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Abstract
We study the generalization performance of gradient methods in the fundamental stochastic convex
optimization setting, focusing on its dimension dependence. First, for full-batch gradient descent
(GD) we give a construction of a learning problem in dimension 𝑑 = 𝑂 (𝑛2), where the canoni-
cal version of GD (tuned for optimal performance on the empirical risk) trained with 𝑛 training
examples converges, with constant probability, to an approximate empirical risk minimizer with
Ω(1) population excess risk. Our bound translates to a lower bound of Ω(

√
𝑑) on the number

of training examples required for standard GD to reach a non-trivial test error, answering an open
question raised by Feldman (2016) and Amir, Koren and Livni (2021) and showing that a non-trivial
dimension dependence is unavoidable. Furthermore, for standard one-pass stochastic gradient de-
scent (SGD), we show that an application of the same construction technique provides a similar
Ω(

√
𝑑) lower bound for the sample complexity of SGD to reach a non-trivial empirical error, despite

achieving optimal test performance. This again provides for an exponential improvement in the
dimension dependence compared to previous work (Koren et al., 2022), resolving an open question
left therein.

1. Introduction

The study of generalization properties of stochastic optimization algorithms has been at the heart of
contemporary machine learning research. While in the more classical frameworks studies largely
focused on the learning problem (e.g., Alon et al., 1997; Blumer et al., 1989), in the past decade it has
become clear that in modern scenarios the particular algorithm used to learn the model plays a vital
role in its generalization performance. As a prominent example, heavily over-parameterized deep
neural networks trained by first order methods output models that generalize well, despite the fact
that an arbitrarily chosen Empirical Risk Minimizer (ERM) may perform poorly (Zhang et al., 2017;
Neyshabur et al., 2014, 2017). The present paper aims at understanding the generalization behavior
of gradient methods, specifically in connection with the problem dimension, in the fundamental
Stochastic Convex Optimization (SCO) learning setup; a well studied, theoretical framework widely
used to study stochastic optimization algorithms.

The seminal work of Shalev-Shwartz et al. (2010) was the first to show that uniform convergence,
the canonical condition for generalization in statistical learning (e.g., Vapnik, 1971; Bartlett and
Mendelson, 2002) may not hold in high-dimensional SCO: they demonstrated learning problems
where there exist certain ERMs that overfit the training data (i.e., exhibit large population risk),
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while models produced by e.g., Stochastic Gradient Descent (SGD) or regularized empirical risk
minimization generalize well. The construction presented by Shalev-Shwartz et al. (2010), however,
featured a learning problem with dimension exponential in the number of training examples, which
only served to prove an Ω(log 𝑑) lower bound on the sample complexity for reaching non-trivial
population risk performance, where 𝑑 is the problem dimension. In a followup work, Feldman
(2016) showed how to dramatically improve the dimension dependence and established an Ω(𝑑)
sample complexity lower bound, matching (in terms of 𝑑) the well-known upper bound obtained
from standard covering number arguments (see e.g., Shalev-Shwartz and Ben-David, 2014).

Despite settling the dimension dependence of uniform convergence in SCO, it remained unclear
from Shalev-Shwartz et al. (2010); Feldman (2016) whether the sample complexity lower bounds
for uniform convergence actually transfer to natural learning algorithms in this framework, and in
particular, to common gradient-based optimization methods. Indeed, it is well-known that in SCO
there exist simple algorithms, such as SGD, that the models they produce actually generalize well
with high probability (see e.g., Shalev-Shwartz and Ben-David, 2014), despite these lower bounds.
More technically, the construction of Feldman (2016) relied heavily on the existence of a “peculiar”
ERM which does not seem reachable by gradient steps from a data-independent initialization, and
it was not at all clear (and in fact, stated as an open problem in Feldman, 2016) how to adapt the
construction so as to pertain to ERMs that could be found by gradient methods.

In an attempt to address this issue, Amir et al. (2021b) recently studied the population perfor-
mance of batch Gradient Descent (GD) in SCO, and demonstrated problem instances where it leads
(with constant probability) to an approximate ERM that generalizes poorly, unless the number of
training examples is dimension-dependent.1 Subsequently, Amir et al. (2021a) generalized this result
to the more general class of batch first-order algorithms. However, due to technical complications,
the constructions in these papers were based in part on the earlier arguments of Shalev-Shwartz
et al. (2010) rather than the developments by Feldman (2016), and therefore fell short of establish-
ing their results in dimension polynomial in the number of training examples. As a consequence,
their results are unable to rule out a sample complexity upper bound for GD that depends only
(poly-)logarithmically on the problem dimension.

In this work, we resolve the open questions posed in both Feldman (2016) and Amir et al.
(2021b): Our first main result demonstrates a convex learning problem where GD, unless trained
with at least Ω(

√
𝑑) training examples, outputs a bad ERM with constant probability. This bridges

the gap between the results of Feldman (2016) and actual, concrete learning algorithms (albeit with
a slightly weaker rate of Ω(

√
𝑑), compared to the Ω(𝑑) of the latter paper) and greatly improves on

the previous Ω(log 𝑑) lower bound of Amir et al. (2021b), establishing that the sample complexity
of batch GD in SCO has a significant, polynomial dependence on the problem dimension.

Furthermore, in our second main result we show how an application of the same construction
technique provides a similar improvement in the dimension dependence of the empirical risk lower
bound presented in the recent work of Koren et al. (2022), thus also resolving the open question left
in their work. This work demonstrated that in SCO, well-tuned SGD may underfit the training data
despite achieving optimal population risk performance. At a deeper level, the overfitting of GD and
underfitting of SGD both stem from a combination of two conditions: lack of algorithmic stability,
and failure of uniform convergence; as it turns out, this combination allows for the output models to
exhibit a large generalization gap, defined as the difference in absolute value between the empirical

1. Here we refer to GD as performing 𝑇 = 𝑛 iterations with stepsize 𝜂 = Θ(1/
√
𝑛), where 𝑛 denotes the size of the

training set, but our results hold more generally; see below for a more detailed discussion of the various regimes.
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and population risks. Our work presents a construction technique for such generalization gap
lower bounds that achieves small polynomial dimension dependence, providing for an exponential
improvement over previous works.

1.1. Our contributions

In some more detail, our main contributions are as follows:

(i) We present a construction of a learning problem in dimension 𝑑 = 𝑂 (𝑛𝑇 + 𝑛2 + 𝜂2𝑇2) where
running GD for 𝑇 iterations with step 𝜂 over a training set of 𝑛 i.i.d.-sampled examples leads,
with constant probability, to a solution with population error Ω(𝜂

√
𝑇 + 1/𝜂𝑇).2 In particular,

for the canonical configuration of𝑇 = 𝑛 and 𝜂 = Θ(1/
√
𝑛), the lower bound becomes Ω(1) and

demonstrates that GD suffers from catastrophic overfitting already in dimension 𝑑 = 𝑂 (𝑛2).
Put differently, this translates to an Ω̃(

√
𝑑) lower bound the number of training examples

required for GD to reach nontrivial test error. See Theorem 1 below for a formal statement
and further implications of this result.

(ii) Furthermore, we give a construction of dimension 𝑑 = 𝑂 (𝑛2) where the empirical error of
one-pass SGD trained over𝑇 = 𝑛 training examples is Ω(𝜂

√
𝑛+1/𝜂𝑛). Assuming the standard

setting of 𝜂 = Θ(1/
√
𝑛), chosen for optimal test performance, the empirical error lower

bound becomes Ω(1), showing that the “benign underfitting” phenomena of one-pass SGD
is exhibited already in dimension polynomial in the number of training samples. Rephrasing
this lower bound in terms of the number of training examples required to reach nontrivial
empirical risk, we again obtain an Ω̃(

√
𝑑) sample complexity lower bound. See Theorem 2

for the formal statement and further implications.

Both of the results above are tight (up to logarithmic factors) in view of existing matching upper
bounds of Bassily et al. (2020). We remark that the constructions leading to the results feature
differentiable Lipschitz and convex loss functions, whereas the lower bounds in previous works
concerned with gradient methods (Amir et al., 2021b,a; Koren et al., 2022) crucially applied only to
the class of non-differentiable loss functions. From the perspective of general non-smooth convex
optimization, this implies that our lower bounds remain valid under any choice of a subgradient
oracle of the loss function (as opposed to only claiming that there exists a subgradient oracle under
which they apply, like prior results do).

1.2. Main ideas and techniques

Our work builds primarily on two basic ideas. The first is due to Feldman (2016), whereby an expo-
nential number (in 𝑛) of approximately orthogonal directions, that represent the potential candidates
for a “bad ERM,” are embedded in a Θ(𝑛)-dimensional space. The second idea, underlying Bassily
et al. (2020); Amir et al. (2021b,a); Koren et al. (2022), is to augment the loss function with a highly
non-smooth component, that is capable of generating large (sub-)gradients around initialization di-
rected at all candidate directions, that could steer GD towards a bad ERM that overfits the training
set.

2. By population error (or test error) we mean the population excess risk, namely the gap in population risk between the
returned solution and the optimal solution.
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The major challenge is in making these two components play in tandem: since the candidate
directions of Feldman (2016) are only nearly orthogonal, the progress of GD towards one specific
direction gets hampered by its movement in other, irrelevant directions. And indeed, previous
work in this context fell short of resolving this incompatibility and instead, opted for a simpler
construction with a perfectly-orthogonal set of candidate directions, that was used in the earlier work
of Shalev-Shwartz et al. (2010). Unfortunately though, this latter construction requires the ambient
dimensionality to be exponential in the number of samples 𝑛, which is precisely what we aim to
avoid.

