ∈ [0, 1) such that |Pi∩P ∗i | ≥ (1−α) max{|Pi|, |P ∗i |}. The goal of learning-augmented k-means
clustering is to find a set C ⊂ Rd of data points as centers such that δ2(P,C) is minimized.

The following lemmas are folklore in k-means clustering.

Lemma 1 (Arthur & Vassilvitskii (2007)) Given a set X ⊂ Rd with size m and an arbitrary data
point c ∈ Rd, it holds that δ2(X, c) = δ2(X,X) +m · δ2(c,X).

Lemma 2 (Nguyen et al. (2022)) Given a set J ⊂ R, let J1 ⊆ J be a subset of J with |J1| ≥
(1− ζ)|J |, where (0 ≤ ζ < 1). Then, it holds that δ2(J, J1) ≤ ζ

(1−ζ)|J|δ
2(J, J).

Lemma 3 (Nguyen et al. (2022)) Given a set X ⊂ Rd and an α ∈ (0, 1], let X ′ =
arg minX′′⊆X,|X′′|=α|X| δ

2(X ′′, X ′′). Then, it holds that δ2(X ′, X ′) ≤ α · δ2(X,X).

3 THE FAST-SAMPLING ALGORITHM

The general idea of our Fast-Sampling algorithm is to efficiently approximate the optimal cluster-
ing centers in each dimension by identifying high-quality coordinates without using sorting-based
strategies. The primary technical challenge lies in handling the false negatives without significantly
compromising the approximation guarantees. Although directly sampling a small subset of coor-
dinates from each dimension for the predicted clusters can help identify points near the optimal
clustering centers, the uniformly sampled coordinates may not accurately approximate the optimal
centers, potentially leading to a constant-factor loss in the approximation guarantees. To address this
issue, the Fast-Sampling algorithm first identifies candidate coordinates close to the coordinates of
each optimal clustering center within linear running time in the data size. Then, the constructed can-
didate coordinates are used to define intervals that can precisely capture the positions of the optimal
centers, enabling a better approximation through fine-grained divisions of these intervals.

2Note that it is common to assume that ∆max can be bounded a polynomial function of the data size.

4

Published as a conference paper at ICLR 2025

The proposed Fast-Sampling algorithm (see Algorithm 1) mainly consists of the following two
phases: (1) interval estimation (steps 3-6 of Algorithm 1); (2) candidate coordinates construction
(step 7 of Algorithm 1). In the interval estimation phase, for each dimension of the predicted clus-
ters, the interval lengths are estimated through random sampling strategies. The samples are then
symmetrically adjusted based on the interval length estimates to construct intervals that can enclose
the coordinates of the optimal centers. In the second phase, the derived intervals are further divided
into smaller ones, with each corresponding to a new candidate coordinate, enabling a fine-grained
approximation of the optimal clustering centers. In the following, we provide a detailed analysis for
the proposed algorithm. Due to space limits, all the proofs are delivered to the Appendix.

Algorithm 1 Fast-Sampling

Input: A k-means instance (P, k, d), a set (P1, ..., Pk) of partitions with error rate α, and a param-
eter ε ∈ (0, 1].

Output: A set C ⊂ Rd of centers with |C| = k.
1: for i ∈ [k] do
2: for j ∈ [d] do
3: Randomly and independently sample a set Uij from Pij with size O(log(kd)).
4: for u ∈ Uij do
5: Let Nij(u) be the set of the nearest (1− α)|Pi| cooridnates in Pij to u.

6: lij =

√
2δ2(Nij(u), Nij(u))

(1−α)|Pi| .

7: s(u) =
{
u+ ε′λlij : λ ∈

[
− 1
ε′ ,

1
ε′

]
∩ Z
}

, where ε′ =
√

ε
48 .

8: U ′ij =
⋃
u∈Uij s(u).

9: u1 = arg minu∈U ′ij δ
2(Nij(u),Nij(u)).

10: Iij = Nij(u1).
11: ĉi = (Iij)j∈[d].
12: return {ĉ1, ĉ2, ..., ĉk}.

We first consider a single dimension j ∈ [d] of an arbitrary predicted cluster Pi for some i ∈ [k].
Let Q′ij ⊆ Qij be the set of the coordinates with size (1 − α)mi and minimum clustering
cost, i.e., Q′ij = arg minQ′′ij⊆Qij ,|Q′′ij |=(1−α)mi δ

2(Q′′ij , Q
′′
ij). Starting from step 3 of Algorithm

1, a set Uij is constructed by randomly and independently drawing O(log(kd)) samples from
Pij . The goal here is to find coordinates close to the coordinates of the optimal centers. We
will show that, with certain probability, there exists at least one coordinate u ∈ Uij that can
well approximate the geometric center of Q′ij . To analyze the success probability, we define

Gµij =
{
x ∈ Q′ij : δ2(x,Q′ij) ≤ µδ2(Q′ij , Q

′
ij)/|Q′ij |

}
as the set of coordinates close toQ′ij , where

µ is a constant with µ > 1. The following lemma argues that Gµij takes a large fraction of Q′ij .

Lemma 4 For any Qij = P ∗ij ∩ Pij , it holds that |Gµij | ≥
µ−1
µ |Q

′
ij |.

Let µ = 2. According to Lemma 4, we have |G2
ij | ≥ 1

2 |Q
′
ij | =

(1−α)mi
2 . If randomly and indepen-

dently sampling a set Uij with size 2
1−α ln(kdη) from Pij , the probability of sampling at least one

coordinate u ∈ G2
ij is 1−

(
1− |G

2
ij |
mi

)|Uij |
≥ 1− e

|Uij | ln
(

1−
|G2
ij |
mi

)
≥ 1− e−

|Uij ||G
2
ij |

mi ≥ 1− η
kd ,

where the second inequality follows from ln(1 − x) ≤ −x for x ∈ (0, 1). By taking a union
bound success probability over all the dimensions and the predicted clusters, we can argue that with
constant probability, there exists at least one coordinate u ∈ Uij such that u ∈ G2

ij ∩ Uij .
Corollary 1 With constant probability, for each i ∈ [k] and j ∈ [d], there exists at least one
coordinate u ∈ Uij such that u ∈ G2

ij .

Based on the sampled coordinates, in the remaining steps of the interval estimation phase (steps
4-6 of Algorithm 1), the Fast-Sampling algorihtm estimates the interval lengths to identify potential
regions that can enclose the geometric center for Q′ij . According to Corollary 1, we can assume
that there always exists at least one coordinate u ∈ Uij ∩ G2

ij . Then, in step 5 of Algorithm 1, the

5

Published as a conference paper at ICLR 2025

algorithm identifies the set Nij(u) of the nearest (1− α)mi coordinates in Pij to u. The following
lemma shows that both lower and upper bounds for δ2(Q′ij , Q

′
ij) can be established using Nij(u).

Lemma 5 Given an arbitrary coordinate u ∈ G2
ij ∩ Uij , it holds that δ2(Q′ij , Q

′
ij) ≤

δ2(Nij(u),Nij(u)) ≤ 3δ2(Q′ij , Q
′
ij).

Lemma 5 shows that, if the sampled point u ∈ Uij is from G2
ij , by identifying the set Nij(u) of

coordinates in Pij , we can obtain both lower and upper bounds for δ2(Q′ij , Q
′
ij). According to the

definition of G2
ij , we have δ2(u,Q′ij) ≤ 2δ2(Q′ij , Q

′
ij)/|Q′ij |. Let lij =

√
2δ2(Nij(u), Nij(u))

(1−α)mi
be

the interval length. Then, according to Lemma 5, we can get that Q′ij ∈ [u− lij , u+ lij] and the

interval has length at most 2

√
6δ2(Q′ij ,Q

′
ij)

(1−α)mi
. In the candidate coordinates construction phase (step 7

of Algorithm 1), the algorithm further divides the intervals into smaller blocks, where the length of
each block is parameterized by some ε′ =

√
ε

48 . Then, it holds trivially that there must exist at least
one block b = [u+ ε′λlij , u+ ε′(λ+ 1)lij] for some integer λ ∈ Z, such that δ(u+ ε′λlij , Q′ij) ≤√

εδ2(Q′ij ,Q
′
ij)

2(1−α)mi
. Consequently, in step 8 of Algorithm 1, we can get that the constructed candidate

set U ′ij contains at least one coordinate u′ ∈ U ′ij such that δ(u′, Q′ij) ≤
√

εδ2(Q′ij ,Q
′
ij)

2(1−α)mi
.

Corollary 2 With constant probability, for each i ∈ [k] and j ∈ [d], there exists at least one

coordinate u′ ∈ U ′ij such that δ(u′, Q′ij) ≤
√

εδ2(Q′ij ,Q
′
ij)

2(1−α)mi
.

Starting from step 9 in Algorithm 1, the Fast-Sampling algorithm enumerates all the constructed
candidate coordinates and their (1 − α)mi nearest neighbors to identify the set of the coordinates
with the minimum clustering cost. Then, the geometric center for the set of the coordinates with
minimum clustering cost is selected to serve as the coordinate for the clustering center. Let Iij be
the set of the coordinates found in step 10 of Algorithm 1. The following lemma shows that the
distance between Qij and Iij can be bounded using Iij ∩Qij as a bridge.

Lemma 6 The following bound holds: δ2(Iij , Qij) ≤ (4α+αε)δ2(Qij ,Qij)
|Qij |(1−2α) .

To this end, we can combine Lemma 6 with Lemma 2 to bound the distance between Iij and P ∗ij .

Lemma 7 The following bound holds: δ2(Iij , P ∗ij) ≤
(

α
1−α + α(4+ε)

(1−2α)(1−α)

)
δ2(P∗ij ,P

∗
ij)

|P∗ij |
.

Putting all these together, we can get the following result for learning-augmented k-means problem.
Theorem 1 There exists a learning-augmented k-means algorithm that can output a (1 + O(α))-
approximate solution in time O(ε−1md log(kd)) with constant probability, where α ∈ [0, 1/2).

4 THE FAST-ESTIMATION ALGORITHM

Although the proposed Fast-Sampling algorithm achieves linear running time in the data size while
maintaining the approximation guarantees, it introduces an additional O(log(kd)) factor loss when
taking a union bound success probability. The additional loss in the running time might influence
the practical performance of the algorithm when handling large-scale datasets. To address this is-
sue, in this section, we propose a faster sampling-based algorithm called Fast-Estimation. The
proposed Fast-Estimation algorithm can efficiently approximate the coordinates of each predicted
cluster within linear running time, with only a small trade-off in clustering quality guarantees.

The formal description for the Fast-Estimation algorithm is given in Algorithm 2. The general
idea behind the algorithm is to first generate candidate coordinates that can closely approximate the
coordinates of the optimal clustering centers. Then, in each dimension of each predicted cluster,
an estimator is constructed using uniform sampling strategy. The estimator is designed to provide

6

Published as a conference paper at ICLR 2025

accurate clustering cost estimates for subsets of coordinates with sizes (1− α)mi. In particular, for
each dimension of each predicted cluster, the estimator is built by randomly selecting a set Sij from
Pij . Each sampled coordinate is then assigned a uniform weight, enabling approximate clustering
costs to be calculated using the weighted samples rather than the entire predicted cluster. With the
constructed estimators, finding the set of coordinates with minimum clustering cost can be done in
sub-linear time, removing the multiplicative O(log(kd)) factor from the running time of the Fast-
Sampling algorithm. Due to the space limits, all the proofs are delivered to the Appendix.

Algorithm 2 Fast-Estimation

Input: A k-means instance (P, k, d), a set (P1, P2, ..., Pk) of partitions with error rate α, and a
parameter 0 < ε < 0.5.

Output: A set C ⊂ Rd of centers with |C| = k.
1: for i ∈ [k] do
2: for j ∈ [d] do
3: Randomly and independently sample a set Uij from Pij with size O(log(kd)), then initial-

ize U ′ij = ∅ and ε1 = ε
126 .

4: for q = 0 to O(log(m∆2
max)) do

5: lij =
√

2q−1

(1−α)mi
.

6: for u ∈ Uij do
7: s(u) =

{
u+ ε2λlij : λ ∈

[
− 1
ε2
, 1
ε2

]
∩ Z
}

, where ε2 =
√

ε1
32 .

8: U ′ij = U ′ij ∪ s(u).
9: Randomly and independently sample a set Sij from Pij with size

O
(

log(m3d log3(m∆2
max)/ε21) log(m∆2

max)

αε41

)
, assign each point in Sij a weight mi

|Sij | .

10: Construct an estimator ω such that ∀u ∈ U ′ij , ω(u) =
∑
p∈Sij\F(u)

mi
|Sij |δ

2(p, u), where
F(u) is the set of the furthest (1 + 3ε1)α|Sij | points from Sij to u.

11: cij = arg minu∈U ′ij ω(u).
12: Let Iij be the set of the nearest (1− 2α− αε)mi coordinates from Pij to cij .
13: ĉi = (Iij)j∈[d].
14: return {ĉ1, ĉ2, ..., ĉk}.

In the following, we give the formal analysis for Algorithm 2. In each step 3 of Algorithm 2, for each
dimension of the predicted cluster, the algorithm selects a random sample Uij to approximate the co-
ordinates of the optimal clustering centers. According to Lemma 4, with constant probability, there

exists at least one sampled coordinate u ∈ Uij such that δ(u,Q′ij) ≤
√

2δ2(Q′ij , Q
′
ij)/|Q′ij |. Then,

starting from step 4 of Algorithm 2, the algorithm enumerates all the possible lengths of intervals
for constructing the set of candidate coordinates. Without loss of generality, we can assume that the
minimum pairwise distance between the coordinates in Pij is 1, and the maximum pairwise distance
between the coordinates in Pij is ∆max. Consequently, in step 5 of Algorithm 2, there exists at least

one guess for the interval length such that

√
2δ2(Q′ij ,Q

′
ij)

(1−α)mi
≤ lij ≤

√
4δ2(Q′ij ,Q

′
ij)

(1−α)mi
. Then, in steps 7-8

of Algorithm 2, according to Lemma 5, there also exists at least one coordinate u′ ∈ U ′ij such that

u′ is close enough to the geometric center for Q′ij , i.e., δ(u′, Q′ij) ≤
√
ε1δ2(Q′ij , Q

′
ij)/|Q′ij |.

For each u ∈ U ′ij , denote Nij(u) as the set of the nearest (1 − α)mi coordinates from Pij to
u. Let O(u) = Pij\Nij(u) be the set of the furthest αmi coordinates from Pij to u. Before
the construction of the estimator ω (steps 9-10 of Algorithm 2), we start by dividing Nij(u) into

γ =
(1+ε1) log(m∆2

max)
ε1

blocks. Specifically, for each u ∈ U ′ij , Nij(u) is decomposed into γ blocks
(denoted as B1

u, B2
u, ...,Bγu) based on the distances from the coordinates inNij(u) to u, where Blu ={

x ∈ Nij(u) : (1 + ε1)l ≤ δ2(x, u) < (1 + ε1)l+1
}

. Then, we further divide the blocks into two

groups based on the sizes of the blocks, where L(u) =
{
Blu : |Blu| ≥

ε21αmi
(1+ε1) log(mi∆2

max) , l ∈ [γ]
}

7

Published as a conference paper at ICLR 2025

and S(u) =
{
B1
u, ...,Bγu

}
\L(u) are the groups of large and small blocks, respectively. Our goal

is to well approximate each large block in L(u) while allowing to ignore the coordinates in small
blocks. The following lemma shows that the estimator, constructed by randomly selecting a set Sij
from Pijwith size c log(m3d log3(m∆2

max)/ε21) log(m∆2
max)

αε41
(c is a large enough constant to be specified)

can well approximate each large block and the set O(u) of coordinates with high probability.
Lemma 8 With probability at least 1 − ε1

m3d log2(m∆2
max)

, we have (1 − ε1)E[|Blu ∩ Sij |] ≤ |Blu ∩
Sij | ≤ (1+ε1)E[|Blu∩Sij |] holds for eachBlu ∈ L(u), and (1−ε1)E[|O(u)∩Sij |] ≤ |O(u)∩Sij | ≤
(1 + ε1)E[|O(u) ∩ Sij |].

For the small blocks in S(u), denote J (u) =
⋃
Blu∈S(u) Blu as the set of the coordinates in small

blocks. Given that the number of coordinates in small blocks constitutes only a small fraction of
the entire predicted cluster, we will show that the number of coordinates selected from these small
blocks through random sampling can be approximately upper bounded by O(εα|Sij |).
Lemma 9 With probability at least 1− ε1

m3d log2(m∆2
max)

, it holds that |J (u) ∩ Sij | ≤ 2ε1α|Sij |.

