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S1 Video1

The accompanying video (vidm.mp4) in MP4 (AAC, H.264) format provides a narrated overview of2

the method and shows example predictions visualizing our factorized representation on in-the-wild3

videos. The video was tested to play well in Google Chrome, VLC, and QuickTime.4

S2 Code5

Additionally, the supplementary material contains two files “model.py” and “config.yaml”. These6

contain the code for our video inpainting diffusion model, and the parameters used in its instantiation7

respectively.8

S3 VIDM Training Details9

For an overview of the VIDM model architecture, see Main Paper Section 4. In each block, the CNN10

layers are implemented as residual blocks [9] with SiLU non-linearities [10] and each attention layer11

does self-attention across all token from all input images using 32-channel GroupNorm normalization.12

Following [14], upsampling and downsampling operations are both implemented using residual CNN13

blocks with either an internal nearest mode 2× upsampling operation or internal 2× downsampling14

via average pooling. An initial convolution brings the feature dimension to 256, which is raised15

to a maximum of 1024 at the center of the U-Net. At the highest spatial resolution of 64× 64 the16

self-attention layer is omitted, as attention with 16384 (= 64× 64× 4) tokens is computationally17

intractable for our available hardware. The largest attention layer occurs at a spatial resolution of18

32× 32 across four images for a total of 4096 tokens.19

We trained VIDM using target images from Ego4D [6] and VISOR [4] (see Main Paper Sec. 4).20

Since no evaluation was done on Ego4D, no Ego4D data was held out. For VISOR, all data from21

participants P37, P35, P29, P05, and P07 was held-out from training. This held-out data from22

these participants was used for reconstruction quality evaluation (Main Paper Section 5.1) and object23

detection (Main Paper Section 5.2) experiments. Table S1 lists hyper-parameters. Figure S2 shows24

sample training batches.25

S4 Downstream Task Experimental Details26

S4.1 Detection27

We used off-the-shelf Mask R-CNN R_101_FPN_3x from Detectron2 [8, 17] trained on the COCO28

dataset [11] for evaluation. We used overlapping classes between the VISOR [4] annotations and29
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Table S1: VIDM Model and Training Hyper-parameters.
Hyper-parameter Value

Learning Rate 4.8× 10−5

Batch Size 48
Optimizer Adam
Diffusion Steps (training) 1000
Latent image Size 64× 64
Number of VQ Embedding Tokens 8192
VQ Embedding Dimension 3
Diffusion Steps (inference) 200
Attention Heads 8

COCO for evaluation. These were: apple, banana, bottle, bowl, broccoli, cake, carrot, chair, cup,30

fork, knife, microwave, oven, pizza, refrigerator, sandwich, scissors, sink, spoon, toaster.31

S4.2 Affordance Prediction32

Dataset: We experiment on EPIC-ROI and GAO tasks from Goyal et al. [5]. EPIC-ROI uses the33

EPIC-KITCHENS dataset [3] and GAO uses YCB-Affordance [2] dataset. We consider a low data34

regime in our work and sample 1K images from these datasets to train the different models. For35

EPIC-ROI, we sample images with a probability inversely proportional to the length of the video. For36

GAO, we sample randomly. We use the same evaluation setting from [5].37

Model: We use the same architecture from ACP [5] and replace the EPIC-ROI input images with38

images produced by our inpainting model (with hands removed) to incorporate our factorized39

representation. While ACP [5] masks out a patch at the bottom center of the image to hide the hand,40

we do not need any mask (neither for training nor for testing) since the hands have been removed via41

inpainting. The input is processed by ResNet-50 followed by different decoders for EPIC-ROI and42

GAO tasks.43

Training: We train separate models for EPIC-ROI and GAO using the loss function and hyperparam-44

eters from ACP [5]. While it is possible to train a single model in multitask manner, we observe that45

the two tasks are not complementary to each other. We train using 3 seeds for each task and report46

the mean and standard deviation in the metrics.47

S4.3 3D Reconstruction of Hand-held Objects48

Dataset: We use ObMan [7] dataset which consists of 2.5K synthetic objects from ShapeNet [1].49

We use the train and test splits provided by Ye et al. [18]. We divide the train split into train and val50

set. The train set consists of 134K, val set 7K and test set 6.2K images. The dataset provides 3D51

CAD models for each object, which we use for training hand-held object reconstruction model from52

Ye et al. [18].53

Model: We use the architecture from Ye et al. [18]. It uses FrankMocap [16] to extract hand54

articulation features from a single image using MANO [15] hand parameterization. These hand55

features are used as conditioning to a DeepSDF [12] model which predicts the object shape using56

implicit representation. This model also takes in pixel-aligned features and global image features57

along with hand features. To incorporate our factorized representation, we also extract global image58

features and pixel-aligned features from ObMan images showing only objects (with hands removed).59

These features are concatenated with the features from the input ObMan images and fed as input to60

the DeepSDF [12] decoder.61

Training: Following [18], we use a normalized hand coordinate frame for sampling points and62

predicting SDFs. We sample 8192 points in [−1, 1]3 for training, out of which half of them lie inside63

and the rest lie outside the object. At test time, 643 points are sampled uniformly in [−1, 1]3. We64
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Figure S1: Success rate as a function of CEM iterations for the real-world experiment described in
Main Paper Section 5.6. We report the mean and standard deviation across 3 runs for each method.

train the model in a supervised manner using 3D ground truth from ObMan [7] for 200 epochs with a65

learning rate of 1e− 5. Other hyper-parameters are used directly from [18].66

S4.4 Error Bars for Real-World Policy Learning using Learned Rewards67

In Figure S1, we report error bars for the real-world experiment ( Main Paper Section 5.6) across68

additional runs. Across 3 runs for each method, we see that our method clearly performs the best69

(final mean success rate of 82% vs 27% for both baselines).70

S5 Visualizations71

In Figure S2, we include a visualization of a training batch for our method, showcasing supervision72

and generated masks. In Figure S3, we include additional visualizations of the predictions made by73

our method and baselines.74
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Column 1 Column 2 Column 3 Column 4 Column 5 Column 6 Column 7

Figure S2: An example batch for training VIDM. Columns 1-4: Input images to the network. Column
5: target image for reconstruction. Column 6: Masked regions on the target image. Column 7: Pixels
with loss propagated (white pixels have loss, gray pixels have no loss). Note that hands that are
masked in the target image (column 5) have no loss on them. See Main Paper Section 4 for details.
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a) Original Image b) LatentDiffusion FT [14] c) DLFormer [13] d) VIDM (Ours)

Figure S3: Additional visualizations of predictions from our method and baselines.
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