
A Appendix

A.1 Limitations

In this section we summarize several limitations of our study.

Our analysis applies to linear dimensionality reduction (PCA), while in practice, it may be that the
prior lives on a low dimensional non-linear manifold. Extending our theory for such cases would
require a significantly more elaborate approach. However, our experiments show that empirically, our
insights still hold when the PCA is replaced with a non-linear VAE.

As discussed in Section 4, the bounds achieved by our method are exponential with the underlying
dimension of the task distribution. The lower-bound example in Proposition 2 of [33] can be adapted
to our setting (by using the Tabular Mapping in Example 2), to show a problem setting where an
exponential dependence on the dimension cannot be avoided, regardless of the algorithm. Thus,
without additional structure in the problem, this limitation is general to meta-RL and not specific to
our method.

The proposed algorithm, VariBad Dream, builds on top of VariBad, and requires the latent space to
be learned by the VariBad algorithm. We are therefore limited to environments in which VariBad
performs adequately. Furthermore, in order to create the prior estimate using KDE, we used VariBAD
latents gathered from the VAE posterior at the end of a VariBad rollout. This may not work well in
some cases, e.g., when the task uncertainty is not resolved at the end of the episode.

A.2 Regret Bounds Using Prior Estimation

Lemma 3. Let f̂ ∈ P(Rd) be an estimator of the real prior f over the parametric space Θ. We have
that: R(π∗

f̂
) = Lf (π∗

f̂
)− Lf (πBO) ≤ 2CmaxT

∥∥∥f − f̂∥∥∥
1
, and for a bounded parametric space of

volume |Θ| we have: R(π∗
f̂
) = Lf (π∗

f̂
)− Lf (πBO) ≤ 2CmaxT |Θ|

∥∥∥f − f̂∥∥∥
∞
.

Proof of Lemma 3.

Lf (π)− Lf̂ (π) = Eθ∼f(θ)Eπ,M=g(θ)

[
T−1∑
t=0

ct

]
− Eθ∼f̂(θ)Eπ,M=g(θ)

[
T−1∑
t=0

ct

]

=

∫
Eπ,M=g(θ)

[
T−1∑
t=0

ct

]
f(θ)dθ −

∫
Eπ,M=g(θ)

[
T−1∑
t=0

ct

]
f̂(θ)dθ

=

∫
Eπ,M=g(θ)

[
T−1∑
t=0

ct

](
f(θ)− f̂(θ)

)
dθ

Taking the absolute value:∣∣∣Lf (π)− Lf̂ (π)
∣∣∣ =

∣∣∣∣∣
∫

Eπ,M=g(θ)

[
T−1∑
t=0

ct

](
f(θ)− f̂(θ)

)
dθ

∣∣∣∣∣
≤
∫ ∣∣∣∣∣Eπ,M=g(θ)

[
T−1∑
t=0

ct

]∣∣∣∣∣ ∣∣∣(f(θ)− f̂(θ)
)∣∣∣ dθ

≤ CmaxT
∫ ∣∣∣(f(θ)− f̂(θ)

)∣∣∣ dθ ≤ CmaxT ‖f1 − f2‖1

Using the above with A = CmaxT
∥∥∥f − f̂∥∥∥

1
:

Lf (π∗
f̂
)−A ≤ Lf̂ (π∗

f̂
) ≤Lf̂ (π∗f ) ≤ Lf (π∗f ) +A

⇒ Lf (π∗
f̂
)−A ≤Lf (π∗f ) +A

15



Rearranging gives the first bound. For a finite parametric space of size |Θ|, we know that
∥∥∥f − f̂∥∥∥

1
≤

|Θ| ·
∥∥∥f − f̂∥∥∥

∞
, which yields the second bound.

