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ABSTRACT

Tremendous investments have been made towards the commodification of
diffusion models for generation of diverse media. Their mass-market adoption is
however still hobbled by the intense hardware resource requirements of diffusion
model inference. Model quantization strategies tailored specifically towards dif-
fusion models have seen considerable success in easing this burden, yet without
exception have explored only the Uniform Scalar Quantization (USQ) family of
quantization methods. In contrast, Vector Quantization (VQ) methods, which
operate on groups of multiple related weights as the basic unit of compression,
have recently taken the parallel field of Large Language Model (LLM) quantiza-
tion by storm. In this work, we for the first time apply codebook-based additive
vector quantization algorithms to the problem of diffusion model compression,
adapting prior works on the quantization-aware fine-tuning of transformer-based
LLMs to take into account the special structure of convolutional weight tensors,
the heterogeneity in the kinds of operations performed by the layers of a diffusion
model, and the momentum-invalidating discontinuities encountered between
successive batches during quantization-aware fine-tuning of diffusion models.
We are rewarded with a data-free distillation framework which achieves to the
best of our knowledge state-of-the-art results for the extremely low-bit weight
quantization on the standard class-conditional benchmark of LDM-4 on ImageNet
at 20 inference time steps. Notably, we report sFID 1.93 points lower than the
full-precision model at W4A8, the best-reported results for FID, sFID and ISC at
W2A8, and the first-ever successful quantization to W1.5A8 (less than 1.5 bits
stored per weight) via a layer-wise heterogeneous quantization strategy. We thus
establish a new Pareto frontier for diffusion model inference under low-memory
conditions. Furthermore, our method allows for a dynamic trade-off between
quantization-time GPU hours and inference-time savings, thus aligning with the
recent trend of approaches that combine the best aspects of both Post-Training
Quantization (PTQ) and Quantization-Aware Training (QAT). We are also able
to demonstrate FLOPs savings on arbitrary hardware via an efficient inference
kernel, as opposed to BOPs (Bit-wise Operations) savings resulting from small
integer operations that may lack broad support across hardware of interest.
Code is released via anonymized download link:
https://osf.io/3uf8v/?view_only=ffbc957d6ce941d7b47bef09b628adcd

1 INTRODUCTION

Diffusion Models (DM) (Ho et al., 2020; Dhariwal & Nichol, 2021; Rombach et al., 2021) have
risen as the dominant architecture for many tasks, with a variety of established and emerging players
investing in their commodification. The intense hardware resources involved in diffusion model
inference have however proven a serious impediment. Bodies of work such as (Salimans & Ho,
2022; Meng et al., 2023) and (Song et al., 2021; Liu et al.; Lu et al., 2022) have seen outstanding
success in reducing the number of model forward passes (denoising time steps) required for high-
quality inference – down to as little as twenty steps, representing a fifty-fold reduction from (Ho
et al., 2020). However, with one obstacle out of the way arises another, and with the latest-and-
greatest open-source diffusion models such as SDXL 1.0 (Podell et al., 2024) boasting of 6.6 billion
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parameters in total, the GPU VRAM and FLOPs requirements of a single forward pass are becoming
a serious hindrance towards diffusion model inference on mass-market consumer hardware.

Fortunately, model quantization has emerged as a choice tool for radically shrinking generative
models. Quantization methods balance the goal of lossy compression of model weights and acti-
vations to the maximum extent possible with the desire for minimal loss of generation quality. An
impressive body of literature (Shang et al., 2023; Li et al., 2023; He et al., 2024b; Li et al., 2024; So
et al., 2024; Wang et al., 2024; He et al., 2024a) has emerged on tailoring model quantization meth-
ods to the unique challenges posed by diffusion models. Historically these approaches have been
split between Post-Training Quantization (PTQ) and Quantization-Aware Training (QAT). He et al.
(2024a) have achieved excellent W2A8 (two-bit weights and eight-bit activations) results on the
class-conditional LDM-4 ImageNet model (Rombach et al., 2021) with an approach, that we denote
PTQ+PeFT, melding the best aspects of PTQ and QAT through Parameter-Efficient Fine-Tuning.

Figure 1: An illustration of the sFID
(Nash et al., 2021) of our method on
LDM-4 ImageNet at a variety of weight
quantization levels, versus earlier ap-
proaches. The gray dashed line indi-
cates the original model performance.
Our sFID superiority at every bit-width
establishes a new Pareto frontier.

Despite these successes, substantial holes exist in the
model quantization literature on diffusion models. In con-
trast to the codebook-based Vector Quantization (VQ) ap-
proaches such as (Tseng et al., 2024; Egiazarian et al.,
2024) that have come to dominate the Pareto frontier of
Large Language Model (LLM) quantization, all works on
diffusion model quantization to date have focused on Uni-
form Scalar Quantization (USQ)-based approaches. Fur-
thermore, while LLM quantization to as little as a sin-
gle bit per original weight (Xu et al., 2024) has been
achieved, there has been no successful binarization of a
large class-conditional latent diffusion model to date.

