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Estimating the Semantic Density of Visual Media
Anonymous Author(s)

ABSTRACT
Image descriptions provide precious information for a myriad of
visual media management tasks ranging from image classification
to image search. The value of such curated collections comes from
their diverse content and their accompanying extensive annotations.
Such annotations are typically supplied by communities, where
users (often volunteers) curate labels and/or descriptions of images.
Supporting users in their quest to increase (overall) description
completeness where possible is, therefore, of utmost importance.

In this paper, we introduce the notion of visual semantic density,
which we define as the amount of information necessary to describe
an image comprehensively such that the image content can be
accurately inferred from the description. Together with the already
existing annotations, this measure can estimate the annotation
completeness, helping to identify collection content with missing
annotations.

We conduct user experiments to understand how humans per-
ceive visual semantic density in different image collections to iden-
tify suitable proxy measures for our notion of visual semantic den-
sity. We find that extensive image captions can serve as a proxy to
calculate an image’s semantic density. Furthermore, we implement
a visual semantic density estimator capable of approximating the
human perception of the measure. We evaluate the performance
of this estimator on several image datasets, concluding that it is
feasible to sort images automatically by their visual semantic density,
thereby allowing for the efficient scheduling of annotation tasks. Con-
sequently, we believe that the visual semantic density estimation
process can be used as a completeness measure to give feedback
to annotating users in diverse visual content ecosystems, such as
Wikimedia Commons.

CCS CONCEPTS
• Computing methodologies → Perception; Visual content-based
indexing and retrieval; •Applied computing→ Annotation; Image
composition; • Information systems → Crowdsourcing; Digital
libraries and archives; Web searching and information discovery.

KEYWORDS
Visual Semantic Density, Visual Perception, Multimodal Document
Annotation, Annotation Completeness
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1 INTRODUCTION
The old adage “a picture is worth a thousand words” is often quoted
in the context of image classification, labeling, or captioning. While
this was clearly meant metaphorically, it stands to reason that im-
ages can visually express many and complex concepts. The number
of concepts expressed this way is, however, dependent on the image
itself.

Image descriptions are used to train and evaluate classification
algorithms, augment image search systems, and organize the col-
lections. Therefore, having comprehensive image descriptions is
critical for the performance of the systems that use them.

Large-scale image collections, such as what can be found on
Flickr,1 usually describe images by tagging the most visibly promi-
nent entities in the picture. Consequently, as we show in this paper,
most of the images in these collections are annotated with only a
few labels per image, even when images contain high visual com-
plexity that deserves a larger number of words. There is, thus, a
need to devise a measure for image description completeness. But
when are image descriptions actually “sufficiently” comprehensive?

In this paper, we define the notion of visual semantic density
(VSD) as the amount of information necessary to describe an image
comprehensively so that the image can be accurately inferred from
the description. We aim to measure VSD as an estimate for image
annotation completeness.

Such an estimate is useful for many applications. One of the
most prominent applications is the case of peer-production image
annotations. When these image collections and their corresponding
descriptions are created as a result of a peer-production process,
such as in Wikimedia Commons, users can extend the annotations
curated by other users. This way, the quality of image descriptions
can improve by means of collaboration. Given the scale of these
image collections, it is crucial to help users identify the images
whose description completeness can be improved.

Our end goal is to show this estimate to users to encourage them
to improve existing annotations, similarly to the way ReCoin dis-
plays the relative completeness of individual Wikidata items, as
compared to other entities of the same type [1]. Instead of esti-
mating an image’s VSD as an absolute number—which is a highly
complex task—we estimate a ranking of images based on their VSD.

Recent AI developments facilitated the implementation of meth-
ods that, for example, learn to classify images from text [21], auto-
matically describe images [16], and link images to Web entities [2].
However, to the best of our knowledge, no published work has
estimated our notion of VSD.

To this end, we first conduct user experiments using crowd-
sourcing to identify how humans perceive the notion of VSD. More

1https://flickr.com/
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specifically, we run these experiments using data from widely used
large-scale image collections: Wikimedia Commons, YFCC100M,
LVIS, Visual Genome, and a combination of Stanford Paragraphs
and Localized Narratives. The results of these experiments allow us
to determine suitable proxy measures for VSD. From all the com-
pared options, extensive image captions show the highest Spear-
man’s rank correlation (𝜌𝑠 ) with our notion of VSD. Furthermore,
we implement an end-to-end VSD estimator that resembles the hu-
man perception of the VSD measure. From the estimator evaluation,
we conclude that the model is capable of sorting the images based
on VSD, as the correlation between the model’s output and any of
the manual orders that we compute (including a crowd-based one)
is similar to the correlation between any of the manual orders.