Next, we prove that the estimator can give accurate estimations for the clustering cost induced by the
set of the nearest (1−α)mi coordinates from some sampled coordinate u ∈ U ′ij . For any coordinate
u ∈ U ′ij , letF†(u) be the set of the furthest (2+20ε1)αmi coordinates from Pij to u. The following
lemma establishes the lower and upper bounds for the clustering cost given by the estimator ω.
Lemma 10 Given an arbitrary coordinate u ∈ U ′ij , with high probability, we have
δ2(Pij\F†(u))/(1 + 7ε1) ≤ ω(u) ≤ (1 + ε1)2δ2(Nij(u), u).

According to Lemma 9 and Lemma 10, for an arbitrary sample u ∈ U ′ij , with probability at least
1 − ε1

m2d log2(m∆2
max)

, the constructed estimator ω can give approximate clustering cost estima-

tions such that δ2(Pij\F†(u))
1+7ε1

≤ ω(u) ≤ (1 + ε1)2δ2(Nij(u), u). Observe that there are at most

O(ε
−1/2
1 log(kd) log(m∆max)) constructed coordinates in each dimension of each predicted cluster.

Then, by taking a union bound success probability over all the dimensions of the predicted clusters,
we can get that with constant probability, δ

2(Pij\F†(u),u)
1+7ε1

≤ ω(u) ≤ (1 + ε1)2δ2(Nij(u), u) holds
for each u ∈ U ′ij where i ∈ [k] and j ∈ [d]. Based on the properties of the estimator, we will
show that in each dimension of each predicted cluster, the Fast-Estimation algorithm can find good
coordinate approximation for the optimal clustering centers.
Lemma 11 The following bound holds: δ2(Iij , Qij) ≤ O(α)δ2(Qij , Qij)/|Qij |.

Finally, by using Lemma 7, Theorem 2 can be proved.
Theorem 2 There exists a learning-augmented k-means algorithm that can output a (1 + O(α))-
approximate solution in time O(md) + Õ(ε−5kd/α) with constant probability for α ∈ (0, 1/3− ε).

5 THE FAST-FILTERING ALROTIHM

For the Fast-Sampling and Fast-Estimation algorithms, clustering centers are generated by finding
coordinates approximation in each dimension. However, the sampling process may introduce cu-
mulative errors, potentially leading to a degradation in the overall clustering quality. In this section,
based on our Fast-Sampling and Fast-Estimation algorithms, we provide a more practical heuristic
algorithm to better preserve the clustering quality while maintaining the improved running time.

The proposed algorithm is presented in Algorithm 3, where the main idea is to directly find center
approximations for each predicted cluster. In step 2 of Algorithm 3, a set of samples is drawn ran-
domly and independently from each predicted cluster to serve as candidate centers. Then in steps
3-4 of Algorithm 3, estimators are constructed using similar ideas from the Fast-Estimation algo-
rithm. Based on the estimators, the candidate center with the minimum clustering cost is selected in
step 5 of Algorithm 3 to identify intervals containing the nearest (1 − α)mi points. Finally, in step
7 of Algorithm 3, the geometric centers of the identified intervals are selected as the final clustering
centers. In Appendix A.4, we give a theoretical analysis for the Fast-Filtering algorithm. We show

8

Published as a conference paper at ICLR 2025

that, with adjusted number of nearest neighbors (steps 4 and 6 of Algorithm 3) and sample sizes R1

and R2, the Fast-Filtering algorithm can also give a (1 +O(
√
α))-approximate solution.

Algorithm 3 Fast-Filtering

Input: A k-means instance (P, k, d), a set (P1, P2, ..., Pk) of partitions with error rateα, parameters
R1 > 0, R2 > 0 and 0 < ε < 1.

Output: A set C ⊂ Rd of centers with |C| ≤ k.
1: for i ∈ [k] do
2: Randomly and independently sample a set Ui from Pi with size R1.
3: Randomly and independently sample a set Si from Pi with size R2 , and assign each point in

Si a weight mi
|Si| .

4: Construct an estimator ω such that ∀u ∈ Ui, ω(u) =
∑
p∈Si\F(u)

mi
|Si|δ

2(p, u), where F(u)

is the set of the furthest (1 + ε)α|Si| points from Si to u.
5: ci = arg minu∈Ui ω(u).
6: Let Ii be the set of the nearest (1− α)mi points from Pi to ci.
7: ĉi = Ii.
8: return {ĉ1, ĉ2, ..., ĉk}.

6 EXPERIMENTS

In this section, we give empirical evaluations on the performances of our proposed algorithms. All
algorithms are implemented and executed in Python. The experiments were done on a machine with
i7-12700KF processor and 256GB RAM. Following the prior work (Nguyen et al., 2022; Ergun
et al., 2021), we run each algorithm 10 times and report the average results with deviations.

Datasets. Following the work in Nguyen et al. (2022) and Ergun et al. (2021), we test the algorithms
on datasets CIFAR10 (m = 10, 000, d = 3, 072), PHY (m = 10, 000, d = 50) and MNIST
(m = 1, 797, d = 64) with varying error rate α and the number of clusters k. We also test the
performances of the algorithms on other large datasets from UCI Machine Learning Repository 3

including SUSY (m = 5, 000, 000, d = 18) and HIGGS (m = 11, 000, 000, d = 27), and one
large-scale dataset SIFT (m = 100, 000, 000, d = 128) from Matsui et al. (2017).

Algorithms. In our experiments, we mainly compare our proposed Fast-Sampling, Fast Estimation
and Fast-Filtering algorithms (the version in Appendix A.4 with theoretical guarantees) with other
learning-augmented algorithms, including the algorithm in Ergun et al. (2021) (denoted as Ergun)
and the algorithm in Nguyen et al. (2022) (denoted as Det). For the Fast-Sampling algorithm, the
sample size is set to 4, and we fix ε = 1. For the Fast-Filtering and Fast-Estimation algorithms,
we fix R1 = 10, R2 = m/20 and ε = 0.3, where m is the size of the given clustering instance.
To further demonstrate the advantage of learning-augmented clustering model, we also give com-
parisons between our algorithms and the k-means++ method (Arthur & Vassilvitskii, 2007) without
prediction information.

Predictor Description. Following the prior work (Nguyen et al., 2022), the predictor is generated
as follows. For each dataset, we first run the k-means++ (Arthur & Vassilvitskii, 2007) method
as an initialization, and then run the Lloyd’s algorithm (Lloyd, 1982) until convergence, where the
labels returned are regarded as the optimal labeling partitions (denoted as {P1, ..., Pk}). To test the
performance of the algorithms under different error rates of the predictor, following the previous
work of Nguyen et al. (2022), we randomly change the labels of the αmi points closest to ci for
each cluster Pi to generate the corrupted labeling partitions {P ′1, ..., P ′k} as the predictors. For every
dataset, we generate the set of corrupted labels for α ranging from 0.1 to 0.5.

Detailed Algorithm Implementations. As pointed out in Nguyen et al. (2022), in most situations,
we will not have access to the error rate α and must try different guesses of α to return the clustering
with the best cost. Therefore, for each algorithm (including those in Ergun et al. (2021); Nguyen
et al. (2022) as well as ours), we iterate over 15 possible values of α uniformly distributed in the
interval [0.01, 0.5] as the inputs for the algorithms. The guessed α value that yields the best cluster-

3https://archive.ics.uci.edu/

9

Published as a conference paper at ICLR 2025

ing cost is selected as the final result. For each algorithm, the runtime for each execution includes
the cumulative time spent across 15 iterations of guessing error rates and solving the corresponding
k-means instances based on predictors. Additionally, we also compare the ARI amd NMI values for
different algorithms to show the quality of clustering with respect to the ground truth labeling.

Table 2: Comparisons on dataset SIFT for varying α and fixed k = 20

Dataset SIFT (100,000,000 × 128)

Method Ref α Cost NMI ARI Time(s)

k-means++

1.0542E+13(844.18s) 0.1

1.6884E+13±1.45E+11 0.3285±0.0138 0.1530±0.0137 1000.89±10.84
Ergun 9.9799E+12±1.03E+05 0.9243±0.0000 0.9181±0.0001 16748.88±5776.25
Det 9.7791E+12±0.00E+00 0.9490±0.0000 0.9491±0.0000 13152.95±2160.94

Fast-Sampling 9.7666E+12±0.00E+00 0.9519±0.0000 0.9531±0.0000 13057.36±1717.68
Fast-Filtering 9.7150E+12±2.90E+08 0.9316±0.0090 0.9333±0.0107 1006.31±43.79

Fast-Estimation 9.8007E+12±3.74E+08 0.9465±0.0003 0.9466±0.0002 8874.66±2871.26

k-means++

9.7055E+12(1011.24s) 0.2

1.6585E+13±7.91E+10 0.3634±0.0182 0.1940±0.0221 1077.12±71.57
Ergun 1.0210E+13±2.89E+08 0.9043±0.0000 0.8901±0.0000 17410.75±6132.76
Det 9.9919E+12±0.00E+00 0.9019±0.0000 0.8867±0.0000 13681.80±2073.36

Fast-Sampling 9.9576E+12±0.00E+00 0.9037±0.0000 0.8895±0.0000 13270.53±1989.65
Fast-Filtering 9.7914E+12±9.59E+08 0.8690±0.0116 0.8515±0.0146 1088.53±92.09

Fast-Estimation 1.0004E+13±6.51E+08 0.9093±0.0002 0.8979±0.0002 9567.52±2691.74

k-means++

9.2478E+12(1330.99s) 0.3

1.6561E+13±9.48E+10 0.3531±0.0278 0.1814±0.0206 927.07±31.75
Ergun 1.0526E+13±4.08E+07 0.8663±0.0000 0.8361±0.0000 17586.20±6488.30
Det 1.0291E+13±0.00E+00 0.8625±0.0000 0.8299±0.0000 13214.91±1914.86

Fast-Sampling 1.0238E+13±0.00E+00 0.8743±0.0000 0.8496±0.0000 13032.26±1657.72
Fast-Filtering 9.9098E+12±7.74E+09 0.8180±0.0048 0.7833±0.0064 1095.48±66.17

Fast-Estimation 1.0300E+13±3.31E+08 0.8663±0.0002 0.8371±0.0002 8618.38±2378.02

k-means++

8.9739E+12(1342.73s) 0.4

1.6814E+13±4.91E+11 0.3582±0.0111 0.1752±0.0126 991.80±148.57
Ergun 1.0924E+13±4.27E+08 0.8273±0.0000 0.7801±0.0001 16291.70±5926.28
Det 1.0683E+13±0.00E+00 0.8248±0.0000 0.7749±0.0000 12999.81±2144.98

Fast-Sampling 1.0613E+13±0.00E+00 0.8353±0.0000 0.7930±0.0000 13658.40±1766.14
Fast-Filtering 1.0125E+13±3.14E+09 0.7879±0.0048 0.7393±0.0032 1091.53±94.64

Fast-Estimation 1.0687E+13±8.25E+08 0.8260±0.0001 0.7781±0.0003 8725.94±2691.41

k-means++

8.7576E+12(1412.61s) 0.5

1.7542E+13±2.81E+11 0.3313±0.0073 0.1580±0.0065 972.59±60.40
Ergun 1.1414E+13±4.92E+08 0.7885±0.0000 0.7140±0.0000 17256.11±6160.91
Det 1.1156E+13±0.00E+00 0.7863±0.0000 0.7105±0.0000 13121.68±1901.27

Fast-Sampling 1.1089E+13±0.00E+00 0.7963±0.0000 0.7290±0.0000 13042.91±1762.42
Fast-Filtering 1.0504E+13±5.81E+09 0.7086±0.0103 0.6133±0.0097 1051.20±34.37

Fast-Estimation 1.1169E+13±1.68E+09 0.7886±0.0005 0.7153±0.0012 8532.96±2152.19

Results. Table 2 compares our proposed algorithms with other learning-augmented k-means meth-
ods on the SIFT dataset for varying error rates and fixed clusters. “Ref” reports clustering costs of
optimal labeling partitions and the running time for generating them using the Lloyd’s algorithm.
Due to space limit, the results for varying clusters and other datasets are given in Appendix A.6.

The results show that our Fast-Sampling algorithm achieves clustering costs comparable to state-of-
the-art methods, while Fast-Filtering consistently outperforms other learning-augmented algorithms,
with an average 1.5% reduction in clustering cost across all datasets. In terms of running time,
Fast-Filtering is significantly faster than other algorithms, especially for large and high-dimensional
datasets, achieving at least 3x speedup over current methods. On the SIFT dataset, it is the only
method faster than Lloyd’s algorithm, where the running time is at least 10 times faster than other
methods. For the NMI and ARI values, our algorithms consistently achieve NMI and ARI values
above 0.80 across most datasets, with particularly better results on MNIST and SIFT due to their spa-
tial coherence. Meanwhile, the Det algorithm performs better on high-dimensional datasets (SUSY,
HIGGS, and PHY), while Ergun’s algorithm excels on CIFAR10 with its complex image features.

7 CONCLUSION

In this work, we present new sampling-based algorithms with linear running time in the data size for
the learning-augmented k-means problem. We show experimentally that our algorithm achieves bet-
ter performances on different datasets compared with other state-of-the-art algorithms. An interest-
ing future direction is how to design algorithms with better approximation ratios while maintaining
a linear running time in learning-augmented settings.

ACKNOWLEDGEMENTS

This work was supported by National Natural Science Foundation of China (62432016, 62172446).
This work was also carried out in part using computing resources at the High Performance Comput-
ing Center of Central South University.

10

Published as a conference paper at ICLR 2025

REFERENCES

David Arthur and Sergei Vassilvitskii. k-means++ the advantages of careful seeding. In Proceedings
of the 18th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1027–1035, 2007.

Hassan Ashtiani, Shrinu Kushagra, and Shai Ben-David. Clustering with same-cluster queries. In
Proceedings of the 29th International Conference on Neural Information Processing Systems, pp.
3216–3224, 2016.

Lorenzo Beretta, Vincent Cohen-Addad, Silvio Lattanzi, and Nikos Parotsidis. Multi-swap k-
means++. In Proceedings of the 37th International Conference on Neural Information Processing
Systems, pp. 26069–26091, 2023.

Manuel Blum, Robert W. Floyd, Vaughan R. Pratt, Ronald L. Rivest, Robert Endre Tarjan, et al.
Time bounds for selection. Journal of Computer and System Science, 7(4):448–461, 1973.

Davin Choo, Christoph Grunau, Julian Portmann, and Václav Rozhon. k-means++: Few more steps
yield constant approximation. In Proceedings of the 37th International Conference on Machine
Learning, pp. 1909–1917, 2020.

Vincent Cohen-Addad and CS Karthik. Inapproximability of clustering in LP metrics. In Proceed-
ings of the 60th IEEE Annual Symposium on Foundations of Computer Science, pp. 519–539,
2019.

Vincent Cohen-Addad, Hossein Esfandiari, Vahab Mirrokni, and Shyam Narayanan. Improved ap-
proximations for Euclidean k-means and k-median, via nested quasi-independent sets. In Pro-
ceedings of the 54th Annual ACM SIGACT Symposium on Theory of Computing, pp. 1621–1628,
2022.

Sanjoy Dasgupta. The hardness of k-means clustering. 2008.

Jon C Ergun, Zhili Feng, Sandeep Silwal, David Woodruff, and Samson Zhou. Learning-augmented
k-means clustering. In Proceedings of the 9th International Conference on Learning Representa-
tions, 2021.

Chenglin Fan, Ping Li, and Xiaoyun Li. LSDS++: Dual sampling for accelerated k-means++. In
Proceedings of the 40th International Conference on Machine Learning, pp. 9640–9649, 2023.

Zachary Friggstad, Mohsen Rezapour, and Mohammad R Salavatipour. Local search yields a PTAS
for k-means in doubling metrics. SIAM Journal on Computing, 48(2):452–480, 2019.

Buddhima Gamlath, Silvio Lattanzi, Ashkan Norouzi-Fard, and Ola Svensson. Approximate cluster
recovery from noisy labels. In Proceedings of the 35th Conference on Learning Theory, pp.
1463–1509, 2022.

Ragesh Jaiswal, Amit Kumar, and Sandeep Sen. A simple D2-sampling based PTAS for k-means
and other clustering problems. Algorithmica, 70(1):22–46, 2014.

Tim Kraska, Alex Beutel, Ed H Chi, Jeffrey Dean, and Neoklis Polyzotis. The case for learned
index structures. In Proceedings of the 2018 International Conference on Management of Data,
pp. 489–504, 2018.

Silvio Lattanzi and Christian Sohler. A better k-means++ algorithm via local search. In Proceedings
of the 36th International Conference on Machine Learning, pp. 3662–3671, 2019.

Stuart Lloyd. Least squares quantization in PCM. IEEE Transactions on Information Theory, 28(2):
129–137, 1982.

Yusuke Matsui, Keisuke Ogaki, Toshihiko Yamasaki, and Kiyoharu Aizawa. Pqk-means: Billion-
scale clustering for product-quantized codes. In Proceedings of the 25th ACM International Con-
ference on Multimedia, pp. 1725–1733, 2017.

