
A Appendix

A.1 Review of Optimal Control Programming (OCP) Perspective of Training Discrete
DNNs and Continuous-time OCP

Here, we review the OCP perspective of training discrete DNNs and discuss how the continuous-time
OCP can be connected to the training process of Neural ODEs. For a complete treatment, we refer
readers to e.g. Weinan (2017); Li et al. (2017); Weinan et al. (2018); Liu & Theodorou (2019); Liu
et al. (2021a), and their references therein.

Abuse the notation and let the layer propagation rule in standard feedforward DNNs with depth T be

zt+1 =f(zt,ut), t ∈ {0, 1, · · · , T}. (17)

Here, zt and ut represent the (vectorized) hidden state and parameter of layer t. For instance, consider
the propagation of a fully-connected layer, i.e. zt+1 = σ(Wtzt+bt), where Wt, bt, and σ(·) are
respectively the weight, bias, and nonlinear activation function. Then, (17) treats ut := vec([Wt, bt])
as the vectorized parameter and f as the composition of σ(·) and the affine transformation (Do not
confuse with Fig. 3 which denotes f as the affine transformation).

The OCP perspective notices that (17) can also be interpreted as a discrete-time dynamical system
that propagates the state zt with the control variable ut. In this vein, computing the forward pass of a
DNN can be seen as propagating a nonlinear dynamical system from time t = 0 to T . Furthermore,
the training process, i.e. finding optimal parameters {ut : ∀t} for all layers, can be seen as a
discrete-time Optimal Control Programming (OCP), which searches for an optimal control sequence
{ut : ∀t} that minimizes some objective.

In the case of Neural ODEs, the discrete-time layer propagation rule in (17) is replaced with the ODE
in (1). However, as we have shown in Section 3.1, the interpretation between the trainable parameter
θ and control variable (hence the connection between the training process and OCP) remains valid.
In fact, consider the vanilla form of continuous-time OCP,

min
u(t):t∈[t0,t1]

[
Φ(xt1) +

∫ t1

t0

`(t,xt,ut)dt

]
, ẋt = F (t,xt,ut), xt0 = xt0 , (18)

which resembles the one we used in (6) except considering a time-varying control process u(t). The
necessary condition to the programming (18) can be characterized by the celebrated Pontryagin’s
maximum principle (Pontryagin et al., 1962).
Theorem 3 (Pontryagin’s maximum principle). Let u∗t ≡ u∗(t) be a solution that achieved the
minimum of (18). Then, there exists continuous processes, x∗t and a∗t , such that

ẋ∗t = ∇aH (t,x∗t ,a
∗
t ,u
∗
t) x∗0 = x0 , (19a)

ȧ∗t = −∇xH (t,x∗t ,a
∗
t ,u
∗
t) , a∗t1 = ∇xΦ

(
x∗t1
)

, (19b)

H (t,x∗t ,a
∗
t ,u
∗
t) ≤ H (t,x∗t ,a

∗
t ,ut) , ∀ut ∈ Rm, t ∈ [t0, t1] , (19c)

where the Hamiltonian function is defined as

H (t,xt,at,ut) := at · F (t,xt,ut) + `(t,xt,ut).

It can be readily verified that (19b) gives the same backward ODE in (4). In other words, the Adjoint
Sensitivity Method used for deriving (3, 4) is a direct consequence arising from the OCP optimization
theory. In this work, we provide a full treatment of continuous-time OCP theory and show that it
opens up new algorithmic opportunities to higher-order training methods for Neural ODEs.

A.2 Missing Derivations and Discussions in Section 3.1 and 3.2

Proof of Theorem 1. Rewrite the backward ODE of the accumulated loss Q in (8) below

0 = `(t,xt,ut) +
dQ(t,xt,ut)

dt
, Q(t1,xt1) = Φ(xt1).

Given a solution path (x̄t, ūt) of the ODEs in (6), define the differential state and control variables
(δxt, δut) by

δxt := xt − x̄t and δut := ut − ūt.

14

We first perform second-order expansions for ` and Q along the solution path, which are given by

` ≈ `(t, x̄t, ūt) + `x̄
Tδxt + `ū

Tδut +
1

2

[
δxt
δut

]T [
`x̄x̄ `x̄ū
`ūx̄ `ūū

] [
δxt
δut

]
, (20a)

Q ≈ Q(t, x̄t, ūt) +Qx̄
Tδxt +Qū

Tδut +
1

2

[
δxt
δut

]T [
Qx̄x̄ Qx̄ū

Qūx̄ Qūū

] [
δxt
δut

]
, (20b)

where all derivatives, i.e. `x̄, `ū, Qx̄x̄, Qūū, and etc, are time-varying. We can thereby obtain the
time derivative of the second-order approximated Q in (20b) following standard ordinary calculus.

dQ
dt
≈dQ(t, x̄t, ūt)

dt
+

(
dQx̄

dt

T

δxt +Qx̄
T dδxt

dt

)
+

(
dQū

dt

T

δut +Qū
T dδut

dt

)

+
1

2

(
δxt

T dQx̄x̄

dt
δxt +

dδxt
dt

T

Qx̄x̄δxt + δxt
TQx̄x̄

dδxt
dt

)

+
1

2

(
δut

T dQūū

dt
δut +

dδut
dt

T

Qūūδut + δut
TQūū

dδut
dt

)

+
1

2

(
δxt

T dQx̄ū

dt
δut +

dδxt
dt

T

Qx̄ūδut + δxt
TQx̄ū

dδut
dt

)

+
1

2

(
δut

T dQūx̄

dt
δxt +

dδut
dt

T

Qūx̄δxt + δut
TQūx̄

dδxt
dt

)
.