A.3 Optimal KDE Bandwidth

Lemma 4. The optimal KDE bandwidth is (up to a constant independent of n) h∗ = (logn/n)
1

2α+d

Proof of Lemma 4. The minimum value of the function f(x) = Axa +Bxb with A, a,B, b 6= 0 is
achieved with:

x∗ =

(
− bB
aA

) 1
a−b

We can use this result to achieve the optimal bandwidth for the bound in lemma 1, with: A = C ′σ
−α/2
min ,

a = α, B = C ′
√

logn
n and b = −d2 , resulting with:

arg min
h∈R+

∥∥∥f̂H(x)− f(x)
∥∥∥
∞

=

(
d2 log n

4α2n

) 1
2α+d

A.4 Gaussian KDE Bounds

Lemma 5. Under Assumptions 1 and 3, for a parametric space with finite volume |Θ| and a

KDE with a Gaussian kernel K(u) = e−
1
2
uT u

(2π)
d
2

, H0 = I, and an optimal bandwidth h∗, we have

that with probability at least 1 − 1/n: supx∈Rd
∣∣∣f̂G(x)− f(x)

∣∣∣ ≤ Cd ·
(

logn
n

) α
2α+d , where Cd =

Cα2
α−1

2 +
16d

√
Cα∆α

max(Θ)+ 1
|Θ|

√
2(2π)

d
4

+ 64d2

(2π)
d
2

, and ∆max (Θ) is the maximal L1 distance between any

two parameters in Θ.

Proof of Lemma 5. We follow the proof of Theorem 2 in [16].

We define:
ǔx(r) := f(x)− inf

x′∈B(x,r)
f (x′)

and
ûx(r) := sup

x′∈B(x,r)

f (x′)− f(x)

the following holds [16]:∫
Rd
K(u)ǔx

(
h ‖u‖
√
σmin

)
du ≤ vd · Cαhα

σ
α/2
min

∫ ∞
0

k(t)td+αdt

and the above equation is also valid when replacing ǔx with ûx
We can use Theorem 1 from [16] and get:

sup
x∈Rd

∣∣∣f̂H(x)− f(x)
∣∣∣ < εhα + C∞

√
log n

n · hd

Where ε = vd·Cα
σ
α/2
min

∫∞
0
k(t)td+αdt, and C∞ = 8d

√
vd · ‖f‖∞

(∫∞
0
k(t) · td/2dt+ 1

)
+ 64d2 · k(0).

κ is the function introduced in assumption 2 and vd = πd/2

Γ(1+d/2) is the volume of the d-dimensional
unit ball, where Γ is the Gamma function.

16



For KDE with the optimal bandwidth h∗ =
(

logn
n

) 1
2α+d

, defined in lemma 4 we get:

sup
x∈Rd

∣∣∣f̂H(x)− f(x)
∣∣∣ < εhα + C∞

√
log n

n · hd
= (ε+ C∞) ·

(
log n

n

) α
2α+d

In the case of the Gaussian kernel presented in example 1: K(x) = e−
1
2
xT x

(2π)
d
2

, k(t) = e−
1
2
t2√

(2π)d
and

σmin = 1.

The well known formula for the moments of the Gaussian distribution:∫ ∞
0

k(t) · tadt =
Γ
(
a+1

2

)
2
d−a+1

2 π
d
2

Using the fact that Γ(x) is monotonically increasing ∀x > 1:

ε =
vd · Cα
σ
α/2
min

∫ ∞
0

k(t)td+αdt =
πd/2

Γ(1 + d/2)
· Cα ·

Γ
(
d+α+1

2

)
2

1−α
2 π

d
2

=
Cα

Γ(1 + d/2) · 2 1−α
2

· Γ
(
d+ α+ 1

2

)
≤ Cα

Γ(1 + d/2) · 2 1−α
2

· Γ
(
d+ 2

2

)
= Cα2

α−1
2

Notice that in our case, since the function is α-Hölder continuous and its support size is |Θ|:

fmax − fmin ≤ Cα∆α
max (Θ)⇒ ‖f‖∞ ≤ Cα∆α

max (Θ) +
1

|Θ|

Where ∆max (Θ) is the maximum L1 distance between two parameters in Θ.