Michael Mitzenmacher. A model for learned bloom filters and optimizing by sandwiching. In
Proceedings of the 32nd International Conference on Neural Information Processing Systems,
pp. 462–471, 2018.

11

Published as a conference paper at ICLR 2025

Michael Mitzenmacher and Sergei Vassilvitskii. Algorithms with predictions. Communications of
the ACM, 65(7):33–35, 2022.

Thy Dinh Nguyen, Anamay Chaturvedi, and Huy Nguyen. Improved learning-augmented algo-
rithms for k-means and k-medians clustering. In Proceedings of the 10th International Confer-
ence on Learning Representations, 2022.

12

Published as a conference paper at ICLR 2025

A APPENDIX

A.1 PLOT OF APPROXIMATION RATIO V.S. ERROR RATE α

Figure 1: Plot of approximation ratios v.s. the error rate α.

A.2 MISSING PROOFS IN SECTION 3

Lemma 4. For any Qij = P ∗ij ∩ Pij , it holds that |Gµij | ≥
µ−1
µ |Q

′
ij |.

Proof Observe that

δ2(Q′ij , Q
′
ij) ≥ δ

2(Q′ij\G
µ
ij , Q

′
ij)

≥ |Q′ij |

(
1−
|Gµij |
|Q′ij |

)
µδ2(Q′ij , Q

′
ij)

|Q′ij |
,

which implies that |Gµij | ≥
µ−1
µ |Q

′
ij |. �

Lemma 5. Given an arbitrary coordinate u ∈ G2
ij ∩ Uij , it holds that δ2(Q′ij , Q

′
ij) ≤

δ2(Nij(u),Nij(u)) ≤ 3δ2(Q′ij , Q
′
ij).

Proof According to the definition of Q′ij that Q′ij is the subset of Pij with size (1 − α)mi

and minimum clustering cost, it holds trivially that δ2(Nij(u),Nij(u)) ≥ δ2(Q′ij , Q
′
ij) since

Nij(u) ⊆ Pij and |Nij(u)| = (1 − α)mi. On the other hand, we can establish an upper bound
for δ2(Nij(u),Nij(u)) as

δ2(Nij(u),Nij(u)) ≤ δ2(Nij(u), u)

≤ δ2(Q′ij , u)

= δ2(Q′ij , Q
′
ij) + |Q′ij |δ2(u,Q′ij)

≤ 3δ2(Q′ij , Q
′
ij),

13

Published as a conference paper at ICLR 2025

where the first step follows from the optimality of the geometric center, the second step follows from
the definition of Nij(u) that Nij(u) contains the nearest (1 − α)mi coordinates from Pij to u, the
third step follows from Lemma 1, and the last step follows from the definition of G2

ij . �

Lemma 6. The following bound holds: δ2(Iij , Qij) ≤ (4α+αε)δ2(Qij ,Qij)
|Qij |(1−2α) .

Proof We first bound the distance between Iij ∩Qij and Iij . Denote I ′ij as the set of the nearest

(1− α)mi points from Pij to u′ such that u′ ∈ U ′ij and δ(u′, Q′ij) ≤
√

εδ2(Q′ij ,Q
′
ij)

2(1−α)mi
. Then, it holds

that
δ2(I ′ij , I

′
ij) ≤ δ

2(I ′ij , u
′)

≤ δ2(Q′ij , u
′)

= δ2(Q′ij , Q
′
ij) + |Q′ij |δ2(u′, Q′ij)

≤
(

1 +
ε

2

)
δ2(Q′ij , Q

′
ij),

where the first step follows from the optimality of geometric center, the second step follows from
the definition for I ′ij that I ′ij contains the nearest (1 − α)mi coordinates from Pij to u′, the third

step follows from Lemma 1, and the last step follows from δ(u′, Q′ij) ≤
√

εδ2(Q′ij ,Q
′
ij)

2(1−α)mi
. Since Iij is

the set of coordinates with minimum clustering cost found in step 10 of Algorithm 1, it holds that

δ2(Iij , Iij) ≤ δ2(I ′ij , I
′
ij)

≤
(

1 +
ε

2

)
δ2(Q′ij , Q

′
ij).

Let ζ = |Qij ∩Iij |/|Iij | = 1− (1−|Qij ∩Iij |/|Iij |). According to Lemma 2, by assigning J = Iij
and J1 = Qij ∩ Iij , we can get that

δ2(Iij ∩Qij , Iij) ≤
1− ζ
ζ
· δ

2(Iij , Iij)

|Iij |

=
1− |Qij ∩ Iij |/|Iij |
|Qij ∩ Iij |/|Iij |

· δ
2(Iij , Iij)

|Iij |

=
|Iij | − |Qij ∩ Iij |
|Qij ∩ Iij |

· δ
2(Iij , Iij)

|Iij |
,

where the first step follows from Lemma 2. According to the definition of Qij , since |Pij\Qij | ≤
αmi, it holds that |Qij ∩ Iij | ≥ |Iij | − αmi. Then, we have

δ2(Iij ∩Qij , Iij) ≤
α

1− 2α

δ2(Iij , Iij)

|Iij |

≤ α

1− 2α
·

(1 + ε
2)δ2(Q′ij , Q

′
ij)

|Iij |

≤ α+ 0.5αε

1− 2α
·
|Q′ij |

|Qij | · |Iij |
· δ2(Qij , Qij)

≤ α+ 0.5αε

1− 2α
· δ

2(Qij , Qij)

|Qij |
,

where the first inequality follows from Lemma 2, the second inequality follows from δ2(Iij , Iij) ≤
(1 + ε

2)δ2(Q′ij , Q
′
ij), the third inequality follows from Lemma 3, and the last inequality follows

from |Q′ij | = |Iij | = (1− α)mi.

14

Published as a conference paper at ICLR 2025

Next, we give an upper bound for the distance between Iij ∩Qij and Qij . Let ζ ′ = (1 −
|Qij\Iij |/|Qij |). According to Lemma 2, by assigning J = Qij and J1 = Qij ∩ Iij , we can
get that

δ2(Iij ∩Qij , Qij) ≤
(|Qij\Iij |/|Qij |)δ2(Qij , Qij)

(1− |Qij\Iij |/|Qij |)|Qij |

=
|Qij\Iij |δ2(Qij , Qij)

(|Qij | − |Qij\Iij |)|Qij |

≤ αδ2(Qij , Qij)

(1− 2α)|Qij |
,

where the last inequality follows from |Qij\Iij | ≤ αmi. Putting all these together and using the

triangle inequality, we have δ2(Iij , Qij) ≤ (α(4+ε))δ2(Qij ,Qij)
|Qij |(1−2α) . �

Lemma 7. The following bound holds: δ2(Iij , P ∗ij) ≤
(

α
1−α + α(4+ε)

(1−2α)(1−α)

)
δ2(P∗ij ,P

∗
ij)

|P∗ij |
.

Proof Since Qij ⊆ P ∗ij , we have

|P ∗ij |P ∗ij = |P ∗ij\Qij |P ∗ij\Qij + |Qij |Qij .

Then, we can get that δ2(P ∗ij , P
∗
ij\Qij) =

(
|P∗ij |−|P

∗
ij\Qij |

|P∗ij\Qij |

)2

δ2(P ∗ij , Qij). Define γ =
|P∗ij\Qij |
|P∗ij |

.

We have δ2(P ∗ij , P
∗
ij\Qij) =

(
1−γ
γ

)2

δ2(P ∗ij , Qij). By decomposing the clustering cost of P ∗ij with

respect to P ∗ij into δ2(P ∗ij\Qij , P ∗ij) and δ2(P ∗ij ∩Qij , P ∗ij), it holds that

δ2(P ∗ij , P
∗
ij) = δ2(P ∗ij\Qij , P ∗ij) + δ2(Qij , P ∗ij)

= δ2(P ∗ij\Qij , P ∗ij\Qij) + γ|P ∗ij |δ2(P ∗ij , P
∗
ij\Qij) + δ2(Qij , P ∗ij)

= δ2(P ∗ij\Qij , P ∗ij\Qij) + γ|P ∗ij |
(

1− γ
γ

)2

δ2(P ∗ij , Qij)

+ δ2(Qij , Qij) + (1− γ)|P ∗ij |δ2(Qij , P ∗ij)

= δ2(P ∗ij\Qij , P ∗ij\Qij) + δ2(Qij , Qij) +
1− γ
γ
|P ∗ij |δ2(Qij , P ∗ij)

≥ δ2(Qij , Qij) +
1− α
α
|P ∗ij |δ2(Qij , P ∗ij),

where the first step follows from Lemma 1, and the last step follows from the definition of the
predicted clusters that γ ≤ α. By Lemma 6, we have

δ2(P ∗ij , P
∗
ij) ≥

1− 2α

α(4 + ε)
(1− α)|P ∗ij |δ2(Iij , Qij) +

1− α
α
|P ∗ij |δ2(Qij , P ∗ij).

Then, by using Cauchy-Schwarz Inequality, we have

(δ(P ∗ij , Qij) + δ(Qij , Iij))
2 ≤

δ2(P ∗ij , P
∗
ij)

|P ∗ij |

(
α

1− α
+

α(4 + ε)

(1− 2α)(1− α)

)
.

Finally, we can conclude the proof using the fact that δ2(P ∗ij , Iij) ≤ (δ(P ∗ij , Qij) + δ(Iij , Qij))
2. �

Theorem 1. There exists a learning-augmented k-means algorithm that can output a (1 + O(α))-
approximate solution in time O(ε−1md log(kd)) with constant probability, where α ∈ [0, 1/2).

15

Published as a conference paper at ICLR 2025

Proof Denote C as the set of centers returned by Algorithm 1, where C = {ĉ1, ĉ2, ..., ĉk} and ĉi is
consisting of d coordinates [ci1, ci2, ..., cid]. Then, we have

δ2(P,C) ≤
k∑
i=1

d∑
j=1

δ2(P ∗ij , cij)

=

k∑
i=1

d∑
j=1

δ2(P ∗ij , P
∗
ij) + |P ∗ij |δ2(P ∗ij , cij)

≤
k∑
i=1

d∑
j=1

(
1 +

α

1− α
+

α(4 + ε)

(1− 2α)(1− α)

)
δ2(Pij , P ∗ij)

=

(
1 +

α

1− α
+

α(4 + ε)

(1− 2α)(1− α)

)
δ2(P,C∗).

Then, we give the runtime analysis for the proposed Fast-Sampling algorithm. In each step 3 of the
Fast-Sampling algorithm, sampling coordinates from the predicted cluster takes O(1) time. In each
step 5 of the Fast-Sampling algorithm, finding the nearest (1 − α)mi coordinates in Pij to a given
sample can be executed in linear time O(mi) using linear selection methods (Blum et al., 1973).

In each step 7 of Algorithm 1, note that the interval length can be bounded by O(1)
√

δ2(Qij ,Qij)
(1−α)mi

.
Hence, by dividing the interval into smaller blocks with length ε′lij where ε′ =

√
ε

48 , we can get
that the number of candidate coordinates constructed in each step 7 of Algorithm 1 can be bounded
by O(ε−1). According to the sample size of Uij , the total number of coordinates constructed in step
8 of Algorithm 1 can be bounded by O(ε−1 log(kd)). Then, finding the subset of coordinates with
minimum clustering cost in steps 9-10 of Algorithm 1 can be executed in time O(ε−1mi log(kd))
using linear selection methods (Blum et al., 1973). Since the Fast-Sampling algorithm needs to
enumerate all the dimensions of each predicted cluster, the overall running time can be bounded by∑k
i=1

∑d
j=1O(ε−1mi log(kd)) = O(ε−1md log(kd)). �

A.3 MISSING PROOFS IN SECTION 4

Lemma 8. With probability at least 1 − ε1
m3d log2(m∆2

max)
, we have (1 − ε1)E[|Blu ∩ Sij |] ≤ |Blu ∩

Sij | ≤ (1+ε1)E[|Blu∩Sij |] holds for eachBlu ∈ L(u), and (1−ε1)E[|O(u)∩Sij |] ≤ |O(u)∩Sij | ≤
(1 + ε1)E[|O(u) ∩ Sij |].

Proof Observe that |Sij | = c log(m3d log3(m∆2
max)/ε21) log(m∆2

max)

αε41
where c is some large enough con-

stant. Hence, for an arbitrary large block Blu ∈ L(u), we have

E[|Sij ∩ Blu|] =
|Sij | · |Blu|
|Pij |

≥ ε21α

(1 + ε1) log(mi∆2
max)

· c log(m3d log3(m∆2
max)/ε21) log(m∆2

max)

αε41

≥ c log(m3d log3(m∆2
max)/ε21)

(1 + ε1)ε21
.

Thus, by applying the Chernoff Bound, we can get that

Pr
(
(1− ε1)E[|Blu ∩ Sij |] ≤ |Blu ∩ Sij | ≤ (1 + ε1)E[|Blu ∩ Sij |]

)
≥ 1− 2e−

ε21E[|Blu∩Sij |]
3

≥ Ω

(
1− ε21

m3d log3(m∆2
max)

)
,

where the last inequality follows from the fact that c is a large enough constant.

Similarly, for the set O(u) of coordinates, we can get that with probability at least
Ω
(

1− ε21
m3d log3(m∆2

max)

)
, it holds that (1−ε1)E[|O(u)∩Sij |] ≤ |O(u)∩Sij | ≤ (1+ε1)E[|O(u)∩

Sij |]. By taking a union bound success probability, Lemma 8 can be proved. �

16

Published as a conference paper at ICLR 2025

Lemma 9. With probability at least 1− ε1
m3d log2(m∆2

max)
, it holds that |J (u) ∩ Sij | ≤ 2ε1α|Sij |.

Proof According to the definition of small blocks, it holds that |J (u)| ≤ ε1αmi. Observe that
E[|Sij ∩ J (u)|] =

|Sij |·|J (u)|
mi

. Let λ′ = 2ε1αmi
|J (u)| − 1. By applying the Chernoff Bound, we can get

that

Pr(|J (u) ∩ Sij | ≤ (1 + λ′)E[|J (u) ∩ Sij |]) ≥ 1− e−
E[|Sij∩J (u)|](λ′)2

3

= 1− e−
|J (u)|·|Sij |

3mi
(2ε1αmi
|J (u)| −1)

2

≥ 1− e−
|J (u)|·|Sij |

3mi
(ε1αmi|J (u)|)

2

≥ 1− e−
ε21α

2mi|Sij |
3|J (u)|

≥ Ω

(
1− ε1

m3d log2(m∆2
max)

)
,

where the first step follows from Chernoff Bound, the second step follows from the definition of
λ′, the third step follows from the fact that |J (u)| ≤ ε1αmi, and the last step follows from
|Sij | ≥ c log(m3d log3(m∆2

max)/ε21) log(m∆2
max)

ε41α
. Since (1+λ′)E[|J (u)∩Sij |] = (1+λ′)

|J (u)|·|Sij |
mi

≤
2ε1α|Sij |, we have |J (u) ∩ Sij | ≤ 2ε1α|Sij |. �

Lemma 10. Given an arbitrary coordinate u ∈ U ′ij , with high probability, we have
δ2(Pij\F†(u))/(1 + 7ε1) ≤ ω(u) ≤ (1 + ε1)2δ2(Nij(u), u).

Proof According to Lemma 8 and Lemma 9, by taking a union bound over the success probability,
we have |J (u) ∩ Sij | ≤ 2ε1α|Sij | and |O(u) ∩ Sij | ≤ (1 + ε1)α|Sij | hold with probability at

least
(

1− ε1
m2d log2(m∆2

max)

)
. Define F ′(u) = (J (u) ∪ O(u)) ∩ Sij . Then, it holds that |F ′(u)| ≤

(1 + 3ε1)α|Sij |. For each large block Blu ∈ L(u), by using Lemma 8, we have |Blu ∩ Sij | ≤
(1+ ε1)E[|Blu∩Sij |] =

(1+ε1)|Sij |
mi

|Blu|. Thus, the clustering cost of Blu∩Sij can be upper bounded
by

δ2(Blu ∩ Sij , u) =
∑

x∈Blu∩Sij

δ2(x, u)

≤ (1 + ε1)l+1|Blu ∩ Sij |

≤ (1 + ε1)l · (1 + ε1)2|Sij |
mi

|Blu|

≤ (1 + ε1)2|Sij |
mi

δ2(Blu, u),

where the second step follows from the definition of Blu ∈ L(u) that δ2(x, u) ≤ (1+ε1)l+1 holds for
each x ∈ Blu, and the fourth step follows from the definition of Blu ∈ L(u) that δ2(x, u) ≥ (1 + ε1)l

holds for each x ∈ Blu. Consequently, by taking a summation over all the coordinates sampled in
large blocks, we can get that

∑
Blu∈L(u) δ

2(Blu∩Sij , u) ≤ (1+ε1)2

mi
|Sij |δ2(Nij(u), u). Denote F(u)

as the set of the furthest (1 + 3ε1)α|Sij | points from Sij to u. According to the definition of the
constructed estimator ω in step 10 of Algorithm 2, we have

ω(u) =
mi

|Sij |
δ2(Sij\F(u), u)

≤ mi

|Sij |
δ2(Sij\F ′(u), u)

=
mi

|Sij |
∑

Blu∈L(u)

δ2(Blu ∩ Sij , u)

≤ mi

|Sij |
(1 + ε1)2|Sij |

mi
δ2(Nij(u), u)

= (1 + ε1)2δ2(Nij(u), u),

17

Published as a conference paper at ICLR 2025

where the second step follows from |F ′(u)| ≤ (1 + 3ε1)α|Sij | = |F(u)|. Hence, an upper bound
for the clustering cost estimation can be obtained as ω(u) ≤ (1 + ε1)2δ2(Nij(u), u).