(21)

Next, we need to compute dδxt
dt and dδut

dt , i.e. the dynamics of the differential state and control. This
can be achieved by linearizing the ODE dynamics along (x̄t, ūt).

d
dt

(x̄t + δxt) = F (t, x̄t, ūt) + Fx̄(t)Tδxt + Fū(t)Tδut ⇒
dδxt

dt
= Fx̄(t)Tδxt + Fū(t)Tδut,

d
dt

(ūt + δut) = 0 ⇒ dδut
dt

= 0, (22)

since dx̄t
dt = F (t, x̄t, ūt). Finally, substituting (20a) and (21) back to (8) and replacing all (dδxt

dt ,
dδut

dt)
with (22) yield the following set of backward ODEs.

−dQx̄

dt
= `x̄ + FT

x̄Qx̄, − dQū

dt
= `ū + FT

ūQx̄,

−dQx̄x̄

dt
= `x̄x̄ + FT

x̄Qx̄x̄ +Qx̄x̄Fx̄, − dQx̄ū

dt
= `x̄ū +Qx̄x̄Fū + FT

x̄Qx̄ū,

−dQūū

dt
= `ūū + FT

ūQx̄ū +Qūx̄Fū, − dQūx̄

dt
= `ūx̄ + FT

ūQx̄x̄ +Qūx̄Fx̄.

Remark 4 (Relation to continuous-time OCP algorithm). The proof of Theorem 1 resembles standard
derivation of continuous-time Differential Dynamic Programming (DDP), a second-order OCP
method that has shown great successes in modern autonomous systems (Tassa et al., 2014). However,
our derivation was modified accordingly to account for the particular OCP proposed in (6), which
concerns only the initial condition of the time-invariant control. As this equivalently leaves out the
“dynamic” aspect of DDP, we shorthand our methodology by Differential Programming.
Remark 5 (Computing higher-order derivatives). The proof of Theorem 1 can be summarized by

Step 1. Expand Q and ` up to second-order, i.e. (20).

Step 2. Derive the dynamics of differential variables. In our case, we consider the linear ODE
presented in (22).

Step 3. Substitute the approximations from Step 1 and 2 back to (8), expand all terms using ordinary
calculus (21), then collect the dynamics of each derivative.

15

For higher-order derivatives, we simply need to consider a higher-order expansion of Q and ` in
Step 1 (see e.g. Almubarak et al. (2019) and their reference therein). It is also possible to consider
higher-order expression of the linear differential ODEs in Step 2, which may further improve the
convergence at the cost of extra overhead (Theodorou et al., 2010).
Remark 6 (Complexity of Remark 5). Let k be the optimization order. Development of higher-order
(k ≥3) optimization based on Theorem 1 certainly has few computational obstacles, just like what
we have identified and resolved in the case of k =2 (see Section 3.2). In terms of memory, while
the number of backward ODEs suggested by Theorem 1 can grow exponentially w.r.t. k, Kelly et al.
(2020) has developed an efficient truncated method that reduces the number to O(k2) or O(k log k).
In terms of runtime, analogous to the Kronecker approximation that we use to factorize second-order
matrices, Gupta et al. (2018) provided an extension to generic higher-order tensor programming.
Hence, it may still be plausible to avoid impractical training.

Proof of Proposition 2. We will proceed the proof by induction. Recall that when ` degenerates, the
matrix ODEs presented in (9b, 9c) from Theorem 1 take the form,

−dQx̄x̄

dt
= FT

x̄Qx̄x̄ +Qx̄x̄Fx̄, Qx̄x̄(t1) = Φx̄x̄, (24a)

−dQūū

dt
= Fū

TQx̄ū +Qūx̄Fū, Qūū(t1) = 0, (24b)

−dQx̄ū

dt
= Qx̄x̄Fū + Fx̄

TQx̄ū, Qx̄ū(t1) = 0, (24c)

where we leave out the ODE of Qūx̄ since Qūx̄(t) = QT
x̄ū(t) for all t ∈ [t0, t1].

From (24), it is obvious that the decomposition given in Proposition 2 holds at the terminal stage t1.
Now, suppose it also holds at t ∈ (t0, t1), then the backward dynamics of second-order matrices at
this specific time step t, take dQx̄x̄(t)

dt for instance, become

−dQx̄x̄

dt
= FT

x̄Qx̄x̄ +Qx̄x̄Fx̄

= FT
x̄

(
R∑
i=1

qi ⊗ qi

)
+

(
R∑
i=1

qi ⊗ qi

)
Fx̄

=

R∑
i=1

[(
FT
x̄qi

)
⊗ qi + qi ⊗

(
FT
x̄qi

)]
, (25)

where qi ≡ qi(t) for brevity. On the other hand, the LHS of (25) can be expanded as

−dQx̄x̄

dt
= − d

dt

(
R∑
i=1

qi ⊗ qi

)
= −

R∑
i=1

[
dqi
dt
⊗ qi + qi ⊗

dqi
dt

]
, (26)

which follows by standard ordinary calculus. Equating (25) and (26) implies that following relation
should hold at time t,

−dqi
dt

= FT
x̄qi,

which yields the first ODE appeared in (11). Similarly, we can repeat the same process (25, 26) for
the matrices Qx̄ū and Qūū. This will give us

−dQūū

dt
=Fū

TQx̄ū +Qūx̄Fū

⇒−
R∑
i=1

[
dpi
dt
⊗ pi + pi ⊗

dpi
dt

]
=

R∑
i=1

[(
FT
ūqi

)
⊗ pi + pi ⊗

(
FT
ūqi

)]
−dQx̄ū

dt
=Qx̄x̄Fū + Fx̄

TQx̄ū

⇒−
R∑
i=1

[
dqi
dt
⊗ pi + qi ⊗

dpi
dt

]
=

R∑
i=1

[(
FT
x̄qi

)
⊗ pi + qi ⊗

(
FT
ūqi

)]
,

16

which implies that following relation should also hold at time t,

−dpi
dt

= FT
ūqi.