Using the fact that
√

Γ(2x) > Γ(x):

C∞ = 8d
√
vd · ‖f‖∞

(∫ ∞
0

k(t) · td/2dt+ 1

)
+ 64d2 · k(0)

= 8d

√
πd/2

Γ(1 + d/2)
· ‖f‖∞

(
Γ
(
d+2

4

)
2
d+2

4 π
d
2

+ 1

)
+

64d2√
(2π)d

≤ 16d
√
πd/2 · ‖f‖∞2

−d−2
4 π

−d
2 +

64d2√
(2π)d

≤
16d
√
Cα∆α

max (Θ) + 1
|Θ|

√
2 (2π)

d
4

+
64d2

(2π)
d
2

Concluding:

sup
x∈Rd

∣∣∣f̂H(x)− f(x)
∣∣∣ < (ε+ C∞) ·

(
log n

n

) α
2α+d

≤

Cα2
α−1

2 +
16d
√
Cα∆α

max (Θ) + 1
|Θ|

√
2 (2π)

d
4

+
64d2

(2π)
d
2

 · ( log n

n

) α
2α+d

A.5 Bounds for a Truncated Estimator

Remark 2. The result of Theorem 6 also holds when truncating the KDE estimate to a support Θ.

17



Proof of Remark 2. Let f1 ∈ P(Θ) be a PDF where Θ is of finite size |Θ| and dimension d and
f2 ∈ P(Rd) another PDF such that ‖f1 − f2‖∞ ≤ U (where U < 1). So:∥∥f1 − fT2

∥∥
∞ ≤

(|Θ|+ 1) · U
1− |Θ|U

Where fT2 is the truncated version of f2 (fT2 (θ) = f2(θ)∫
θ∈Θ

f2(θ)dθ
for θ ∈ Θ, else 0) Let r =∫

θ∈Θ
f2(θ)dθ, we can bound 1− r:

1− r =

∫
θ∈Θ

(f1(θ)− f2(θ)) dθ ≤
∫
θ∈Θ

|f1(z)− f2(z)| dz ≤ |Θ| · ‖f1 − f2‖∞

So: ∥∥f1 − fT2
∥∥
∞ ≤

∥∥∥∥f1 −
f2

r

∥∥∥∥
∞

=
1

r
· ‖f2 − r · f1‖∞ =

1

r
· ‖f2 − f1 + (1− r) · f1‖∞

≤ 1

r
(‖f2 − f1‖∞ + ‖(1− r) · f1‖∞)

Concluding: ∥∥f1 − fT2
∥∥
∞ ≤

1

1− |Θ|U
(U + |Θ| · U) =

(1 + |Θ|) · U
1− |Θ|U

A.6 Bounds for Discrete and Finite Parametric Space

Remark 3. In the case of a discrete and finite parametric space there is no need for the KDE,
but we can still use our model based approach, and estimate the prior using the empirical dis-
tribution P̂emp(M) = n̂(M)/n, ∀M ∈ M, where n̂(M) is the number of occurrences of
M in the training set. We can bound the L1 error of this estimator using the Bretagnolle-
Huber-Carol inequality [35], and achieve that with probability at least 1 − 1/nα we have that,
RT (π∗

P̂emp
) ≤ 2CmaxT

√
2 (α log (n log 2) + |M|+ 1) /n.

Proof of Remark 3.

Pr

|M|∑
i=1

∣∣∣∣ n̂in − pi
∣∣∣∣ ≥ λ

 ≤ 2|M|+1e−nλ
2/2

2|M|+1e−nλ
2/2 = n−α

1

log (2)
e|M|+1−nλ2

2 = n−α

|M|+ 1− nλ2/2 = log
(
log (2)n−α

)
nλ2/2 = α log (log (2)n) + |M|+ 1

λ =

√
(α log (n log 2) + |M|+ 1)

2

n

So with probability at least 1-1/n we have:
|M|∑
i=1

∣∣∣∣ n̂in − pi
∣∣∣∣ ≤

√
(α log (n log 2) + |M|+ 1)

2

n

By using Lemma 3 we get the result.

18



A.7 The History Dependent Simulation Lemma

Lemma 7. For any history-dependent policy π and any parametric mapping g that satisfies Assump-
tion 5, the following holds for any θ1, θ2 ∈ Θ:∣∣LM=g(θ1),π − LM=g(θ2),π

∣∣ ≤ CmaxCg ‖θ1 − θ2‖1 · T
2.

Proof of Lemma 7. For ease of notation, our proof is for the case of discrete state and action spaces
and discrete range of the cost function. Yet, this proof can easily be extended to the more general
continuous case by replacing the sums with integrals.