In summary, the main contributions of this paper are:
(1) We present the notion of visual semantic density, which

helps assess the completeness of image descriptions.
(2) We conduct user experiments to capture the human percep-

tion of visual semantic density and show that the extent of
image captions correlates with visual semantic density.

(3) We present a mechanism for sorting pairs of images based
on crowdsourced VSD human assessments, extending a
state-of-the-art sorting algorithm.

(4) We provide an end-to-end visual semantic density estima-
tion based on a neural network implementation.

In the following, we provide a brief overview of related work in
Section 2 before offering a definition of our notion of visual semantic
density in Section 3. Section 4 then investigates which existing
annotated image datasets could be repurposed as possible sources
of ground truth for the estimation of VSD, after which Section 5
studies how it is perceived by humans. Sections 6 and 7 present
mechanisms to estimate the VSD of an image using synthetic image
captions or and end-to-end approach, respectively. In Section 8, we
discuss our insights before offering some outlook in Section 9.

2 RELATEDWORK
There is a long tradition in image annotation research in computer
vision [23]. One of the tasks in this field consists of annotating a
bounding box in an image—the rectangles surrounding an object
in an image. Snapper [26] is a tool that assists users in the task
of annotating the bounding box by allowing them to snap the
area and then automatically modifying the bounding box to fit the
object optimally, leading to a reduction of the time that the user
needs to spend in the annotation as compared to other approaches
for the same task. More recently, fully automated segmentation
mechanisms such as Segment Anything [10] have emerged, which
require little to no manual input for object segmentation. While
having a count of objects is a reasonable basis for measuring visual
semantic density, this number alone does not fully capture our
notion of visual semantic density.

[2, 8] link images to entities in Wikipedia. Given that Wikipedia
is a general knowledge data source with natural language text de-
scribing the entities, these links are highly valuable for augmenting
visual media browsing and searching over large-scale image collec-
tions. However, the text is about the entities instead of the images
themselves. Therefore, these kinds of approaches do not help solve
our task.

Language models have also been used in the field of visual media
management. CLIP [21] usesmultimodal embeddings to perform im-
age classification from textual descriptions of images. This method
generates new information about the image (i.e., as the authors
show in their example, the method can learn that the picture is
about a dog when the textual description mentions “Pepper the
aussie pop"). While this classification contributes to the notion of
visual semantic density, the approach still depends on the input
text. Along the same lines, image segmentation algorithms match a
text description to an area of an image [14]. [4] allows users to have
multimodal prompts, including text and images, with the purpose
of, for example, asking the model to describe the image given in
the input. This is highly relevant to our work, as it generates an
image description. We apply this method in our work, as discussed
in Section 6.

3 THE NOTION OF VISUAL SEMANTIC
DENSITY

We define visual semantic density (VSD) as the minimal amount of
information necessary to describe an image entirely and uniquely,
such that the image content can be inferred from the description.
This information, for example, in the form of a natural language im-
age description, should provide sufficient detail to derive the image
from it. Titles, alternative texts, and captions provide representative
descriptions of images. However, they are commonly short, concise,
and lack certain specific details. The words defining the VSD of an
image should, e.g., allow an artist to paint the image accurately by
reading the words. Hence, most real-world annotations are not at
the full VSD, as there is likely to remain some ambiguity.

Figure 1 shows an example image. A possible title for this im-
age would be “Golden retriever in thoughts". In a tagging system,
the image could be labeled with ‘dog’ and ‘golden retriever.’ An
alternative text could be “A portrait of a golden retriever.”, and a
possible caption could be “A sideways portrait of a golden retriever
towards the right.”. However, based on our definition of VSD, we
would expect the comprehensive description to be, for example: “a
sideways portrait of a golden retriever, including the head and the
bust; dog looking straight but picture taken from the right side of
the dog: light coming from below; right ear slightly up and slightly
blurred as if the picture was taken when someone was holding the
ear up; bright brown eyes having some light reflection; black nose;
four long blonde moustache hairs; with a person, possibly a woman,
in the background in the blurred or bokeh part of the picture with the
eyebrows, eyes, and nose visible; picture taking with wide or medium
aperture; a wall in the blurred part of the picture, from which two
thirds is marble-like (mostly white and with some spots), and the
rest is painted in mustard yellow except a vertical rectangle rotated
around 45 degrees from which we see four fifths; in the yellow part
there is the bottom of a frame with a picture, in the marble part there
is a circle, and a small black rectangle with a white mark in front that
looks like toilet paper.” With this level of detail, it is more likely to
derive the image from words.

In psychology visual density is defined as the “number of visual
elements in the unit area of visual design" [5, 22, 27]. This definition,
however, is insufficient in our scenario, as one could say that the
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Figure 1: Example image showing a golden retriever. We use
this image as an example to illustrate our notion of visual
semantic density. The image is sourced from the LVIS dataset.

elements are ‘dog,’ ‘woman,’ ‘wall’, and ‘toilet paper.’ This set of
elements lacks descriptive power.