Hence, we conclude the proof.

Derivation and approximation in (13, 14). We first recall two formulas related to the Kronecker
product that will be shown useful in deriving (13, 14).

(A⊗B)(C ⊗D)T = ACT ⊗BDT, (27)

(A⊗B)−1vec(W) = vec(B−1WA−T), (28)

where W ∈ Rl×p, A,C ∈ Rp×p, and B,D ∈ Rl×l. Further, A,B are invertible.

Now, we provide a step-by-step derivation of (13). For brevity, we will denote gni ≡ ∂F
∂hn

T
qi.

Lθnθn ≡ Qūnūn(t0) =

R∑
i=1

(∫ t0

t1

(zn ⊗ gni) dt

)(∫ t0

t1

(zn ⊗ gni) dt

)T

≈
R∑
i=1

∫ t0

t1

(zn ⊗ gni) (zn ⊗ gni)
T

dt

=

R∑
i=1

∫ t0

t1

(
znznT

)
⊗
(
gni g

n
i
T
)

dt by (27)

≈
R∑
i=1

∫ t0

t1

(
znznT

)
dt⊗

∫ t0

t1

(
gni g

n
i
T
)

dt

=

∫ t0

t1

(zn ⊗ zn) dt⊗
∫ t0

t1

R∑
i=1

gni ⊗ gni dt. by Fubini’s Theorem

There are two approximations in the above derivation. The first one assumes that the contributions
of the quantity “zn(t)⊗ gni (t)” are uncorrelated across time, whereas the second one assumes zn
and gni are pair-wise independents. We stress that both are widely adopted assumptions for deriving
practical Kronecker-based methods (Grosse & Martens, 2016; Martens et al., 2018). While the first
assumption can be rather strong, the second approximation has been verified in some empirical study
(Wu et al., 2020) and can be made exact under certain conditions (Martens & Grosse, 2015). Finally,
(14) follows readily from (28) by noticing that Lθnθn = Ān ⊗ B̄n under our computation.
Remark 7 (Uncorrelated assumption of zn ⊗ gni)). This assumption is indeed strong yet almost
necessary to yield tractable Kronecker matrices for efficient second-order operation. Tracing back to
the development of Kronecker-based methods, similar assumptions also appear in convolution layers
(e.g. uncorrelated between spatial-wise derivatives (Grosse & Martens, 2016)) and recurrent units (e.g.
uncorrelated between temporal-wise derivatives (Martens et al., 2018)). The latter may be thought of
as the discretization of Neural ODEs. We note, however, that it is possible to relax this assumption by
considering tractable graphical models (e.g. linear Gaussian (Martens et al., 2018)) at the cost of 2-3
times more operations per iteration. In terms of the performance difference, perhaps surprisingly,
adopting tractable temporal models provides only minor improvement in test-time performance (see
Fig. 4 in Martens et al. (2018)). In some cases, it has been empirically observed that methods adopting
the uncorrelated assumption yields better performance (Laurent et al., 2018).
Remark 8 (Relation to Fisher Information Matrix). Recall that for all experiments we apply Gaussian-
Newton approximation to the terminal Hessian Qx̄x̄(t1). This specific choice is partially based on
empirical performance and computational purpose, yet it turns out that the resulting precondition
matrices (12, 13) can be interpreted as Fisher information matrix (FIM). In other words, under this
specific setup, (12, 13) can be equivalently viewed as the FIM of Neural ODEs. This implies SNOpt
may be thought of as following Natural Gradient Descent (NGD), which is well-known for taking
the steepest descent direction in the space of model distributions (Amari & Nagaoka, 2000; Martens,
2014). Indeed, it has been observed that NGD-based methods converge to equally good accuracies,
even though its learning rate varies across 1-2 orders (see Fig 10 in Ma et al. (2019) and Fig 4 in
George et al. (2018)). These observations coincide with our results (Fig. 9) for Neural ODEs.

17

A.3 Discussion on the Free-Horizon Optimization in Section 3.4

Derivation of (16). Here we present an extension of our OCP framework to jointly optimizing the
architecture of Neural ODEs, specifically the integration bound t1. The proceeding derivation, despite
being rather tedious, follows a similar procedure in Section 3.1 and the proof of Theorem 1.

Recall the modified cost-to-go function that we consider for free-horizon optimization,

Q̃(t,xt,ut,T) := Φ̃(T,x(T)) +

∫ T

t

`(τ,xτ ,uτ) dτ ,

where we introduce a new variable, i.e. the terminal horizon T, that shall be jointly optimized. We
use the expression x(T) to highlight the fact that the terminal state is now a function of T.

Similar to what we have explored in Section 3.1, our goal is to derive an analytic expression for the
derivatives of Q̃ at the integration start time t0 w.r.t. this new variable T. This can be achieved by
characterizing the local behavior of the following ODE,

0 = `(t,xt,ut) +
dQ̃(t,xt,ut,T)

dt
, Q̃(T,xT) = Φ̃(T,x(T)), (29)

expanded on some nominal solution path (x̄t, ūt, T̄).