The history at step t:
ht = {s0, a0, c0, s1, a1, c1 . . . , st}

The cost distribution at step t for a deterministic, history-dependent policy and mdp M :

CπM (ht) := CM (ct | st, π(ht))

And the average cost:
C̄πM (ht) :=

∑
ct

ct · CM (ct | st, π(ht))

The value function:

V πt,M (ht) = Eπ,M

[
T∑
t′=t

CπM (ht′) | ht

]

The RL loss:

LM,π = µTV π0,M = Eπ,M

[
T−1∑
t=0

CπM (ht)

]

Where µ is the initial state distribution.

For t = T − 1:
V πT−1,M (hT−1) = C̄πM (hT−1)

For t < T − 1:

V πt,M (ht) = C̄πM (ht) +
∑
ct,st+1

PM (ct, st+1 | st, π(ht))V
π
t+1,M ({ht, π(ht), ct, st+1})

For two MDPs M and M ′ such that ∀s ∈ S and ∀a ∈ A:∑
c,s′

|PM (c, s′ | s, a)− PM ′ (c, s′ | s, a)| = ε

We have:

C̄πM (ht)− C̄πM ′ (ht) =
∑
ct

ct · (PM (ct | st, π(ht))− PM ′ (ct | st, π(ht)))∣∣C̄πM (ht)− C̄πM ′ (ht)
∣∣ ≤Cmax ·∑

ct

|PM (ct | st, π(ht))− PM ′ (ct | st, π(ht))| ≤ Cmaxε

For ease of notation we define ht+1 = {ht, π(ht), ct, st+1}:

V πt,M (ht)− V πt,M ′ (ht) = C̄πM (ht) +
∑
ct,st+1

PM (ct, st+1 | st, π(ht))V
π
t+1,M (ht+1)

− C̄πM ′ (ht)−
∑
ct,st+1

PM ′ (ct, st+1 | st, π(ht))V
π
t+1,M ′ (ht+1)

19



∣∣V πt,M (ht)− V πt,M ′ (ht)
∣∣ ≤| CπM (ht)− CπM ′ (ht) | +

+
∑
ct,st+1

|PM (ct, st+1 | st, π(ht))V
π
t+1,M (ht+1)

−PM (ct, st+1 | st, π(ht))V
π
t+1,M ′ (ht+1)

+PM (ct, st+1 | st, π(ht))V
π
t+1,M ′ (ht+1)

−PM ′ (ct, st+1 | st, π(ht))V
π
t+1,M ′ (ht+1) |

So:

| V πt,M (ht)− V πt,M ′ (ht) |≤ Cmaxε+

+
∑
ct,st+1

PM (ct, st+1 | st, π(ht)) ·
∣∣V πt+1,M (ht+1)− V πt+1,M ′ (ht+1)

∣∣
+ V πt+1,M ′ (ht+1) · |PM (ct, st+1 | st, π(ht))− PM ′ (ct, st+1 | st, π(ht))|

We know that V πt+1,M (ht+1) ≤ (T − 1)Cmax, so:∣∣V πt,M (ht)− V πt,M ′ (ht)
∣∣ ≤ Cmaxε+

∥∥V πt+1,M − V πt+1,M ′

∥∥
∞ + (T − 1)Cmaxε

= TCmaxε+
∥∥V πt+1,M − V πt+1,M ′

∥∥
∞

Applying the above rule recurrently from t = 0 to t = T − 2:∣∣V π0,M (h0)− V π0,M ′ (h0)
∣∣ ≤ CmaxεT 2

Plugging the result for the loss difference:

|LM,π − LM ′,π| = µT
∣∣V π0,M − V π0,M ′ ∣∣ ≤ CmaxεT 2

We receive the result by using assumption 5.

A.8 PCA Error Bounds for Parametric Spaces with Low Dimensional Structure

Lemma 8. Under Assumptions 4 and 6, we have that:

E
[
R
(
P̂d′
)]
≤ min

(
8C2

sg

√
d′tr(Σ)
√
n

,
64C4

sgtr
2(Σ)

n(λd′−λd′+1)

)
+ ε · (d− d′).