Then, we show that the estimator can also give a lower bound for the clustering cost induced by
the nearest (1 − α)mi coordinates from some sampled coordinate u ∈ U ′ij . For each large block
Blu ∈ L(u), define Z lu = F(u) ∩ Blu. Let Hlu be an arbitrary subset of the coordinates in Blu with
size (1 + 3ε1)|Z lu| mi|Sij | . Denote F ′′(u) = (O(u) ∪ J (u)) ∪ (

⋃
Blu∈L(u)Hlu). It holds that

|F ′′(u)| ≤ αmi + 2ε1αmi + (1 + 3ε1)(mi/|Sij |)|Z lu|
≤ αmi + 2ε1αmi + (1 + 3ε1)(mi/|Sij |) · ((1 + 3ε1)α|Sij |)
≤ (2 + 20ε1)αmi,

where the second step follows from
∑
Blu∈L(u) |Z lu| ≤ |F(u)| ≤ (1 + 3ε1)α|Sij |. Define F†(u) as

the set of the furthest (2 + 20ε1)αmi points from Pij to u. Then, we can get that

δ2(Pij\F†(u), u) ≤ δ2(Pij\F ′′(u), u)

=
∑

Blu∈L(u)

δ2(Blu\Hlu, u)

≤
∑

Blu∈L(u)

(1 + ε1)l+1(|Blu| − |Hlu|)

≤
∑

Blu∈L(u)

(1 + ε1)

(
|Blu ∩ Sij |mi

(1− ε1)|Sij |
− (1 + 3ε1)|Z lu|mi

|Sij |

)
· (1 + ε1)l

≤ (1 + ε1)(1 + 3ε1)mi

|Sij |
∑

Blu∈L(u)

(|Blu ∩ Sij | − |Z lu|) · (1 + ε1)l

≤ (1 + 7ε1)ω(u),

where the first step follows from the definition of F†(u) that |F ′′(u)| ≤ |F†(u)|, the third step
follows from the definition of L(u) that δ2(x, u) ≤ (1 + ε1)l+1 holds for each x ∈ Blu, the fourth
step follows from Lemma 8, and the second to the last step follows from 1

1−ε1 ≤ 1 + 3ε1 for
0 < ε1 < 0.5. �

Lemma 11. The following bound holds: δ2(Iij , Qij) ≤ O(α)δ2(Qij , Qij)/|Qij |.
Proof According to Lemma 5, with constant probability, there exists at least one coordinate u1 ∈
U ′ij such that δ2(u1, Q′ij) ≤

ε1δ
2(Q′ij ,Q

′
ij)

|Q′ij |
. Hence, we can get that δ2(Nij(u1), u1) ≤ δ2(Q′ij , u1) ≤

(1 + ε1)δ2(Q′ij , Q
′
ij), where the last step follows from Lemma 1. Let cij be the coordinate chosen

by the estimator in step 11 of Algorithm 2. According to the property of the estimator, we have

δ2(Pij\F†(cij), cij)
1 + 7ε1

≤ ω(cij)

≤ ω(u1)

≤ (1 + ε1)2δ2(Nij(u1), u1)

≤ (1 + ε1)3δ2(Q′ij , Q
′
ij).

Denote Iij as the set of coordinates found in step 12 of Algorithm 2. Then, we can give the bound
between Iij and Qij . Since ε1 = ε

126 , according to Lemma 1 and the properties of the estimator, we
have

δ2(Iij , Iij) ≤ δ2(Iij , cij)

≤ (1 + 7ε1)ω(cij)

≤ (1 + ε1)3(1 + 7ε1)δ2(Q′ij , Q
′
ij)

≤ (1 + ε/2)δ2(Q′ij , Q
′
ij),

18

Published as a conference paper at ICLR 2025

where the last step follows from ε1 = ε
126 . Next, we bound the distance between Iij and Qij .

According to Lemma 6, it holds that

δ2(Iij , Iij ∩Qij) ≤
(2α+ αε)(1 + ε)

(1− 3α− ε)|Iij |
δ2(Q′ij , Q

′
ij)

≤ (2α+ αε)(1 + ε)

(1− 3α− ε)
|Q′ij |
|Iij ||Qij |

δ2(Qij , Qij)

≤ (2α+ αε)(1 + ε)(1− α)

(1− 3α− ε)(1− 2α− ε)
δ2(Qij , Qij)

|Qij |
.

Similarly, according to Lemma 6, we also have δ2(Qij , Qij ∩ Iij) ≤ 2α+αε
1−3α−ε

δ2(Qij ,Qij)
|Qij | .

Putting all these together and using the triangle inequality, it holds that δ2(Iij , Qij) ≤
13α−15α2

(1−3α−ε)(1−2α−ε)
δ2(Qij ,Qij)
|Qij | , where the last inequality follows from ε < 0.5. �

Theorem 2. There exists a learning-augmented k-means algorithm that can output a (1 + O(α))-
approximate solution in time O(md) + Õ(ε−5kd/α) with constant probability for α ∈ (0, 1/3− ε).

Proof According to Lemma 7, we have δ2(P ∗ij , Iij) ≤
(

α
1−α + 13α−15α2

(1−3α−ε)(1−2α−ε)

)
δ2(Pij ,P∗ij)

|P∗ij |
. De-

note C as the set of centers returned by Algorithm 2, where C = {ĉ1, ĉ2, ..., ĉk} and ĉi is consisting
of d coordinates [ci1, ci2, ..., cid]. Then, we have

δ2(Pij , C) ≤
k∑
i=1

d∑
j=1

δ2(P ∗ij , cij)

=

k∑
i=1

d∑
j=1

δ2(P ∗ij , P
∗
ij) + |P ∗ij |δ2(P ∗ij , cij)

≤
k∑
i=1

d∑
j=1

(
1 +

α

1− α
+

13α− 15α2

(1− 3α− ε)(1− 2α− ε)

)
δ2(Pij , P

∗
ij)

≤
(

1 +
α

1− α
+

13α− 15α2

(1− 3α− ε)(1− 2α− ε)

)
δ2(P,C∗).

Then, we give the runtime analysis for the proposed Fast-Estimation algorithm. Similar to the
analysis for Algorithm 2, in each step 3 of the Fast-Estimation algorithm, sampling coordinates
from the given predicted clusters takes O(1) time. Then, in step 7 of Algorithm 2, we can get that
the constructed candidate set of coordinates has sizeO(ε−1 log(m∆max) log(kd)). Note that in each
step 10 of Algorithm 2, the constructed estimator has size Õ(1

αε4) assuming bounded aspect ratio
∆max that ∆max ≤ poly(m). Hence, in step 10 of Algorithm 2, the running time for estimating
the clustering cost can be bounded by Õ(1

αε5). Finally, in each step 12 of Algorithm 2, finding the
nearest (1− 2α− αε) coordinates in Pij to the selected coordinate can be executed in time O(mi)
using linear selection methods (Blum et al., 1973). Then, the overall running time can be bounded
by
∑k
i=1

∑d
j=1O(mi) + Õ(1

αε5) = O(md) + Õ(ε−5kd/α).

A.4 THEORETICAL ANALYSIS FOR THE FAST-FILTERING ALGORITHM

In this section, we present a theoretical analysis for the proposed Fast-Filtering algorithm (Algo-
rithm 3). The intuitive idea behind is as follows. In each step 2 of Algorithm 3, we show that by
carefully adjusting the sample size R1, with constant probability, it is possible to sample candidate
data points from each predicted cluster such that the sampled data points are close enough to the
optimal clustering centers. Then, in steps 3-4 of Algorithm 3, a random and independent sample
is drawn from each predicted cluster to construct an estimator that can accurately approximate the
clustering cost induced by the candidate centers. Finally, by using the constructed estimator to select
the best candidate center for each predicted cluster (step 5 of Algorithm 3), we prove that the clus-
tering cost of each optimal cluster can be well approximated by using the nearest neighbor searching
process (step 6 of Algorithm 3). The modified Fast-Filtering algorithm is presented in Algorithm 4.

19

Published as a conference paper at ICLR 2025

Algorithm 4 Fast-Filtering (modified)

Input: A k-means instance (P, k, d), a set (P1, P2, ..., Pk) of partitions with error rate α, parameter
0 < ε < 1/3.

Output: A set C ⊂ Rd of centers with |C| ≤ k.
1: for i ∈ [k] do
2: Randomly and independently sample a set Ui from Pi with size R1 = O(log k

1−2α).
3: Randomly and independently sample a set Si from Pi with size R2 =

O
(

log(m3d log3(m∆2)/ε2) log(m∆2)
αε4

)
, and assign each point in Si a weight mi

|Si| .

4: Construct an estimator ω such that ∀u ∈ Ui, ω(u) =
∑
p∈Si\F(u)

mi
|Si|δ

2(p, u), where F(u)

is the set of the furthest (1 + 3ε1)α|Si| points from Si to u, where ε1 = ε/126.
5: ci = arg minu∈Ui ω(u).
6: Let Ii be the set of the nearest (1− 2α− 20αε1)mi points from Pi to ci.
7: ĉi = Ii.
8: return {ĉ1, ĉ2, ..., ĉk}.

Theorem 3 LetR1 = O(log k
1−2α) andR2 = O

(
log(m3d log3(m∆2)/ε2) log(m∆2)

αε4

)
, where ε is a param-

eter with 0 < ε < 1/3 and ∆ 4 is the aspect ratio of the whole dataset (i.e., ∆ =
maxx,y∈P δ(x,y)

minx,y∈P,x6=y δ(x,y)).
With constant probability, Algorithm 4 can return a (1 + O(

√
α))-approximate solution in time

O(md) + Õ(kd
ε4(1−2α)α) for α ∈ (0, 1/3− ε).

Recall that Qi = Pi ∩P ∗i is the set of data points in Pi that belong to the optimal cluster P ∗i . Define
Gµ(P ∗i) = {x ∈ P ∗i : δ2(x, c∗i) ≤ µδ2(P ∗i , c

∗
i)/|P ∗i |} as the set of data points in P ∗i that are close to

c∗i (the distance is parameterized by some constant µ > 1). According to Lemma 4 and the definition
of Qi, we have |G2(P ∗i)| ≥ |P∗i |

2 and |P ∗i \G2(P ∗i)| < |P∗i |
2 . Then, it holds that |Pi ∩ G2(P ∗i)| ≥

|P ∗i ∩Pi|−|P ∗i \G2(P ∗i)| ≥ (1−α)|P ∗i |−
|P∗i |

2 = (1
2−α)|P ∗i |, where the last inequality follows from

the definition of the learning-augmented k-means model. Additionally, according to the definition
of Qi, we have |P ∗i | ≥ |Qi| ≥ (1− α)|Pi|, which indicates that |Pi| ≤ |P

∗
i |

1−α . Let ζi =
|Pi∩G2(P∗i)|

|Pi|
be the probability that a data point from G2(P ∗i) can be sampled from Pi through uniform sampling
strategy. Then, it holds trivially that ζi ≥ (1 − α)(1

2 − α). Hence, according to Corollary 1, by
randomly and independently taking a sample Ui with size Θ(1

1−2α log(kη)) from Pi, with probability
at least 1− η

k , there exists at least one data point u ∈ Ui such that u ∈ G2(P ∗i). By taking a union
bound over the success probability across all the predicted clusters, we can argue that with constant
probability, there exists at least one data point u ∈ Ui such that u ∈ G2(P ∗i)∩Ui for each predicted
cluster i ∈ [k].

Corollary 3 Let R1 = Θ(log k
1−2α). For each i ∈ [k], with constant probability, there exists at least

one data point u ∈ Ui such that u ∈ G2(P ∗i).

Let ε1 = ε
126 . Similar to the analysis for the Fast-Estimation algorithm, in steps 3-4 of Algorithm 4,

we can also construct a clustering cost estimator ω by randomly and independently taking a small
sample R2 from Pi with size O

(
log(m3d log3(m∆2)/ε21) log(m∆2)

αε41

)
. Given an arbitrary data point

u ∈ Ui, let Z†(u) be the set of the furthest (2 + 20ε1)αmi data points from Pi to u. Denote Hi(u)
as the set of the nearest (1 − α)mi points in Pi to u. According to Lemma 10, the constructed
estimator ω in step 4 of Algorithm 4 can well approximate the clustering cost using data points in
Ui as centers.

Corollary 4 Let R2 = O
(

log(m3d log3(m∆2)/ε21) log(m∆2)

αε41

)
. Given an arbitrary data point u ∈ Ui,

with high probability, it holds that δ2(Pi\Z†(u))/(1 + 7ε1) ≤ ω(u) ≤ (1 + ε1)2δ2(Hi(u), u).

According to Corollary 3, with constant probability, a data point ui ∈ Ui ∩ G2(P ∗i) can be sam-
pled from Pi for each predicted cluster i ∈ [k]. Hence, we have δ2(Hi(ui), ui) ≤ δ2(Qi, ui) ≤

4It is naturally to assume that the aspect ratio of a given dataset can be bounded by a polynomial function
of the data size, i.e., ∆ = poly(n).

20

Published as a conference paper at ICLR 2025

δ2(P ∗i , ui) = δ2(P ∗i , c
∗
i) + |P ∗i |δ2(ui, c

∗
i) ≤ 3δ2(P ∗i , c

∗
i), where the first inequality follows from

the definition of Hi(u) that Hi(u) contains the nearest (1 − α)mi points from Pi to ui, the sec-
ond inequality follows from Qi ⊆ P ∗i , the second to the last step follows from Lemma 1, and the
last step follows from ui ∈ G2(P ∗i). Then, by using Corollary 4, we can argue that with con-
stant probability, the center ci chosen by the estimator ω in step 5 of Algorithm 4 satisfies that
δ2(Pi\Z†(ci), ci) ≤ (1 + ε)δ2(Hi(ui), ui) ≤ 4δ2(P ∗i , c

∗
i), where the last inequality follows from

ε < 1/3.

For any predicted cluster Pi, recall that Z†(ci) is the set of the furthest (2 + 20ε1)αmi data points
in Pi to ci. Let Ii = Pi\Z†(ci). Define Ai = Qi ∩Z†(ci), where data points in Ai can be regarded
as the set of the “false negatives” discarded by ci. Let Bi = Pi\(Qi ∪Z†(ci)), where data points in
Bi can be regarded as the set of the “false positives” included by ci. The following lemma bounds
the distance between Ii and c∗i .

Lemma 12 The following bound holds: δ2(Ii, c
∗
i) ≤

9δ2(P∗i ,c
∗
i)

(1−(3+ε)α)mi
.

Proof Observe that |Ii| = (1−(2+20ε1)α)mi and |Pi\P ∗i | ≤ αmi. Then, it holds that |Ii∩P ∗i | ≥
(1 − (3 + 20ε1)α)mi. Observe that the clustering cost of δ2(Ii, Ii) can be upper bounded by
δ2(Ii, Ii) ≤ δ2(Ii, ci) ≤ 4δ2(P ∗i , c

∗
i). Hence, by using the relaxed triangle inequality and taking a

summation over the distances between data points in Ii and c∗i , we can get that

δ2(Ii, c
∗
i) ≤

∑
p∈Ii∩P∗i

(1 + 1/2)δ2(Ii, p) + (1 + 2)δ2(p, c∗i)

|Ii ∩ P ∗i |

≤ (1 + 1/2)δ2(Ii, Ii) + 3δ2(P ∗i , c
∗
i)

(1− (3 + 20ε1)α)mi

≤ 9δ2(P ∗i , c
∗
i)

(1− (3 + ε)α)mi
,

where the last inequality follows from 20ε1 ≤ ε. �

Observe that the clustering cost of P ∗i with respect to Ii can be decomposed into δ2(P ∗i , Ii) =
δ2(P ∗i ∩ Pi, Ii) + δ2(P ∗i \Pi, Ii). In the following, we first give an upper bound for the clustering
cost of δ2(P ∗i ∩ Pi, Ii).

Lemma 13 The following bound holds: δ2(Qi, Ii) ≤ δ2(Qi, c
∗
i) + O(

√
α)

1−(3+ε)αδ
2(P ∗i , c

∗
i).