Let us start from the terminal condition in (29). Given Q̃(T̄ , x̄T̄) = Φ̃(T̄ , x̄(T̄)), perturbing the
terminal horizon T̄ by an infinitesimal amount δT yields

Q̃(T̄ + δT, x̄T̄+δT) = `(x̄T̄ , ūT̄)δT + Φ̃(T̄ + δT, x̄(T̄ + δT)). (30)

It can be shown that the second-order expansion of the last term in (30) takes the form,

Φ̃
(
T̄ + δT, x̄(T̄ + δT)

)
≈ Φ̃

(
T̄ , x̄(T̄)

)
+ Φ̃T

x̄δxT̄ +
(

Φ̃T̄ + Φ̃T
x̄F̄
)
δT +

1

2
δxT

T̄ Φ̃x̄x̄δxT̄

+
1

2
δxT

T̄

(
Φ̃x̄T̄ + Φ̃x̄x̄F̄

)
δT +

1

2
δT
(

Φ̃T̄ x̄ + F̄TΦ̃x̄x̄

)
δxT̄

+
1

2
δT
(

Φ̃T̄ T̄ + Φ̃T̄ x̄F̄ + F̄TΦ̃x̄T̄ + F̄TΦ̃x̄x̄F̄
)
δT,

(31)

which relies on the fact that the following formula holds for any generic function that takes t and x(t)
as its arguments:

d
dt

(·) =
∂

∂t
(·) +

∂

∂x
(·)TF̄ , where F̄ = F (t, x̄t, ūt).

Substituting (31) to (30) gives us the local expressions of the terminal condition up to second-order,

Q̃x̄(T̄) = Φ̃x̄, Q̃T̄ (T̄) = `(x̄T̄ , ūT̄) + Φ̃T̄ + Φ̃T
x̄F̄ , (32a)

Q̃T̄ x̄(T̄) = Φ̃T̄ x̄ + F̄TΦ̃x̄x̄, Q̃x̄T̄ (T̄) = Φ̃x̄T̄ + Φ̃x̄x̄F̄ , (32b)

Q̃x̄x̄(T̄) = Φ̃x̄x̄, Q̃T̄ T̄ (T̄) = Φ̃T̄ T̄ + Φ̃T
T̄ x̄F̄ + F̄TΦ̃x̄T̄ + F̄TΦ̃x̄x̄F̄ , (32c)

where Q̃x̄(T̄) ≡ δQ̃
δxT̄

=
Q̃(T̄+δT,x̄T̄+δT)−Q̃(T̄ ,x̄T̄)

δxT̄
, and etc.

Next, consider the ODE dynamics in (29). Similar to (20b), we can expand Q̃ w.r.t. all optimizing
variables, i.e. (xt, ut, T), up to second-order. In this case, the approximation is given by

Q̃(t, x̄t, ūt, T̄) + Q̃T
x̄δxt + Q̃T

ūδut + Q̃T̄ δT +
1

2

δxtδut
δT

T
Q̃x̄x̄ Q̃x̄ū Q̃x̄T̄

Q̃ūx̄ Q̃ūū Q̃ūT̄

Q̃T̄ x̄ Q̃T̄ ū Q̃T̄ T̄


δxtδut
δT

 , (33)

which shares the same form as (20b) except having additional terms that account for the derivatives
related to T (marked as green). Substitute (33) to the ODE dynamics in (29), then expand the time
derivatives d

dt as in (21), and finally replace dδxt
dt , dδut

dt , and dδT
dt with

dδxt
dt

= FT
x̄ δxt + FT

ū δut,
dδut

dt
= 0, and

dδT
dt

= 0.

18

Then, it can be shown that the first and second-order derivatives of Q̃ w.r.t. T obey the following
backward ODEs:

−dQ̃T̄
dt

= 0, −dQ̃T̄ T̄
dt

= 0, −dQ̃T̄ x̄

dt
= Q̃T̄ x̄Fx̄, −dQ̃T̄ ū

dt
= Q̃T̄ x̄Fū,

with the terminal condition given by (32). As for the derivatives that do not involve T, e.g. Q̃x̄x̄ and
Q̃ūū, one can verify that they follow the same backward structures given in (9) except changing the
terminal condition from Φ to Φ̃.

To summarize, solving the following ODEs gives us the derivatives of Q̃ related to T at t0:

− d
dt
Q̃T̄ (t) = 0, Q̃T̄ (T̄) = `(x̄T̄ , ūT̄) + Φ̃T̄ + Φ̃T

x̄F̄

− d
dt
Q̃T̄ T̄ (t) = 0, Q̃T̄ T̄ (T̄) = Φ̃T̄ T̄ + Φ̃T

T̄ x̄F̄ + F̄TΦ̃x̄T̄ + F̄TΦ̃x̄x̄F̄

− d
dt
Q̃T̄ x̄(t) = Q̃T̄ x̄Fx̄, Q̃T̄ x̄(T̄) = Φ̃T̄ x̄ + F̄TΦ̃x̄x̄

− d
dt
Q̃T̄ ū(t) = Q̃T̄ x̄Fū, Q̃T̄ ū(T̄) = 0

(34a)

(34b)

(34c)

(34d)

Then, we can consider the following quadratic programming for the optimal perturbation δT∗,

min
δT

Qx̄(t0)Tδxt0 +Qū(t0)Tδut0 + Q̃T̄ (t0)δT

+
1

2

δxt0δut0
δT

T
Q̃x̄x̄(t0) Q̃x̄ū(t0) Q̃x̄T̄ (t0)

Q̃ūx̄(t0) Q̃ūū(t0) Q̃ūT̄ (t0)

Q̃T̄ x̄(t0) Q̃T̄ ū(t0) Q̃T̄ T̄ (t0)


δxt0δut0
δT

 ,
which has an analytic feedback solution given by

δT∗(δxt0 , δut0) = [Q̃T̄ T̄ (t0)]−1
(
Q̃T̄ (t0) + Q̃T̄ x̄(t0)δxt0 + Q̃T̄ ū(t0)δut0

)
.

