Towards Quantifying Incompatibilities in Evaluation Metrics for Feature Attributions: Appendix

Anonymous submission

Theoretical Proofs

Proposition 1 (Quadratic Representation). If Q is a generalized L^2 metric, then it has the quadratic representation

$$Q(\phi) = \phi^{\top} A \phi - 2b^{\top} \phi + c,$$

where $A = \mathbb{E}[\gamma_1^T \gamma_1] \in \mathbb{R}^{d \times d}$ is positive semi-definite $(A \succeq 0)$, $b = \mathbb{E}[\gamma_1^T \gamma_2] \in \mathbb{R}^d$, and $c = \mathbb{E}[\|\gamma_2\|_2^2] \in \mathbb{R}$ is a constant.

Proof. Expanding the squared norm in Definition ??:

$$Q(\phi) = \mathbb{E} \left[\| \gamma_1 \phi - \gamma_2 \|_2^2 \right]$$

$$= \mathbb{E} \left[(\gamma_1 \phi - \gamma_2)^T (\gamma_1 \phi - \gamma_2) \right]$$

$$= \mathbb{E} \left[\phi^T \gamma_1^T \gamma_1 \phi - 2\phi^T \gamma_1^T \gamma_2 + \gamma_2^T \gamma_2 \right]$$

$$= \phi^T \mathbb{E} [\gamma_1^T \gamma_1] \phi - 2\phi^T \mathbb{E} [\gamma_1^T \gamma_2] + \mathbb{E} [\gamma_2^T \gamma_2]$$

Setting $A = \mathbb{E}[\gamma_1^T \gamma_1]$, $b = \mathbb{E}[\gamma_1^T \gamma_2]$, and $c = \mathbb{E}[\gamma_2^T \gamma_2]$ yields the result. Positive semi-definiteness of A follows from $A = \mathbb{E}[\gamma_1^T \gamma_1]$ being an expectation of Gram matrices. \square

Proposition 2 (Optimal Metric Value). For any generalized L^2 metric \mathcal{Q} with quadratic form $(\phi^T A \phi - 2b^T \phi + c)$, the minimal achievable value is:

$$m(\mathcal{Q}) = \min_{\phi \in \mathbb{R}^d} \mathcal{Q}(\phi) = c - b^T A^{\dagger} b$$

where A^{\dagger} denotes the Moore-Penrose pseudoinverse.

Proof. Taking the gradient with respect to ϕ and setting to zero: $2A\phi-2b=0$, yielding $\phi^*=A^\dagger b$ (using the pseudoinverse to handle potential rank deficiency). Substituting back:

$$m(\mathcal{Q}) = (A^{\dagger}b)^T A (A^{\dagger}b) - 2b^T A^{\dagger}b + c$$
$$= b^T A^{\dagger}A A^{\dagger}b - 2b^T A^{\dagger}b + c$$
$$= b^T A^{\dagger}b - 2b^T A^{\dagger}b + c = c - b^T A^{\dagger}b$$

where we used the property $AA^{\dagger}A=A$ for the pseudoinverse. \Box

Theorem 1 (Decomposition of Incompatibility). Let $\{(\lambda_k, v_k)\}_{k=1}^r$ be the generalized eigenpairs of (A_1, A_2) with A_2 invertible, where $r = rank(A_2)$. Define $\beta_{i,k} = v_k^T b_i$ for $i \in \{1, 2\}$. Then the incompatibility index decomposes as:

$$\mathcal{I}_{1,2}(\mathcal{Q}_1, \mathcal{Q}_2) = \sum_{k=1}^r \frac{(\beta_{1,k} - \lambda_k \beta_{2,k})^2}{\lambda_k (1 + \lambda_k)}$$

Proof. By Proposition 2, we have:

$$m_1 + m_2 = c_1 - b_1^T A_1^{\dagger} b_1 + c_2 - b_2^T A_2^{\dagger} b_2$$

$$m_{1,2} = (c_1 + c_2) - (b_1 + b_2)^T (A_1 + A_2)^{\dagger} (b_1 + b_2)$$

Thus:

$$\mathcal{I}_{1,2} = (b_1 + b_2)^T (A_1 + A_2)^{\dagger} (b_1 + b_2) - b_1^T A_1^{\dagger} b_1 - b_2^T A_2^{\dagger} b_2$$

Assuming A_2 is invertible, the generalized eigenvectors $\{v_k\}$ form a basis. We can express $b_i = \sum_k \beta_{i,k} v_k$. Using the property that $A_1 v_k = \lambda_k A_2 v_k$ and orthogonality conditions, we obtain:

$$b_1^T A_1^{\dagger} b_1 = \sum_k \frac{\beta_{1,k}^2}{\lambda_k} v_k^T A_2 v_k$$
$$b_2^T A_2^{\dagger} b_2 = \sum_k \beta_{2,k}^2 v_k^T A_2 v_k$$

As well as

$$(b_1 + b_2)^T (A_1 + A_2)^{\dagger} (b_1 + b_2) = \sum_k \frac{(\beta_{1,k} + \beta_{2,k})^2}{1 + \lambda_k} v_k^T A_2 v_k$$

Substituting and simplifying yields the desired decomposition. $\hfill\Box$