Our solution for overcoming this obstacle, which we describe in length in Section 3, is based on
several new ideas. Firstly, we employ multiple copies of the original construction of Feldman (2016)
in orthogonal subspaces, in a way that it suffices for GD to make a single step within each copy so as
to reach, across all copies, a bad ERM solution; this serves to circumvent the “collisions” between
consecutive GD steps alluded to above. Secondly, we carefully design a convex loss term that, when
augmented to the loss function, forces successive gradient steps to be taken in a round-robin fashion
between the different copies, so that each subspace indeed sees a single update step through the GD
execution. Lastly, we introduce a novel technique that memorizes the full training set by “encoding”
it into the iterates in a convex and differentiable manner, so that the GD iterate itself (to which the
subgradient oracle has access) contains the information required to “decode” the right movement
direction towards a bad ERM. We further show how all of these added loss components can be
made differentiable, so as to allow for a differentiable construction overall. A detailed overview of
these construction techniques and a virtually complete description of our construction are provided
in Section 3.

1.3. Additional related work

Learnability and generalization in the SCO framework. Our work belongs to the body of
literature on stability and generalization in modern statistical learning theory, pioneered by Shalev-
Shwartz et al. (2010) and the earlier foundational work of Bousquet and Elisseeff (2002). In this line
of research, Hardt et al. (2016); Bassily et al. (2020) study algorithmic stability of SGD and GD in
the smooth and non-smooth (convex) cases, respectively. In the general non-smooth case which we
study here, Bassily et al. (2020) gave an iteration complexity upper bound of𝑂 (𝜂

√
𝑇 + 1/𝜂𝑇 + 𝜂𝑇/𝑛)

test error for 𝑇 iterations with step size 𝜂 over a training set of size 𝑛. The more recent work of
Amir et al. (2021b) showed this to be tight up to log-factors in the dimension independent regime,
and Amir et al. (2021a) further extends this result to any optimization algorithm making use of only
batch gradients (i.e., gradients of the empirical risk).

Even more recently, Kale et al. (2021) consider a variation on the SCO model where individual
losses may be non-convex (yet the expected loss is still convex). In this model, they prove that
regularized ERMs may fail to learn (as opposed to plain ERMs, studied in Shalev-Shwartz et al.
(2010); Feldman (2016)), and also present a sample complexity separation result between SGD and
GD. As commented in their Section 3, the result relating to regularized ERMs can be extended to
hold with 𝑑 = Θ(𝑛), by a direct application of the technique of Feldman (2016). Importantly, this is
not the case for their sample complexity result for gradient methods, which inherits the exponential
dimension requirement from Amir et al. (2021b) which they build upon.

Sample complexity of ERMs. With relation to the sample complexity of an (arbitrary) ERM in
SCO, Feldman (2016) showed that reaching 𝜖-test error requires Ω(𝑑/𝜖 + 1/𝜖2) training samples,
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but did not establish optimality of this bound. In a recent work, Carmon et al. (2023) show this to be
nearly tight and presents a 𝑂 (𝑑/𝜖 + 1/𝜖2) upper bound for any ERM, improving over the 𝑂 (𝑑/𝜀2)
upper bound that can be derived from standard covering number arguments. Another recent work
related to ours is that of Magen and Shamir (2023), who provided another example for a setting in
which learnability can be achieved without uniform convergence, showing that uniform convergence
may not hold in the class of vector-valued linear (multi-class) predictors. However, the dimension
of their problem instance was exponential in the number of training examples.

Implicit regularization and benign overfitting. Another relevant body of research focuses on
understanding the effective generalization of over-parameterized models trained to achieve zero
training error through gradient methods (see e.g., Bartlett et al., 2020, 2021; Belkin, 2021). This
phenomenon appears to challenge conventional statistical wisdom, which emphasizes the importance
of balancing data fit and model complexity, and motivated the study of implicit regularization (or
bias) as a notion for explaining generalization in the over-parameterized regimes. Our findings in
this paper could be viewed as an indication that, at least in SCO, generalization does not stem from
some form of an implicit bias or regularization; see Amir et al. (2021b); Koren et al. (2022) for a
more detailed discussion.

Follow-up work. Inspired by our techniques, Livni (2024) recently provided an Ω̃(𝑑) lower bound
on the sample complexity of GD (in the same canonical setup we consider), which improves upon
the Ω̃(

√
𝑑) that follows from Theorem 1. We remark however that their construction does not seem

to extend to a (generalization gap) lower bound construction for SGD.

2. Problem setup and main results

We consider the standard setting of Stochastic Convex Optimization (SCO). The problem is char-
acterized by a population distribution D over an instance set 𝑍 , and loss function 𝑓 : 𝑊 × 𝑍 → ℝ

defined over convex domain 𝑊 ⊆ ℝ𝑑 in 𝑑-dimensional Euclidean space. We assume that, for any
fixed instance 𝑧 ∈ 𝑍 , the function 𝑓 (𝑤, 𝑧) is both convex and 𝐿-Lipschitz with respect to its first
argument 𝑤. In this setting, the learner is interested in minimizing the population loss (or risk)
which corresponds to the expected value of the loss function over D, defined as

𝐹 (𝑤) = 𝔼𝑧∼D [ 𝑓 (𝑤, 𝑧)], (population risk/loss)

namely, finding a model 𝑤 ∈ 𝑊 that achieves an 𝜀-optimal population loss, namely such that
𝐹 (𝑤) ≤ 𝐹 (𝑤∗) + 𝜀, where 𝑤∗ ∈ arg min𝑤∈𝑊 𝐹 (𝑤) is a population minimizer.

To find such a model 𝑤, the learner uses a set of 𝑛 training examples 𝑆 = {𝑧1, . . . , 𝑧𝑛}, drawn
i.i.d. from the unknown distribution D. Given the sample 𝑆, the corresponding empirical loss (or
risk), denoted 𝐹 (𝑤), is defined as the average loss over samples in 𝑆:

𝐹 (𝑤) = 1
𝑛

𝑛∑︁
𝑖=1

𝑓 (𝑤, 𝑧𝑖). (empirical risk/loss)

We let 𝑤∗ ∈ arg min𝑤∈𝑊 𝐹 (𝑤) denote a minimizer of the empirical risk, refered to as an empirical
risk minimizer (ERM). Moreover, for every 𝑤 ∈ 𝑊 , we define the generalization gap at 𝑤 as the
absolute value of the difference between the population loss and the empirical loss, i.e., |𝐹 (𝑤) −
𝐹 (𝑤) |.
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Optimization algorithms. First-order algorithms make use of a (deterministic) subgradient oracle
that takes as input a pair (𝑤, 𝑧) and returns a subgradient 𝑔(𝑤, 𝑧) ∈ 𝜕𝑤 𝑓 (𝑤, 𝑧) of the convex loss
function 𝑓 (𝑤, 𝑧) with respect to 𝑤. If |𝜕𝑤 𝑓 (𝑤, 𝑧) | = 1, the loss 𝑓 (·, 𝑧) is differentiable at 𝑤 and the
subgradient oracle simply returns the gradient at 𝑤; otherwise, the subgradient oracle is allowed to
emit any subgradient in the subdifferential set 𝜕𝑤 𝑓 (𝑤, 𝑧).

First, we consider standard gradient descent (GD) with a fixed step size 𝜂 > 0 applied to the
empirical risk 𝐹. We allow for a potentially projected, 𝑚-suffix averaged version of the algorithm
that takes the following form: Given an initialization 𝑤1 ∈ 𝑊 ,

update 𝑤𝑡+1 = Π𝑊

[
𝑤𝑡 −

𝜂

𝑛

𝑛∑︁
𝑖=1

𝑔(𝑤𝑡 , 𝑧𝑖)
]
, ∀ 1 ≤ 𝑡 < 𝑇 ;

return 𝑤𝑇,𝑚 B
1
𝑚

𝑚∑︁
𝑖=1

𝑤𝑇−𝑖+1.

(1)

Here Π𝑊 : ℝ𝑑 → 𝑊 denotes the Euclidean projection onto the set 𝑊 ; when 𝑊 is the entire space
ℝ𝑑 , this becomes simply unprojected GD. The algorithm returns either the final iterate, the average
of the iterates, or more generally, any 𝑚-suffix average (1 ≤ 𝑚 ≤ 𝑇) of iterates.

The second method that we analyze is Stochastic Gradient Descent (SGD), which is again
potentially projected and/or suffix averaged. This method uses a fixed stepsize 𝜂 > 0 and takes the
following form: : Given an initialization 𝑤1 ∈ 𝑊 ,

update 𝑤𝑡+1 = Π𝑊
[
𝑤𝑡 − 𝜂𝑔(𝑤𝑡 , 𝑧𝑡 )

]
, ∀ 1 ≤ 𝑡 < 𝑇 ;

return 𝑤𝑇,𝑚 B
1
𝑚

𝑚∑︁
𝑖=1

𝑤𝑇−𝑖+1.
(2)

Main results. Our main contributions in the context of SCO are tight lower bounds for the
population loss of GD and for the empirical loss of SGD, where the problem dimension is polynomial
in the number of samples 𝑛 and steps 𝑇 . First, for the population risk performance of GD, we prove
the following:

Theorem 1 Fix 𝑛 > 0,𝑇 > 32002 and 0 ≤ 𝜂 ≤ 1/(5
√
𝑇) and let 𝑑 = 178𝑛𝑇+2𝑛2+max{1, 25𝜂2𝑇2}.

There exists a distribution D over instance set 𝑍 and a convex, differentiable and 1-Lipschitz loss
function 𝑓 : ℝ𝑑 × 𝑍 → ℝ such that for GD (either projected or unprojected; cf. Eq. (1) with𝑊 = 𝔹𝑑

or 𝑊 = ℝ𝑑 respectively) initialized at 𝑤1 = 0 with step size 𝜂, for all 𝑚 = 1, . . . , 𝑇 , the 𝑚-suffix
averaged iterate has, with probability at least 1

6 over the choice of the training sample,

𝐹 (𝑤𝑇,𝑚) − 𝐹 (𝑤∗) = Ω

(
min

{
𝜂
√
𝑇 + 1/𝜂𝑇, 1

})
. (3)

For SGD, we prove the following theorem concerning its empirical risk and generalization gap:

Theorem 2 Fix 𝑛 > 2048 and 0 ≤ 𝜂 ≤ 1/(5
√
𝑛) and let 𝑑 = 712𝑛 log 𝑛 + 2𝑛2 + max{1, 25𝜂2𝑛2}.

