
Under review as a conference paper at ICLR 2023

A LOCOMOTION TASKS

A.1 MOVEMENT SPEED

In this task, the goal of the robot is to move as fast as possible along a pre-defined direction. We
compute the average velocity of all existing (non-zero-mass) particles on robot body and project it
to the target direction to obtain a scalar estimate.

A.2 TURNING

In this task, the robot is encouraged to turn as fast as possible counter-clockwise about the upward
direction of robot’s canonical pose. We first compute the relative position of all particles on robot
body with respect to its center of mass. We then compute the cross product of the upward direction
followed by unit-vector normalization to obtain tangential directions for all particle while turning.
Finally, we compute velocity projection of every particle along the tangent and return the average as
the measure of turning performance.

A.3 VELOCITY TRACKING

In this task, the robot is required to track a series of timestamped velocities. We use quintic poly-
nomials formulated as a function of time for path parameterization since it generates smooth trajec-
tories with easy access to different orders of derivative. A path can be fully specified with target
position, velocity, and acceleration. After setting a target state, we query the first-order derivative of
the polynomial at each environment time step as the target velocity. Furthermore, due to the deform-
ing nature of soft robot, we need to estimate the heading of the robot in order compare it with the
target velocity. We manually label particles corresponding to a head and a tail of the robot a priori.
During robot motion, we extract rotation from deformation gradient of these particles and inversely
transform them back to material space to compute heading direction. Velocities of all particles on
robot body are then projected to the heading direction and averaged in order to compare to the target
velocity. We separate the measurement of magnitude and direction as this allows different weight-
ing of the two terms. We put more emphasis on the alignment of direction since it better indicates
maneuverability.

A.4 WAYPOINT FOLLOWING

In this task, the robot needs to follow a sequence of waypoints. The waypoints are generated by the
above-mentioned quintic polynomial method. We compute root mean squared error between robot
center of mass and the target waypoint for each time step. Remark that well-performing velocity
tracking can induce large waypoint following error but trace out similar-shaped yet different-scaled
trajectories. Both serve a role as distinct aspects of evaluating path following.

B PLATFORM COMPARISON

A comprehensive comparison to existing soft robot platform is shown in Table 5.

Table 5: Comparison to existing soft robot platforms.

Platform Simulation
Method Tasks Design Control Differentiability Multiphysical

Materials

SoMoGym (Graule et al., 2022) Rigid-link System Mostly
Manipulation X

DiffAqua (Ma et al., 2021) FEM Swimmer X X X

EvoGym (Bhatia et al., 2021) 2D Mass-spring
System

Locomotion
Manipulation X X

SoftZoo (Ours) MPM Locomotion X X X X

13



Under review as a conference paper at ICLR 2023

Table 6: The physical phenomenons that each environment covered in our multiphysical simulation.

Environment Elasticity Plasticity Fluid Friction

Ground High

Desert X X
Wetland X X Mixed

Clay X X
Ice Low

Snow X X
Shallow Water Shallow

Ocean Deep

C CONTINUUM MECHANICS SIMULATION

We formulate the continuum mechanics simulation in the framework of the moving least squares
material point method (MLP-MPM) (Hu et al., 2018), whose governing equations are characterized
by:

⇢
Dv

Dt
= r · � + ⇢fext (1)

⇢
D⇢

Dt
= �⇢r · v, (2)

where ⇢ is the density of the material, v is the velocity, � is the Cauchy stress of the energy, and
fext is the external forces applied, which is the gravity in our cases. We solve these equations for
an equilibrium between different materials coupled in our environments. We will not dive further
into continuum mechanics and point the interested reader to Gonzalez & Stuart (2008) for more
details. In terms of the implementation of the differentiable physics-based simulation, we massively
use DiffTaichi (Hu et al., 2019a) as the backbone.

D MULTIPHYSICAL MATERIALS

For result validation and visual entertainment, we present a diverse set of environments spanned by
different material setups and tasks. Here we illustrate the materials that each environment covered
in Table 6. Note that even though Desert, Clay, and Snow share the same composition of mate-
rial types, we distinguish their elastoplasticity by imposing different parameters and models (e.g.,
friction cone). We will release the code-level implementation of all materials for reproducibility.