Based on feedback received in our preliminary experiments (Sec-
tion 5.1) and our observations when conducting exploratory tasks,
we identify the following properties of our VSD concept:

(1) VSD depends on the elements in the image, their diversity, and
the characteristics of the image. Colourfulness, sharpness,
light, the presence of expressions, action, and details all
influence VSD.

(2) The salience of objects is relative to the other objects in the
image. Certain elements may be considered when eliciting
the description of some images and ignored in others.

(3) Context influences VSD. When the VSD assessment is done
in pairs of images, the perception of the visual semantic
density of an image may change depending on the image it
is compared to.

(4) Background knowledge may influence the assessment of the
VSD of an image. Familiarity with the image content may
lead to shorter descriptions, due to the use of a denser vocab-
ulary, or longer ones, due to the recognition of additional
relevant elements.

(5) The VSD of a set of images is, at most, the sum of the individ-
ual VSDs. If we measure the VSD of 𝑛 images in a collage,
the total visual semantic density will be at most of the sum
of the individual measurements.

Any measure for VSD should account for these properties.

4 POSSIBLE SOURCES OF GROUND TRUTH
Since no ground-truth dataset annotating the semantic density of
visual media exists, we investigate the applicability of other existing
datasets to our task. To this end, we consider three different types
of annotations: user-generated tags, object-detection masks, and
detailed image captions.

4.1 Community-generated Tags
The Wikimedia Commons dataset2 consists of 104,418,660 media
files as of the 29th of March 2024, including images, audio files,
and videos, all licensed under free licenses.3 In the context of this
paper, we focus exclusively on the images available. These images
represent “photographs, diagrams, drawings, paintings, animations,
maps, and symbols.” 4

Wikimedia Commons is an evolving dataset curated and main-
tained by volunteers who upload and describe the media objects via
the project wiki. The description of the file’s content can be edited
by the file’s author and complemented by anyone registered in
Commons, promoting collaboration among community members.

While tools exist that help editors add labels (e.g., to add geolo-
cation information or classify images), the labeling effort is primar-
ily human-based. Analogously to the process in other Wikimedia
projects, such as Wikipedia and Wikidata, community editors mon-
itor changes implemented in the dataset, which can be reverted if
they result from vandalism.

As a result of the integration between Commons and Wiki-
data [25]—the multilingual free knowledge base containing struc-
tured data about people, places, events, and other types of items—
the labels in Commons represent Wikidata items. For instance, a
picture showing the opera building in Melbourne can have the label
Q3141, which is the item in Wikidata for the city of Melbourne,
described with geographical information, population, inception in-
formation, government information, and links to further databases.
The Wikimedia Commons SPARQL endpoint5 exposes the struc-
tured data image labels, enabling federated queries with Wikidata.

The Yahoo Flickr Creative Commons 100 million (YFCC100M)
collection [24] consists of 100 million images and videos collected
from Flickr. In addition to the actual images and videos, the dataset
contains all the metadata for each element of the dataset. This
metadata also includes user-generated tags associated with each
image. In contrast toWikimedia Commons, these tags are generated
exclusively by the person who posted the image to the platform.
There is, therefore, a different relation between images and tagging
users, which is why we would also expect a different distribution
of tags compared to Wikimedia Commons.

For both collections, we use the raw tag count to estimate an
image’s semantic density.

4.2 Object detection annotations
Another possible source for estimating semantic density comes from
datasets that explicitly and densely annotate objects in images. For
2Wikimedia Commons https://commons.wikimedia.org/wiki/Commons:Database_
download
3Free Licenses https://freedomdefined.org/Licenses
4https://commons.wikimedia.org/wiki/Main_Page
5Wikimedia Commons SPARQL Endpoint https://commons.wikimedia.org/wiki/
Commons:SPARQL_query_service

3
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our experiment, we consider two such datasets, Visual Genome [12]
and LVIS [6].

The Visual Genome dataset consists of images, each with a series
of bounding-box annotations for visible objects that were drawn
by humans. The object classes are mapped to Wordnet. The anno-
tations not only include the localized objects inside the bounding
boxes, but also describe their semantic relations in a graph structure,
capturing the semantics of the image in a scene graph.

LVIS is an object recognition dataset with fine-grained object
polygon annotations. It is based on MS COCO [15], extending the
object annotations by an additional roughly 1200 different object
classes.

For both of these datasets, we use the number of object annota-
tions per image as a proxy for its semantic density.