In practice, we drop the state differential δxt0 and only keep the control differential δut0 , which can
be viewed as the parameter update δθ by recalling (6). With these, we arrive at the second-order
feedback policy presented in (16).

Practical implementation. We consider a vanilla quadratic cost, Φ̃(T,x(T)) := Φ(x(T)) + c
2T2,

which penalizes longer integration time, and impose Gaussian-Newton approximation for the terminal
cost, i.e. Φx̄x̄ ≈ Φx̄ΦT

x̄. With these, the terminal conditions in (34) can be simplified to

Q̃T̄ (T̄) = cT̄ + ΦT
x̄F̄ , Q̃T̄ T̄ (T̄) = c+

(
ΦT

x̄F̄
)2
, Q̃T̄ x̄(T̄) =

(
ΦT

x̄F̄
)

ΦT
x̄.

Since Q̃T̄ (t) and Q̃T̄ T̄ (t) are time-invariant (see (34a, 34b)), we know the values of Q̃T̄ (t0) and
Q̃T̄ T̄ (t0) at the terminal stage. Further, one can verify that ∀t ∈ [t0, T̄], Q̃T̄ ū(t) =

(
ΦT

x̄F̄
)
Qū(t)T.

In other words, the feedback term Q̃T̄ ū simply rescales the first-order derivative Q̃ū by ΦT
x̄F̄ . These

reasonings suggest that we can evaluate the second-order feedback policy (16) almost at no cost
without augmenting any additional state to ODESolve. Finally, to adopt the stochastic training, we
keep the moving averages of all terms and update T with (16) every 50-100 training iterations.

A.4 Experiment Details

All experiments are conducted on the same GPU machine (TITAN RTX) and implemented with
pytorch. Below we provide full discussions on topics that are deferred from Section 4.

Model configuration. Here, we specify the model for each dataset. We will adopt the following
syntax to describe the layer configuration.

• Linear(input_dim, output_dim)

• Conv(output_channel, kernel, stride)

19

Table 7: Configuration of the vector field F (t,xt, θ) of Neural ODEs used for each dataset
(‡MIT License; §Apache License)

Dataset DNN architecture as F (t,xt, θ) Model reference

MNIST
SVHN
CIFAR10

Conv(64,3,1) → ReLU → Conv(64,3,1) Chen et al. (2018)‡

SpoAD
CharT

Linear(32,32) → Tanh → Linear(32,32)
→ Tanh → Linear(32,32) → Tanh
→ Linear(32,32)

Kidger et al. (2020b)§

ArtWR
Linear(64,64) → Tanh → Linear(64,64)
→ Tanh → Linear(64,64) → Tanh
→ Linear(64,64)

Kidger et al. (2020b)§

Circle Linear(2,64)?? → Tanh → Linear(64,2)6 Chen et al. (2018)‡

Gas

ConcatSquashLinear(8,160) → Tanh
→ ConcatSquashLinear(160,160) → Tanh
→ ConcatSquashLinear(160,160) → Tanh
→ ConcatSquashLinear(160,8)

Grathwohl et al. (2018)‡

Miniboone
ConcatSquashLinear(43,860) → SoftPlus
→ ConcatSquashLinear(860,860)
→ SoftPlus → ConcatSquashLinear(860,43)

Grathwohl et al. (2018)‡

Table 8: Hyper-parameter grid search considered for each method

Method Learning rate Weight decay

Adam { 1e-4, 3e-4, 5e-4, 7e-4, 1e-3, 3e-3, 5e-3, 7e-3, 1e-2, 3e-2, 5e-2 } {0.0, 1e-4, 1e-3 }
SGD { 1e-3, 3e-3, 5e-3, 7e-3, 1e-2, 3e-2, 5e-2, 7e-2, 1e-1, 3e-1, 5e-1 } {0.0, 1e-4, 1e-3 }
Ours { 1e-3, 3e-3, 5e-3, 7e-3, 1e-2, 3e-2, 5e-2, 7e-2, 1e-1, 3e-1, 5e-1 } {0.0, 1e-4, 1e-3 }

• ConcatSquashLinear(input_dim, output_dim)5

• GRUCell(input_dim, hidden_dim)

Table 7 details the vector field F (t,xt, θ) of Neural ODEs for each dataset. All vector fields are rep-
resented by some DNNs, and their architectures are adopted from previous references as listed. The
convolution-based feature extraction of image-classification models consists of 3 convolution layers
connected through ReLU, i.e. Conv(64,3,1) → ReLU → Conv(64,4,2) → ReLU → Conv(64,4,2).
For time-series models, We set the dimension of the hidden space to 32, 64, and 32 respec-
tively for SpoAD, ArtWR, and CharT. Hence, their GRU cells are configured by GRUCell(27,32),
GRUCell(19,64), and GRUCell(7,32). Since these models take regular time-series with the interval
of 1 second, the integration intervals of their Neural ODEs are set to {0, 1, · · · ,K}, where K is the
series length listed in Table 3. Finally, we find that using 1 Neural ODE is sufficient to achieve good
performance on Circle and Miniboone, whereas for Gas, we use 5 Neural ODEs stacked in sequence.