In this paper, we tackle for the first time the question
of whether the codebook-based VQ approaches are also
applicable to diffusion models, whose convolutional U-
Net architecture (Ronneberger et al., 2015) and itera-
tive denoising process has no analogue in the NLP do-
main. In the process, we uncover many surprising re-
sults. Starting with the framework of layer-by-layer inde-
pendent calibration followed by whole-model parameter-
efficient fine-tuning, we identify several issues, such as
the unsuitability of AdamW for fine-tuning of diffu-
sion models quantized with a learnt codebook and the
non-independence of successive minibatches encountered
along the denoising trajectory. We introduce a solution in
the form of Selective Momentum Invalidation PV-Tuning (SeMI-PV). Furthermore, we observe and
test opportunities for optimization in the form of Convolutional Kernel-Aware Quantization (KAQ)
and Layer Heterogeneity-Aware Quantization (LAQ) for further weight savings.

Importantly, we contribute a complete, data-free and rapid PTQ+PeFT solution for the learnt
codebook-based additive quantization of DMs that achieves outstanding results on the commonly-
accepted metrics of Inception Score (IS) (Salimans et al., 2016), Fréchet Inception Distance (FID)
(Heusel et al., 2017) and sFID (Nash et al., 2021), as shown in Fig. 1. At W4A8, our quantized
model achieves FID and sFID that are both better, respectively by 1.75 and 1.93 points, than that
of the non-quantized model on the standard ImageNet task with LDM-4, thus strongly indicating
that even outside of any resource concerns, it is always better to use our quantized model over the
original model. At W2A8 on the same task, our FID, sFID and IS are respectively 1.13, 0.33 and
38.41 points better than the best existing solution of He et al. (2024a). Furthermore, via heteroge-
nous quantization of different kinds of U-Net layer, we achieve an unprecedented W1.5A8, a 95.3%
compression of the original weights. As He et al. (2024a) raised the importance of rapid and effi-
cient quantization, our technique permits a trade-off between quantization cost and inference-time
performance, with our most time-consuming stage being highly parallelizable. Due to the concerns
of latency in addition to VRAM usage (our optimization focus), we show that our approach is the
first to permit FLOPs reduction on arbitrary hardware, whereas prior approaches focus on savings
enabled by hardware support for very low-bit integer operations that may not be universal.
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2 BACKGROUND AND RELATED WORK

2.1 DIFFUSION MODELS

Diffusion models (Ho et al., 2020; Song et al., 2021) are a class of latent-variable generative model
inspired by non-equilibrium thermodynamics, notable for the iterative forward and reverse processes
by which they relate the data distribution to an isotropic Gaussian. In the basic case, the forward
process is a Markov chain which repeatedly adds Gaussian noise to the sample:

q(x⃗t|x⃗t−1) = N (x⃗t;
√
1− βtx⃗t−1, βtI) (1)

where the variance schedule βt ∈ (0, 1) controls the amount of noise added in each of T time steps.
The reverse process is then approximated by a learned conditional distribution:

pθ(x⃗t−1|x⃗t) = N (x⃗t−1; ˜⃗µθ,t(x⃗t), β̃tI). (2)

where at each denoising time-step ˜⃗µθ,t(x⃗t) is calculated by a noise estimation network with shared
weights. Model quantization induces error in the value of ˜⃗µθ,t(x⃗t) at each time-step.

The cost of diffusion model inference is subsequently determined by the number of time steps at
which noise prediction must be carried out as well as the cost of model inference for a single instance
of noise prediction. Accelerated sampling strategies such as the DDIM Song et al. (2021), PLMS
sampler Liu et al. and DPM-Solver Lu et al. (2022) seek to reduce the number of denoising time
steps, whereas quantization approaches, such as our solution, target the cost of noise prediction.

2.2 DIFFUSION MODEL QUANTIZATION

Earlier works on the quantization of diffusion models, such as PTQ4DM (Shang et al., 2023), Q-
Diffusion (Li et al., 2023), PTQD He et al. (2024b), Q-DM (Li et al., 2024) and TDQ (So et al., 2024)
have noted a distinction between PTQ and QAT. QAT approaches are characterised by a costly fine-
tuning process akin to knowledge distillation and/or access to the original training dataset, whereas
PTQ involves the relatively lightweight layer-wise optimization of quantization parameters.

More recently, however, works such as EfficientDM (He et al., 2024a) and QuEST (Wang et al.,
2024) have introduced a concept we label PTQ+PeFT, involving layer-wise alignment followed by
parameter-efficient fine-tuning. Such approaches achieve inference-time results matching those of
QAT, but are closer to PTQ in terms of resources required at quantization time. They thus combine
the best aspects of both approaches.

2.3 QUANTIZATION STRATEGIES

Previous works on the quantization of diffusion models such as (Li et al., 2023) have exclusively
focused on USQ (Fig. 2), where each weight is individually mapped from its full-precision floating-
point representation w to a low-bit integer ŵ via a learnt affine transformation:

ŵ = s · clip(round(w
s
− z), cmin, cmax) + z, (3)

where cmin and cmax are the smallest and largest integer representable at the chosen bit-width and s, z
are the learnt layer-wise or channel-wise scale factor and zero-point by which the transformation is
parameterised. Works such as So et al. (2024); He et al. (2024a) have improved the flexibility of
USQ by learning separate quantization parameters at each time-step.