Proof According to the definition ofQi, we haveQi = Pi∩P ∗i = (Ii\Bi)∪Ai. Hence, it holds that
δ2(Qi, Ii)−δ2(Qi, c

∗
i) = δ2(Ii, Ii)+δ2(Ai, Ii)−δ2(Bi, Ii)−(δ2(Ii, c

∗
i)+δ2(Ai, c

∗
i)−δ2(Bi, c

∗
i)).

We first give an upper bound for δ2(Bi, c
∗
i)− δ2(Bi, Ii). Observe that

δ2(Bi, c
∗
i)− δ2(Bi, Ii) =

∑
b∈Bi

δ2(b, c∗i)− δ2(Bi, Ii)

≤
∑
b∈Bi

(1 +
√
α)δ2(b, Ii) + (1 + 1/

√
α)δ2(c∗i , Ii)− δ2(Bi, Ii)

≤
√
αδ2(Bi, Ii) + (1 + 1/

√
α)|Bi|δ2(c∗i , Ii),

where the second inequality follows from the relaxed triangle inequality.

Similarly, we can also establish an upper bound for δ2(Ai, Ii)− δ2(Ai, c
∗
i). We have

δ2(Ai, Ii)− δ2(Ai, c
∗
i) =

∑
a∈Ai

δ2(a, Ii)− δ2(Ai, c
∗
i)

≤
∑
a∈Ai

(1 +
√
α)δ2(a, c∗i) + (1 + 1/

√
α)δ2(c∗i , Ii)− δ2(Ai, c

∗
i)

≤
√
αδ2(Ai, c

∗
i) + (1 + 1/

√
α)|Ai|δ2(c∗i , Ii),

where the second inequality follows from the relaxed triangle inequality.

21

Published as a conference paper at ICLR 2025

According to the optimality of the geometric center, it holds trivially that δ2(Ii, Ii) ≤ δ2(Ii, c
∗
i).

Hence, we can get that

δ2(Qi, Ii)− δ2(Qi, c
∗
i) ≤

√
α(δ2(Ai, c

∗
i) + δ2(Bi, Ii)) + (1 + 1/

√
α)(|Ai|+ |Bi|)δ2(c∗i , Ii)

≤
√
α(δ2(P ∗i , c

∗
i) + δ2(Ii, Ii)) + 4α(1 + 1/

√
α)miδ

2(c∗i , Ii)

≤ O(
√
α)δ2(P ∗i , c

∗
i) +

O(
√
α)

1− (3 + ε)α
δ2(P ∗i , c

∗
i)

≤ O(
√
α)

1− (3 + ε)α
δ2(P ∗i , c

∗
i),

where the second inequality follows from Bi ⊆ Ii, |Ai| ≤ |Z†(ci)| ≤ 3αmi and |Bi| ≤ αmi, and
the last inequality follows from Corollary 4 and Lemma 12. �

Finally, we can give an upper bound for the clustering cost of P ∗i with respect to Ii.

Lemma 14 The following bound holds: δ2(P ∗i , Ii) ≤
(

1 + O(
√
α)

(1−α)(1−(3+ε)α)

)
δ2(P ∗i , c

∗
i).

Proof According to Lemma 13, we can get that

δ2(P ∗i , Ii) = δ2(Pi ∩ P ∗i , Ii) + δ2(P ∗i \Pi, Ii)

≤ O(
√
α)

1− (3 + ε)α
δ2(P ∗i , c

∗
i) + δ2(P ∗i ∩ Pi, c∗i) +

∑
p∈P∗i \Pi

δ2(p, Ii)

≤ O(
√
α)

1− (3 + ε)α
δ2(P ∗i , c

∗
i) + δ2(P ∗i ∩ Pi, c∗i)

+
∑

p∈P∗i \Pi

(1 +
√
α)δ2(p, c∗i) + (1 + 1/

√
α)δ2(c∗i , Ii)

≤
(

1 +
O(
√
α)

1− (3 + ε)α

)
δ2(P ∗i , c

∗
i) + (1 + 1/

√
α)|P ∗i \Pi|δ2(c∗i , Ii)

≤
(

1 +
O(
√
α)

1− (3 + ε)α

)
δ2(P ∗i , c

∗
i)

+ (1 + 1/
√
α) · αmi

1− α
· 9δ2(P ∗i , c

∗
i)

(1− (3 + ε)α)mi

≤
(

1 +
O(
√
α)

(1− α)(1− (3 + ε)α)

)
δ2(P ∗i , c

∗
i),

where the first inequality follows from Lemma 13, the second inequality follows from the relaxed
triangle inequality, and the second to the last inequality follows from Lemma 12. �

Using similar ideas for the Fast-Sampling and Fast-Estimation algorithms, by taking a summation
over all the clustering cost of the optimal clusters, Theorem 3 can be proved. As for the running
time, for each predicted cluster i ∈ [k], sampling Ui and Si from Pi takes O(1) time. Then, in
each step 5 of Algorithm 4, estimating the clustering cost of each candidate center in Ui takes time
O(R1 × R2), which is Õ(ε−4

(1−2α)α). Finally, in each step 6 of Algorithm 4, finding the nearest
neighbors for a given data point can be executed in time O(mid) using linear selection technique
(Blum et al., 1973). Thus, the overall running time for Algorithm 4 is O(md) + Õ(kd

ε4(1−2α)α). To
conclude, the Fast-Filtering algorithm can return a (1+O(

√
α))-approximate solution with constant

probability in time O(md) + Õ(kd
ε4(1−2α)α).

A.5 EXTENSION TO THE k-MEDIAN OBJECTIVE

In this subsection, we show how to extend our proposed sampling-based methods to the learning-
augmented k-median problem. The key challenge here arises from the difference in optimization

22

Published as a conference paper at ICLR 2025

objectives. In particular, for an arbitrary set S ⊂ Rd of coordinates, the geometric center of S can
no longer serve as the optimal clustering center for S under k-median objective, making it difficult
to identify high-quality candidate coordinates or centers. As a result, existing learning-augmented
k-median algorithms often struggle to achieve high-quality approximation guarantees.

To overcome this challenge, our goal is to use sampling-based strategies to construct a set Ui of
centers that are close to the optimal clustering centers for each predicted cluster Pi. Then, by grid
discretization, we can generate candidate centers that can well approximate the optimal clustering
centers. Finally, by enumerating the constructed candidate centers, we prove that the clustering cost
of each optimal cluster can be well approximated using the best center chosen from enumerations.

Table 3: Comparison results of learning augmented k-means algorithms

Methods and References Approximation Ratio Label Error Range Time Complexity

Paritioning and Sorting (Ergun et al., 2021) 1 + Õ((kα)1/4) Small Constant O(md log3m+ poly(k, logm))

Sorting (Nguyen et al., 2022) 1 + α(7+10α−10α2)
(1−α)(1−2α) [0, 1/2) O(md log3m log2(k/δ)

1−2α)

Fast-Sampling (Ours) 1 + α(6+4ε−4α−3εα)
(1−α)(1−2α) (0, 1/2) O(md log(kd) log(m∆)

1−2α · (
√
d

εα)O(d))

Table 3 provides a detailed comparison of the results for the learning-augmented k-median problem.
We also give a plot (Figure 2) of approximation ratios vs. the error rate α. It can be seen from the
table that the current best result achieves a (1 + O(α))-approximation with α ∈ [0, 1/2) (Nguyen
et al., 2022). Compared to the state-of-the-art results, the Fast-Sampling algorithm can achieve
better clustering quality guarantees with slightly worse running time for fixed dimension d.

Figure 2: Plot of approximation ratios v.s. the error rate α for the k-median objective.

The formal description for the learning-augmented k-median algorithm is presented in Algorithm 5.
The general idea behind the algorithm is to first generate candidate centers that can closely approxi-
mate the optimal clustering centers for each predicted cluster. Then, by picking the best center with
minimum k-median cost, we prove that the proposed algorithm can give better approximation guar-
antees for the learning-augmented k-median problem. In the following, we give a formal analysis
for the proposed algorithm.

Without loss of generality, we can assume that the minimum pairwise distance between data points in
P is 1 while the maximum pairwise distance is ∆. Note that this can be done using standard scaling
techniques. According to Lemma 4, in each step 2 of Algorithm 5, with probability at least 1 − 1

k ,
at least one center u ∈ Ui can be found such that δ(u, c∗i) ≤ 2δ(P ∗i , c

∗
i)/|P ∗i | ≤

2δ(P∗i ,c
∗
i)

(1−α)mi
, where

the last step follows from the fact that |P ∗i | ≥ |Qi| ≥ (1 − α)mi. Then, in step 3 of Algorithm
5, since the algorithm enumerates all the possible values between 1 and log(m∆), there exists at
least one guess for the clustering radius (step 4 of Algorithm 5) such that δ(P ∗i , c

∗
i)/(1 − α)mi ≤

li ≤ 2δ(P ∗i , c
∗
i)/(1 − α)mi. Hence, in step 6 of Algorithm 5, the grid centered at u with side

length 2li (G(u)) should contain the optimal clustering center c∗i . Then, in step 7 of Algorithm 5,
by decomposing the grid G(u) into smaller subgrids with side length (1 − α)αε1li/

√
d for some

23

Published as a conference paper at ICLR 2025

Algorithm 5 Fast-Sampling (k-median)

Input: A k-median instance (P, k, d), a set (P1, ..., Pk) of partitions with error rate α, and a pa-
rameter ε ∈ (0, 1].

Output: A set C ⊂ Rd of centers with |C| = k.
1: for i ∈ [k] do
2: Randomly and independently sample a set Ui from Pi with size O

(
log(kd)
1−2α

)
, then initialize

U ′i = ∅.
3: for q = 0 to O(log(m∆)) do
4: li = 2q−1/(1− α)mi.
5: for u ∈ Ui do
6: Let G(u) be the grid centered at u with side length 2li.
7: Decompose G(u) into smaller subgrids with side length (1− α)αε1li/

√
d, and let s(u)

be the set that contains the centers for the decomposed subgrids, where ε1 < ε/4.
8: U ′i = U ′i ∪ s(u).
9: Set ui = arg minu∈U ′i δ(Ni(u), u), whereNi(u) is the set of the nearest (1−α)mi points in

Pi to u ∈ U ′i .
10: ĉi = ui.
11: return {ĉ1, ĉ2, ..., ĉk}.

ε1 <
ε
4 , the optimal clustering center c∗i must also belong to some of the subgrids. Since the subgrid

has side length (1− α)αε1li/
√
d, there also exists at least one u′ ∈ U ′i such that u′ is close enough

to c∗i , i.e., δ(u′, c∗i) ≤ (1 − α)αε1li ≤ αεδ(P ∗i , c
∗
i)/mi. Let ui be the point chosen in step 9 of

Algorithm 5. For any data point u ∈ U ′i , let Ni(u) be the set of the nearest (1 − α)mi points in Pi
to u. Consequently, we have

δ(Ni(ui), ui) ≤ δ(Ni(u′), u′)
≤ δ(Ni(ui), u′)
≤ δ(Ni(ui), c∗i) + |Ni(ui)|δ(u′, c∗i)
≤ δ(Ni(ui), c∗i) + αεδ(P ∗i , c

∗
i),

where the first inequality follows from the fact that δ(Ni(ui), ui) induces the minimum clustering
cost, the second inequality follows from the definition of Ni(u′) that Ni(u′) contains the nearest
(1 − α)mi points in Pi to u′, the third inequality follows from the triangle inequality, and the last
inequality follows from δ(u′, c∗i) ≤ αεδ(P ∗i , c∗i)/mi and |Ni(ui)| ≤ mi.
Corollary 5 For some i ∈ [k], with probability at least 1 − 1/k, it holds that δ(Ni(ui), ui) ≤
δ(Ni(ui), c∗i) + αεδ(P ∗i , c

∗
i).

For any predicted cluster Pi, let Z†(ui) be the set of the furthest αmi coordinates in Pi to ui, i.e.,
Z†(ui) = Pi\Ni(ui). Let Ai = Qi ∩ Z†(ui) and Bi = Pi\(Qi ∪ Z†(ui)) be the set of the “false
negatives” and “false positives”, respectively. In the following lemma, we first give an upper bound
for the distance between c∗i and ui.

Lemma 15 The following bound holds: δ(ui, c∗i) ≤
(2+αε)δ(P∗i ,c

∗
ij)

(1−2α)mi
.

Proof Since |Ni(ui)| = (1−α)mi and |Pi\P ∗i | ≤ αmi, it holds trivially that |Ni(ui)∩P ∗i | ≥ (1−
2α)mi. According to the definition of ui that Ni(ui) induces the minimum clustering cost, we can
get that δ(Ni(ui), ui) ≤ δ(Ni(u′), u′) ≤ δ(Qi, u′) ≤ δ(Qi, c∗i)+|Qi|δ(u′, c∗i) ≤ (1+αε)δ(P ∗i , c

∗
i),

where the last inequality follows from δ(u′, c∗i) ≤ αεδ(P ∗i , c
∗
i)/mi. Then, by using the triangle

inequality, we have

δ(ui, c
∗
i) ≤

∑
p∈Ni(ui)∩P∗i

δ(p, ui) + δ(p, c∗i)

|Ni(ui) ∩ P ∗i |

≤ δ(Ni(ui), ui) + δ(P ∗i , c
∗
i)

(1− 2α)mi

≤ (2 + αε)δ(P ∗i , c
∗
i)

(1− 2α)mi
,

24

Published as a conference paper at ICLR 2025

where the first inequality follows from the triangle inequality. �

The following lemma gives an upper bound for the clustering cost of Qi with respect to ui.

Lemma 16 The following bound holds: δ(Qi, ui) ≤ δ(Qi, c∗i) + α(4+3ε)
1−2α δ(P ∗i , c

∗
i)

Proof Since Qi = Ni(ui)\Bi ∪Ai, we have δ(Qi, ui)− δ(Qi, c∗i) = δ(Ni(ui), ui)− δ(Bi, ui) +
δ(Ai, ui)− (δ(Ni(ui), c∗i)− δ(Bi, c∗i) + δ(Ai, c

∗
i)). We consider to bound these terms separately.

For the clustering cost of δ(Ai, ui)− δ(Ai, c∗i), we can get that δ(Ai, ui)− δ(Ai, c∗i) ≤ δ(Ai, c∗i) +
|Ai|δ(c∗i , ui)− δ(Ai, c∗i) ≤ |Ai|δ(c∗i , ui). Similarly, the clustering cost of δ(Bi, c∗i)− δ(Bi, ui) can
be bounded by δ(Bi, c∗i)− δ(Bi, ui) ≤ δ(Bi, ui) + |Bi|δ(ui, c∗i)− δ(Bi, ui) ≤ |Bi|δ(ui, c∗i).

Next, we bound the size of |Ai| and |Bi|. Observe that Qi = Ni(ui)\Bi ∪ Ai. Consequently, we
have |Qi| = |Ni(ui)|+|Ai|−|Bi| = (1−α)mi+|Ai|−|Bi| ≥ (1−α)mi, where the last inequality
follows from |Qi| ≥ (1− α)mi. Hence, we can get that |Bi| ≤ |Ai| ≤ αmi.

Then, it holds that

δ(Qi, ui)− δ(Qi, c∗i) ≤ δ(Ni(ui), ui)− δ(Ni(ui), c∗i) + (|Ai|+ |Bi|)δ(ui, c∗i)
≤ δ(Ni(ui), c∗i) + αεδ(P ∗i , c

∗
i)− δ(Ni(ui), c∗i)

+ (|Ai|+ |Bi|)δ(ui, c∗i)

≤ αεδ(P ∗i , c∗i) + 2αmi
(2 + αε)δ(P ∗i , c

∗
i)

(1− 2α)mi

≤ α(4 + 3ε)

1− 2α
δ(P ∗i , c

∗
i).

Finally, we can bound the clustering cost of P ∗i with respect to ui for each i ∈ [k].

Lemma 17 For each i ∈ [k], with probability at least 1 − 1/k, δ(P ∗i , ui) ≤(
1 + 6α+4αε−4α2−3εα2

(1−α)(1−2α)

)
δ(P ∗i , c

∗
i).

Proof For an arbitrary predicted cluster P ∗i , the clustering cost of P ∗i with respect to ui can be
decomposed into δ(P ∗i , ui) = δ(P ∗i ∩ Pi, ui) + δ(P ∗i \Pi, ui). Hence, we can get that

δ(P ∗i , ui) = δ(P ∗i ∩ Pi, ui) + δ(P ∗i \Pi, ui)

≤ δ(Pi ∩ P ∗i , c∗i) +
α(4 + 3ε)

1− 2α
δ(P ∗i , c

∗
i) + δ(P ∗i \Pi, ui)

≤ α(4 + 3ε)

1− 2α
δ(P ∗i , c

∗
i) + δ(Pi ∩ P ∗i , c∗i) + δ(P ∗i \Pi, c∗i) + |P ∗i \Pi|δ(c∗i , ui)

≤ δ(P ∗i , c∗i) +
αmi

1− α
· (2 + αε)δ(P ∗i , c

∗
i)

(1− 2α)mi
+
α(4 + 3ε)

1− 2α
δ(P ∗i , c

∗
i)

≤
(

1 +
6α+ 4αε− 4α2 − 3εα2

(1− α)(1− 2α)

)
δ(P ∗i , c

∗
i).