Tuning process. We perform a grid search on tuning the hyper-parameters (e.g. learning rate, weight
decay) for each method on each dataset. The search grid for each method is detailed in Table 8. All
figures and tables mentioned in Section 4 report the best-tuned results. For time-series models, we
employ standard learning rate decay and note that without this annealing mechanism, we are unable
to have first-order baselines converge stably. We also observe that the magnitude of the gradients
of the GRU cells is typically 10-50 larger than the one of the Neural ODEs. This can make training
unstable when the same configured optimizer is used to train all modules. Hence, in practice we fix
Adam to train the GRUs while varying the optimizer for training Neural ODEs. Lastly, for image
classification models, we deploy our method together with the standard Kronecker-based method
(Grosse & Martens, 2016) for training the convolution layers. This enables full second-order training

5 https://github.com/rtqichen/ffjord/blob/master/lib/layers/diffeq_layers/basic.py#L76

20

https://github.com/rtqichen/ffjord/blob/master/lib/layers/diffeq_layers/basic.py#L76

for the entire model, where the Neural ODE, as a continuous-time layer, is trained using our method
proposed in Alg. 1. Finally, the momentum value for SGD is set to 0.9.

Dataset. All image datasets are preprocessed with standardization. To accelerate training, we utilize
10% of the samples in Gas, which still contains 85,217 training samples and 10,520 test samples. In
general, the relative performance among training methods remains consistent for larger dataset ratios.

Setup and motivation of Fig. 5. We initialize all Neural ODEs with the same parameters while only
varying the integration bound t1. By manually grid-searching over t1, Fig. 5 implies that despite
initializing from the same parameter, different t1 can yield distinct training time and accuracy; in
other words, different t1 can lead to distinct ODE solution. As an ideal Neural ODE model should
keep the training time as small as possible without sacrificing the accuracy, there is a clear motivation
to adaptive/optimize t1 throughout training. Additional comparison w.r.t. standard (i.e. static) residual
models can be founded in Appendix A.5.

Generating Fig. 8. The numerical values of the per-iteration runtime are reported in Table 9, whereas
the ones for the memory consumption are given in Table 10. We use the last rows (i.e. SNOpt

Adam) of these
two tables to generate Fig. 8.

Table 9: Per-iteration runtime (seconds) of different optimizers on each dataset

Image Classification Time-series Prediction Continuous NF

MNIST SVHN CIFAR10 SpoAD ArtWR CharT Circle Gas Minib.

Adam 0.15 0.78 0.17 5.24 9.95 14.79 0.34 2.25 0.65
SGD 0.15 0.81 0.17 5.23 10.00 14.77 0.33 2.28 0.74
SNOpt 0.15 0.68 0.20 5.18 10.05 14.89 0.94 4.34 1.04
SNOpt
Adam 1.00 0.87 1.16 0.99 1.01 1.01 2.75 1.93 1.60

Table 10: Memory Consumption (GBs) of different optimizers on each dataset

Image Classification Time-series Prediction Continuous NF

MNIST SVHN CIFAR10 SpoAD ArtWR CharT Circle Gas Minib.

Adam 1.23 1.29 1.29 1.39 1.18 1.24 1.13 1.17 1.28
SGD 1.23 1.28 1.28 1.39 1.18 1.24 1.13 1.17 1.28
SNOpt 1.64 1.81 1.81 1.49 1.28 1.34 1.15 1.34 1.68
SNOpt
Adam 1.33 1.40 1.40 1.07 1.09 1.08 1.02 1.14 1.31

Tikhonov regularization in line 10 of
Alg. 1. In practice, we apply Tikhonov
regularization to the precondition matrix,
i.e. Lθnθn + εI , where θn is the parameter
of layer n (see Fig. 3 and (13)) and ε is the
Tikhonov regularization widely used for
stabilizing second-order training (Botev
et al., 2017; Zhang et al., 2019). To ef-
ficiently compute this ε-regularized Kro-
necker precondition matrix without addi-
tional factorization or approximation (e.g.
Section 6.3 in Martens & Grosse (2015)),
we instead follow George et al. (2018) and

Algorithm 2 ε-regularized Kronecker Update

1: Input: Tikhonov regularization ε, amortization α,
Kronecker matrices Ān B̄n

2: UA,ΣA = EigenDecomposition(Ān)
3: UB,ΣB = EigenDecomposition(B̄n)
4: X := vec−1((UA ⊗UB)TLθn) = UT

BL̃θnUA

5: S∗ := αS∗ + (1− α)X2

6: X := X/(S∗ + ε)
7: δθ := (UA ⊗UB)vec(X) =vec(UBXUT

A)
8: θ ← θ − ηδθ

perform eigen-decompositions, i.e. Ān = UAΣAUT
A and B̄n = UBΣBUT

B , so that we can utilize
the property of Kronecker product (Schacke, 2004) to obtain

(Ān + B̄n + εI)−1 = (UA ⊗UB)(ΣA ⊗ ΣB + ε)−1(UA ⊗UB)T. (35)

This, together with the eigen-based amortization which substitutes the original diagonal matrix
S := ΣA ⊗ ΣB in (35) with S∗ := ((UA ⊗ UB)TLθn)2, leads to the computation in Alg. 2.
Note that vec is the shorthand for vectorization, and we denote Lθn =vec(L̃θn). Finally, α is the

21

amortizing coefficient, which we set to 0.75 for all experiments. As for ε, we test 3 different values
from {0.1, 0.05, 0.03} and report the best result.