There exists a distribution D over instance set 𝑍 and a convex, 1-Lipschitz and differentiable loss
function 𝑓 : ℝ𝑑 × 𝑍 → ℝ such that for one-pass SGD (either projected or unprojected; cf. Eq. (2)
with 𝑊 = 𝔹𝑑 or 𝑊 = ℝ𝑑 respectively) over 𝑇 = 𝑛 steps initialized at 𝑤1 = 0 with step size 𝜂, for
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all 𝑚 = 1, . . . , 𝑇 , the 𝑚-suffix averaged iterate has, with probability at least 1
2 over the choice of the

training sample,

𝐹 (𝑤𝑇,𝑚) − 𝐹 (𝑤∗) = Ω

(
min

{
𝜂
√
𝑇 + 1/𝜂𝑇, 1

})
, (4)

and
��𝐹 (𝑤𝑇,𝑚) − 𝐹 (𝑤𝑇,𝑚)�� = Ω

(
min

{
𝜂
√
𝑇 + 1/𝜂𝑇, 1

})
. (5)

Discussion. As noted in the introduction, both of the bounds above are tight up to logarithmic
factors in view of matching upper bounds due to Bassily et al. (2020). For GD tuned for optimal
convergence on the empirical risk, where 𝑇 = 𝑛 and 𝜂 = Θ(1/

√
𝑛), Theorem 1 gives an Ω(1)

lower bound for the population error, which precludes any sample complexity upper bound for
this algorithm of the form 𝑂 (𝑑 𝑝/𝜖𝑞) unless 𝑝 ≥ 1

2 . In particular, this implies an Ω(
√
𝑑) lower

bound the number of training examples required for GD to reach a nontrivial population risk. In
contrast, lower bounds in previous work (Amir et al., 2021b) only implies an exponentially weaker
Ω(log 𝑑) dimension dependence in the sample complexity. We note however that there is still a small
polynomial gap between our sample complexity lower bounds to the known (nearly tight) bounds
for generic ERMs (Feldman, 2016; Carmon et al., 2023); we leave narrowing this gap as an open
problem for future investigation.

More generally, with GD fixed to perform 𝑇 = 𝑛𝛼, 𝛼 > 0 steps, and setting 𝜂 so as to optimize
the lower bound, the right-hand side in Eq. (3) becomes Θ(𝑛−𝛼/4), which rules out any sample
complexity upper bound of the form 𝑂 (𝑑 𝑝/𝜖𝑞) unless it satisfies max{2, 𝛼 + 1}𝑝 + 1

4𝛼𝑞 ≥ 1.3
Specifically, we see that any dimension-free upper bound with 𝑇 = 𝑛 must have at least an 1/𝜖4

dependence on 𝜖 ; and that for matching the statistically optimal sample complexity rate of 1/𝜖2, one
must either run GD for 𝑇 = 𝑛2 steps or suffer a polynomial dimension dependence in the rate (e.g.,
for 𝑇 = 𝑛 this dependence is at least 𝑑1/4).

Similar lower bounds (up to a logarithmic factor) are obtained for SGD through Theorem 2,
but for the empirical risk of the algorithm when tuned for optimal performance on the population
risk with 𝑇 = 𝑛. In this case, the bounds provide an exponential improvement in the dimension
dependence over the recent results of Koren et al. (2022), showing that the “benign underfitting”
phenomena they revealed for one-pass SGD is exhibited already in dimension polynomial in the
number of training samples.

Finally, we remark that our restriction on 𝜂 is only meant for placing focus on the more common
and interesting range of stepsizes in the context of stochastic optimization. It is not hard to extend
the result of Theorems 1 and 2 to larger values of 𝜂 (in this case the lower bounds are Ω(1), the same
rate the theorems give for 𝜂 = Θ(1/

√
𝑇)), in the same way this is done in previous work (e.g., Amir

et al., 2021b; Koren et al., 2022).

3. Overview of constructions and proof ideas

In this section we outline the principal ideas leading to our main results and give an overview
of the lower bound constructions; due to space constraints, all formal proofs are deferred to the
supplementary material. As discussed above, the main technical contribution of this paper is in

3. To see this, let 𝑟 = max{2, 𝛼 + 1} and note that for our construction 𝑑 = 𝑂 (𝑛𝑇 + 𝑛2) = 𝑂 (𝑛𝑟 ) and 𝜖 = Ω(𝑛−𝛼/4); the
sample complexity upper bound 𝑂 (𝑑𝑝/𝜖𝑞) can be therefore rewritten in terms of 𝑛 as 𝑂 (𝑛𝑟 𝑝+𝛼𝑞/4), and since this
should asymptotically upper bound the number of samples 𝑛, one must have that 𝑟 𝑝 + 1

4𝛼𝑞 ≥ 1.
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establishing the first Ω(𝜂
√
𝑇) term in Eqs. (3) and (4) using a loss function in dimension polynomial

in 𝑛 and 𝑇 , and this is also the focus of our presentation in this section. In Sections 3.1 to 3.4 we
focus on GD and describe the main ingredients and technical steps towards proving our first main
result Theorem 1. The additional steps and adjustments needed to obtain our second main result
concerning SGD (Theorem 2) are then discussed in Section 3.6.

Starting with GD and Theorem 1, recall that our goal is to establish a learning scenario where
GD is likely to converge to a “bad ERM”, namely a minimizer of the empirical risk whose population
loss is large. We will do that in four steps: we will first establish that such a “bad ERM” actually
exists; then, we will show how to make such a solution reachable by gradient steps from the origin;
we next describe how the information required to identify this solution can be “memorized” by
GD into its iterates; and finally, we show how to combine these components and actually drive GD
towards a bad ERM.

3.1. A preliminary: existence of bad ERMs

Our starting point is the work of Feldman (2016) that demonstrated that in SCO, an empirical risk
minimizer might fail to generalize, already in dimension linear in the number of training samples.
Their approach was based on a construction of a set of unit vectors 𝑈 ⊂ ℝ𝑑

′ (for 𝑑′ = Θ(𝑛)) of
size 2Ω(𝑛) , that are “nearly orthogonal”: the dot product between any two distinct 𝑢, 𝑣 ∈ 𝑈 satisfies
|⟨𝑢, 𝑣⟩| ≤ 1

8 .4 Then, they take the power set 𝑍 = 𝑃(𝑈) of𝑈 as the sample space (namely, identifying
samples with subsets of 𝑈), the distribution D to be uniform over 𝑍 , and the (convex, Lipschitz)
loss ℎF16 : ℝ𝑑′ × 𝑍 → ℝ to be defined as follows:

ℎF16(𝑤,𝑉) = max
{

1
2 ,max
𝑢∈𝑉

⟨𝑢, 𝑤⟩
}
. (6)

For this problem instance, they show that with constant probability over the training set sample
𝑆 = {𝑉1, . . . , 𝑉𝑛} iid∼ D𝑛, there exists 𝑢0 ∈ 𝑈 \ ⋃𝑛

𝑖=1𝑉𝑖 that is in fact an Ω(1)-bad ERM (for which
the generalization gap is Ω(1)). To see why this is the case, note that, since every vector 𝑢 ∈ 𝑈 is
in every training example 𝑉𝑖 with probability 1

2 , the set 𝑈 (whose size is exponential in 𝑛) is large
enough to guarantee the existence of a vector 𝑢0 ∉

⋃𝑛
𝑖=1𝑉𝑖 with constant probability. Consequently,

the empirical loss of such 𝑢0 equals 1
2 (since ⟨𝑢0, 𝑣⟩ ≤ 1

8 <
1
2 for any 𝑣 ∈ 𝑉𝑖). However, for a fresh

example 𝑉 ∼ D, with probability 1
2 it holds that 𝑢0 ∈ 𝑉 in which case ℎF16(𝑢0, 𝑉) = 1, and thus the

population risk of 𝑢0 is at least = 1
2 · 1 + 1

2 · 1
2 = 3

4 .

3.2. Ensuring that bad ERMs are reachable by GD

As Feldman (2016) explain in their work, although there exists an ERM with a large generalization
gap, it is not guaranteed that such a minimizer is at all reachable by gradient methods. This is
because in their construction, the loss function ℎF16 remains flat (and equals 1

2 , see Eq. (6)) inside
a ball of radius Ω(1) around the origin (where GD is initialized); hence it remains unclear how to
steer GD with stepsize of order 𝜂 = 𝑂 (1/

√
𝑇) away from this flat region. To address this challenge,

we increase dimensionality and replicate Feldman’s construction in 𝑇 orthogonal subspaces; which
allows us to decrease, in each of the subspaces, the distance required to travel towards a bad ERM
to only 𝑂 (𝜂). Then, while each of these subspace ERMs is only Ω(𝜂)-bad, when taken together

4. The original construction Feldman (2016) satisfied slightly different conditions, which we adjust here for our analysis.
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they constitute an Ω(1)-bad ERM in the lifted space. Concretely, we introduce a loss function
ℎ : ℝ𝑑′ × 𝑃(𝑈) → ℝ that resembles Feldman’s function from Eq. (6) up to a minor adjustment:

ℎ(𝑤′, 𝑉) = max
{ 3

32𝜂,max
𝑢∈𝑉

⟨𝑢, 𝑤′⟩
}
. (7)

As in the original construction by Feldman, 𝑉 here ranges over subsets of a set 𝑈 ⊆ ℝ𝑑
′ of

size 2Ω(𝑛) , the elements of which are nearly-orthogonal unit vectors. Then, we construct a loss
function in dimension 𝑑 = 𝑇𝑑′ by applying ℎ in 𝑇 orthogonal subspaces of dimension 𝑑′, denoted
𝑊 (1) , . . . ,𝑊 (𝑇 ) , as follows:5

ℓ1(𝑤,𝑉) =

√√√
𝑇∑︁
𝑘=2

(
ℎ(𝑤 (𝑘 ) , 𝑉)

)2
. (8)

Here and throughout, 𝑤 (𝑘 ) refers to the 𝑘’th orthogonal component of the vector 𝑤, that resides in
the subspace 𝑊 (𝑘 ) . Finally, the distribution D is again taken to be uniform over 𝑍 = 𝑃(𝑈), and a
training set is formed by sampling 𝑆 = {𝑉1, . . . , 𝑉𝑛} ∼ D𝑛. As before, we know that with probability
at least 1

2 , there exists a vector 𝑢0 such that 𝑢0 ∈ 𝑈 \ ⋃𝑛
𝑖=1𝑉𝑖 . In addition (and unlike before), it

can be shown that any vector 𝑤 satisfying 𝑤 (𝑘 ) = 𝑐𝜂𝑢0 for a sufficiently large constant 𝑐 > 0 and
Ω(𝑇)-many components 𝑘 , is an Ω(1)-bad ERM with respect to ℓ1. Further, the important point is
that such bad ERMs are potentially reachable by GD.