4.3 Detailed image captions
The third possible source for estimating VSD is obtained by looking
at the length and diversity of the text needed to describe an image.
For this, we combine two datasets with detailed image captions:
Stanford Paragraphs [11] and Localized Narratives [20]. While Stan-
ford Paragraphs uses images from Visual Genome, Localized Nar-
ratives uses Open Images [13], MS COCO [15], Flickr30k [28], and
ADE20k [29] as image sources. Both datasets then augment these
images with detailed textual descriptions of their content annotated
by humans.

In order to obtain an estimated semantic density of the images
in these datasets, we process their captions using Core NLP [19].
We extract adjectives, adverbs, nouns, and verbs for each caption
and use the size of the set of their lemmatized versions as a proxy
value.

5 HUMAN PERCEPTION OF VSD
Having defined our notion of VSD and identified some possible
proxy measures, we next investigate how humans perceive this
notion. In a series of experiments with human participants, we
collect information about their perception of the semantic density
of selected images.

5.1 Preliminary experiments
We defined a VSD assessment task as a survey in Qualtrics,6 where,
given a collection of pairs of images, users are asked to select the
image with the highest VSD.We chose a design with pairs of images
because there is evidence suggesting that pairwise comparisons are
faster and more effective than ranking or individual ratings [3]. For
each pair, users could choose among four options: i) the first image
has the highest VSD, ii) the second image has the highest VSD, iii)
both images have an equal VSD, iv) the user cannot really decide.

The goal of these preliminary experiments was to measure the
extent to which different people agree on the assessment of VSD.
To test task clarity and estimate completion time, we first ran a pilot
experiment with six scientific researchers in our research lab to
accomplish the task. As a dataset, we used 30 pairs of images from
Stanford Paragraphs. We selected these pairs of images randomly
following a bucketing system based on the number of labels per
image available in the original dataset, which represents images and
6https://www.qualtrics.com

labels collected from Flickr. Based on the distribution of the number
of labels per image, we split the data into three groups: low (images
with less than 20 labels), medium (images with between 20 and
60 labels), and high (images with more than 60 labels), assuming
that the more labels, the higher the VSD. An illustration of the
label distribution for all the datasets is shown in the supplementary
materials. We randomly sampled ten pairs of images from each
group and built pairs that contained intra-class images (i.e., low-low,
medium-medium, high-high) and pairs that contained inter-class
images. Moreover, we replicated every pair, swapping the order
of the images to be able to evaluate the extent to which users are
self-consistent.

Following the same procedure, we ran further pilot experiments
in Prolific.7 We published one task with 60 pairs of images from
the LVIS dataset and one task with 60 pairs of images from the
Visual Genome dataset. We collected responses from ten different
Prolific workers and ensured that there was an empty intersection
between the sets of workers of the two tasks. We set screeners for
workers whose primary language is English, with an approval rate
of a minimum of 90%, and at least 50 previous submissions. We
extended the task by adding two pairs of images as attention checks.
We configured the Prolific task workflow such that participants who
did not answer the attention checks correctly could not proceed
with the task. At the end of the task, we asked participants to
describe how they interpreted the concept of VSD throughout the
task, and we also provided an open-ended text field to collect their
feedback on their task.

These preliminary experiments helped us iterate over the design
of our human rating task. The initial task version, tested by our
research lab colleagues, framed the instructions referring to VSD
as the number of elements in the image. Participants indicated that
other factors influenced their assessment. Hence, we refined the
instructions in subsequent versions of the task, mentioning that
this notion is defined by the number of words needed to describe
the image comprehensively.

Furthermore, we observed low inter-rater agreement as mea-
sured by Fleiss’ Kappa, both in intra- and inter-class tasks for LVIS
and Visual Genome ranging from −0.031 to 0.448. Moreover, we
identified that self-consistency was far from perfect in the Prolific
experiments. Participants indicated contradictory answers in in-
verse pairs (i.e., they did not choose the same image when selecting
the image that had the highest VSD). When we count the number
cases in which users selected opposite answers for inverse pairs
(i.e., they selected different images as the ones with highest VSD, or
in one of the cases they indicated that the images had equal VSD),
in the LVIS Prolific experiment, we obtained 𝜇 = 4.00 and 𝜎 = 3.09.
In the case of the Visual Genome dataset, we obtained 𝜇 = 3.40 and
𝜎 = 3.06. The maximum number of possible inconsistencies here
is 30, as there were 60 pairs. This shows that the notion of VSD is
complex, and people are sometimes conflicted about it.

5.2 Human-in-the-Loop Sort
To get an estimate on how well our different possible ground truth
sources introduced in Section 4 align with our notion of VSD, we
need a way of sorting each of these sources using human judgment.