Meanwhile, in the parallel field of LLM quantization, recent state-of-the-art works such as QuIP#
(Tseng et al., 2024) and AQLM (Egiazarian et al., 2024; Malinovskii et al., 2024) have achieved
impressive results with Vector Quantization (VQ) of model weights. Under k-bit vector quantization
with M codebooks, groups of d weights each are jointly replaced with M indices or codes ∈ Zkd/M

into codebooks C(1), . . . , C(M) ∈ R2kd/M×d. We extend this approach to diffusion models (Fig. 3).

2.4 ADDITIVE QUANTIZATION

AQLM (Egiazarian et al., 2024) introduced the use of Additive Quantization (AQ) as its vector
quantization method (Figure 3), whereby each group of weights is reconstituted as the sum of its
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Figure 2: The Uniform Scalar Quantiza-
tion (USQ) strategy.

+

... ...
...

Convolutional filters
(weight groups)

Codebook vectors
Codes
(Indices)

Decompression

Figure 3: Additive Quantization (AQ)
(Egiazarian et al., 2024), applied to a convo-
lutional kernel.

indexed codebook vectors according to the following equation:

Ŵ=

M∑
m=1

C
(m)
b1,m

⊕ · · · ⊕
M∑

m=1

C
(m)
b
2kg/M,m

, (4)

with ⊕ as the concatenation operator and bim ∈ R2kg/M

as the code assigned to the i-th group of
weights and m-th codebook under k-bit quantization, where g is the group size and M the number
of codebooks. Quantization in Egiazarian et al. (2024) is carried out primarily in successive layer-
by-layer fashion. The codes and codebooks for the layer are optimized in alternating fashion to
minimize ||WA − ŴA||22 on calibration data, with code optimisation carried out via beam search
and codebook quantization carried out via Adam Kingma & Ba (2015). Subsequent Adam optimi-
sation of all codebooks simultaneously is suggested as a whole-model PEFT solution and in this
scenario codes are kept frozen. Malinovskii et al. (2024) instead develop the PV-Tuning algorithm
for joint optimisation of both codes and codebooks against an arbitrary loss on a whole-model basis.
Readers are directed to consult Egiazarian et al. (2024); Malinovskii et al. (2024).

The three important hyperparameters which determine the achieved bit-width under AQLM are the
number of codebooks M , the group size g and the size of the codebook indices, which we may fix
as n = kg/M for k-bit weight quantization. Note that there is some contribution to bit-width from
the size of the code-book itself. n = 8 results in a small codebook of only 256 rows.

3 VECTOR QUANTIZATION OF DIFFUSION MODELS

Recent works on codebook-based vector quantization of generative models (Tseng et al., 2024;
Egiazarian et al., 2024; Malinovskii et al., 2024) have focused on transformer-based LLMs and the
quantization of fully-connected or linear layers. Diffusion models differ from LLMs in several key
aspects, including the iterative denoising procedure by which they produce a sample and also the
U-Net architecture, which features 3 × 3 and 1 × 1 convolutions in addition to linear layers. In
the following sections, we illustrate the novel modifications we make to harmonize earlier vector
quantization and diffusion model quantization approaches in light of these challenges.

Our approach operates as a two-step process. In the first stage, we convert each layer of the model to
a vector-quantized layer, by means of per-layer calibration according to the procedure described in
Egiazarian et al. (2024), so as to minimize a calibration loss argmin||WA− ŴA||22 for each layer
independently. In the second stage, we perform parameter-efficient fine-tuning using the optimizer
of Malinovskii et al. (2024), so as to minimise a teacher-student loss (Section 3.2).

3.1 STAGE 1: LAYER-BY-LAYER CALIBRATION

Layer-Wise Calibration. The AQLM algorithm as presented in Egiazarian et al. (2024) can only
be applied via one-layer-at-a-time calibration on a finite (small) calibration dataset. Calibration of a
layer is performed for a number of epochs until an early stopping criterion is met. The calibration
dataset is generated via uniform random sampling at all time steps, as described in Li et al. (2023).
The number of calibration images used and related hyperparameters are elucidated in Section 4.1.

4
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Additive Quantization of Convolutional Layers. Egiazarian et al. (2024) only describes the
AQLM compressed weight format in terms of fully-connected layers. However, we may easily ex-
tend it to convolutional layers of arbitrary stride, padding and kernel size, by noting that a k-strided
p-padded n×n convolution may be exactly represented as a k-strided p-padded sliding window view
of the input, followed by matrix multiplication with a rearrangement of the weights tensor. These
re-indexing operations are completely transparent to automatic differentiation.

Figure 4: Scale factors.

Figure 5: Effects of group
size.