3.3. Memorizing the dataset in the iterate

There is one notable obstacle to the plan we just described: the vector 𝑢0 is determined by the full
description of the training set, and it is unclear how to find such a vector through subgradients of
the empirical loss, which is the only input GD has that carries information about the training set.
To cope with this difficulty, we augment the domain 𝑊 with an “encoding subspace” denoted 𝑊 (0)

which is orthogonal to𝑊 (1) , . . . ,𝑊 (𝑇 ) , and employ a mechanism that effectively memorizes the full
training set in the iterates 𝑤𝑡 (0) in a manner that can be decoded by the subgradient oracle.

We take 𝑊 (0) to be of dimension 2𝑛2, and augment samples with a number 𝑗 ∈ [𝑛2], drawn
uniformly at random; namely, each sample in the training set is now a pair (𝑉𝑖 , 𝑗𝑖) ∈ 𝑃(𝑈) × [𝑛2],
for 𝑖 = 1, . . . , 𝑛. We then let 𝜙 : 𝑃(𝑈) × [𝑛2] → 𝑊 (0) denote an encoding function such that 𝜙(𝑉, 𝑗)
maps the set 𝑉 into the 𝑗’th (2-dimensional) subspace of the encoding space 𝑊 (0) . The role of 𝑗 is
to ensure that with constant probability, different training examples are mapped to distinct subspaces
of 𝑊 (0) . The encoding is then implemented within the optimization process through the following
loss term:

ℓ2(𝑤, (𝑉, 𝑗)) B ⟨−𝜙(𝑉, 𝑗), 𝑤 (0)⟩. (9)

Now, following the first step of GD, we have 𝑤2
(0) = 𝜂

𝑛

∑𝑛
𝑖=1 𝜙(𝑉𝑖 , 𝑗𝑖), and with constant probability

each vector 𝜙(𝑉𝑖 , 𝑗𝑖) is non-zero in distinct components of 𝑤2
(0) . Proceeding, we represent every

potential training set using a vector 𝜓 ∈ Ψ ⊆ 𝔹2𝑛2 , and define a mapping 𝛼 : ℝ2𝑛2 → 𝑈 such that
for all 𝜓 ∈ Ψ, 𝛼(𝜓) is some vector in 𝑈 that is not contained in the training set represented by 𝜓 (if
such a vector exists). The desired gradient step is then induced by the additional loss term:

ℓ3(𝑤) B max
{
𝛿1,max

𝜓∈Ψ

{
⟨𝜓, 𝑤 (0)⟩ − 𝛽⟨𝛼(𝜓), 𝑤 (1)⟩

}}
, (10)

5. The summation starts at 𝑘 = 2 due to technical reasons that will become apparent later in this proof sketch.
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where 𝛽, 𝛿1 > 0 are small predefined constants. For suitable choices of 𝜙 and 𝛼 it can be shown
𝜓∗ ∈ Ψ that represents the actual training set𝑉1, . . . , 𝑉𝑛 is realized as a unique maximizer in Eq. (10),
which in turn triggers a gradient step along 𝑢0 B 𝛼(𝜓∗) in the subspace 𝑊 (1) . We note that while
there exist rather straightforward approaches to construct 𝜙, 𝛼, the challenge lies in designing such
functions so that 𝑢0 is realized as the unique subgradient (i.e., the gradient) of the loss function.
Such a mechanism, established formally in Theorem 4, will serve to show that our lower bound is
valid for any subgradient oracle (and not only for an adversarially chosen one), as well as for making
the construction differentiable; we discuss this later on, in Section 3.5.

3.4. Making GD converge to a bad ERM

Our final task is to make GD converge to a “bad ERM” 𝑤 ∈ ℝ𝑑 such that 𝑤 (𝑘 ) = 𝑐𝜂𝑢0 for a
sufficiently large constant 𝑐 > 0 and Ω(𝑇)-many values of 𝑘 (assuming 𝑤2

(1) = 𝑐1𝑢0 as we detailed
in the previous section). To this end, we employ a variation of a technique used in previous lower
bound constructions (Bassily et al., 2020; Amir et al., 2021b; Koren et al., 2022) to induce gradient
instability around the origin. Notably, in these prior instances, the potential directions of progress—
analogous to vectors in our set𝑈—were perfectly orthogonal (and thus, the dimension of space was
required to be exponential in 𝑛). By contrast, in our scenario the vectors in𝑈 are only approximately
orthogonal, and directly applying previous approaches could lead to situations where gradient steps
from consecutive iterations may interfere with progress made in correlated directions in previous
iterations. Accordingly, our approach differs from previous works and incorporates a chain-like
gradient step sequence, induced by the following additional loss term:

ℓ4(𝑤) = max
{
𝛿2, max

𝑢∈𝑈, 1≤𝑘<𝑇

{
3
8 ⟨𝑢, 𝑤

(𝑘 )⟩ − 1
2 ⟨𝑢, 𝑤

(𝑘+1)⟩
}}
, (11)

where 𝛿2 > 0 is a small constant. The key idea here is that following the initialization stage, the
inner maximization above is always attained at the same vector 𝑢 = 𝑢0, and for values of 𝑘 that
increase by 1 in every iteration of GD. Consequently, subgradient steps with respect to this term will
result in making a step towards 𝑢0 in each of the components 𝑤 (1) , 𝑤 (2) , . . . one by one, avoiding
interference between consecutive steps. At the end of this process, there are Ω(𝑇) values of 𝑘 such
that 𝑤 (𝑘 ) = 1

8𝜂𝑢0, which is what we set to achieve.
In some more detail, assuming GD successfully reaches a vector 𝑤2 = 𝑤 with 𝑤 (1) = 𝑐1𝑢0

and 𝑤 (𝑘 ) = 0 for 𝑘 > 1 (𝑐1 > 0 is a small constant), we have that the maximum in Eq. (11) is
uniquely attained at 𝑘 = 1 and 𝑢 = 𝑢0. Consequently, the subgradient of ℓ4 is a vector 𝑔 such that
𝑔 (1) = 3

8𝑢0, 𝑔 (2) = −1
2𝑢0 (and 𝑔 (𝑘 ) = 0 for 𝑘 ≠ 1, 2), and taking a subgradient step with stepsize 𝜂

results in 𝑤 (1) = (𝜂𝛽 − 3𝜂
8 )𝑢0 and 𝑤 (2) = 𝜂

2 𝑢0 (for 𝑘 ≠ 1, 2, 𝑤 (𝑘 ) remains as is). In each subsequent
iteration, the maximization in Eq. (11) is attained at an index 𝑘 for which 𝑤 (𝑘 ) =

𝜂

2 𝑢0 and at
𝑢 = 𝑢0 6. Subsequently, every gradient step adds − 3𝜂

8 𝑢0 to 𝑤 (𝑘 ) and 𝜂

2 𝑢0 to 𝑤 (𝑘+1) and results in
𝑤 (2) = 𝑤 (3) = . . . = 𝑤 (𝑘 ) = 𝜂

8 𝑢0 and 𝑤 (𝑘+1) = 𝜂

2 𝑢0 (whereas for all 𝑠 > 𝑘 + 1, 𝑤 (𝑠) remains zero).
Finally, we note that the GD dynamics we described ensure that the iterates 𝑤1, . . . , 𝑤𝑇 remain

strictly within the unit ball 𝔹𝑑 , even when the algorithm does not employ any projections. As
a consequence, the construction we described applies equally to a projected version of GD, with
projections to the unit ball, and the resulting lower bound will apply to both versions of the algorithm.

6. This follows from direct computation and considering the near-orthogonality of vectors in𝑈.
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3.5. Putting things together

We can now integrate the ideas described in Sections 3.1 to 3.4 into a construction of a learning
problem where GD overfits the training data (with constant probability), that would serve to prove
our lower bound. To summarize this construction:

• The examples in the learning problem are parameterized by pairs (𝑉, 𝑗) ∈ 𝑍 B 𝑃(𝑈) × [𝑛2],
where 𝑈 is the set of nearly-orthogonal vectors described in Section 3.1, and 𝑃(𝑈) is its power
set;

• The population distribution D is uniform over pairs (𝑉, 𝑗) ∈ 𝑍 , namely𝑉 ∼ Unif (𝑃(𝑈)) (i.e.,𝑉 is
formed by including every element 𝑢 ∈ 𝑈 independently with probability 1

2 ) and 𝑗 ∼ Unif ( [𝑛2]);

• The loss function in this construction, 𝑓 : 𝑊 × (𝑃(𝑈) × [𝑛2]) → ℝ, is then given by:

∀ (𝑉, 𝑗) ∈ 𝑍, 𝑓 (𝑤, (𝑉, 𝑗)) B ℓ1(𝑤,𝑉) + ℓ2(𝑤, (𝑉, 𝑗)) + ℓ3(𝑤) + ℓ4(𝑤), (12)

with the terms ℓ1, ℓ2, ℓ3, ℓ4 as defined in Eqs. (8) to (11) respectively.