7https://prolific.com

4

https://www.qualtrics.com
https://prolific.com


465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Estimating the Semantic Density of Visual Media ACMMM’24, 28 October - 1 November 2024, Melbourne, Australia

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

Given the size of the datasets, we implement this human-based
sorting on a sample of each dataset. Since sorting large lists of ele-
ments all at once is quite cumbersome, we expand upon the method
introduced in [9] to select pair-wise comparisons that can be pre-
sented to human participants. The method uses an efficient, stable
sorting algorithm—TimSort—to select pairs for comparison. This
way, it reduces the number of pairs that need to be presented to a
human from𝑂 (𝑛2) to𝑂 (𝑛 log𝑛). It does this by supplying a custom
comparison implementation to a standard sorting implementation
that uses a database of collected pair-wise comparisons. If the order
of a given pair is not yet known, the comparator throws an excep-
tion, breaking out of the sorting operation. The pair that was to be
compared when the exception was thrown is then presented to the
human participant for comparison.

The method in [9] assumes that a single person supplies all
comparisons until a list of elements is sorted completely. Since we
also want to be able to crowdsource the sorting task, we introduce
several extensions to the method.

Majority Voting. To get a more consistent result when collect-
ing comparisons from multiple humans, we use a majority voting
scheme before accepting an order for a given pair. To do this, we sim-
ply present each pair to multiple participants until a pre-determined
number agrees on an order.

Sublist Sampling. Since the next pair to be presented to a user
is dependent on the previous sorting operations, waiting for a
consensus on any particular pair would block all other participants
using the original method. To overcome this issue, we introduce
a sub-list sampling scheme, applying the sorting method not to
the entire list, but to a randomly selected continuous sub-list. If
a sub-list can be sorted without requiring any additional human
input, we double the length of the sub-list and repeat the procedure
until the sub-list length matches the length of the full list. Using
such a sampling scheme, we avoid introducing a direct dependency
betweenmultiple human annotators. The downside of this approach
is that it can lead to pairs being presented to an annotator that
would not have been required if the full list were to be sorted using
only the original method. Therefore, we also introduce another
extension that can use information collected this way later in the
process.

Order Inference. In the original method, the comparator would
only check if the order for any specific given pair was already
annotated by a human participant. Since the order of objects is a
transitive property, we extend this by an inference mechanism. If
the sorting algorithm requires the order for a pair (𝐴, 𝐵) for which
the order is not yet known, our comparator will then look for a
set of pairs (𝐴,𝑋 ) and (𝑋, 𝐵) sharing a common third element. If
such a combination of annotated pairs is found, the comparator
will then infer the order for (𝐴, 𝐵) and add it to the database as an
accepted order.

Since independent order annotations can lead to an inconsistent
state, e.g., independent human annotators providing orders of the
type 𝐴 < 𝐵, 𝐵 < 𝐶 , 𝐶 < 𝐴, violating transitivity, we also introduce
a simple conflict resolution procedure. In case such a conflict is
detected during the sorting operation, the pair that led to the conflict

is removed from the database of accepted ordered pairs and added
to a dedicated list of inconsistent answers.

We provide the implementation of our human-in-the-loop sort
as open-source software.8 More details on the method are provided
in the supplementary material.

5.3 Data sampling
For each of the five possible ground-truth sources identified in Sec-
tion 4, we group all contained elements by their estimated semantic
density and randomly select one element per group. This sampling
is done because for any data source all elements with the same
estimated semantic density are not distinguishable from each other.
Since the ranges of estimated visual density vary from source to
source, we end up with five lists of images with different lengths.
Specifically, we select 104 images from Wikimedia Commons, 263
from YFCC100M, 112 from Visual Genome, 208 from LVIS, and 72
from the captioning datasets.

For each of the five sources, we sort the resulting list of selected
images by the estimation mechanism applicable to the source. The
resulting orders can then be compared to those generated by let-
ting human participants sort the images by their perceived VSD.
Comparing the respective orders gives us an estimate of how well
each data source serves as a proxy for our measure.

5.4 Sorting experiment
To establish a baseline on the human perception of VSD, we perform
an experiment in which we ask human participants to sort the lists
obtained in Section 5.3 using the method described in Section 5.2.
We sort each list in two different ways: First, each list is sorted by a
single human annotator. (The list sampled from the image caption-
ing dataset is independently sorted by two human annotators—two
of the co-authors of this paper—to serve as an additional means of
comparison.)

Second, we use Prolific to distribute the sorting task across 423
participants, each contributing with 50 pair-wise comparisons. Any
pair needs to be sorted the same way by three crowd workers for its
order to be accepted, ensuring that wewill have amajority vote. The
instructions provided to the crowdworkers were phrased as follows:
“. . .we will show you several pairs of images. For each pair, please select
the image that would take you more words to describe completely.
When thinking of the description, imagine having to describe the
image to an artist for them to draw it or to an archivist for them to
find it in a large collection. You will not be asked to actually produce
these descriptions, only to imagine their estimated relative lengths.”