Proof of Lemma 8. A well known property of the PCA [27]:

min
P∈Pd′

R(P ) =

d∑
i=d′+1

λi

So:

ER
(
P̂d′
)
≤

(
8C2

sg

√
d′tr(Σ)
√
n

,
64C4

sgtr
2(Σ)

n (λd′ − λd′+1)

)
+

d∑
i=d′+1

λi

≤

(
8C2

sg

√
d′tr(Σ)
√
n

,
64C4

sgtr
2(Σ)

n (λd′ − λd′+1)

)
+ ε · (d− d′)

Where we used Theorem 2 for the first inequality and assumption 6 for the second.

20



A.9 Regret Bounds by Dimensionality Reduction

Theorem 9. Let f̂d
′

G be the approximation of f as defined in Section 4.1. Under Assumptions 1, 4, 6,
and 7 we have with probability at least 1− 1/n:

RT
(
π∗
f̂d
′
G

)
≤ 2CmaxT |ΘL|Cd′

(
logn
n

) α′
2α′+d′ + 2CmaxT

2Cg

√
min

(
C′sg
√
d′

√
n

,
C′2sg

n∆λ,d′

)
+ ε(d− d′),

where Cd′ = Cα′2
α′−1

2 +
16d′

√
Cα′∆

α′
max(ΘL)+ 1

|ΘL|
√

2(2π)
d′
4

+ 64d′2

(2π)
d′
2

,C′sg = 8C2
sgtr(Σ) and ∆λ,d′ = λd′−λd′+1

Proof of Theorem 9.

Lfθ (π) = Eθ∼fθLθ,π =

∫
Lθ,πfθ(θ)dθ =

∫ (
Lθ,π − LP̂d′ ·θ,π + LP̂d′ ·θ,π

)
fθ(θ)dθ

=

∫ (
Lθ,π − LP̂d′ ·θ,π

)
fθ(θ)dθ +

∫
LP̂d′ ·θ,π

fθ(θ)dθ

=

∫ (
Lθ,π − LP̂d′ ·θ,π

)
fθ(θ)dθ +

∫
LP̂d′ ·θ,π

fθ(θ)dθ

(∗)
=

∫ (
Lθ,π − LP̂d′ ·θ,π

)
fθ(θ)dθ +

∫
θL∈ΘL

(∫
θ⊥L∈Θ⊥L (θL)

LP̂d′ ·θ⊥L ,π
fθ(θ

⊥
L )dθ⊥L

)
dθL

(∗∗)
=

∫ (
Lθ,π − LP̂d′ ·θ,π

)
fθ(θ)dθ +

∫
θL∈ΘL

(
LWT

L ·θL,π

∫
θ⊥L∈Θ⊥L (θL)

fθ(θ
⊥
L )dθ⊥L

)
dθL

=

∫ (
Lθ,π − LP̂d′ ·θ,π

)
fθ(θ)dθ +

∫
LWT

L ·θL,πfθL(θL)dθL

(∗) Fubini theorem holds since
∫
LP̂d′ ·θ,π

fθ(θ)dθ ≤ ∞

(∗∗) Since WT
L · θL = P̂d′ · θ⊥L , ∀θ⊥L ∈ Θ⊥L (θL).

And we know that:

Lf̂d′G (π) = Eθ∼f̂d′G Lθ,π =

∫
LWT

L ·θL,π f̂G(θL)dθL

Subtracting the two and taking the absolute value and using the triangle inequality:∣∣∣Lfθ (π)− Lf̂d′G (π)
∣∣∣ ≤ ∫ ∣∣∣Lθ,π − LP̂d′ ·θ,π∣∣∣ fθ(θ)dθ +

∫
LWT

L ·θL,π

∣∣∣fθL(θL)− f̂G(θL)
∣∣∣ dθL

Starting with the first term:∫ ∣∣∣Lθ,π − LP̂d′ ·θ,π∣∣∣ fθ(θ)dθ (∗)
= CmaxCgT

2 ·
∫ ∣∣∣θ − P̂d′ · θ∣∣∣ fθ(θ)dθ

(∗∗)
= CmaxCgT

2 ·

√∫ (
θ − P̂d′ · θ

)2

fθ(θ)dθ

= CmaxCgT
2 ·
√
ER

(
P̂d′
)

(∗∗∗)
≤

√√√√min

(
8C2

sg

√
d′tr(Σ)
√
n

,
64C4

sgtr
2(Σ)

n (λd′ − λd′+1)