Convolutional Kernel-Aware Quantization (KAQ). Consider a
convolutional layer with a weights matrix F comprised of Cout in-
dividual Cin × h1 × w1 filters {Fi}Cout

i=1. The forward pass against
an input H may be expressed as the channel-wise concatenation

G =

Cout⊗
i=1

H ∗ Fi, (5)

where F ∈ RCout×Cin×h1×w1 , Fi ∈ RCin×h1×w1 , H ∈
RCin×h×w, H ∗ Fi ∈ Rh×w, and ∗ is the convolution operator.
Due to the resulting correlation between weights corresponding to
the same input or output channel, earlier works on diffusion model
quantization such as (Li et al., 2023; Wang et al., 2024; Huang et al.,
2024; He et al., 2024a) have all chosen to learn Cin separate scales
s ∈ RCin for the weight quantization according to (Equation 3).
Meanwhile, the VQ approach Egiazarian et al. (2024) chooses to
apply per-output-feature scaling subsequent to the quantized mat-
mul operation Y = XŴ ∗ s corresponding to s ∈ RCout . These
scaling operations are illustrated in Fig. 4.

In either case, it is not possible to learn scale factors correspond-
ing to both the input and the output channel dimension, as the pro-
hibitive Cin ∗ Cout number of scale factors required would erase
any gains from weight quantization. However, specifically in the
case of additive vector quantization applied to 3 × 3 convolutional
kernels, we may still achieve independent quantization of each individual 3 × 3 filter matrix corre-
sponding to one input and one output channel, via considering each such matrix as the group of 9
weights to be replaced as a unit by one index per codebook. This choice is illustrated in Fig. 5.

Fully Connected
Conv2d 3x3
Conv2d 1x1

Layer Type

bits/parameter

M
S

E

Figure 6: Top: Overall contribution to the
quantization error versus the number of bits
used per parameter, for all layers of LDM-
4 ImageNet (number of codebooks ∈ [1, 4]).
Bottom: Total count of parameters by layer.

Empirically, we observe a small improvement in the
overall FID, sFID and ISC when the group size for
additive quantization is set to exactly nine, as shown
in our ablation study.

Layer Heterogeneity-Aware Quantization (LAQ).
Diffusion models are deep neural networks, contain-
ing hundreds of layers. Furthermore, these layers
vary in the type of operation performed, involving
not only 3 × 3 convolution layers, but also 1 × 1
point-wise convolutional layers involved in attention
operations, as well as linear layers involved in time
embedding. As shown by Fig. 6, there is a trade-
off unique to each kind of layer between the over-
all quantization error and the average number of bits
used to store each parameter of the layer. 1 × 1
convolutional layers contribute to total model MSE
more than 3 × 3 convolutional layers while consti-
tuting a small proportion of the total model parame-
ters. Meanwhile, earlier works such as Huang et al.
(2024); So et al. (2024); Wang et al. (2024) have
found that accurately maintaining temporal informa-
tion (encoded in the fully-connected layers) is espe-
cially important for high-quality image generation.
We thus choose in the most extreme case to quantize
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3× 3 convolutional layers using one codebook per layer, while using two codebooks each for other
layers, enabling our unprecedented W1.5A8 result on the ImageNet LDM-4 model.

3.2 STAGE 2: PARAMETER-EFFICIENT FINE-TUNING

Initial Calibration

Full Precision
Model

Quantized
Model

Parameter Updates

Optimizer

Initial minibatch of
each epoch:

Figure 7: The fine-tuning process.

Subsequent to the Layer-Wise Calibration, PTQ+PeFT
works such as (He et al., 2024a; Wang et al.,
2024) additionally perform parameter-efficient fine tun-
ing on a whole-model basis in data-free teacher-student
knowledge-distillation fashion. The full-precision model
is used to generate a batch of sample images from noise
for a total of T time-steps. At each denoising time-step
0 < t ≤ T , noise prediction is conducted via both the
original model (the teacher) and the quantized model (the
student). Then, the teacher-student loss

Lt = ∥µθ(xt, t)− µ̂θ(xt, t)∥2 , (6)

where µθ(xt, t) is the full-precision model and µ̂θ(xt, t)
the quantized model, is computed and the optimizer ad-
vanced by one step. One epoch and T optimization steps
of PeFT thus correspond exactly to the generation of one
batch of images via T denoising time-steps.

Discrete Optimisation using PV-Tuning. The standard AdamW optimizer (Loshchilov & Hutter,
2019) can only perform continuous optimization of the learnt codebook vectors used for additive
vector quantization, as opposed to discrete optimization of the learnt codebook indices used to rep-
resent each group of weights. In practice, we find optimization using AdamW to produce poor
results (Section 4.4). We instead opt for the PV-Tuning optimizer of Malinovskii et al. (2024),
which performs both continuous and discrete optimization.

Figure 8: The convergence of PV-Tuning
with versus without SeMI-PV.

Selective Momentum Invalidation PV-Tuning
(SeMI-PV). With the outlined fine-tuning approach,
we note divergence at the start of each denoising
epoch (Fig. 8). We posit this to be due to the succes-
sive denoising process violating standard assump-
tions. Specifically, at the end of one epoch and the
beginning of another, a batch of almost-fully de-
noised images is immediately followed by a batch
of pure isotropic Gaussian noise. As a result the ac-
cumulated momentum is no longer valid. We solve
this by simply resetting the optimizer state at the end
of each epoch. As this is observed in our ablation to
result in effective training when instituted along with PV-Tuning instead of Adam, we dub the com-
bination Selective Momentum Invalidation PV-Tuning (SeMI-PV).