After sorting the lists based on human input, we compute the
Spearman’s rank correlation 𝜌𝑠 between the lists for each data
source. Table 1 shows these correlations between the different
orders obtained from the data source (base), the single human an-
notator, or the crowd generated order.

When comparing the orders generated by the two different hu-
man annotation-based methods, we see that there is moderate to
strong agreement between the single annotator and the crowd, with
correlation values ranging from 0.427 to 0.717. From this, we can
conclude that there is a somewhat consistent human interpretation
of VSD and that it can be at least roughly estimated without needing
8Link to repository removed for double-blind review.
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Table 1: Spearman rank correlation 𝜌𝑠 between ‘base’ ranking
from the data source and the human-based sortings (‘single’
and ‘crowd’)

Data Source Orderings 𝜌𝑠

Commons
base single 0.365
base crowd 0.293
single crowd 0.717

YFCC100M
base single -0.488
base crowd -0.358
single crowd 0.495

LVIS
base single 0.030
base crowd 0.052
single crowd 0.427

Visual
Genome

base single 0.161
base crowd 0.165
single crowd 0.552

Captions

base single 1 0.562
base single 2 0.538
base crowd 0.470
single 1 crowd 0.536
single 2 crowd 0.606
single 1 single 2 0.652

actually to generate a complete image annotation. The alignment
of the orders obtained from different annotators is, however, far
from perfect, which can be attributed to the contextual dependency
of the task. This gives us an upper bound of what can be reasonably
expected when trying to estimate such semantic density values.

When comparing the orders obtained from the data sources with
those generated by the different human annotators, we see a much
larger range of results. For most data sources, the obtained correla-
tion is weak or negligible, and in the case of YFCC100M, it is even
considerably negative. Only the correlation between the estimate
obtained from processing extensive image captions falls in a similar
range compared to the correlations obtained by comparing different
human annotations. It appears that extensive image captions serve
as an adequate proxy for an image’s semantic density.

6 CAPTION-BASED VSD ESTIMATION
Based on the results of the last section, we can see that values
derived from the diversity of extensive image captions serve as
a workable proxy for our notion of VSD, outperforming all other
tested baselines. To test the stability of this approach, we next test if
this is a property of the specific images used in these data sources, if
this effect can be replicated for the images from the other sources as
well, and if this can be done automatically. For this comparison, we
automatically generate extensive image captions for all the images
selected in Section 5.3 and derive a semantic density estimate from
these captions in the same way as for Localized Narratives. We use
the LLaVA [16] vision language model for caption generation and
prompt it with an instruction similar to the one given to the crowd
workers, as described in Section 5.4: “Describe the image as if having
to describe the image to an artist for them to draw it or to an archivist
for them to find it in a large collection.” Afterward, we again sort the

list for each data source by the density estimate obtained this way
and compare the rank correlation to the manually sorted baselines.
The results are shown in Table 2.

When looking at the corrections between the orders obtained
from these synthetic captions and those generated using both in-
dividual (single) and crowd annotations, we can see that all lists
are positively correlated, with values ranging from 0.278 to 0.571.
While this indicates that the effects observed in Section 5.4 are
likely not an artifact of the image sampling and the caption-derived
estimates are also applicable to other images, this synthetic cap-
tioning approach for VSD estimation has clear drawbacks. Not only
is it computationally costly to run a large vision language model
for caption generation, which potentially limits its applicability
to larger collections, but the resulting orders, in some cases, only
show a weak correlation with the manually obtained baselines. We,
therefore, investigate if it is feasible to estimate the result of such
a pipeline more directly and in a computationally more efficient
manner.

7 END-TO-END VSD ESTIMATION
After identifying the values derived from extensive image captions
as a reasonable proxy measure for VSD, we use it to train an end-
to-end, automatic VSD estimation mechanism.

7.1 Method
To this end, we propose a simple neural network based on Con-
vNext [17]. We chose the ConvNext architecture due to its good
trade-off between parameter count and classification performance.
For our estimator, we start with a ConvNext tiny variant pre-trained
on the ImageNet 22k classification task and replace the final classi-
fication layer with a dense layer with an output dimension of 2048
and a GELU [7] activation, followed by another dense layer with
an output dimension of 1. The GELU activation is chosen to stay
consistent with the architecture of the ConvNext model, which
serves as a backbone. The estimator is then trained to predict the
values obtained by the procedure described in Section 4.3 directly
from the images, using an L1-loss.

As a training set, we use the train splits of all data sub-sets of
Localized Narratives as well as the entirety of Stanford Paragraphs
in combination. The test splits of Localized Narratives serve as a test
set. To train the estimator, we first freeze the backbone and train
the newly added layers for a single epoch with a learning rate of
10−2. Subsequently, the entire network is fine-tuned with a learning
rate of 10−4 until the test loss stops decreasing. Analogously to the
backbone model, the AdamW [18] optimizer is used for training,
with its default values of 𝛽1 = 0.9 and 𝛽2 = 0.999.