Error bar in Table 4. Table 11 reports the standard derivations of Table 4, indicating that our result
remains statistically sound with comparatively lower variance.

Table 11: Test-time performance: accuracies for image and time-series datasets; NLL for CNF
datasets

MNIST SVHN CIFAR10 SpoAD ArtWR CharT Circle Gas Minib.

Adam 98.83±0.18 91.92±0.33 77.41±0.51 94.64±1.12 84.14±2.53 93.29±1.59 0.90±0.02 -6.42±0.18 13.10±0.33

SGD 98.68±0.22 93.34±1.17 76.42±0.51 97.70±0.69 85.82±3.83 95.93±0.22 0.94±0.03 -4.58±0.23 13.75±0.19

SNOpt 98.99±0.15 95.77±0.18 79.11±0.48 97.41±0.46 90.23±1.49 96.63±0.19 0.86±0.04 -7.55±0.46 12.50±0.12

Discussion on Footnote 4. Here, we provide some reasoning on why the preconditioned updates
may lead the parameter to regions that are stabler for integration. We first adopt the theoretical results
in Martens & Grosse (2015), particularly their Theorem 1 and Corollary 3, to our setup.

Corollary 9 (Preconditioned Neural ODEs). Updating the parameter of a Neural ODE, F (·, ·, θ),
with the preconditioned updates in (14) is equivalent to updating the parameter θ† ∈ Rn of a

“preconditioned” Neural ODE, F †(·, ·, θ†), with gradient descent. This preconditioned Neural ODE
has all the activations zn and derivatives FT

hnqi (see Fig. 3) centered and whitened.

These centering and whitening mechanisms are known to enhance convergence (Desjardins et al.,
2015) and closely relate to Batch Normalization (Ioffe & Szegedy, 2015), which effectively smoothens
the optimization landscape (Santurkar et al., 2018). Hence, one shall expect it also smoothens the
diffeomorphism of both the forward and backward ODEs (1, 5) of Neural ODEs.

A.5 Additional Experiments

t1 optimization. Fig. 12 shows that a similar behavior (as in Fig. 5) can be found when training
MNIST: while the accuracy remains almost stationary as we decrease t1 from 1.0, the required
training time can drop by 20-35%. Finally, we provide additional experiments for t1 optimization
in Fig. 13. Specifically, Fig. 13a repeats the same experiment (as in Fig. 10) on training MNIST,
showing that our method (green curve) converges faster than the baseline. Meanwhile, Fig. 13b and
13c suggest that our approach is also more effective in recovering from an unstable initialization of
t1. Note that both Fig. 10 and 13 use Adam to optimize the parameter θ.

0.0 1.0 2.0
t1

50

100

Relative train time (%)

0.0 1.0 2.0
t1

96

Accuracy (%)

Figure 12: Training performance of MNIST with Adam when using different t1.

0 3k 6k
Train Iteration

0.05

0.5

t 1

t1 Optimization (CIFAR10)

ASM baseline
SNOpt (ours)

0 1k 2k
Train Iteration

0.4

0.7

1.0

t 1

t1 Optimization (MNIST)

0 1k 2k
Train Iteration

0.05

0.5t 1

t1 Optimization (MNIST)

0.02

0.05

(a) (b) (c)

Figure 13: Dynamics of t1 over training using different methods, where we consider (a) MNIST
training with t1 initialized to 1.0, and (b, c) CIFAR10 and MNIST training with t1 initialized to some
unstable small values (e.g. 0.05).

22

Convergence on all datasets. Figures 14 and 15 report the training curves of all datasets measured
either by the wall-clock time or training iteration.

10 1

100

Tr
ai

n
Lo

ss 100 100

0 0.75k 1.5k

45

90

Ac
cu

ra
cy

 (%
)

0 2k 4k

40

80

0 0.5k 1k

35

70

10 1

100

Tr
ai

n
Lo

ss

10 2

100

10 2

100

0 0.7k 1.4k 2.1k

40

80

Ac
cu

ra
cy

 (%
)

0 1.8k 2.6k 5.4k

40

80

0 10k 20k

50

100

0 0.3k 0.6k

1.0

1.5

NL
L

0 2k 4k 6k
Wall-Clock Time (sec)

-7

0

7

0 1.2k 2.4k 3.6k

20

40

Adam
SGD
SNOpt
(ours)

MNIST SVHN CIFAR10

SpoAD ArtWR CharT

Circle Gas Miniboone

Im
ag

e
Cl

as
si

fic
at

io
n

Ti
m

e-
se

ri
es

 P
re

di
ct

io
n

Co
nt

in
uo

us
 N

F

Figure 14: Optimization performance measured by wall-clock time across 9 datasets, including
image (1st-2nd rows) and time-series (3rd-4th rows) classification, and continuous NF (5th row). We
repeat the same figure with update iterations as x-axes in Fig 15. Our method (green) achieves faster
convergence rate compared to first-order baselines. Each curve is averaged over 3 random trials.