Putting all these together, we can obtain a (1 + O(α))-approximation for the learning-augmented
k-median problem. As for the running time, for each predicted cluster, the sampling process takes
O(1) time in step 2 of Algorithm 5. Guessing the optimal clustering cost in step 3 of Algorithm
5 induces an multiplicative O(log(m∆)) factor loss. Then, constructing the candidate coordinates
takes time O(log(kd)

1−2α · (
√
d

εα)O(d)). Finally, finding the nearest coordinates for each candidate center
takes time O(mid) in step 9 of Algorithm 5 using linear selection method (Blum et al., 1973).
Consequently, the overall running time of Algorithm 5 is O(md log(kd) log(m∆)

1−2α · (
√
d

εα)O(d)).

A.6 COMPLEMENTARY EXPERIMENTS

Other Results with Varying Error Rate and Fixed Clusters. Tables 4-8 show the experimental re-
sults on datasets Mnist, PHY, CIFAR10, SUSY, and HIGGS for varying error rate with fixed clusters,

25

Published as a conference paper at ICLR 2025

where “Ref” reports the clustering cost of the optimal labeling partitions and the running time for
constructing the labeling partitions using k-means++ and Lloyd’s algorithms. On average, by calcu-
lating the results over all the datasets used in the experiments, the Fast-Filtering algorithm achieves
a 1.5% reduction in clustering cost compared to the current state-of-the-art learning-augmented k-
means algorithm. As for the running time, it can be seen from the tables that our Fast-Filtering
algorithm is significantly faster than other learning-augmented algorithms across all the datasets,
with this trend becoming more pronounced as the data sizes and dimensionality grow. On average,
Fast-Filtering is at least 3 times faster than the current state-of-the-art learning-augmented algo-
rithm. For the Fast-Estimation, on average, the Fast-Estimation algorithm is at least 2 times faster
than previous learning-augmented algorithms on large-scale datasets with sizes over 5 million.

Results with Varying Clusters and Fixed Error Rate. Tables 9-14 present the comparison results
for varying number of clusters with fixed error rate. For clustering cost, our Fast-Sampling algorithm
is comparable with other learning-augmented algorithms, while our Fast-Filtering algorithm consis-
tently achieves better clustering quality for most cases. On average, by calculating the results over
all the datasets used in the experiments, the Fast-Filtering algorithm achieves at least 1.6% reduction
in clustering cost compared to the current state-of-the-art learning-augmented k-means algorithm.
Regarding the running time, it can be seen from the table that the running time for all learning-
augmented algorithms remains relatively stable as the number of clusters increases. However, our
Fast-Filtering algorithm is significantly faster than other learning-augmented algorithms across all
the datasets, with this trend becoming more pronounced as the data sizes and dimensionality grow.
On average, our Fast-Filtering algorithm is at least 3 times faster than the current state-of-the-art
learning-augmented algorithm. On the largest dataset SIFT, the running time of our Fast-Filtering
algorithm is at least 10 times faster than other learning-augmented methods, which further demon-
strates the effectiveness of our proposed sampling-based strategies for handling large-scale datasets.

Comparisons with the Lloyd’s and k-means++ Methods. When comparing with the Lloyd’s
method, it can be seen from the tables that our Fast-Filtering algorithm is at least 50.9% faster
than the Lloyd’s method across different datasets. However, other learning-augmented algorithms
may not achieve much better running time than Lloyd’s method (such as on dataset SIFT). When
comparing with the k-means++ method, on average, our Fast-Filtering algorithm achieves at least
a 20% reduction in clustering cost compared to k-means++. Furthermore, it provides over 50%
improvements in ARI and NMI values across most datasets. These results show the advantage of
incorporating learning-augmented and sampling strategies for improving the clustering quality.

Discussions on the Limitations for the Algorithms. In the following, we give a brief discussion
on the bottlenecks for different algorithms. For sorting-based algorithms, such as those in Ergun
et al. (2021); Nguyen et al. (2022), the primary bottlenecks are their running time due to the sorting
processes, where an additional O(logm) term is included in the running time. The experiments
demonstrate that the sorting-based algorithms do not scale well when handling large-scale datasets.
On the other hand, one of the limitations for our sampling-based algorithms is that they might
achieve worse clustering quality guarantees compared with sorting-based methods. However, these
guarantees are worst-case scenarios. Experiments show that our algorithms perform competitively
on large-scale datasets like SUSY, HIGGS and SIFT.

A.6.1 EXPERIMENTAL RESULTS

26

Published as a conference paper at ICLR 2025

Table 4: Comparisons on dataset MNIST for varying α and fixed k = 20

Dataset MNIST (1,797 × 64)

Method Ref α Cost NMI ARI Time(s)

k-means++

9.6032E+05(1.37s) 0.1

1.5445E+06±2.49E+04 0.7087±0.0139 0.5502±0.0255 0.03±0.04
Ergun 9.9174E+05±1.19E+03 0.9680±0.0036 0.9665±0.0053 0.34±0.68
Det 9.7566E+05±0.00E+00 0.9819±0.0000 0.9821±0.0000 0.13±0.17

Fast-Sampling 9.6471E+05±5.93E+02 0.9849±0.0025 0.9844±0.0027 0.11±0.09
Fast-Filtering 9.6640E+05±3.80E+02 0.9814±0.0029 0.9793±0.0035 0.48±1.36

Fast-Estimation 9.7553E+05±3.79E+02 0.9806±0.0023 0.9801±0.0025 1.82±0.37

k-means++

9.6177+05(1.49s) 0.2

1.5475E+06±3.70E+04 0.6861±0.0170 0.4825±0.0230 0.02±0.01
Ergun 1.0201E+06±2.35E+03 0.9482±0.0055 0.9394±0.0077 0.12±0.01
Det 1.0036E+06±0.00E+00 0.9531±0.0000 0.9460±0.0000 0.09±0.02

Fast-Sampling 9.9901E+05±1.32E+03 0.9551±0.0049 0.9484±0.0069 0.09±0.02
Fast-Filtering 9.7548E+05±9.86E+02 0.9632±0.0116 0.9553±0.0157 0.03±0.01

Fast-Estimation 1.0093E+06±1.76E+03 0.9556±0.0022 0.9487±0.0027 1.84±0.14

k-means++

9.5226E+05(1.76s) 0.3

1.5551E+06±3.41E+04 0.7072±0.0191 0.5426±0.0494 0.01±0.00
Ergun 1.0656E+06±3.63E+03 0.9316±0.0052 0.9254±0.0058 0.12±0.00
Det 1.0411E+06±0.00E+00 0.9405±0.0000 0.9336±0.0000 0.08±0.01

Fast-Sampling 1.0713E+06±3.64E+03 0.9174±0.0040 0.8942±0.0065 0.08±0.00
Fast-Filtering 9.9369E+05±4.74E+03 0.9422±0.0096 0.9335±0.0132 0.03±0.00

Fast-Estimation 1.0595E+06±2.56E+03 0.9331±0.0065 0.9254±0.0094 1.78±0.13

k-means++

9.6728E+05(1.32s) 0.4

1.5541E+06±3.35E+04 0.6893±0.0231 0.4897±0.0451 0.01±0.00
Ergun 1.1859E+06±5.28E+03 0.8804±0.0059 0.8359±0.0086 0.12±0.01
Det 1.1454E+06±0.00E+00 0.8812±0.0000 0.8395±0.0000 0.08±0.00

Fast-Sampling 1.1379E+06±3.84E+03 0.8975±0.0069 0.8497±0.0100 0.09±0.01
Fast-Filtering 1.0633E+06±1.05E+04 0.8975±0.0082 0.8577±0.0150 0.03±0.00

Fast-Estimation 1.1736E+06±3.85E+03 0.8851±0.0091 0.8433±0.0137 1.84±0.09

k-means++

9.4992E+05(1.29s) 0.5

1.5464E+06±4.35E+04 0.7042±0.0234 0.5263±0.0468 0.02±0.02
Ergun 1.2969E+06±7.41E+03 0.8483±0.0084 0.7822±0.0120 0.12±0.01
Det 1.2417E+06±0.00E+00 0.8601±0.0000 0.8040±0.0000 0.08±0.00

Fast-Sampling 1.2578E+06±5.77E+03 0.8622±0.0088 0.8076±0.0134 0.09±0.01
Fast-Filtering 1.1622E+06±1.41E+04 0.8581±0.0122 0.8000±0.0195 0.03±0.00

Fast-Estimation 1.2844E+06±4.67E+03 0.8470±0.0049 0.7805±0.0080 1.81±0.08

Table 5: Comparisons on dataset CIFAR10 for varying α and fixed k = 20

Dataset CIFAR10 (10,000 × 3,072)

Method Ref α Cost NMI ARI Time(s)

k-means++

7.8337E+10(37.41s) 0.1

1.2782E+11±6.26E+09 0.3995±0.0171 0.1683±0.0207 1.90±0.08
Ergun 7.8812E+10±2.06E+06 0.9096±0.0007 0.8879±0.0012 19.15±1.00
Det 7.8619E+10±0.00E+00 0.9009±0.0000 0.8761±0.0000 20.45±0.51

Fast-Sampling 7.8335E+10±4.65E+07 0.8970±0.0131 0.8671±0.0215 19.91±0.49
Fast-Filtering 7.8611E+10±1.59E+07 0.9106±0.0042 0.8941±0.0060 5.61±1.53

Fast-Estimation 7.8633E+10±6.58E+05 0.9186±0.0006 0.9074±0.0006 185.51±2.30

k-means++

7.8306E+10(33.19s) 0.2

1.2248E+11±4.44E+09 0.4043±0.0165 0.1601±0.0129 1.89±0.04
Ergun 7.9135E+10±3.07E+06 0.8700±0.0010 0.8292±0.0013 18.67±0.32
Det 7.8899E+10±0.00E+00 0.8515±0.0000 0.7999±0.0000 20.20±0.09

Fast-Sampling 7.9257E+10±1.62E+08 0.8087±0.0218 0.7354±0.0348 19.73±0.08
Fast-Filtering 7.9112E+10±4.77E+07 0.8314±0.0100 0.7682±0.0172 5.19±0.10

Fast-Estimation 7.9180E+10±3.93E+06 0.8568±0.0008 0.8086±0.0013 187.49±0.93

k-means++

7.8202E+10(30.42s) 0.3

1.2844E+11±7.17E+09 0.3975±0.0114 0.1643±0.0248 1.97±0.07
Ergun 8.0341E+10±6.09E+06 0.7999±0.0006 0.7190±0.0010 18.77±0.20
Det 8.0095E+10±0.00E+00 0.7727±0.0000 0.6711±0.0000 20.33±0.18

Fast-Sampling 8.0278E+10±2.15E+08 0.7435±0.0165 0.6173±0.0301 19.86±0.12
Fast-Filtering 8.0760E+10±3.01E+08 0.7406±0.0124 0.6072±0.0231 5.06±0.08

Fast-Estimation 8.1302E+10±1.61E+07 0.7826±0.0011 0.6857±0.0013 188.72±0.92

k-means++

7.8061E+10(26.96s) 0.4

1.2489E+11±3.46E+09 0.4062±0.0104 0.1628±0.0275 1.99±0.06
Ergun 8.1533E+10±1.07E+07 0.7528±0.0010 0.6316±0.0013 18.94±0.18
Det 8.1549E+10±0.00E+00 0.7347±0.0000 0.6011±0.0000 20.16±0.08

Fast-Sampling 8.1915E+10±4.78E+08 0.6751±0.0357 0.5105±0.0600 19.80±0.17
Fast-Filtering 8.3463E+10±4.21E+08 0.6767±0.0132 0.4966±0.0174 5.03±0.08

Fast-Estimation 8.3900E+10±3.76E+07 0.7331±0.0011 0.5772±0.0017 188.79±1.89

k-means++

7.8211E+10(22.77s) 0.5

1.2305E+11±7.21E+09 0.4116±0.0221 0.1646±0.0264 1.95±0.04
Ergun 8.3372E+10±1.82E+07 0.7160±0.0010 0.5644±0.0016 18.76±0.23
Det 8.4653E+10±0.00E+00 0.6877±0.0000 0.5090±0.0000 20.24±0.10

Fast-Sampling 8.4686E+10±7.21E+08 0.6131±0.0207 0.4061±0.0306 19.85±0.15
Fast-Filtering 8.8030E+10±5.56E+08 0.6348±0.0144 0.4052±0.0170 4.95±0.04

Fast-Estimation 8.7858E+10±5.03E+07 0.6875±0.0012 0.4834±0.0014 190.86±2.17

27

Published as a conference paper at ICLR 2025

Table 6: Comparisons on dataset PHY for varying α and fixed k = 20

Dataset PHY (10,000 × 50)

Method Ref α Cost NMI ARI Time(s)

k-means++

2.9135E+11(15.33s) 0.1

4.2591E+11±2.21E+10 0.8505±0.0131 0.6795±0.0348 0.19±0.08
Ergun 2.9413E+11±7.21E+07 0.9921±0.0018 0.9919±0.0024 3.17±0.61
Det 2.9368E+11±0.00E+00 0.9937±0.0000 0.9942±0.0000 2.39±0.17

Fast-Sampling 3.0865E+11±9.02E+08 0.9658±0.0065 0.9514±0.0118 2.37±0.13
Fast-Filtering 2.9171E+11±5.22E+07 0.9869±0.0012 0.9842±0.0017 1.04±1.52

Fast-Estimation 2.9413E+11±7.43E+07 0.9888±0.0025 0.9870±0.0034 5.98±0.39

k-means++

3.0196E+11(19.86s) 0.2

4.3154E+11±2.92E+10 0.8522±0.0134 0.6796±0.0382 0.18±0.07
Ergun 3.1388E+11±2.41E+08 0.9815±0.0022 0.9767±0.0034 2.72±0.10
Det 3.0880E+11±0.00E+00 0.9867±0.0000 0.9853±0.0000 2.35±0.07

Fast-Sampling 3.1571E+11±8.30E+09 0.9512±0.0092 0.9231±0.0175 2.38±0.11
Fast-Filtering 3.0304E+11±9.26E+07 0.9791±0.0041 0.9727±0.0065 0.56±0.04

Fast-Estimation 3.0805E+11±3.20E+08 0.9793±0.0024 0.9741±0.0034 6.00±0.13

k-means++

3.0531E+11(22.04s) 0.3

4.1248E+11±1.74E+10 0.8552±0.0107 0.6915±0.0301 0.14±0.05
Ergun 3.2578E+11±9.33E+08 0.9749±0.0031 0.9681±0.0051 2.58±0.10
Det 3.2548E+11±6.10E-05 0.9738±0.0000 0.9654±0.0000 2.28±0.04

Fast-Sampling 3.5979E+11±1.14E+10 0.9291±0.0165 0.8746±0.0375 2.28±0.06
Fast-Filtering 3.1726E+11±1.78E+09 0.9506±0.0023 0.9248±0.0049 0.51±0.04

Fast-Estimation 3.2336E+11±1.21E+09 0.9508±0.0061 0.9228±0.0122 5.80±0.13

k-means++

3.0385E+11(20.17s) 0.4

4.3777E+11±2.97E+10 0.8514±0.0209 0.6740±0.0611 0.15±0.11
Ergun 3.3504E+11±1.13E+09 0.9793±0.0033 0.9704±0.0064 2.63±0.10
Det 3.3356E+11±6.10E-05 0.9709±0.0000 0.9619±0.0000 2.34±0.06

Fast-Sampling 4.2907E+11±4.32E+10 0.8951±0.0181 0.7914±0.0505 2.35±0.07
Fast-Filtering 3.3306E+11±1.58E+10 0.9279±0.0077 0.8836±0.0157 0.53±0.04

Fast-Estimation 3.3655E+11±3.64E+09 0.9336±0.0101 0.8883±0.0225 6.11±0.22

k-means++

2.9137E+11(16.62s) 0.5

4.3389E+11±3.42E+10 0.8434±0.0112 0.6601±0.0345 0.12±0.04
Ergun 3.2413E+11±6.91E+08 0.9796±0.0031 0.9758±0.0044 2.68±0.09
Det 3.2330E+11±6.10E-05 0.9791±0.0000 0.9756±0.0000 2.40±0.07

Fast-Sampling 6.4952E+11±7.75E+10 0.8711±0.0138 0.7214±0.0346 2.36±0.08
Fast-Filtering 3.2278E+11±1.09E+11 0.8684±0.0108 0.7249±0.0309 0.56±0.08