We release our implementation and model weights as open-
source software.9

7.2 Results
To evaluate the performance of our model, we use it to sort the
test sets that were manually sorted in Section 5.4. To ensure com-
parability, none of the manually sorted images were part of the
training set of the model. The resulting correlations between the

9Link to repository removed for double-blind review.
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various baselines and the predicted order per data source are shown
in Table 2.

The results show that the correlation between the different ver-
sions of the manually generated orders is similar (in range) to the
correlation between any of the manually generated orders and the
model’s output order. The strongest correlation can be observed
for the images from the Localized Narratives dataset. This is not
surprising because the model was trained on the estimates gener-
ated from the captions. We can, therefore, see that the model can
estimate the number of concepts extracted from extensive captions
quite well without requiring the generation of the actual image
description.

The results for the images obtained from YFCC100M and Visual
Genome also show a substantial correlation with the human base-
line. The correlation is still clearly positive, although somewhat
weaker for the images taken from LVIS.

No correlation can be observed for the predicted order of the im-
ages fromWikimedia Commons. This might be because this dataset
is the only one that is not exclusively composed of natural images
but also contains artificial images, such as illustrations, paintings,
etc. Since the model uses a backbone pre-trained on ImageNet and
was then trained on images from Localized Narratives, it was only
ever exposed to photographs of natural scenes, which might explain
its poor performance on the visual content of a different type. To
test this hypothesis, we manually exclude all non-natural images
from the lists and re-compute Spearman’s 𝜌𝑠 for only the remaining
natural images. The results are also shown in Table 2 as ‘Commons
(Natural).’ Examples of natural (i.e., photographs) and non-natural
images are shown in the supplementary materials.

As we can see, the correlations increase substantially, confirming
our hypothesis that the model is limited to natural images and does
not generalize to all types of visual content. For the images taken
from YFCC100M, Visual Genome, and Localized Narratives, the
correlation between the human-annotated order (single and crowd)
and the one obtained via the end-to-end prediction is clearly larger
than the one obtained using synthetic captions. The same is true
for the natural images from Wikimedia Commons, although not
for the complete Commons sample, as discussed above. Only for
the LVIS sample, the order predicted using the synthetic captions is
more aligned with the human annotation. The difference between
the two methods on LVIS is, however, comparatively small.

8 DISCUSSION
After having investigated multiple ways of estimating VSD, this
section tries to synthesize the insights that can be gleaned from
the results presented in Tables 1 and 2. As discussed previously, it
is presumably not generally possible to determine a precise and
context-independent VSD value for any given image. Since we do
not want to limit our investigation to any specific context, we relax
the conditions slightly and only consider the order that a collection
of a collection of images would have when sorted by this semantic
density value. This is sufficient for our ultimate goal of identifying
gaps in annotations by comparing visual documents in a given
collection since images with similar semantic density are expected
to have a similar number of annotations.

Table 2: Spearman’s 𝜌𝑠 between manually sorted images and
predicted image order based on synthetic image captions and
end-to-end VSD prediction.

Data Source Order 𝜌𝑠 synth. captions 𝜌𝑠 end-to-end

Commons
single 0.278 -0.023
crowd 0.418 0.010
base 0.303 0.102

Commons
(Natural)

single 0.210 0.458
crowd 0.438 0.548
base 0.355 0.396

YFCC100M
single 0.495 0.695
crowd 0.499 0.552
base -0.350 -0.526

LVIS
single 0.472 0.439
crowd 0.375 0.316
base 0.125 -0.069

Visual
Genome

single 0.321 0.507
crowd 0.402 0.561
base 0.199 0.105

Captions

single 1 0.565 0.706
single 2 0.571 0.637
crowd 0.408 0.641
base 0.436 0.585

Based on our definition of VSD given in Section 3, we collect
several image datasets with accompanying annotations and estab-
lished means for their generation that we suspect could serve as
a proxy for our measure. Sampling these datasets gives us a test
collection that we can then sort based on the semantic density
estimates obtained from the respective datasets. We also set up
a human-in-the-loop sorting pipeline to manually sort the same
images, using both a single annotator and the aggregation of multi-
ple crowdworkers. Based on these results that were presented in
Table 1, we can summarize several insights:

When comparing the orders obtained by the two differentmanual
sorting mechanisms, we get a range of Spearman’s 𝜌𝑠 from 0.427 to
0.717, with a median correlation value of 0.552. These results tell us
that while there is a clear positive correlation between the estimate of
our individual annotators and the aggregate of many crowd workers,
they are by no means in perfect agreement. The range of agreements
between manual annotations also serves to ground the correlations
obtained by other means.