With a suitable choice of parameters, this construction serves to prove Theorem 1. We remark that,
while 𝑓 in this construction is convex and 𝑂 (1)-Lipschitz, it is evidently non-differentiable. For
obtaining a construction with a differentiable objective that maintains the same lower bound and
establishes the Theorem 1 fully, we add one final step of randomized smoothing of the objective.
This argument hinges on the fact that the subgradients of 𝑓 are unique along any possible trajectory
of GD, so that smoothing in a sufficiently small neighborhood would preserve gradients along any
such trajectory (and thus does not affect the the dynamics of GD), while making the objective
differentiable everywhere. The full proof of Theorem 1 is given in Appendix A.

3.6. Adapting the construction for SGD

Moving on to discuss our second main result for SGD, we provide here a brief overview of the
necessary modifications upon the construction for GD to establish the lower bound for SGD in
Theorem 2; further details can be found in Appendix B. In the case of SGD, our goal is to establish
underfitting: namely, to show that the algorithm may converge to a solution with an excessively large
empirical risk despite successfully converging on the population risk.

The main ideas leading to our construction for SGD are similar to what we discussed above,
but there are several necessary modifications that arise from the fact that, whereas in GD the entire
training set is revealed already in the first iteration, in SGD it is revealed sequentially, one training
sample at a time. In particular, unlike in the case of GD where it is possible to identify a bad ERM
𝑢0 after the first step of the algorithm and steer the algorithm in this direction in every subspace
𝑊 (1) ,𝑊 (2) , . . ., for SGD the required progress direction in𝑊 (𝑡 ) , represented as a “bad solution” 𝑢𝑡 ,
can be only determined in the 𝑡’th step based on the encoded training set up to that point,𝑉1, . . . , 𝑉𝑡−1.
As a result, it is crucial to modify the loss function such that the process of decoding such 𝑢𝑡 from
𝑉1, . . . , 𝑉𝑡−1 occurs in every iteration 𝑡.

Another essential adjustment involves identifying a solution with a large generalization gap
(namely large empirical risk, low population risk) and guiding the SGD iterates to converge to
such a solution. Considering the function ℓ1 defined in Eq. (8), such a solution is represented by
a vector 𝑢 ∈ 𝑈 that appears in all of the sets 𝑉1, . . . , 𝑉𝑛 in the training sample. However, since 𝑢𝑡
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cannot depend on future examples, our goal within every subspace 𝑊 (𝑡 ) is to take a single gradient
step towards a vector 𝑢𝑡 present only in sets up to that point, namely in

⋂𝑡−1
𝑖=1 𝑉𝑖 (note that such

𝑢𝑡 maximizes the corresponding loss functions ℓ1(𝑤,𝑉1) . . . ℓ1(𝑤,𝑉𝑡−1)). Additionally, to ensure
that gradients for future loss functions remain zero and do not affect the algorithm’s dynamics,
it is necessary to guarantee that 𝑢𝑡 ∈ ⋂𝑛

𝑖=𝑡 𝑉 𝑖; in other words, we are looking for a solution
𝑢𝑡 ∈

⋂𝑡−1
𝑖=1 𝑉𝑖 ∩

⋂𝑛
𝑖=𝑡 𝑉 𝑖 . For ensuring that such a vector actually exists (with constant probability),

we lift the dimension of the set 𝑈 and the subspaces {𝑊 (𝑘 ) }𝑛
𝑘=1 to 𝑑′ = Θ(𝑛 log 𝑛) (instead of Θ(𝑛)

as before) and modify the distribution D so as to have that 𝑉 is sampled such that every element
𝑢 ∈ 𝑈 is included in 𝑉 independently with probability 1/4𝑛2.

With these adaptations in place, we can obtain Theorem 2; we include the full technical details
in Appendix B.
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Appendix A. Overfitting of GD: Proof of Theorem 1

In this section, we provide a formal proof of our main result for GD. We first establish a lower bound
of Ω(𝜂

√
𝑇) for the population loss of GD given a non-differentiable loss (Theorem 5). The proof

of Theorem 1 given at the end of this section then extends the result to a differentiable loss and
combines it with a standard optimization lower bound. Unless stated otherwise, proofs for lemmas
below are deferred to Appendix A.4.

For the first step, for a dimension 𝑑′ that will be set later, we use a set of approximately orthogonal
vectors in ℝ𝑑

′ with size (at least) exponential in 𝑑′, the existence of which is given by the following
lemma, adapted from Feldman (2016).

Lemma 3 For any 𝑑′ ≥ 256, there exists a set 𝑈𝑑′ ⊆ ℝ𝑑
′ , with |𝑈𝑑′ | ≥ 2𝑑′/178, such that all

𝑢 ∈ 𝑈𝑑′ are of unit length ∥𝑢∥ = 1, and for all 𝑢, 𝑣 ∈ 𝑈𝑑′ , 𝑢 ≠ 𝑣, it holds that |⟨𝑢, 𝑣⟩| ≤ 1
8 .

Now, let 𝑛 be the number of examples in the training set. We define the set 𝑈 B 𝑈𝑑′ to be a
set as specified by Theorem 3 for 𝑑′ = 178𝑛. Then, as outlined in Section 3, we define the sample
space 𝑍 B {(𝑉, 𝑗) : 𝑉 ⊆ 𝑈, 𝑗 ∈ [𝑛2]} and the distribution D as the uniform distribution. Our next
lemma asserts the existence of suitable encoding (𝜙) and selection (𝛼) functions.

Lemma 4 Let 𝑛, 𝑑 ≥ 1 and a set 𝑈 ⊆ 𝔹𝑑 . Let 𝑃(𝑈) be the power set of 𝑈. Then, there exist a set
Ψ ⊆ ℝ2𝑛2 , a number 0 < 𝜖 < 1

𝑛
and two mappings 𝜙 : 𝑃(𝑈) × [𝑛2] → ℝ2𝑛2 , 𝛼 : ℝ2𝑛2 → 𝑈 such

that,

(i) For every 𝑗 ∈ [𝑛2] and 𝑉 ⊆ 𝑈, it holds ∥𝜙 (𝑉, 𝑗) ∥ ≤ 1;

(ii) For every 𝜓 ∈ Ψ, it holds ∥𝜓∥ ≤ 1;

(iii) Let 𝑉1, . . . , 𝑉𝑛 be arbitrary subsets of 𝑈. If 𝑗1, . . . , 𝑗𝑛 hold that 𝑗𝑖 ≠ 𝑗𝑘 for 𝑖 ≠ 𝑘 , 𝜓∗ =

max𝜓∈Ψ
〈
𝜓, 1

𝑛

∑𝑛
𝑖=1 𝜙(𝑉𝑖 , 𝑗𝑖)

〉
is that,

• 〈
𝜓∗,

1
𝑛

𝑛∑︁
𝑖=1

𝜙(𝑉𝑖 , 𝑗𝑖)
〉
>

7
8𝑛

;

• For every 𝜓 ∈ Ψ, 𝜓 ≠ 𝜓∗:〈
𝜓∗,

1
𝑛

𝑛∑︁
𝑖=1

𝜙(𝑉𝑖 , 𝑗𝑖)
〉
≥

〈
𝜓,

1
𝑛

𝑛∑︁
𝑖=1

𝜙(𝑉𝑖 , 𝑗𝑖)
〉
+ 𝜖 ;

• If
⋃𝑛
𝑖=1𝑉𝑖 ≠ 𝑈, then it holds that:

𝛼(𝜓∗) = 𝑣𝑖∗ ∈ 𝑈 \
𝑛⋃
𝑖=1
𝑉𝑖 , for 𝑖∗ = min

{
𝑖 : 𝑣𝑖 ∈ 𝑈 \

𝑛⋃
𝑖=1
𝑉𝑖

}
.

14
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We are now ready to state our main theorem for this section, providing the principal lower bound
guarantees.

Theorem 5 Assume that 𝑛 > 0, 𝑇 > 32002 and 𝜂 ≤ 1√
𝑇

. Consider the distribution D and the
loss function 𝑓 defined in Section 3.5 instantiated with Ψ, 𝜙, 𝛼 from Theorem 4, 𝑑 = 178𝑛𝑇 + 2𝑛2,
𝜀 = 1

𝑛2 (1 − cos( 𝜋
2 |𝑃 (𝑈) | )), 𝛽 = 𝜖

4𝑇2 , 𝛿1 =
𝜂

2𝑛 and 𝛿2 =
3𝜂𝛽
16 . Then 𝑓 is convex and 5-Lipschitz, and

for Unprojected GD (cf. Eq. (1) with𝑊 = ℝ𝑑) on 𝐹, initialized at 𝑤1 = 0 with step size 𝜂, we have,
with probability at least 1

6 over the choice of the training sample:

(i) The iterates of GD remain within the unit ball, namely 𝑤𝑡 ∈ 𝔹𝑑 for all 𝑡 = 1, . . . , 𝑇;

(ii) For all 𝑚 = 1, . . . , 𝑇 , the 𝑚-suffix averaged iterate has:

𝐹 (𝑤𝑇,𝑚) − 𝐹 (𝑤∗) = Ω
(
𝜂
√
𝑇
)
.