Adaptable Training-Time Denoising Schedule. Earlier works on PTQ+PeFT approaches (He
et al., 2024a; Wang et al., 2024) have placed importance on the time required for the quantiza-
tion process in addition to the inference-time generation quality of the quantized model. While our
focus is on state-of-the-art results for the compression of model weights, we would also like our
method to be quite fast to perform. To this end, we note that unlike earlier works, the number of
denoising steps used per epoch during the parameter-efficient fine-tuning is adaptable and may be
reduced for accelerated training with minimal cost to inference-time performance (Section 4.4).

3.3 INFERENCE-TIME FLOPS REDUCTION WITH LUT MULTIPLICATION

3× 3 convolutional operations represent the majority of the inference-time FLOPs requirement for
inference of the diffusion model U-Net. For any given such convolutional layer quantized using
k-bit additive quantization with M codebooks of size R29k/m×9, in cases where Cin > M · 29k/m
a substantial reduction in FLOPs may be achieved on arbitrary hardware via an efficient inference
kernel which precomputes the product of every codebook vector with each input patch prior to
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dequantization. Empirical FLOPs are stated in Section 4.5, in contrast to earlier works such as (Li
et al., 2023), which provides only theoretical computations of BOPs (Bitwise OPerations) assuming
capability of the hardware to efficiently perform very low-precision integer operations. Detailed
specifications of this kernel and proof of FLOPs reduction are provided in the Appendix.

Note that an analogous technique is used in the released code of Egiazarian et al. (2024) to accelerate
the inference of fully-connected layers. Our contribution is in highlighting its applicability.

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

Evaluation Methodology. In order to demonstrate the general applicability of our methods, we
evaluate our proposed technique on two widely-adopted benchmarks: Unconditional generation us-
ing the DDIM model of Song et al. (2021) on CIFAR-10 64× 64, and conditional generation using
the LDM-4 model of Rombach et al. (2021) on ImageNet 256 × 256 (Deng et al., 2009). We com-
pare the generation quality of our model with that of previous works using Inception Score (IS),
Fréchet Inception Distance (FID) (Heusel et al., 2017), Spatial FID (sFID) (Salimans et al., 2016)
and Precision. Inception Score is known to be unreliable on datasets other than ImageNet. How-
ever, we report it for CIFAR-10 so as to enable apples-to-apples comparison with earlier works on
quantization. All metric calculations are conducted using the reference implementation from the
ADM evaluation suite (Dhariwal & Nichol, 2021) after generation of 50,000 images via the quan-
tized model. FLOPs are calculated using FAIR’s fvcore (AI, 2019) tools and PyTorch compiled with
MKL.

For our reporting of bit-width, it should be noted that weight quantization using VQ-based methods
results in a decimal value for the average parameters/weight. For reasons of symmetry with all
earlier works on diffusion model quantization, we conservatively round up to the nearest 0.5.

Calibration Technique. Uniform sampling of model inputs at all inference time steps is performed
as in (Li et al., 2023), resulting in a calibration dataset of 5120 model inputs. Layer-by-layer weight
quantization is subsequently carried out via AQLM (Egiazarian et al., 2024) with early-stopping at
a relative error tolerance of 0.01. In line with earlier works such as (Li et al., 2023; Huang et al.,
2024; So et al., 2024; He et al., 2024a; Wang et al., 2024), only the U-Net of latent diffusion models
(LDMs) is quantized. The encoder and decoder which produce the latent representation are not
quantized. Furthermore, the first and last convolutional layers of U-Nets are not quantized, due to
their extremely small share of the parameter count and model FLOPs. The number of codebooks
for AQLM quantization is set to M = 4 for W4A8, M = 3 for W3A8, and M = 2 for W2A8.
For W1.5A8, 3 × 3 convolutional layers are quantized with M = 1 and all others layers M = 2.
A group size of d = 9 is used for 3 × 3 convolutional layers and d = 8 for all other layers. The
codebook size is set to 28 entries per codebook, corresponding to 8-bit indices. This ensures that
codebooks are relatively small compared to quantized weight matrices.

Modifications to these settings are noted in the subsection specific to the experiment.

PeFT Hyperparameters. Unless explicitly noted otherwise, whole-model PeFT is subsequently
carried out using the PV-Tuning optimizer (Malinovskii et al., 2024) for 160 epochs of 100 succes-
sive denoising steps each in the W4A8 and W3A8 case and 320 epochs of 100 successive denoising
steps each in the W2A8 and W1.5A8 cases, with a continuous optimization learning rate of 4e − 5
decaying linearly to 1e− 6 and a discrete optimization learning rate of 1e− 4. A batch size of 4 is
used for PeFT of LDM models and 64 for DDIM models.