E GRADIENT CHECKPOINTING

Simulating environments like ocean, desert, etc requires a significant amount of particles. This
poses a challenge in differentiation as the computation graph needs to be cached for backward pass,
leading to considerably high memory usage. Accordingly, we implement gradient checkpointing
that allows very large-scale simulation with gradient computation. Instead of caching simulation
state at every single step, we only store data every N steps. When doing backward pass at i ⇥ N
steps, we perform recomputation of forward pass from (i � 1) ⇥ N to i ⇥ N to reconstruct the
computation graph in-between for reverse-mode automatic differentiation.

F OPTIMIZATION

In this section, we describe the implementation details of each optimization method.

14



Under review as a conference paper at ICLR 2023

F.1 DIFFERENTIABLE PHYSICS

Model-based gradient provides much accurate searching direction and thus considerably more effi-
cient optimization. However, gradient information is susceptible to local optimum and often leads to
bad convergence without proper initialization. Hence, we adopt a simple yet effective approach that
samples 8 random seeds, performs optimization with differentiable physics for all runs, and picks
the best result. For the large-scale benchmark with biologically-inspired design (Table 1), we use
learning rate 0.1 and training iterations 30. For all control-only and design-only optimization, we
use learning rate 0.01 and training iterations 100. For co-design, we use learning rate 0.01 for both
control and design with training iterations 250. We use Adam as the optimizer.

F.2 REINFORCEMENT LEARNING

RL is only used in control optimization. We use Proximal Policy Optimization (PPO) (Schulman
et al., 2017) with the following hyperparameters: number of timesteps 105, buffer size 2048, batch
size 32, GAE coefficient 0.95, discounting factor 0.98, number of epochs 20, entropy coefficient
0.001, learning rate 0.0001, clip range 0.2. We use the same controller parameterization as all other
experiments throughout the paper.

F.3 EVOLUTION STRATEGY

We implement a fully-ES-based method as a co-design baseline. The genome fitness function is
set as the episode reward of the environment. We pose a constraint on connected component of
robot body. For CPPN, we use a set of activation functions including sigmoid, tanh, sin, gaussian,
selu, abs, log, exp. The inputs of CPPN include x, y, z coordinates along with distance along
xy, xz, yz planes and radius from the body center. We use HyperNEAT (Stanley et al., 2009) for
design optimization and CMA-ES (Hansen et al., 2003) for control optimization with initial standard
deviation as 0.1. We don’t use an inner-outer-loop scheme for co-design. Instead, HyperNEAT and
CMA-ES share the same set of population with population size as 10. We run ES for 100 generations
for the co-design baseline.

G CONTROLLER PARAMETERIZATION

Locomotion often exhibits cyclic motion and thus control optimization can significantly benefit
from considering periodic functions in controller parameterization. Specifically, we use a set of sine
functions with different frequency and phase (offset) as bases. The controller is hence parameterized
with a set of weights on these bases along with bias terms. We use 4 different phases with frequency
20 and 80 rad/s throughout the paper. While all experiments presented are not confined to using
this sinewave basis controller, we empirically found it extremely efficient to generate reasonable
results.

H DESIGN SPACE REPRESENTATION

In this section, we provide more implementation details of design space representations.

H.1 PARTICLE-BASED REPRESENTATION.

Given a base particle set, we instantiate two trainable scalars followed by sigmoid for geometry
and stiffness, and a K-dimensional vector followed by softmax for muscle placement with a fixed
muscle direction along the canonical heading direction.

H.2 VOXEL-BASED REPRESENTATION.

We voxelize the given base particle set to obtain a voxel grid and follows similar modelling technique
to particle-based representation in voxel level.

15



Under review as a conference paper at ICLR 2023

H.3 IMPLICIT FUNCTION

We extend the idea of OccupancyNet (Mescheder et al., 2019) to predicting robot geometry, stiff-
ness, and muscle placement. It is modeled by a multi-layer perceptron (MLP) with 2 layers and 32
dimensions for each. We use tanh activation. The MLP takes in x, y, z coordinates, distance along
xy, xz, yz planes and radius from the body center. The network outputs occupancy as geometry
using sigmoid, stiffness multiplier using sigmoid, and a K-dimensional vector using softmax for
muscle placement.