The lemmas given next will constitute the proof of Theorem 5. Before presenting them, for
convenience, we repeat the loss function definition along with the constants specified in our theorem
above:

𝑓 (𝑤,𝑉) =

√√√
𝑇∑︁
𝑘=2

(
max

{ 3
32𝜂,max

𝑢∈𝑉
⟨𝑢, 𝑤 (𝑘 )⟩

})2 (ℓ1)

+ ⟨−𝜙(𝑉, 𝑗), 𝑤 (0)⟩ (ℓ2)

+ max
{
𝛿1,max

𝜓∈Ψ

{
⟨𝜓, 𝑤 (0)⟩ − 𝛽⟨𝛼(𝜓), 𝑤 (1)⟩

}}
(ℓ3)

+ max
{
𝛿2, max

𝑢∈𝑈, 1≤𝑘<𝑇

{
3
8 ⟨𝑢, 𝑤

(𝑘 )⟩ − 1
2 ⟨𝑢, 𝑤

(𝑘+1)⟩
}}
, (ℓ4)

where,

𝑑 = 178𝑛𝑇 + 2𝑛2,

𝜀 =
1
𝑛2 (1 − cos( 𝜋

2|𝑃(𝑈) | )),

𝛽 =
𝜖

4𝑇2 ,

𝛿1 =
𝜂

2𝑛
,

𝛿2 =
3𝜂𝛽
16

.

Lemma 6 For every (𝑉, 𝑗) ∈ 𝑍 , the loss function 𝑓 (𝑤, (𝑉, 𝑗)) as defined by Theorem 5 is convex
and 5-Lipschitz over ℝ𝑑 with respect to its first argument.

Next, we formulate the “good event” — conditioned on this event the optimization dynamics of GD
will lead to a bad ERM:

E B
{⋃𝑛

𝑖=1
𝑉𝑖 ≠ 𝑈

}
∩

{
𝑗𝑘 ≠ 𝑗𝑙, ∀𝑘 ≠ 𝑙

}
. (13)

In words, under the event E there exists at least one “bad direction” (which is a vector in the set
𝑈 \ ⋃𝑛

𝑖=1𝑉𝑖) and there is no collision between the indices 𝑗1, . . . , 𝑗𝑛. In the following lemma we
show that E holds with constant probability.

15
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Lemma 7 For the event E defined in Eq. (13), it holds that Pr(E) ≥ 1
6 .

The next lemma is the key component in the proof of Theorem 5, and characterizes the trajectory of
GD when applied to the empirical risk 𝐹, conditioned on the good event. The proof is provided in
Appendix A.1.

Lemma 8 Assume the conditions of Theorem 5, and consider the iterates of unprojected GD on 𝐹,
with step size 𝜂 ≤ 1/

√
𝑇 initialized at 𝑤1 = 0. Under the event E, we have for all 𝑡 ≥ 5 that

𝑤𝑡
(𝑘 ) =



𝜂

𝑛

∑𝑛
𝑖=1 𝜙(𝑉𝑖 , 𝑗𝑖) 𝑘 = 0;(

− 3
8 + 𝑡−2

4
𝜖

𝑇2

)
𝜂𝑢0 𝑘 = 1;

1
8𝜂𝑢0 2 ≤ 𝑘 ≤ 𝑡 − 3;
1
2𝜂𝑢0 𝑘 = 𝑡 − 2;
0 𝑡 − 1 ≤ 𝑘 ≤ 𝑇,

(14)

where 𝑢0 is a vector such that 𝑢0 ∈ 𝑈 \ ⋃𝑛
𝑖=1𝑉𝑖 . Furthermore, ∥𝑤𝑡 ∥ ≤ 1 for all 𝑡 ∈ [𝑇].

Now we can turn to prove Theorem 5. Here we prove the lower bound for the case of suffix
averaging with 𝑚 = 1, namely, when the output solution is the final iterate 𝑤𝑇 of GD; the full proof
for the more general case can be found in Appendix A.3.
Proof [of Theorem 5 (𝑚 = 1 case)] We prove the theorem under the condition that E occurs, which
happens w.p. ≥ 1

6 by Theorem 7. First, note that 𝑓 is convex and 5-Lipschitz by Theorem 6, and that
(i) is implied immediately by the fact that ∥𝑤𝑡 ∥ ≤ 1, as assured by Theorem 8.

Next, consider 𝑤𝑇 that takes the form stated in Eq. (14) given by Theorem 8. Note that if a
vector 𝑣 ∈ 𝑈 is in a set 𝑉 ⊆ 𝑈, it holds that max𝑢∈𝑉 ⟨𝑢, 𝑣⟩ = 1. However, if 𝑣 ∉ 𝑉 , it holds that
max𝑢∈𝑉 ⟨𝑢, 𝑣⟩ = 1

8 . As a result, by the fact that every vector for a fresh pair (𝑉, 𝑗) ∼ 𝐷, 𝑢0 ∈ 𝑈 is in
𝑉 with probability 1

2 , the following holds:

𝔼𝑉

√√√
𝑇∑︁
𝑘=2

max
{

3𝜂
32
,max
𝑢∈𝑉

⟨𝑢, 𝑤𝑇 (𝑘 )⟩
}2

≥ 𝔼𝑉

√√√
𝑇−3∑︁
𝑘=2

max
{

3𝜂
32
,max
𝑢∈𝑉

⟨𝑢, 𝑤𝑇 (𝑘 )⟩
}2

= 𝔼𝑉

√︄
(𝑇 − 4) max

{
3𝜂
32
,max
𝑢∈𝑉

⟨𝑢, 𝜂
8
𝑢0⟩

}2

=
𝜂
√
𝑇 − 4
8

𝔼𝑉 max
{

3
4
,max
𝑢∈𝑉

⟨𝑢, 𝑢0⟩
}

≥ 𝜂
√
𝑇 − 4
8

(
3
4

Pr(𝑢0 ∉ 𝑉) + Pr(𝑢0 ∈ 𝑉)
)

=
7𝜂
64

√
𝑇 − 4.

Moreover, again by Theorem 8, we notice that for every 𝑡, 𝑉 ⊆ 𝑈 and 𝑗 ∈ [𝑛2],

ℓ2(𝑤𝑡 , (𝑉, 𝑗)) ≥ −∥𝑤𝑡 (0) ∥ ≥ −𝜂, ℓ3(𝑤𝑡 ) ≥ 𝛿1 and ℓ4(𝑤𝑡 ) ≥ 𝛿2,

thus, it holds that:

𝐹 (𝑤𝑇 ) ≥
7𝜂
64

√
𝑇 − 4 + 𝛿1 + 𝛿2 − 𝜂;

16
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𝐹 (𝑤∗) ≤ 𝐹 (0) ≤ 3𝜂
32

√
𝑇 + 𝛿1 + 𝛿2 + 𝜂.

Then, since 𝑇 ≥ 100 by assumption, we have 6
√
𝑇

7
√
𝑇−4

≤ 9/10, thus:

𝐹 (𝑤𝑇 ) − 𝐹 (𝑤∗) ≥
7𝜂
64

√
𝑇 − 4 − 3𝜂

32
√
𝑇 ≥ 7𝜂

√
𝑇 − 4

640
,

which completes the proof.

The remaining elements for Theorem 1 are establishing Theorem 5 for a differentiable loss
function, and merging the result with a standard optimization lower bound of Ω

(
min

(
1
𝜂𝑇
, 1

))
given

in Theorem 38 in Appendix D.
Proof [of Theorem 1] Let 𝛽, 𝜖, 𝛿1, 𝛿2, and 𝑓 , D be those specified in Theorem 5, and define

𝑓 (𝑤, (𝑉, 𝑗)) B 𝔼𝑣∼Unif (𝔹𝑑 ) [ 𝑓 (𝑤 + 𝛿𝑣, (𝑉, 𝑗))] , (15)

where

𝛿 B
𝜂𝛽

32
. (16)

Further, denote the empirical loss and the population loss with respect to the loss function 𝑓 aŝ̃𝐹 (𝑤) = 1
𝑛

∑𝑛
𝑖=1 𝑓 (𝑤, (𝑉𝑖 , 𝑗𝑖)) and �̃� (𝑤) = 𝔼(𝑉, 𝑗 )∼D 𝑓 (𝑤, (𝑉, 𝑗)), respectively. We have that this

loss function is convex and Lipschitz, and that the GD iterates identify with those of the original,
non-smoothed loss.

Lemma 9 For every (𝑉, 𝑗) ∈ 𝑍 , the loss function 𝑓 is differentiable, convex and 1-Lipschitz with
respect to its first argument and over ℝ𝑑 .

Lemma 10 Let 𝑤𝑡 , �̃�𝑡 be the iterates of Unprojected GD with step size 𝜂 ≤ 1√
𝑇

and 𝑤1 = 0, on 𝐹

and ̂̃𝐹 respectively. Then, if E occurs, for every 𝑡 ∈ [𝑇], it holds that 𝑤𝑡 = �̃�𝑡 .

Now let 𝑤𝑇,𝑚 be the 𝑚-suffix average of 𝐺𝐷 when is applied on 𝐹. Let 𝑤∗ = arg min𝑤 𝐹 (𝑤). By
Theorem 10, we know that, with probability of at least 1

6 , E occurs and 𝑤𝑇,𝑚 = 𝑤𝑇,𝑚. Then, by
Theorem 5 and the fact that ∥ 𝑓 − 𝑓 ∥∞ ≤ 5𝛿 (see Theorem 35),

𝜂

3200
√
𝑇 ≤ 𝐹 (𝑤𝑇,𝑚) − 𝐹 (𝑤∗)

= 𝐹 (𝑤𝑇,𝑚) − 𝐹 (𝑤∗)
≤ �̃� (𝑤𝑇,𝑚) + 5𝛿 − �̃� (𝑤∗) + 5𝛿
≤ �̃� (𝑤𝑇,𝑚) + 5𝛿 − �̃� (𝑤∗) + 5𝛿,

hence,

�̃� (𝑤𝑇,𝑚) − �̃� (𝑤∗) ≥
𝜂

3200
√
𝑇 − 10𝜂𝜖

128𝑇2

≥ 𝜂

3200
√
𝑇 − 𝜂

10𝑇2

17
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≥ 𝜂

6400
√
𝑇 (𝑇 ≥ 30)

≕ 𝐶1𝜂
√
𝑇.