Fast-Estimation 3.4066E+11±9.39E+09 0.9157±0.0093 0.8503±0.0203 6.07±0.14

Table 7: Comparisons on dataset SUSY for varying α and fixed k = 20

Dataset SUSY (5,000,000 × 18)

Method Ref α Cost NMI ARI Time(s)

k-means++

2.4406E+07(424.67s) 0.1

3.4792E+07±6.17E+05 0.4743±0.0152 0.2597±0.0163 8.61±0.21
Ergun 2.5432E+07±5.55E+03 0.8778±0.0002 0.8672±0.0003 130.97±2.89
Det 2.5221E+07±0.00E+00 0.9138±0.0000 0.9178±0.0000 154.27±2.24

Fast-Sampling 2.5247E+07±8.81E+03 0.9166±0.0013 0.9209±0.0017 119.50±2.01
Fast-Filtering 2.4921E+07±6.71E+04 0.8434±0.0073 0.8203±0.0104 36.77±1.15

Fast-Estimation 2.5246E+07±2.43E+03 0.9031±0.0008 0.9040±0.0010 51.30±0.76

k-means++

2.4551E+07(318.64s) 0.2

3.3779E+07±1.77E+05 0.4833±0.0130 0.2604±0.0245 9.31±0.54
Ergun 2.7453E+07±7.38E+03 0.8474±0.0001 0.8224±0.0001 134.35±1.44
Det 2.7162E+07±0.00E+00 0.8866±0.0000 0.8801±0.0000 155.83±0.99

Fast-Sampling 2.7253E+07±1.12E+05 0.8627±0.0373 0.8447±0.0541 121.29±1.64
Fast-Filtering 2.6769E+07±2.96E+05 0.8207±0.0224 0.7920±0.0341 39.96±1.85

Fast-Estimation 2.7201E+07±3.12E+03 0.8770±0.0003 0.8674±0.0004 53.58±1.20

k-means++

2.4465E+07(257.38s) 0.3

3.4445E+07±4.52E+05 0.4908±0.0125 0.2675±0.0131 9.25±0.46
Ergun 2.9191E+07±3.78E+03 0.8395±0.0002 0.8000±0.0004 134.53±2.65
Det 2.9043E+07±0.00E+00 0.8778±0.0000 0.8593±0.0000 157.23±1.92

Fast-Sampling 2.9245E+07±9.94E+04 0.8489±0.0256 0.8281±0.0343 122.78±2.85
Fast-Filtering 2.8439E+07±2.30E+05 0.8232±0.0153 0.7839±0.0249 41.32±1.29

Fast-Estimation 2.9051E+07±7.21E+03 0.8669±0.0004 0.8443±0.0005 54.03±0.94

k-means++

2.4851E+07(303.73s) 0.4

3.4685E+07±5.34E+05 0.4764±0.0177 0.2616±0.0283 9.37±0.41
Ergun 3.2623E+07±8.38E+03 0.8323±0.0002 0.8178±0.0004 133.73±1.38
Det 3.2695E+07±0.00E+00 0.8590±0.0000 0.8595±0.0000 154.98±1.35

Fast-Sampling 3.2412E+07±1.32E+05 0.8145±0.0513 0.7796±0.0758 124.09±2.68
Fast-Filtering 3.2218E+07±3.81E+05 0.8094±0.0172 0.7873±0.0226 41.59±0.98

Fast-Estimation 3.2704E+07±1.05E+04 0.8525±0.0008 0.8508±0.0007 54.45±0.77

k-means++

2.4360E+07(252.52s) 0.5

3.4139E+07±6.91E+05 0.4963±0.0087 0.2795±0.0168 9.47±0.58
Ergun 3.4316E+07±8.13E+03 0.8350±0.0004 0.8033±0.0006 133.74±1.96
Det 3.4546E+07±0.00E+00 0.8387±0.0000 0.8093±0.0000 154.20±1.72

Fast-Sampling 3.3944E+07±3.04E+05 0.7282±0.0613 0.6470±0.0946 123.75±2.04
Fast-Filtering 3.3883E+07±4.14E+05 0.7705±0.0293 0.7183±0.0482 40.01±2.86

Fast-Estimation 3.4622E+07±1.39E+04 0.8467±0.0116 0.8225±0.0147 54.91±1.70

28

Published as a conference paper at ICLR 2025

Table 8: Comparisons on dataset HIGGS for varying α and fixed k = 20

Dataset HIGGS (11,000,000 × 27)

Method Ref α Cost NMI ARI Time(s)

k-means++

1.3924E+08(861.32s) 0.1

2.0309E+08±1.91E+06 0.3749±0.0182 0.1813±0.0112 21.36±0.25
Ergun 1.4083E+08±1.59E+03 0.9093±0.0006 0.9094±0.0009 432.42±2.72
Det 1.4019E+08±0.00E+00 0.9613±0.0000 0.9674±0.0000 481.06±2.76

Fast-Sampling 1.4198E+08±8.33E+03 0.9618±0.0007 0.9639±0.0007 428.25±3.12
Fast-Filtering 1.4002E+08±3.72E+04 0.8989±0.0021 0.8937±0.0027 136.62±7.03

Fast-Estimation 1.4014E+08±4.02E+03 0.9471±0.0010 0.9524±0.0008 171.12±2.17

k-means++

1.3911E+08(724.24s) 0.2

2.0562E+08±7.85E+05 0.3627±0.0206 0.1756±0.0186 20.68±0.36
Ergun 1.4383E+08±3.49E+03 0.9060±0.0010 0.9056±0.0013 425.37±3.68
Det 1.4236E+08±0.00E+00 0.9146±0.0000 0.9149±0.0000 481.58±3.41

Fast-Sampling 1.4304E+08±3.68E+04 0.8780±0.0019 0.8721±0.0021 432.06±1.99
Fast-Filtering 1.4172E+08±1.34E+05 0.8597±0.0114 0.8376±0.0165 146.53±5.21

Fast-Estimation 1.4252E+08±1.36E+04 0.9001±0.0013 0.8950±0.0018 171.63±3.24

k-means++

1.3929E+08(729.15s) 0.3

2.0574E+08±4.32E+06 0.3676±0.0148 0.1793±0.0095 20.51±0.82
Ergun 1.4860E+08±3.97E+03 0.8947±0.0015 0.8942±0.0023 418.54±7.96
Det 1.4613E+08±0.00E+00 0.8739±0.0000 0.8697±0.0000 469.16±6.86

Fast-Sampling 1.4700E+08±2.02E+05 0.8198±0.0059 0.7848±0.0109 413.38±12.49
Fast-Filtering 1.4508E+08±1.37E+05 0.8475±0.0070 0.8256±0.0090 144.12±4.13

Fast-Estimation 1.4595E+08±4.48E+04 0.8557±0.0068 0.8412±0.0086 167.43±7.17

k-means++

1.3957E+08(707.38s) 0.4

2.0099E+08±3.56E+06 0.3818±0.0094 0.1917±0.0150 20.00±0.32
Ergun 1.5418E+08±1.05E+04 0.8777±0.0024 0.8706±0.0035 413.61±1.45
Det 1.4999E+08±0.00E+00 0.8011±0.0000 0.7693±0.0000 459.55±1.29

Fast-Sampling 1.5068E+08±2.42E+05 0.7479±0.0230 0.6781±0.0345 397.79±4.56
Fast-Filtering 1.4814E+08±3.55E+05 0.8054±0.0082 0.7716±0.0092 139.27±9.70

Fast-Estimation 1.4818E+08±7.22E+04 0.7965±0.0108 0.7702±0.0127 160.61±2.36

k-means++

1.4127E+08(771.82s) 0.5

2.0108E+08±2.95E+06 0.3927±0.0080 0.1976±0.0034 20.54±0.48
Ergun 1.6151E+08±1.65E+05 0.6733±0.0072 0.5333±0.0119 431.85±5.45
Det 1.5447E+08±0.00E+00 0.7332±0.0000 0.6156±0.0000 478.20±8.28

Fast-Sampling 1.5672E+08±2.18E+05 0.5783±0.0209 0.3969±0.0388 428.04±6.82
Fast-Filtering 1.5395E+08±1.17E+06 0.7593±0.0112 0.6771±0.0156 129.40±4.43

Fast-Estimation 1.5431E+08±6.90E+04 0.7498±0.0356 0.6550±0.0615 164.92±4.15

Table 9: Comparisons on dataset MNIST for varying k and fixed α = 0.2

Dataset MNIST (1,797 × 64)

Method Ref k Cost NMI ARI Time(s)

k-means++

1.1695+06(2.01s) 10

1.9717E+06±2.63E+04 0.6392±0.0415 0.5213±0.0737 0.01±0.01
Ergun 1.2304E+06±1.88E+03 0.9465±0.0039 0.9490±0.0039 0.33±0.74
Det 1.2186E+06±2.33E-10 0.9456±0.0000 0.9449±0.0000 0.14±0.17

Fast-Sampling 1.2201E+06±1.50E+03 0.9330±0.0059 0.9256±0.0078 0.12±0.11
Fast-Filtering 1.1894E+06±2.58E+03 0.9489±0.0123 0.9520±0.0130 0.49±1.41

Fast-Estimation 1.2209E+06±1.85E+03 0.9425±0.0053 0.9426±0.0057 1.32±0.41

k-means++

9.5547+05(1.99s) 20

1.5669E+06±4.62E+04 0.6857±0.0135 0.4761±0.0197 0.01±0.00
Ergun 1.0119E+06±2.02E+03 0.9519±0.0043 0.9391±0.0061 0.11±0.00
Det 9.9410E+05±0.00E+00 0.9591±0.0000 0.9479±0.0000 0.07±0.00

Fast-Sampling 9.9914E+05±1.84E+03 0.9584±0.0058 0.9493±0.0108 0.08±0.00
Fast-Filtering 9.6684E+05±1.14E+03 0.9619±0.0069 0.9498±0.0099 0.02±0.00

Fast-Estimation 1.0011E+06±9.51E+02 0.9619±0.0032 0.9505±0.0047 1.60±0.00

k-means++

8.5000E+05(1.67s) 30

1.3399E+06±2.30E+04 0.7127±0.0129 0.4844±0.0313 0.02±0.01
Ergun 9.0804E+05±1.79E+03 0.9457±0.0042 0.9283±0.0067 0.15±0.02
Det 8.8892E+05±1.16E-10 0.9592±0.0000 0.9482±0.0000 0.09±0.01

Fast-Sampling 8.9789E+05±9.56E+02 0.9488±0.0049 0.9266±0.0098 0.10±0.02
Fast-Filtering 8.6468E+05±1.23E+03 0.9622±0.0060 0.9524±0.0091 0.03±0.00

Fast-Estimation 8.9725E+05±9.94E+02 0.9503±0.0019 0.9345±0.0026 2.45±0.24

k-means++

7.7018E+05(1.44s) 40

1.2120E+06±2.20E+04 0.7373±0.0071 0.4599±0.0197 0.03±0.01
Ergun 8.3789E+05±5.56E+02 0.9508±0.0041 0.9207±0.0062 0.17±0.02
Det 8.1200E+05±1.16E-10 0.9640±0.0000 0.9451±0.0000 0.11±0.01

Fast-Sampling 8.2700E+05±1.01E+03 0.9573±0.0037 0.9328±0.0068 0.12±0.02
Fast-Filtering 7.8453E+05±1.41E+03 0.9595±0.0083 0.9360±0.0145 0.04±0.01

Fast-Estimation 8.2322E+05±9.22E+02 0.9622±0.0039 0.9427±0.0068 3.08±0.12

k-means++

7.2273E+05(1.53s) 50

1.1248E+06±5.29E+03 0.7384±0.0069 0.4296±0.0179 0.03±0.01
Ergun 7.9776E+05±2.46E+03 0.9434±0.0042 0.8944±0.0078 0.19±0.01
Det 7.6429E+05±0.00E+00 0.9601±0.0000 0.9274±0.0000 0.12±0.01

Fast-Sampling 7.7443E+05±1.12E+03 0.9553±0.0033 0.9224±0.0057 0.13±0.00
Fast-Filtering 7.4142E+05±2.77E+03 0.9611±0.0108 0.9257±0.0237 0.05±0.01

Fast-Estimation 7.7657E+05±1.15E+03 0.9567±0.0030 0.9200±0.0074 3.62±0.06

29

Published as a conference paper at ICLR 2025

Table 10: Comparisons on dataset CIFAR10 for varying k and fixed α = 0.2

Dataset CIFAR10 (10,000 × 3,072)

Method Ref k Cost NMI ARI Time(s)

k-means++

8.4673E+10(10.94s) 10

1.4120E+11±9.75E+09 0.3873±0.0302 0.2036±0.0404 1.02±0.09
Ergun 8.5415E+10±4.64E+06 0.8480±0.0046 0.8335±0.0056 19.59±1.09
Det 8.5355E+10±1.53E-05 0.8335±0.0000 0.8160±0.0000 21.54±0.57

Fast-Sampling 8.5777E+10±1.49E+08 0.7855±0.0303 0.7499±0.0452 20.76±0.48
Fast-Filtering 8.5735E+10±1.00E+08 0.8186±0.0116 0.7920±0.0177 6.15±1.41

Fast-Estimation 8.5537E+10±4.04E+06 0.8469±0.0011 0.8327±0.0013 125.27±2.99

k-means++

7.8808E+10(36.81s) 20

1.2415E+11±7.80E+09 0.4005±0.0294 0.1541±0.0311 1.85±0.05
Ergun 7.8972E+10±4.51E+06 0.8700±0.0009 0.8281±0.0011 18.55±0.27
Det 7.8750E+10±0.00E+00 0.8516±0.0000 0.7993±0.0000 20.19±0.26

Fast-Sampling 7.9135E+10±9.31E+07 0.8033±0.0157 0.7266±0.0247 19.66±0.13
Fast-Filtering 7.8920E+10±8.79E+07 0.8361±0.0084 0.7750±0.0157 4.92±0.08

Fast-Estimation 7.9032E+10±3.84E+06 0.8602±0.0010 0.8140±0.0016 182.33±1.94

k-means++

7.5010E+10(29.54s) 30

1.1647E+11±3.62E+09 0.4304±0.0109 0.1612±0.0131 3.44±0.12
Ergun 7.6223E+10±3.55E+06 0.8618±0.0009 0.7931±0.0016 18.82±0.22
Det 7.5958E+10±1.53E-05 0.8472±0.0000 0.7746±0.0000 19.82±0.11

Fast-Sampling 7.6109E+10±7.85E+07 0.8147±0.0167 0.7209±0.0283 19.49±0.22
Fast-Filtering 7.5991E+10±5.29E+07 0.8292±0.0061 0.7471±0.0111 4.74±0.11

Fast-Estimation 7.6431E+10±2.60E+06 0.8510±0.0008 0.7906±0.0013 238.71±4.44

k-means++

7.2836E+10(37.33s) 40

1.1570E+11±4.48E+09 0.4279±0.0152 0.1268±0.0233 4.67±0.20
Ergun 7.3929E+10±2.10E+06 0.8851±0.0008 0.8288±0.0013 19.25±0.33
Det 7.3547E+10±0.00E+00 0.8667±0.0000 0.8000±0.0000 19.74±0.16

Fast-Sampling 7.3839E+10±1.39E+08 0.8245±0.0128 0.7198±0.0242 19.49±0.22
Fast-Filtering 7.3691E+10±8.40E+07 0.8272±0.0101 0.7275±0.0185 4.45±0.09

Fast-Estimation 7.3983E+10±2.59E+06 0.8622±0.0009 0.7878±0.0012 279.69±0.81

k-means++

7.1331E+10(39.24s) 50

1.1445E+11±4.80E+09 0.4276±0.0137 0.1235±0.0186 5.77±0.12
Ergun 7.2902E+10±2.31E+06 0.8693±0.0006 0.7979±0.0011 19.46±0.31
Det 7.2428E+10±0.00E+00 0.8481±0.0000 0.7581±0.0000 19.98±0.18

Fast-Sampling 7.2349E+10±7.78E+07 0.8109±0.0193 0.6888±0.0365 19.67±0.14
Fast-Filtering 7.2331E+10±7.19E+07 0.8498±0.0064 0.7603±0.0107 4.37±0.12

Fast-Estimation 7.3004E+10±3.01E+06 0.8555±0.0006 0.7775±0.0013 334.36±1.25

Table 11: Comparisons on dataset PHY for varying k and fixed α = 0.2

Dataset PHY (10,000 × 50)

Method Ref k Cost NMI ARI Time(s)

k-means++

1.0148E+12(4.62s) 10

1.4500E+12±1.21E+11 0.8077±0.0399 0.6678±0.0769 0.08±0.01
Ergun 1.0332E+12±1.55E+09 0.9772±0.0043 0.9752±0.0051 2.75±0.66
Det 1.0236E+12±1.22E-04 0.9801±0.0000 0.9806±0.0000 2.48±0.16