Activation Quantization Methodology. Improvements to the quantization of weights, not activa-
tions is the focus of this paper. Consequently we quantize activations according to the methodology
of (Li et al., 2024) for CIFAR-10 WxA8. For ImageNet, we use separate activation scale factors
for each time-step as in He et al. (2024a); Wang et al. (2024), due to the well-attested better perfor-
mance. Activation quantization is performed as the last step after PeFT has completed.
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4.2 UNCONDITIONAL GENERATION VIA DDIM CIFAR-10 32× 32

In line with earlier literature, we perform unconditional image generation on the CIFAR-10 dataset
(Krizhevsky, 2009) at the W4A8 quantization level using the DDIM model of Song et al. (2021)
(Table 1). We train on a single RTX3090 and perform inference at 100 denoising time steps, with
eta = 0.0 and cfg = 3.0, in line with earlier works. We test against PTQ (Shang et al., 2023; Li
et al., 2023), QAT (Esser et al., 2020; So et al., 2024) and PTQ+PeFT (He et al., 2024a) methods.
On the balance of it, we outperform all other methods with regards to FID, with the exception of
the QAT method TDQ (So et al., 2024) and the PTQ+PeFT method EfficientDM (He et al., 2024a).
However, the source code of TDQ (So et al., 2024) is not available, and the released code of (He
et al., 2024a) does not include the CIFAR-10 experiments. We have been unable to independently
replicate their results. Excluding TDQ and EfficientDM, AQUATIC-Diff is best-in-class on the
DDIM CIFAR-10 task. Furthermore, our GPU time requirements for quantization are much closer
to that of PTQ than that of QAT, in line with our status as a PTQ+PeFT method.

Table 1: Performance comparison of our method on DDIM CIFAR-10 32× 32.

Method Bit-width
(W/A) Training data GPU Time

(hours)
Model Size

(MB) IS↑ ID↓
FP 32/32 50K - 136.4 9.12 4.14

PTQ4DM 4/8 0 0.95 17.22 9.31 10.12
Q-Diffusion 4/8 0 0.95 17.22 9.12 4.93

LSQ 4/8 50K 13.89 17.22 9.38 4.53
TDQ 4/8 50K 16.99 17.26 9.59 4.13

EfficientDM 4/8 0 0.97 17.26 9.41 3.80
AQUATIC-Diff 4/8 0 3.66 17.35 9.00 4.43

Note that although our FID is superior to that of Shang et al. (2023); Li et al. (2023); Esser et al.
(2020), our IS is substantially lower. Li et al. (2023) indicates that ”[...] IS is not an accurate
reference for datasets that differ significantly from ImageNet’s domain and categories.”

4.2.1 CONDITIONAL GENERATION VIA LDM-4 IMAGENET 256× 256

The highlight of our work is conditional image generation on the ImageNet (Deng et al., 2009)
dataset at the W4A8 quantization level using the LDM-4 model of Rombach et al. (2021). We
perform inference at 20 denoising time steps via the DDIM sampler of Song et al. (2021), with
eta = 0.0 and cfg = 3.0, in line with earlier works. We test against all three applicable earlier
works: Li et al. (2023), He et al. (2024b), and He et al. (2024a). Our results are displayed in Table 2.

We achieve impressive results across the board. At the W4A8 level of quantization, we achieve
FID and sFID that respectively outperform the full-precision model by 1.75 and 1.93 points. Fur-
thermore, we exceed the best existing solution of (He et al., 2024a) by 1.57 points of sFID. At the
W3A8 level of quantization, our FID is 3.44 points better than that of the original model. At the
W2A8 level of quantization, our FID is 1.13 points lower, IS 39.2 points higher and precision 13.49
percentage points higher than that of (He et al., 2024a). Lastly, our novel W1.5A8 level of quanti-
zation, where each weight is quantized with only 1.5 bits on average, results in FID that is still 2.3
points better than the full-precision model.

Pareto Optimality. This result establishes us as the Pareto frontier for this task, since our solution
is the optimal choice for generation quality at every level of weight compression.

4.3 QUANTIZATION EFFICIENCY

While our focus in the previous section is the achievement of the best possible FID and sFID at a
given level of quantization, some earlier works such as EfficientDM (He et al., 2024a) have also
stressed the importance of GPU resources required for quantization. We see this concern primar-
ily as one of wall-clock time, and not necessarily of GPU hours, as even two days of time on an
NVIDIA RTX 3090 would pessimistically cost just 12 dollars at prevailing market rates – a mi-
nuscule amount relative to the throughput of user requests seen by a commercial service such as
DALLE-2 or Midjourney. Consequently, we would like to note that:
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Table 2: Performance comparison of our method on LDM-4 ImageNet 256× 256.