10 1

100

Tr
ai

n
Lo

ss 100 100

0 0.5k 1k

45

90

Ac
cu

ra
cy

 (%
)

0 0.25k 0.5k

40

80

0 0.3k 0.6k

35

70

10 1

100

Tr
ai

n
Lo

ss

10 2

100

10 2

100

0 0.2k 0.4k

40

80

Ac
cu

ra
cy

 (%
)

0 0.25k 0.5k

40

80

0 0.6k 1.2k

50

100

0 0.6k 1.2k 1.8k

1.0

1.5

NL
L

0 1k 2k
Training Iteration

-7

0

7

0 2k 4k

20

40

Adam
SGD
SNOpt
(ours)

MNIST SVHN CIFAR10

SpoAD ArtWR CharT

Circle Gas Miniboone

Im
ag

e
Cl

as
si

fic
at

io
n

Ti
m

e-
se

ri
es

 P
re

di
ct

io
n

Co
nt

in
uo

us
 N

F

Figure 15: Optimization performance measured by iteration updates across 9 datasets, including
image (1st-2nd rows) and time-series (3rd-4th rows) classification, and continuous NF (5th row). Each
curve is averaged over 3 random trials.

23

Comparison with first-order methods that handle numerical errors. Table 12 and 13 report
the performance difference between vanilla first-order methods (e.g. Adam, SGD), first-order
methods equipped with error-handling modules (specifically MALI (Zhuang et al., 2021)), and our
SNOpt. While MALI does improve the accuracies of vanilla first-order methods at the cost of extra
per-iteration runtime (roughly 3 times longer), our method achieves highest accuracy among all
optimization methods and retains a comparable runtime compared to e.g. vanilla Adam.

Table 12: Test-time performance (accuracies %) w.r.t. different optimization methods

Adam Adam + MALI SGD SGD + MALI SNOpt
SVHN 91.92 91.98 93.34 94.33 95.77
CIFAR10 77.41 77.70 76.42 76.41 79.11

Table 13: Per-iteration runtime (seconds) w.r.t. different optimization methods

Adam Adam + MALI SGD SGD + MALI SNOpt
SVHN 0.78 2.31 0.81 1.28 0.68
CIFAR10 0.17 0.55 0.17 0.23 0.20

Comparison with LBFGS. Table 14 reports various evaluational metrics between LBFGS and our
SNOpt on training MNIST. First, notice that our method achieves superior final accuracy compared
to LBFGS. Secondly, while both methods are able to converge to a reasonable accuracy (90%) within
similar iterations, our method runs 5 times faster than LBFGS per iteration; hence converges much
faster in wall-clock time. In practice, we observe that LBFGS can exhibit unstable training without
careful tuning on the hyper-parameter of Neural ODEs, e.g. the type of ODE solver and tolerance.

Table 14: Comparison between LBFGS and our SNOpt on training MNIST

Accuracy (%) Runtime (sec/itr) Iterations to Accu. 90% Time to Accu. 90%

LBFGS 92.76 0.75 111 steps 2 min 57 s
SNOpt 98.99 0.15 105 steps 18 s

Results with different ODE solver (implicit adams). Table 15 reports the test-time performance
when we switch the ODE solver from dopri5 to implicit adams. The result shows that our
method retains the same leading position as appeared in Table 4, and the relative performance
between optimizers also remains unchanged.

Table 15: Test-time performance using “implicit adams” ODE solver: accuracies for image and
time-series datasets; NLL for CNF datasets

MNIST SVHN CIFAR10 SpoAD ArtWR CharT Circle Gas Miniboone

Adam 98.86 91.76 77.22 95.33 86.28 88.83 0.90 -6.51 13.29
SGD 98.71 94.19 76.48 97.80 87.05 95.38 0.93 -4.69 13.77

SNOpt 98.95 95.76 79.00 97.45 89.50 97.17 0.86 -7.41 12.37

Comparison with discrete-time residual networks. Table 16 reports the training results where we
replace the Neural ODEs with standard (i.e. discrete-time) residual layers, xk+1 = xk + F (xk, θ).
Since ODE systems can be made invariant w.r.t. time rescaling (e.g. consider dx

dt = F (t, x, θ)

and τ = ct, then dx
dτ = 1

cF (τc , x, θ) will give the same trajectory x(t) = x(τc)), the results of
these residual networks provide a performance validation for our joint optimization of t1 and θ.
Comparing Table 16 and 5 on training CIFAR10, we indeed find that SNOpt is able to reach the
similar performance (77.82% vs. 77.87%) of the residual network, whereas the ASM baseline gives
only 76.61%, which is 1% lower.

24

Table 16: Accuracies (%) of residual networks trained with Adam or SGD

MNIST SVHN CIFAR10

resnet + Adam 98.75 ± 0.21 97.28 ± 0.37 77.87 ± 0.44

Batch size analysis. Table 17 provides results on image classification when we enlarge the batch
size by the factor of 4 (i.e. 128→ 512). It is clear that our method retains the same leading position
with a comparatively smaller variance. We also note that while enlarging batch size increases the
memory for all methods, the ratio between our method and first-order baselines does not scale w.r.t.
this hyper-parameter. Hence, just as enlarging batch size may accelerate first-order training, it can
equally improve our second-order training. In fact, a (reasonably) larger batch size has a side benefit
for second-order methods as it helps stabilize the preconditioned matrices, i.e. Ān and B̄n in (14),
throughout the stochastic training (note that too large batch size can still hinder training (Keskar et al.,
2016)).

Table 17: Accuracies (%) when using larger (128→ 512) batch sizes

MNIST SVHN CIFAR10

Adam 99.14 ± 0.12 94.19 ± 0.18 77.57 ± 0.30
SGD 98.92 ± 0.08 95.67 ± 0.48 76.66 ± 0.29

SNOpt 99.18 ± 0.07 98.00 ± 0.12 80.03 ± 0.10

25