Fast-Sampling 1.0853E+12±1.12E+10 0.9370±0.0128 0.9207±0.0199 2.45±0.09
Fast-Filtering 1.0273E+12±1.69E+09 0.9763±0.0026 0.9757±0.0027 1.08±1.41

Fast-Estimation 1.0288E+12±3.19E+09 0.9709±0.0074 0.9679±0.0108 4.07±0.36

k-means++

3.0028E+11(9.93s) 20

4.3425E+11±2.19E+10 0.8494±0.0176 0.6685±0.0442 0.13±0.08
Ergun 3.1167E+11±2.87E+08 0.9812±0.0041 0.9770±0.0060 2.69±0.36
Det 3.0705E+11±6.10E-05 0.9882±0.0000 0.9866±0.0000 2.31±0.10

Fast-Sampling 3.2665E+11±7.21E+09 0.9455±0.0099 0.9118±0.0219 2.29±0.11
Fast-Filtering 3.0129E+11±5.01E+07 0.9789±0.0034 0.9740±0.0053 0.50±0.04

Fast-Estimation 3.0641E+11±2.58E+08 0.9787±0.0024 0.9731±0.0036 5.98±0.27

k-means++

1.6596E+11(18.70s) 30

2.4134E+11±4.04E+09 0.8562±0.0085 0.6563±0.0284 0.15±0.06
Ergun 1.7710E+11±1.16E+08 0.9814±0.0020 0.9741±0.0034 2.53±0.09
Det 1.7480E+11±3.05E-05 0.9855±0.0000 0.9825±0.0000 2.19±0.05

Fast-Sampling 1.8463E+11±3.71E+09 0.9393±0.0084 0.8845±0.0224 2.20±0.05
Fast-Filtering 1.6730E+11±8.38E+07 0.9563±0.0012 0.9214±0.0024 0.50±0.02

Fast-Estimation 1.7302E+11±1.08E+08 0.9783±0.0022 0.9709±0.0035 7.27±0.09

k-means++

1.2380E+11(41.26s) 40

1.7705E+11±4.01E+09 0.8641±0.0070 0.6561±0.0249 0.16±0.04
Ergun 1.3471E+11±1.21E+08 0.9812±0.0024 0.9714±0.0048 2.73±0.15
Det 1.3117E+11±1.53E-05 0.9816±0.0000 0.9694±0.0000 2.19±0.06

Fast-Sampling 1.4682E+11±4.54E+09 0.9346±0.0077 0.8693±0.0221 2.19±0.05
Fast-Filtering 1.2451E+11±4.92E+07 0.9763±0.0014 0.9601±0.0028 0.52±0.04

Fast-Estimation 1.3027E+11±9.43E+07 0.9798±0.0035 0.9684±0.0079 8.63±0.15

k-means++

9.8416E+10(50.11s) 50

1.4425E+11±3.96E+09 0.8544±0.0065 0.6206±0.0223 0.19±0.05
Ergun 1.1089E+11±1.38E+08 0.9821±0.0017 0.9725±0.0031 2.62±0.08
Det 1.0700E+11±0.00E+00 0.9785±0.0000 0.9653±0.0000 2.10±0.04

Fast-Sampling 1.1886E+11±3.56E+09 0.9321±0.0101 0.8490±0.0303 2.12±0.04
Fast-Filtering 1.0107E+11±6.73E+07 0.9705±0.0039 0.9456±0.0086 0.50±0.02

Fast-Estimation 1.0596E+11±1.27E+08 0.9750±0.0032 0.9572±0.0067 9.64±0.37

30

Published as a conference paper at ICLR 2025

Table 12: Comparisons on dataset SUSY for varying k and fixed α = 0.2

Dataset SUSY (5,000,00 × 18)

Method Ref k Cost NMI ARI Time(s)

k-means++

2.9914E+07(194.06s) 10

4.2626E+07±1.5E+05 0.4212±0.0495 0.2851±0.0632 6.29±0.32
Ergun 3.1954E+07±3.4E+03 0.8037±0.0014 0.7953±0.0017 129.61±2.43
Det 3.1759E+07±0 0.8628±0 0.8696±0 159.18±2.90

Fast-Sampling 3.2683E+07±1.4E+04 0.8599±0.0019 0.8760±0.0021 121.91±1.16
Fast-Filtering 3.1814E+07±1.1E+03 0.8662±0.0004 0.8747±0.0004 37.52±1.87

Fast-Estimation 3.1779E+07±7.7E+03 0.8479±0.0031 0.8521±0.0032 48.18±1.57

k-means++

2.4533E+07(307.01s) 20

3.3848E+07±3.7E+05 0.4833±0.0107 0.2671±0.0099 9.27±0.24
Ergun 2.7086E+07±5.6E+03 0.8507±0 0.8201±0.0001 135.43±2.26
Det 2.6856E+07±0 0.8913±0 0.8805±0 155.56±1.50

Fast-Sampling 2.6889E+07±3.1E+04 0.8899±0.0012 0.8778±0.0013 125.01±2.09
Fast-Filtering 2.6121E+07±3.1E+05 0.8247±0.0091 0.7898±0.0140 39.78±1.07

Fast-Estimation 2.6890E+07±6.9E+03 0.8807±0.0006 0.8664±0.0009 54.35±0.87

k-means++

2.1903E+07(520.44s) 30

2.9916E+07±5.4E+05 0.5140±0.0048 0.2509±0.0112 12.30±0.15
Ergun 2.4828E+07±7.9E+03 0.8562±0 0.8183±0.0001 134.08±0.92
Det 2.4707E+07±0 0.8915±0 0.8759±0 152.09±1.89

Fast-Sampling 2.4870E+07±8.9E+03 0.8870±0.0007 0.8753±0.0007 117.35±3.02
Fast-Filtering 2.3846E+07±1.6E+05 0.8564±0.0161 0.8278±0.0266 36.32±0.79

Fast-Estimation 2.4646E+07±1.7E+04 0.8705±0.0223 0.8435±0.0345 54.37±0.95

k-means++

2.0262E+07(913.86s) 40

2.7709E+07±3.7E+05 0.5285±0.0152 0.2408±0.0185 15.56±0.83
Ergun 2.3405E+07±7.0E+03 0.8593±0.0001 0.8144±0.0002 144.44±2.17
Det 2.3197E+07±0 0.8813±0 0.8525±0 149.24±0.97

Fast-Sampling 2.3107E+07±4.7E+04 0.8724±0.0112 0.8385±0.0151 110.81±2.21
Fast-Filtering 2.2082E+07±2.3E+05 0.8436±0.0065 0.7994±0.0120 35.08±1.72

Fast-Estimation 2.3153E+07±8.2E+04 0.8708±0.0198 0.8378±0.0306 55.65±1.08

k-means++

1.9136E+07(1345.42s) 50

2.5509E+07±2.4E+05 0.5447±0.0082 0.0237±0.0147 17.48±0.32
Ergun 2.1978E+07±3.7E+03 0.8586±0.0001 0.7988±0.0003 147.95±1.91
Det 2.1894E+07±0 0.8805±0 0.8371±0 144.89±1.95

Fast-Sampling 2.1799E+07±1.0E+05 0.8396±0.0289 0.7749±0.0468 101.44±3.42
Fast-Filtering 2.0645E+07±6.5E+04 0.8716±0.0065 0.8315±0.0112 29.77±1.34

Fast-Estimation 2.1435E+07±4.1E+04 0.8339±0.0026 0.7645±0.0046 54.19±1.51

Table 13: Comparisons on dataset HIGGS for varying k and fixed α = 0.2

Dataset HIGGS (11,000,000 × 27)

Method Ref k Cost NMI ARI Time(s)

k-means++

1.5371E+08(343.72s) 10

2.3351E+08±4.85E+06 0.3063±0.0073 0.1806±0.0030 14.92±0.12
Ergun 1.5783E+08±4.95E+03 0.9263±0.0034 0.9349±0.0039 427.50±6.17
Det 1.5626E+08±0.00E+00 0.9239±0.0000 0.9327±0.0000 481.12±4.88

Fast-Sampling 1.5787E+08±3.68E+03 0.9445±0.0006 0.9595±0.0007 443.06±6.59
Fast-Filtering 1.5559E+08±1.99E+05 0.9028±0.0067 0.9079±0.0066 129.32±5.96

Fast-Estimation 1.5637E+08±7.66E+04 0.9176±0.0014 0.9260±0.0010 164.52±2.60

k-means++

1.3908E+08(706.94s) 20

2.0632E+08±2.49E+06 0.3454±0.0042 0.1658±0.0029 20.56±0.29
Ergun 1.4375E+08±1.26E+03 0.9085±0.0011 0.9066±0.0012 445.15±2.97
Det 1.4227E+08±0.00E+00 0.9148±0.0000 0.9135±0.0000 484.35±0.50

Fast-Sampling 1.4307E+08±6.93E+04 0.8827±0.0010 0.8768±0.0017 439.74±2.25
Fast-Filtering 1.4191E+08±1.38E+05 0.9017±0.0322 0.8937±0.0413 142.67±1.82

Fast-Estimation 1.4237E+08±2.91E+04 0.9020±0.0014 0.8971±0.0019 173.38±1.69

k-means++

1.3241E+08(1437.67s) 30

1.8190E+08±5.53E+05 0.4060±0.0092 0.1772±0.0061 28.81±0.08
Ergun 1.3663E+08±2.89E+03 0.9083±0.0000 0.8985±0.0000 450.15±9.71
Det 1.3520E+08±0.00E+00 0.9154±0.0000 0.9069±0.0000 478.83±6.94

Fast-Sampling 1.3554E+08±6.70E+04 0.8757±0.0001 0.8522±0.0005 425.87±9.23
Fast-Filtering 1.3425E+08±8.98E+04 0.8739±0.0087 0.8482±0.0128 147.26±7.24

Fast-Estimation 1.3525E+08±3.39E+03 0.8986±0.0002 0.8855±0.0003 175.96±3.08

k-means++

1.2694E+08(2301.98s) 40

1.7659E+08±1.75E+06 0.4153±0.0122 0.1610±0.0086 35.46±0.59
Ergun 1.3153E+08±2.79E+03 0.9046±0.0007 0.8921±0.0009 445.79±9.27
Det 1.3021E+08±0.00E+00 0.9146±0.0000 0.9032±0.0000 470.93±4.65

Fast-Sampling 1.3060E+08±6.99E+04 0.8633±0.0243 0.8276±0.0367 398.50±9.65
Fast-Filtering 1.2917E+08±1.05E+05 0.8936±0.0068 0.8727±0.0101 139.57±0.59

Fast-Estimation 1.3002E+08±4.50E+04 0.8958±0.0002 0.8775±0.0013 172.35±0.55

k-means++

1.2336E+08(3574.13s) 50

1.6815E+08±8.74E+05 0.4342±0.0032 0.1611±0.0057 38.57±0.02
Ergun 1.2730E+08±1.45E+04 0.8785±0.0229 0.8467±0.0338 436.17±0.26
Det 1.2589E+08±0.00E+00 0.9113±0.0000 0.8932±0.0000 443.46±0.38

Fast-Sampling 1.2645E+08±1.07E+05 0.8666±0.0218 0.8303±0.0324 364.05±3.10
Fast-Filtering 1.2490E+08±4.14E+04 0.8542±0.0015 0.8065±0.0018 133.17±0.40

Fast-Estimation 1.2587E+08±1.53E+04 0.8958±0.0017 0.8710±0.0019 160.75±0.99

31

Published as a conference paper at ICLR 2025

Table 14: Comparisons on dataset SIFT for varying k and fixed α = 0.2

Dataset SIFT (100,000,000 × 128)

Method Ref k Cost NMI ARI Time(s)

k-means++

1.0542E+13(844.18s) 10

1.8947E+13±1.41E+11 0.2994±0.0180 0.2026±0.0087 801.75±114.99
Ergun 1.1067E+13±1.16E+08 0.9065±0.0000 0.9085±0.0000 23298.85±2009.69
Det 1.0835E+13±0.00E+00 0.9115±0.0000 0.9146±0.0000 14759.49±401.91

Fast-Sampling 1.2093E+13±2.15E+11 0.5353±0.0306 0.4319±0.0255 14370.31±552.58
Fast-Filtering 1.0763E+13±5.73E+09 0.8879±0.0006 0.8959±0.0001 1013.03±77.22

Fast-Estimation 1.0856E+13±3.27E+08 0.9160±0.0004 0.9206±0.0005 14612.00±1312.35

k-means++

9.7055E+12(1011.24s) 20

1.6512E+13±1.26E+11 0.3269±0.0197 0.1353±0.0315 1329.66±173.52
Ergun 1.0200E+13±6.41E+07 0.9012±0.0000 0.8912±0.0001 20445.05±2033.90
Det 9.9855E+12±0.00E+00 0.9024±0.0000 0.8914±0.0000 14195.19±576.63

Fast-Sampling 1.1236E+13±2.55E+11 0.5600±0.0310 0.4002±0.0483 13877.33±778.01
Fast-Filtering 9.8954E+12±2.44E+09 0.8768±0.0055 0.8637±0.0062 1059.94±99.14

Fast-Estimation 9.9979E+12±4.08E+08 0.9077±0.0002 0.9002±0.0003 13987.80±1117.39

k-means++

9.2478E+12(1330.99s) 30

1.5338E+13±2.51E+11 0.3730±0.0112 0.1535±0.0094 2238.99±46.63
Ergun 9.7328E+12±3.49E+07 0.9013±0.0000 0.8737±0.0000 19099.74±1359.36
Det 9.5218E+12±0.00E+00 0.9027±0.0000 0.8745±0.0000 14119.17±1024.58

Fast-Sampling 1.1072E+13±4.91E+09 0.5429±0.0058 0.3297±0.0074 13738.71±763.40
Fast-Filtering 9.4282E+12±3.38E+09 0.8863±0.0061 0.8590±0.0082 1100.15±104.72

Fast-Estimation 9.5332E+12±6.38E+08 0.9072±0.0001 0.8832±0.0002 13633.17±1347.76

k-means++

8.9739E+12(1342.73s) 40

1.5006E+13±1.58E+11 0.3936±0.0072 0.1610±0.0027 2976.74±25.20
Ergun 9.4558E+12±6.92E+07 0.9019±0.0001 0.8699±0.0001 18493.35±995.04
Det 9.2487E+12±0.00E+00 0.9017±0.0000 0.8668±0.0000 13813.96±599.81

Fast-Sampling 1.0516E+13±9.63E+10 0.5826±0.0084 0.3736±0.0254 13533.55±460.98
Fast-Filtering 9.1579E+12±3.31E+09 0.8860±0.0065 0.8549±0.0076 1153.74±73.15

Fast-Estimation 9.2585E+12±4.64E+08 0.9070±0.0002 0.8780±0.0002 13920.46±847.87

k-means++

8.7576E+12(1412.61s) 50

1.4553E+13±1.43E+10 0.4146±0.0013 0.1681±0.0003 3410.89±157.58
Ergun 9.2450E+12±1.15E+07 0.9014±0.0000 0.8656±0.0001 16390.58±1034.44
Det 9.0398E+12±0.00E+00 0.8995±0.0000 0.8590±0.0000 13948.92±794.17

Fast-Sampling 1.0405E+13±9.76E+10 0.5582±0.0135 0.3143±0.0204 13484.68±621.02
Fast-Filtering 8.9381E+12±1.28E+09 0.8790±0.0003 0.8405±0.0003 1157.97±133.86

Fast-Estimation 9.0471E+12±4.11E+08 0.9059±0.0003 0.8733±0.0005 13367.68±1455.83

32

Published as a conference paper at ICLR 2025

A.6.2 VISUALIZATION FOR THE DISTRIBUTION OF THE PREDICTED CLUSTERS

In this section, we provide examples of visualizations for the coordinates distribution on some of the
datasets used in our experiments.

(a) Plot of coordinates in cluster 1 (b) Plot of coordinates in cluster 2

Figure 3: Examples of visualization of the coordinates distribution on dataset CIFAR10, where
red points represent correctly predicted data points, and other colors indicate data points that are
predicted incorrectly.

(a) Plot of coordinates in cluster 3 (b) Plot of coordinates in cluster 5

Figure 4: Examples of visualization of the coordinates distribution on dataset PHY, where red points
represent correctly predicted data points, and other colors indicate data points that are predicted
incorrectly.

33

	Introduction
	Our Contribution

	Preliminaries
	The Fast-Sampling Algorithm
	The Fast-Estimation Algorithm
	The Fast-Filtering Alrotihm
	Experiments
	Conclusion
	Appendix
	Plot of Approximation Ratio v.s. error rate
	Missing Proofs in Section 3
	Missing Proofs in Section 4
	Theoretical Analysis for the Fast-Filtering Algorithm
	Extension to the k-Median Objective
	Complementary Experiments
	Experimental Results
	Visualization for the Distribution of the predicted clusters