Method Bit-width
(W/A) IS↑ FID↓ sFID↓ Precision↑

(%)
FP 32/32 364.73 11.28 7.70 93.66

Q-Diffusion 4/8 336.80 9.29 9.29 91.06
PTQD 4/8 344.72 8.74 7.98 91.69

EfficientDM 4/8 353.83 9.93 7.34 93.10
AQUATIC-Diff 4/8 356.18 9.53 5.77 93.33
AQUATIC-Diff 3/8 333.57 7.84 5.81 92.39

Q-Diffusion 2/8 49.08 43.36 17.15 43.18
PTQD 2/8 53.36 39.37 15.14 45.89

EfficientDM 2/8 175.03 7.60 8.12 78.90
AQUATIC-Diff 2/8 213.44 6.47 7.79 92.39
AQUATIC-Diff 1.5/8 174.24 8.98 8.84 78.08

• Our Layer-by-Layer Calibration process is embarassingly parallel, that is to say, it may be
split across 4 RTX 3090 GPUs for a 4× speedup.

• Unlike approaches such as He et al. (2024a); Wang et al. (2024) which require quantization-
aware fine-tuning of an LDM-4 ImageNet model at 100 time steps prior to inference at 20
time-steps, we are able to conduct both the PeFT process and inference at 20 time-steps.

Under the above optimizations, we observe only a small degradation of generation quality while
maintaining comparable wall-clock time to He et al. (2024a) (Table 3).

Table 3: Efficiency comparison of our method on LDM-4 ImageNet 256× 256.

Method Bit-width
(W/A)

Wall Time
(hours) IS↑ FID↓ sFID↓ Precision↑

(%)
FP 32/32 N/A 364.73 11.28 7.70 93.66

EfficientDM 4/8 3.05 353.83 9.93 7.34 93.10
AQUATIC-Diff 4/8 5.61 350.28 9.04 5.77 92.80

EfficientDM 2/8 3.11 175.03 7.60 8.12 78.90
AQUATIC-Diff 2/8 6.95 180.57 8.10 9.58 78.87

4.4 ABLATION STUDY

We comprehensively ablate the considerations mentioned in Section 3 at the W2A8 quantization
level on the LDM-4 ImageNet model at 100 PeFT time-steps and 20 inference time-steps (Table 4).
First, we set the group size g = 9 according to KAQ, and trial PeFT methods against the control
of only layer-wise calibration, settling on our final W2A8 method with SeMI-PV. Then, we see the
effect of setting g = 8 instead, which is a small decrease in performance. Lastly, we apply LAQ and
use only one codebook per 3× 3 convolutional layer, thereby achieving W1.5A8.

Table 4: Ablation of our method on LDM-4 ImageNet 256× 256.

Method Bit-width
(W/A) IS↑ FID↓ sFID↓ Precision↑

(%)
FP 32/32 364.73 11.28 7.70 93.66

Layer-Wise Calibration + KAQ 2/8 12.73 130.78 41.71 15.37
+ PeFT (AdamW) 2/8 229.89 6.16 7.08 87.49

+ PeFT (PV-Tuning) 2/8 167.05 12.83 17.44 75.74
+ SeMI-PV 2/8 213.44 6.47 7.79 92.39

- KAQ 2/8 203.05 6.68 7.71 82.92
+ KAQ + LAQ 1.5/8 174.24 8.98 8.84 78.08

It may be noted that the AdamW-based PeFT method actually performs substantially better on all
metrics than the best PV Tuning-based approach. However, a subjective examination of results
using human eye-power (Figure 10 and more examples in Appendix ??) shows the AdamW-based
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approach to perform considerably worse. This discrepancy is unexplained and may point towards
issues with the underlying metrics. After all, it is also unusual that both our team and He et al.
(2024a) find quantization to extremely low bit-widths to result in FID and sFID scores much better
than those of the unquantized model.

4.5 FLOPS REDUCTION ON IMAGENET 256X256

W2A8, AdamWFP Model W2A8, SeMI-PV

Figure 9: At W2A8 on LDM-4 ImageNet with g = 9
(+KAQ), quantization with SeMI-PV produces outputs
considerably more faithful to the original model, de-
spite scoring worse on all ablated metrics.

Our key focus in our paper is in the reduc-
tion of the RAM or VRAM required for
storage of the model weights at inference
time, at which we exceed all previous solu-
tions. However, we might also want to re-
duce the FLOPs required for inference. By
default, we may simply decompress the
weights from their compressed represen-
tation (a very rapid operation) prior to the
layer operation. This approach incurs no
FLOPs advantage from the weight quanti-
zation. Alternatively, we may make use of
an efficient inference kernel (Section 3.3).

Owing to the substantial technical investment involved, we have not implemented the efficient in-
ference kernel in a manner which actually accelerates model inference. This is typical for papers on
DM quantization, and works such as Li et al. (2023); He et al. (2024a) also make claims regarding
BOPs (Bitwise OPeration) or latency without a demonstrated speed-up. However, our method is
distinguished by the lack of assumptions about hardware support for small integer arithmetic. We
display our results in Table 5.

Table 5: Latency and FLOPs of our method on LDM-4 ImageNet 256× 256. Latency measured for
generation of 4 images at 20 inference time-steps using the DDIM sampler. FLOPs measured for a
single forward pass on a batch of 4 samples using fvcore (AI, 2019).