Further, by Theorem 38, we know that for Unprojected 𝐺𝐷 and 𝑑2 = max(25𝜂2𝑇2, 1), there exist a
constant 𝐶2 and a deterministic loss function 𝑓 OPT : ℝ𝑑2 → ℝ such that

𝑓 OPT(𝑤𝑇,𝑚) − 𝑓 OPT(𝑤∗) ≥ 𝐶2 min
(
1,

1
𝜂𝑇

)
.

Now, let 𝐶 = 1
2 min (𝐶1, 𝐶2). If 𝜂 ≥ 𝑇− 3

4 , then, 𝜂
√
𝑇 ≥ min(1, 1

𝜂𝑇
), and we get,

�̃� (𝑤𝑇,𝑚) − �̃� (𝑤∗) ≥ 𝐶
(
𝜂
√
𝑇 + min

(
1,

1
𝜂𝑇

))
≥ 𝐶

(
min

(
1, 𝜂

√
𝑇 + 1

𝜂𝑇

))
.

Otherwise, we get that,

𝑓 OPT(𝑤𝑇,𝑚) − 𝑓 OPT(𝑤∗) ≥ 𝐶
(
𝜂
√
𝑇 + min

(
1,

1
𝜂𝑇

))
≥ 𝐶

(
min

(
1, 𝜂

√
𝑇 + 1

𝜂𝑇

))
.

Since in both cases, by Theorems 8 and 38, 𝑤𝑡 ∈ 𝔹𝑑 for every 𝑡 ∈ [𝑇], the theorem is applicable
also for Projected GD. Finally, we scale the loss by 1/5, and note that the iterates of GD with step
size 𝜂 on ̂̃𝐹 behave identically to those with step size 1

5𝜂 on the scaled version. This completes the
proof.

A.1. GD Dynamics: Proof of Theorem 8

To prove Theorem 8, we break down to the different components of the loss and analyze how the
terms ℓ1, ℓ3 and ℓ4 affects the dynamics of 𝐺𝐷 under the event E. For each of these components,
which involve maximum over linear functions, we show which term achieves the maximum value for
each 𝑤𝑡 and derive the expressions for the gradients at those points by the maximizing terms. First,
we show that under this event, the gradients of ℓ1 do not affect the dynamics since in any iteration 𝑡
the gradient of ℓ1 is zero, as stated in the following lemma.

Lemma 11 Assume the conditions of Theorem 5 and the event E. Let 0 ≤ 𝑐 ≤ 1
2 , and let 𝑤 ∈ ℝ𝑑

be such that for every 2 ≤ 𝑘 ≤ 𝑇 , 𝑤 (𝑘 ) = 𝑐𝜂𝑢0, where 𝑢0 ∈ 𝑈 \ ⋃𝑛
𝑖=1𝑉𝑖 . Then, for every 𝑖 ∈ [𝑛], it

holds that

(i) for every 𝑘 ≥ 2, it holds max𝑢∈𝑉𝑖 ⟨𝑤 (𝑘 ) , 𝑢⟩ ≤ 𝜂

16 ;

(ii) ℓ1(·, 𝑉𝑖) is differentiable at 𝑤 and ∇ℓ1(𝑤,𝑉𝑖) = 0.

Proof For the first part, we know that, for every 2 ≤ 𝑘 ≤ 𝑇 , 𝑤 (𝑘 ) = 𝑐𝜂𝑢0, where 𝑐 ≤ 1
2 . In addition,

by the facts that 𝑢0 ∈ 𝑈 \ ⋃𝑛
𝑖=1𝑉𝑖 and that for every 𝑢 ≠ 𝑣 ∈ 𝑈, it holds that ⟨𝑢, 𝑣⟩ ≤ 1

8 (see
Theorem 3), we get for every 𝑖, max𝑢∈𝑉𝑖 ⟨𝑢0, 𝑢⟩ ≤ 1

8 , thus, for every 𝑖 and 𝑘 ≥ 2,

max
𝑢∈𝑉𝑖

⟨𝑢, 𝑤 (𝑘 )⟩ = max
𝑢∈𝑉𝑖

⟨𝑢, 𝑐𝜂𝑢0⟩ ≤
1
8
· 𝑐𝜂 ≤ 𝜂

16
.
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For the second part, for every sub-gradient 𝑔(𝑤,𝑉𝑖) ∈ 𝜕ℓ1(𝑤,𝑉𝑖), there exists a sub gradient

𝑔ℎ (𝑤,𝑉𝑖) ∈ 𝜕
(∑𝑇

𝑘=2 max
(

3𝜂
32 ,max𝑢∈𝑉 ⟨𝑢, 𝑤 (𝑘 )⟩

)2
)

such that

𝑔(𝑤,𝑉𝑖) =
𝑔ℎ (𝑤,𝑉𝑖)

2
√︂∑𝑇

𝑘=2 max
(

3𝜂
32 ,max𝑢∈𝑉𝑖 ⟨𝑢𝑤 (𝑘 )⟩

)2
.

Then, since for every 𝑘 , it holds that max𝑢∈𝑈 ⟨𝑤 (𝑘 ) , 𝑢0⟩ ≤ 𝜂

16 <
3𝜂
32 , we have 𝑔ℎ (𝑤,𝑉𝑖) = 0, hence

∇ℓ1(𝑤,𝑉𝑖) = 0.

Next, for the term ℓ3, as outlined in Section 3.3, it is used for identifying the actual training
set 𝑆 = {(𝑉𝑖 , 𝑗𝑖)}𝑛𝑖=1 given an encoding 𝜓∗ = 1

𝑛

∑𝑛
𝑖=1 𝜙(𝑉𝑖 , 𝑗𝑖) in the iterate 𝑤𝑡 (0) and ensuring

a performance of gradient step in 𝑊 (1) towards a corresponding vector 𝑢0 ∈ 𝑈 \ ⋃𝑛
𝑖=1𝑉𝑖 in the

following iteration. It is done by getting 𝜓∗ as a maximum of linear functions (with positive constant
margin) over the set Ψ which contains all possible encoded datasets. This idea is formalized in the
following lemma.

Lemma 12 Assume the conditions of Theorem 5 and the event E. Let 𝜓∗ = 1
𝑛

∑𝑛
𝑖=1 𝜙(𝑉𝑖 , 𝑗𝑖) and

𝑤 ∈ ℝ𝑑 be such 𝑤 (0) = 𝜂𝜓∗, and let 𝑤 (1) = 𝑐𝜂𝑢0 for |𝑐 | ≤ 1 and 𝑢0 ∈ 𝑈 \ ⋃𝑛
𝑖=1𝑉𝑖 . Then

(i) For every 𝜓 ∈ Ψ, 𝜓 ≠ 𝜓∗:

⟨𝑤 (0) , 𝜓∗⟩ − 𝜖

4𝑇2 ⟨𝛼(𝜓∗), 𝑤 (1)⟩ > ⟨𝑤 (0) , 𝜓⟩ − 𝜖

4𝑇2 ⟨𝛼(𝜓), 𝑤 (1)⟩ + 𝜂𝜖

4 ;

(ii) For 𝜓 = 𝜓∗, it holds that

⟨𝑤 (0) , 𝜓∗⟩ − 𝜖

4𝑇2 ⟨𝛼(𝜓∗), 𝑤 (1)⟩ > 𝛿1 + 𝜂

16𝑛 ;

(iii) ℓ3 is differentiable at 𝑤 and the gradient is given by:

(∇ℓ3(𝑤)) (𝑘 ) =


𝜓∗ 𝑘 = 0;
− 𝜖

4𝑇2 𝑢0 𝑘 = 1;
0 otherwise.

Proof For the first part, by Theorem 4, the fact that for every 𝜓, ∥𝛼(𝜓)∥ ≤ 1, and by ∥𝑤 (1) ∥ ≤ 𝜂,
for every 𝜓 ∈ Ψ, 𝜓∗ = 1

𝑛

∑𝑛
𝑖=1 𝜙(𝑉𝑖 , 𝑗𝑖) holds,

⟨𝑤 (0) , 𝜓∗⟩ − 1
4
𝜖

𝑇2 ⟨𝛼(𝜓
∗), 𝑤 (1)⟩ ≥ ⟨𝜂

𝑛

𝑛∑︁
𝑖=1

𝜙(𝑉𝑖 , 𝑗𝑖), 𝜓∗⟩ − 𝜂𝜖

4

≥ 𝜂⟨1
𝑛

𝑛∑︁
𝑖=1

𝜙(𝑉𝑖 , 𝑗𝑖), 𝜓∗⟩ − 𝜂𝜖

4

≥ 𝜂⟨1
𝑛

𝑛∑︁
𝑖=1

𝜙(𝑉𝑖 , 𝑗𝑖), 𝜓⟩ + 𝜂𝜖 −
𝜂𝜖

4
(Theorem 4)
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= 𝜂⟨1
𝑛

𝑛∑︁
𝑖=1

𝜙(𝑉𝑖 , 𝑗𝑖), 𝜓⟩ +
𝜂𝜖

2
+ 𝜂𝜖

4

> ⟨𝑤 (0) , 𝜓⟩ − 1
4
𝜖

𝑇2 ⟨𝛼(𝜓), 𝑤
(1)⟩ + 𝜂𝜖

4
.

Further (again by Theorem 4),

arg max
𝜓∈Ψ

(
⟨𝑤 (0) , 𝜓⟩ − 1

4
𝜖

𝑇2 ⟨𝛼(𝜓), 𝑤
(1)⟩

)
= 𝜓∗.