Looking at different options for proxy measures for our notion
of VSD, based on established datasets used by the multimedia and
computer vision communities for various applications, we can see
that only estimates derived from extensive image captions produce
VSD-based orders with a correlation to the human estimate in a similar
range as the values discussed above. When generating synthetic
image captions by promoting a state-of-the-art vision language
model and subsequently processing these captions in the same way
as the manually generated ones, we can obtain image orders with a
consistently positive, although not very strong, correlation to the
manual orders, as shown in Table 2. This shows that even synthetic
captions can serve as a proxy measure for VSD, but the quality of the
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estimates is rather limited. Additionally, the computational cost of
this approach is very high.

We achieve much higher correlations with the manual baseline
by adapting a state-of-the-art image classification model by replac-
ing its final classification head with a simple regression head and
training it on VSD estimates obtained from manually generated,
extensive image captions. This approach obtains correlation values
ranging from 0.316 to 0.716 with a median of 0.552, achieving a
range comparable to the agreement between the different manual
baselines, see Table 2. This approach consistently outperforms the
synthetic caption-based approach while being substantially compu-
tationally cheaper. It is, however, limited to natural images due to
the composition of the training set.

Figure 2 illustrates the image orders generated by the different
methods. Samples of the actual image sequences are shown in the
supplementary materials. The figure uses the crowd order as a basis
to assign increasing color intensity values to the positions in the
series. It uses different colors for the other ordering methods. The
more a horizontal line of one color resembles a continuous gradient,
the higher the agreement between the crowd order and the method.
The figure shows that, while there is no clear continuous gradient
other than the blue reference, the green lines representing our
end-to-end prediction mechanism consistently place high-intensity
elements to the right and low-intensity elements to the left. The
same is not true for the grey lines (i.e., the base), which generally
do not resemble any gradient. When looking at the violet lines,
representing the order generated based on the annotations of a
single annotator, we can see two gradients rather than one. This
could be an artifact of our sorting mechanism, caused by only a
small number of pairs that were annotated differently between
the single and the crowd annotations. These differences can cause
differences in the merge behavior of the sorting algorithm, causing
two sub-lists to be merged differently. In view of the uncertain
nature of the human interpretation of the measure, future work
might include considering increasing the robustness against small
perturbations in the pairwise comparisons.

The obtained results show that it is feasible to automatically sort
images by an estimate of their VSD and achieve results comparable to
a human baseline. Based on this, it is reasonable to assume that such
an automatically derived measure could be used for estimating the
annotation completeness of visual media in digital collections and
archives, such as Wikimedia Commons, by comparing the number
of annotations per document with their relative semantic density.
A large discrepancy between the per-document ratio of these values
can be an indicator of missing annotations.

9 CONCLUSION AND FUTUREWORK
In this paper, we introduced the notion of VSD, a measure of
the amount of visual information contained within an image. We
showed empirically that this measure could be approximated by a
manual image sorting task, but it can not be determined precisely
this way. Given its context dependency, it is unclear what level
of precision is even possible for a general measure. We were able
to show that the linguistic content and diversity of extensive im-
age captions serve as a suitable proxy measure for VSD and that
this also holds to a reduced degree for synthetic captions. With a

Captions

Visual Genome

LVIS

YFCC100M

Wikimedia Commons

Orders

Crowd Single Base Caption Predicted

Figure 2: Visualization of the different image orders as gen-
erated by different methods. The order defined by the crowd
is used as a basis for each dataset. Colors show different or-
dering methods. Intensity shows the position of an image
in the list ordered by the crowd. The more a line resembles
an uninterrupted gradient, the more aligned it is with the
crowd order.

ground truth dataset derived from detailed manual image captions,
we could train a model that estimates the VSD of a given image
without the need for caption generation. The order of images sorted
by this estimate shows correlation values comparable to lists of
images manually sorted by independent annotators.

The primary motivation for this work was to create a complete-
ness estimator for the annotations of visual media in digital col-
lections and archives. Similar to completeness estimation methods
employed for other modalities in collaborative knowledge reposi-
tories such as Wikidata, such a method could be used to help the
community identify and close gaps in annotations or interrelations.
By comparing the amount of already existing annotations across a
collection with the predicted VSD per image, the images that are
under-annotated with respect to others can be identified.

So far, we have not evaluated the perceived usefulness of our
measure and the impact on the behavior of human annotators com-
pleting image annotations, but we aim to do so in future work.
Other possible extensions of this work include investigating the
generalization from static images to video or the applicability to dif-
ferent modalities such as audio. Finally, even though this paper was
limited to one usage scenario for VSD—around image description
completeness, we believe this measure could be helpful for other
multimedia tasks to measure the information density of an object.
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