Method Bit-width
(W/A)

FLOPs
(GFLOPs) IS↑ FID↓ sFID↓ Precision↑

(%)
FP 32/32 399.52 364.73 11.28 7.70 93.66

AQUATIC-Diff + Infer. Kernel 2/8 320.27 (-19.84%) 213.44 6.47 7.79 92.39
AQUATIC-Diff + Infer. Kernel 1.5/8 255.05 (-36.17%) 174.24 8.98 8.84 78.08

5 CONCLUSION

In this work, we have introduced codebook-based additive vector quantization to diffusion models
for the first time. In order to account for the unique features of diffusion models, such as the convo-
lutional U-Net and the progressive denoising process, we have introduced techniques such as Convo-
lutional Kernel-Aware Quantization (KAQ), Layer Heterogeneity-Aware Quantization (LAQ), and
Selective Momentum Invalidation PV-Tuning (SeMI-PV). Our method has achieved state-of-the-art
results in extremely low-bit quantization. Not only have we set a new Pareto frontier on the LDM-4
benchmark at 20 inference steps, we have also quantized this standard benchmark task to W1.5A8
for the first time. Additionally, our approach allows for flexibly balancing quantization and inference
efficiency and achieves hardware-agnostic FLOPs savings.

Limitations and future work. Although AQUATIC-Diff achieves excellent results on a variety of
metrics, including some which are state-of-the-art, we are not as efficient in terms of pure GPU
hours compared to earlier PTQ+PEFT works such as He et al. (2024a). In part, this results from the
slowness of the AQLM layer-wise quantization (Egiazarian et al., 2024) and of the PV-Tuning opti-
mizer (Malinovskii et al., 2024), in comparison to straight-through estimation using Adam (Kingma
& Ba, 2015) as applied in He et al. (2024a). In order to address this, work can be invested in the
development of faster gradient-based optimization algorithms for additive vector quantization.
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6 REPRODUCIBILITY STATEMENT

Along with the discussions of methodological procedure and hyperparameter settings in paper, we
release our code via an anonymous download link, allowing for the main results to be easily re-
produced. Furthermore, in Appendix A.1 we explain the details of the FLOPs-reducing efficient
inference kernel and provide proof of its FLOPs reduction. We hope that this provision will be
useful to our respected reviewers.
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A APPENDIX

A.1 PROOF OF FLOPS SAVINGS VIA EFFICIENT INFERENCE KERNEL

Consider a convolutional layer with a weight matrix F consisting of Cout individual filters {Fi}Cout
i=1,

where each filter has dimensions Cin × h1 × w1. The forward pass on an input H can be described
as the channel-wise concatenation:

G =

Cout⊗
i=1

H ∗ Fi, (7)

where F ∈ RCout×Cin×h1×w1 , Fi ∈ RCin×h1×w1 , H ∈ RCin×h×w, H ∗Fi ∈ Rh×w, and ∗ denotes
the convolution operation (non-batched). Note that we have implicitly padded the convolution so
as to keep the spatial dimensions the same. We may now apply the classic formula for FLOPs of a
non-batched convolution operation:

FLOPs = Cout × Cin × h× w × h1 × w1 × 2. (8)

Now, instead consider the decompression of a weights matrix quantized via AQLM:

Ŵ=

M∑
m=1

C
(m)
b1,m

⊕ · · · ⊕
M∑

m=1

C
(m)
b
2kg/M,m

, (9)

with ⊕ as the concatenation operator and bim ∈ R2kg/M

as the code assigned to the i-th group of
weights and m-th codebook under k-bit quantization, where g is the group size and M the number of
codebooks. We may think instead of the decompression of a convolutional filter where g = h1×w1:

Fi=

M∑
m=1

C
(m)
b1,m

⊕ · · · ⊕
M∑

m=1

C
(m)
b
2kh1w1/M,m

, (10)
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with ⊕ as instead the stacking operator, so that the tensor dimensions work out. Substitute:

G =

Cout⊗
i=1

H ∗

(
M∑

m=1

C
(m)
b1,m

⊕ · · · ⊕
M∑

m=1

C
(m)
b
2kh1w1/M,m

)
. (11)

A rearrangement, keeping in mind the manner in which convolution commutes with summation and
stacking, grants us:

G =

Cout⊗
i=1

Cin∑
j=1

(
M∑

m=1

Hj ∗ C(m)
b1,m

⊕ · · · ⊕
M∑

m=1

Hj ∗ C(m)
b
2kh1w1/M,m

)
. (12)

We may at this point do the tedious work of counting the FLOPs:

Total FLOPs =M × 2k × Cin × h× w × h1 × w1 multiplications +

M × 2k × Cin × h× w × (h1 × w1 − 1) additions +
M × Cout × Cin × h× w additions.

(13)

Landing us at Cin > M · 29k/m as the breakpoint at which our FLOPs count goes down for a 3× 3
2-D convolutional kernel.

A.2 EXAMPLE OF MISLEADING FID RESULT FOR ADAMW VS SEMI-PV (ENLARGED).

W2A8, AdamWFP Model W2A8, SeMI-PV

Figure 10: At W2A8 on LDM-4 ImageNet with g = 9 (+KAQ), quantization with SeMI-PV
produces outputs considerably more faithful to the original model, despite scoring worse on all
ablated metrics.
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