)
+ ε · (d− d′)

(∗) Using Lemma 7

21



(∗∗) Using the fact that
√
x is concave, and using Jensen inequality (E[

√
x] ≤

√
E[x]):

(∗ ∗ ∗) Using Lemma 8

The second term can be bounded using lemma 5:∫
LWT

L ·θL,π

∣∣∣fθL(θL)− f̂G(θL)
∣∣∣ dθL ≤ |ΘL|Cd′CmaxT

(
log n

n

) α
2α+d′

Adding the two terms and using the same argument as in the proof from Section A.2 gives the
result.

22



A.10 VariBad Dream Implementation Details

In our implementation (which is formulated in Algorithm 1), we first run the regular VariBad training
scheme for IW warm-up iterations (because the dream environments at the very start of the training
are uninformative). After the warm-up period, at each iteration we insert the last encoded latent
vector from each of the real environments (i.e after H steps) into a latent pool. Every IKDE iterations
we updated the KDE estimation. At each iteration we sample ndream vectors from the KDE and pass
one to each dream environment worker. Each dream environment will use this latent vector and the
reward decoder to assign rewards.

Algorithm 1 VariBad Dream

Require: {Mi}Ni=1 ∈MN The training MDPs,
R,D ∈ N Number of real and dream agents respectively
IW , IT ∈ N Number of warmup and training iterations respectively
IKDE ∈ N KDE update interval

real_workers← {real_worker()}Ri=1

dream_workers← {dream_worker()}Di=1
latents_pool← {}
for i← 0 to IW do

latents_pool← latents_pool ∪ real_workers.run_episode() . Warmup iterations
end for
for i← 0 to IT do

if i mod IKDE = 0 then
dream_workers.kde← kde(latents_pool)
latents_pool← {}

end if
latents_pool← latents_pool ∪ real_workers.run_episode() . Main iterations
dream_workers.run_episode()
VariBad.vae_update() . Original VAE update
VariBad.policy_update() . Original policy update

end for
function real_worker.run_episode

posterior_latents← {}
for real_worker in real_workers do

real_worker.mdp = random_sample({Mi}Ni=1)
VariBad_rollout(real_worker.mdp) . Steps in the environment and buffers updates
posterior_latents← posterior_latents ∪ vae.posterior

end for
return posterior_latents

end function
function dream_worker.run_episode

for dream_worker in dream_workers do
dream_worker.latent = dream_workers.kde.sample()
curr_mdp← vae.decoder(dream_worker.latent)

. MDP’s transitions and reward defined by the decoder’s outputs
VariBad_rollout(curr_mdp) . Original episode rollout

end for
end function

Our implementation is based on the open-source code of Zintgraf et al [39], which can be found in
https://github.com/lmzintgraf/varibad.

The code implementing VariBad Dream, and the details on how to reproduce all the experiments
presented in this paper, can be found in https://github.com/zoharri/MBRL2.

Hyperparameters for VariBad:

23

https://github.com/lmzintgraf/varibad
https://github.com/zoharri/MBRL2


Figure 4: Average return on HalfCircle with KDE and mixup dream environments. The average is
shown in dashed lines, with the 95% confidence intervals (15 random seeds).

Rollout horizon 100
Number of rollouts 2
RL algorithm PPO
Epochs 2
Minibatches 4
Max grad norm 0.5
Clip parameter 0.05
Value loss coeff. 0.5
Entropy coeff. 0.01
Gamma 0.97
Weight of KL term in ELBO 1
Policy learning rate 7e-4
VAE learning rate 1e-3
VAE batch size 5
Task embedding size 5
Policy architecture 2 hidden layers, 128-dim each, TanH activations
Encoder architecture States/actions/rewards encoder: FC layer 32/16/16 dim,

GRU with hidden size 128 ,
output layer of dim 5, ReLu activations

Reward decoder architecture 2 hidden layers, 64 and 32 dims,
ReLu activations

Reward decoder loss function Mean squared error

The Hyper parameters for VariBad Dream are the same as for VariBad with the following additional
parameters:

Number of warm-up iterations 5000
KDE update interval 3

For the case of 20/30 sample sizes we chose 4/6 dream environment workers and 12/10 real envi-
ronment workers. The intuition is that as we have more training environments, the better the latent
representation and KDE are, and we can rely more on the dream environments.