H.4 DIFF-CPPN

Diff-CPPN is a differentiable version of Compositional Pattern Producing Networks (CPPN) (Stan-
ley, 2007), following similar concept in (Fernando et al., 2016). CPPN is a graphical model com-
posed of a set of activation functions with interesting geometric properties (e.g., sine, tanh) that takes
in particle or voxel coordinates and output occupancy or other properties. It is originally designed to
be optimized with varying graph topologies. We use a meta graph to allow gradient flow and mimic
the augmenting topolgies process in NEAT yet in a differentiable manner. The model takes in x, y, z
coordinates, distance along xy, xz, yz planes and radius from the body center, and outputs occupancy
as geometry using sigmoid, stiffness multiplier using sigmoid, and a K-dimensional vector using
softmax for muscle placement. We use sin and sigmoid activation functions with 3 hidden layers
and 20 graph nodes in each layer.

H.5 SDF-LERP

Given a base particle set (i.e., a point cloud representation that span the robot design workspace),
we compute SDF of every particle for the shape of all design primitives. The shape of the robot
design is then determined by a set of coefficients weighting the SDFs from design primitives. In
other words, the trainable parameters for robot geometry only construct a N -dimensional vector,
where N is number of design primitives. We then compute weighted sum of the SDF bases and
extract robot body with the final SDF smaller or equal to zero. We use a low-temperature sigmoid
in implementation to keep gradient flow. For stiffness, we can directly perform linear interpolation.
For muscle group membership, we use linear interpolation upon the one-hot vectors from design
primitives and effectively realize a soft muscle group assignment. For muscle direction, we adopt
interpolation designed for rotation matrices (Brégier, 2021).

H.6 WASSERSTEIN BARYCENTER

This method also uses design primitives. First, it adopts the same approach for stiffness and muscle
placement as SDF-Lerp. We use a fixed muscle direction along the canonical heading direction. The
major difference is the way to represent robot geometry. Following (Ma et al., 2021), we define a
probability simplex (i.e., a set of coefficients with length as the number of design primitives) that
serves as a weighting in the sense of Wasserstein distance among different shapes. It better preserves
the volume from the shape of design primitives. We refer the reader to the original paper for more
details.

I VISUALIZATION OF BIOLOGICALLY-INSPIRED DESIGN

In this section, we demonstrate the biologically-inspired designs used in this paper. In Figure 7, we
show the four animals used in the main paper, including Baby Seal, Caterpillar, Fish, and Panda. In
Figure 8, we show the set of design primitives used in SDF-Lerp and Wasserstein Barycenter.

16



Under review as a conference paper at ICLR 2023

Baby Seal

Fish

Caterpillar

Panda

Figure 7: Visualization of animals for biologically-inspired design.

Fish 4 Orca Shark

Figure 8: Visualization of fish-like design primitives.

17


	Introduction
	SoftZoo
	Overview
	Simulation Engine
	Environment Setup
	Locomotion Tasks

	Experiments
	Biologically-inspired Morphologies
	The Importance Of Design Space Representation
	Ambiguity Between Muscle Stiffness And Actuation Signal Strength
	The Good and Bad of Differentiable Physics for Soft Robot Co-design
	Co-Optimizing Soft Robotic Swimmers

	Related Work
	Conclusion
	Locomotion Tasks
	Movement Speed
	Turning
	Velocity Tracking
	Waypoint Following

	Platform comparison
	Continuum Mechanics Simulation
	Multiphysical Materials
	Gradient Checkpointing
	Optimization
	Differentiable Physics
	Reinforcement Learning
	Evolution Strategy

	Controller Parameterization
	Design Space Representation
	Particle-based Representation.
	Voxel-based Representation.
	Implicit Function
	Diff-CPPN
	SDF-Lerp
	Wasserstein Barycenter

	Visualization of Biologically-inspired Design