Similarly to [39] and [21], we used only the reward decoder (and not the state decoder) due to better
empirical results.

A.11 KDE and Mixup Dream Environments Comparison

In this section we compare between using the proposed KDE and the simple Mixup approach to
generate dream environments. While Mixup approaches usually aim at solving out of distribution
generalization, we use it here as a baseline for the prior estimation. We emphasize that we don’t claim
to solve OOD generalization. In the Mixup approach, given N latent vectors of real environments, we
sample N coefficients from the Dirichlet distribution ~α = Dir (1, . . . , 1) and use them to calculate a
weighted average for the dream environment.

24



K
D

E
M

ix
up

Figure 5: Comparison of dream environments’ reward maps, generated during the training using 20
real environments. On the top row - our suggested KDE method. On the bottom row - the Mixup
method. Each column corresponds to a different training iteration with a 1000 iteration interval
between each one. The trajectory of the policy for the sampled dream environment is plotted on top
of the reward map as well.

In Figure 4 we compare the average evaluation return of the proposed KDE dream environments to the
Mixup dream environments. Evidently, our approach achieved higher return, both for Ntrain = 20
and Ntrain = 30.

To further analyze the differences between the two approaches and to better understand the dream
environments, we visualize the reward map of the dream environments, as can be seen in Figure 5. In
order to visualize the reward map for a given latent vector (sampled using either KDE or Mixup), we
pass a discrete grid of states and the latent vector to the reward decoder and draw a heatmap of the
results. In Figure 5 we plot multiple sampled latent vectors, which were observed during the training.
We can see that the KDE produces much more realistic and variable dream environments than the
Mixup approach, explaining its superior performances.

A.12 Ant Goal Environment

Figure 6: Average return on the Ant Goal environment with and without dream environments. The
average is shown in dashed lines, with the 95% confidence interval (8 random seeds).

Our PAC bounds showed that the determining factor in generalization is not the dimensionality of the
MDP (i.e., the dimension of the state and action spaces), but the dimensionality of the underlying
MDP parameter space Θ.

In this section, we demonstrate this claim by running VariBad Dream on a high-dimensional continu-
ous control problem – a variant of the HalfCircle environment (Figure 1) with an Ant robot agent,
simulated in MuJoCo [34]. Note that while the space Θ is low dimensional, similarly to the point
robot HalfCircle experiments, each MDP has a high dimensional state and action space.

In order to make the baseline VariBAD method work on this environment properly, we increased the
goal size from 0.2 (which was used in the HalfCircle environment) to 0.3. We found that this change
was necessary for VariBAD to explore effectively and reach the goal during training.

25



In Figure 6 we compare VariBAD and VariBAD Dream on this environment. Similarly to the point
robot results, we observe an advantage for VariBAD Dream when the number of training MDPs is
small (Ntrain = 5). For Ntrain = 10 we did not observe significant advantage for VariBAD Dream,
as, similarly to the Ntrain = 40 case in point robot, the training samples already cover the space Θ
adequately in most runs.

A.13 Compute Specification

We ran the experiments on a Standard_NC24s_v3 Azure machine consisting of 4 NVIDIA Tesla
V100 GPUs. Running 15 seeds at a time took a total of ∼24 hours.

26


	Introduction
	Background
	Markov Decision Processes
	Kernel Density Estimation
	Principal Component Analysis

	Problem Statement
	The Learning Problem

	Generalization Bounds
	Bounds for Parametric Spaces with Low Dimensional Structure

	Related Work
	Experiments
	Discussion & Future Work
	Appendix
	Limitations
	Regret Bounds Using Prior Estimation
	Optimal KDE Bandwidth
	Gaussian KDE Bounds
	Bounds for a Truncated Estimator
	Bounds for Discrete and Finite Parametric Space
	The History Dependent Simulation Lemma
	PCA Error Bounds for Parametric Spaces with Low Dimensional Structure
	Regret Bounds by Dimensionality Reduction
	VariBad Dream Implementation Details
	KDE and Mixup Dream Environments Comparison
	Ant Goal Environment
	Compute Specification