For the second part, by the fact that 𝜖 < 1
𝑛

and Theorem 4,

⟨𝑤 (0) , 𝜓∗⟩ − 1
4
𝜖

𝑇2 ⟨𝛼(𝜓
∗), 𝑤 (1)⟩ ≥ 7𝜂

8𝑛
− 𝜂

4𝑛
>
𝜂

2𝑛
+ 𝜂

16𝑛
= 𝛿1 +

𝜂

16𝑛
.

Now, by E, for 𝑢0 which is the 𝑢 with the minimal index in𝑈 \ ⋃𝑛
𝑖=1𝑉𝑖 , we have:

𝛼(𝜓∗) = 𝑢0 ∈ 𝑈 \
𝑛⋃
𝑖=1
𝑉𝑖 .

As a result, by the fact that the maximum is attained uniquely at 𝜓∗, we derive that,

∇ℓ3(𝑤) (𝑘 ) =


1
𝑛

∑𝑛
𝑖=1 𝜙(𝑉𝑖 , 𝑗𝑖) 𝑘 = 0

− 1
4
𝜖

𝑇2 𝑢0 𝑘 = 1
0 otherwise.

Finally, for ℓ4, as detailed in Section 3.4, the role of this term is to make the last iterate 𝑤𝑇 hold
𝑤𝑇

(𝑘 ) =
𝜂

8 𝜂𝑢0 for Ω(𝑇) many sub-spaces 𝑊 (𝑘 ) . In the following lemma, we show that in every
iteration 𝑡, every gradient step increases the amount of such 𝑘s by 1, namely, in every iteration 𝑡, the
maximum of ℓ4 is attained at 𝑢 = 𝑢0 and index 𝑘𝑡 = arg max{𝑘 : 𝑤𝑡 (𝑘 ) ≠ 0}, which increases by 1
in every iteration, making the 𝑤𝑡+1

(𝑘𝑡 ) = 𝜂

8 𝜂𝑢0.

Lemma 13 Assume the conditions of Theorem 5 and the event E. Let 𝑤 ∈ ℝ𝑑 , 𝑢0 ∈ 𝑈 \ ⋃𝑛
𝑖=1𝑉𝑖

and 3 ≤ 𝑚 < 𝑇 be such that 𝑤 (1) = 𝑐𝜂𝑢0 for −3
8 ≤ 𝑐 ≤ 0, 𝑤 (𝑘 ) = 𝜂

8 𝑢0 for every 2 ≤ 𝑘 ≤ 𝑚 − 1,
𝑤 (𝑚) = 𝜂

2 𝑢0 and 𝑤 (𝑘 ) = 0 for every 𝑘 ≥ 𝑚 + 1. Then, it holds that,

(i) For every pair 𝑢 ∈ 𝑈 and 𝑘 < 𝑇 such that 𝑘 ≠ 𝑚 or 𝑢 ≠ 𝑢0,
3
8 ⟨𝑢0, 𝑤

(𝑚)⟩ − 1
2 ⟨𝑢0, 𝑤

(𝑚+1)⟩ > 3
8 ⟨𝑢, 𝑤

(𝑘 )⟩ − 1
2 ⟨𝑢, 𝑤

(𝑘+1)⟩ + 𝜂

64

(ii)
3
8 ⟨𝑢0, 𝑤

(𝑚)⟩ − 1
2 ⟨𝑢0, 𝑤

(𝑚+1)⟩ > 𝛿2 + 𝜂

64 .

(iii) ℓ4 is differentiable at 𝑤 and the gradient is given as follows:

(
∇ℓ4(𝑤)

) (𝑘 )
=


3
8𝑢0 𝑘 = 𝑚;
− 1

2𝑢0 𝑘 = 𝑚 + 1;
0 otherwise.
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Proof We show that the maximum is attained uniquely at 𝑘 = 𝑚 and 𝑢 = 𝑢0. We repeatedly use that
| ⟨𝑢, 𝑢0⟩ | ≤ 1/8 for 𝑢 ∈ 𝑈, 𝑢 ≠ 𝑢0 (see Theorem 3). For 𝑘 = 1 and every 𝑢 ∈ 𝑈,

3
8
⟨𝑢, 𝑤𝑡 (1)⟩ −

1
2
⟨𝑢, 𝑤𝑡 (2)⟩ =

3
8
⟨𝑢, 𝑐𝜂𝑢0⟩ −

1
2
⟨𝑢, 𝜂

8
𝑢0⟩ ≤

9𝜂
512

+ 𝜂

128
=

13𝜂
512

.

Moreover, for every 2 ≤ 𝑘 ≤ 𝑚 − 2 and every 𝑢 ∈ 𝑈,

3
8
⟨𝑢, 𝑤 (𝑘 )⟩ − 1

2
⟨𝑢, 𝑤 (𝑘+1)⟩ = 3

8
⟨𝑢, 𝜂

8
𝑢0⟩ −

1
2
⟨𝑢, 𝜂

8
𝑢0⟩ ≤

3𝜂
64

+ 𝜂

128
=

7𝜂
128

.

For 𝑘 = 𝑚 − 1 and every 𝑢 ∈ 𝑈,

3
8
⟨𝑢, 𝑤 (𝑚−1)⟩ − 1

2
⟨𝑢, 𝑤 (𝑚)⟩ = 3

8
⟨𝑢, 𝜂

8
𝑢0⟩ −

1
2
⟨𝑢, 𝜂

2
𝑢0⟩ ≤

3𝜂
64

+ 𝜂

32
=

5𝜂
64
.

For 𝑘 = 𝑚 and 𝑢 = 𝑢0,

3
8
⟨𝑢, 𝑤 (𝑚)⟩ − 1

2
⟨𝑢, 𝑤 (𝑚+1)⟩ = 3

8
⟨𝑢0,

𝜂

2
𝑢0⟩ −

1
2
⟨𝑢0, 0⟩ =

3𝜂
16
.

For 𝑘 = 𝑚 and 𝑢 ≠ 𝑢0,

3
8
⟨𝑢, 𝑤 (𝑚)⟩ − 1

2
⟨𝑢′, 𝑤 (𝑚+1)⟩ = 3

8
⟨𝑢, 𝜂

2
𝑢0⟩ −

1
2
⟨𝑢′, 0⟩ ≤ 3𝜂

128
.

For every 𝑚 + 1 ≤ 𝑘 < 𝑇 − 1 and every 𝑢 ∈ 𝑈,

3
8
⟨𝑢, 𝑤 (𝑘 )⟩ − 1

2
⟨𝑢′, 𝑤 (𝑘+1)⟩ = 0.

Moreover, since 𝑇 ≥ 4, 𝜂 < 1, 𝜖 < 1, 𝛿1 ≤ 3𝜂
1024 , and

3
8
⟨𝑢, 𝑤 (𝑚)⟩ − 1

2
⟨𝑢, 𝑤 (𝑚+1)⟩ = 3𝜂

16
> 𝛿2 +

𝜂

64
.

We derive that,

∇ℓ4(𝑤) (𝑘 ) =


3
8𝑢0 𝑘 = 𝑚

−1
2𝑢0 𝑘 = 𝑚 + 1

0 otherwise.

The final components required for the proof of Theorem 8 are direct computations for the initial
iterates, which are detailed in Appendix A.2. With these in place, we are now ready for the proof.
Proof [of Theorem 8] We prove the lemma by induction on 𝑡; the base case, for 𝑡 = 5, is proved in
Theorem 17 in Appendix A.2. For the induction step, fix any 𝑡 ≥ 5 and assume the that the lemma
holds for 𝑤𝑡 ; we will prove the claim for 𝑤𝑡+1.

First, for ℓ1, note that, by the hypothesis of the induction, for every 2 ≤ 𝑘 ≤ 𝑇 , 𝑤𝑡 (𝑘 ) = 𝑐𝜂𝑢0 for
𝑐 ≤ 1

2 , thus, by Theorem 11, for every 𝑖, ∇ℓ1(𝑤𝑡 , 𝑉𝑖) = 0.
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For ℓ2, we know that, for every 𝑖,(
∇ℓ2(𝑤𝑡 , (𝑉𝑖 , 𝑗𝑖))

) (𝑘 )
=

{
−𝜙(𝑉𝑖 , 𝑗𝑖) 𝑘 = 0;
0 otherwise.

For ℓ3, using the hypothesis of the induction, which implies that 𝑤𝑡 (1) = 𝑐𝜂𝑢0 for |𝑐 | ≤ 1 and
𝑤𝑡

(0) = 𝜂

𝑛

∑𝑛
𝑖=1 𝜙(𝑉𝑖 , 𝑗𝑖), by Theorem 12, we get that,

(
∇ℓ3(𝑤𝑡 )

) (𝑘 )
=


1
𝑛

∑𝑛
𝑖=1 𝜙(𝑉𝑖 , 𝑗𝑖) 𝑘 = 0;

− 𝜖

4𝑇2 𝑢0 𝑘 = 1;
0 otherwise.

For ℓ4, again by the inductive hypothesis, we know that 𝑤𝑡 (1) =
(
− 3

8 + (𝑡−2)
4

𝜖

𝑇2

)
𝜂𝑢0 = 𝑐𝜂𝑢0 for

− 3
8 ≤ 𝑐 ≤ 0. Then the conditions of Theorem 13 hold for 𝑚 = 𝑡 − 2, thus, it holds that,

(
∇ℓ4(𝑤𝑡 )

) (𝑘 )
=


3
8𝑢0 𝑘 = 𝑡 − 2;
− 1

2𝑢0 𝑘 = 𝑡 − 1;
0 otherwise.

Combining all together, we get that,

(
∇𝐹 (𝑤𝑡 )

) (𝑘 )
=


− 𝜖

4𝑇2 𝑢0 𝑘 = 1;
3
8𝑢0 𝑘 = 𝑡 − 2;
− 1

2𝑢0 𝑘 = 𝑡 − 1;
0 otherwise,

where 𝑢0 ∈ 𝑈 \ ⋃𝑛
𝑖=1𝑉𝑖 , which gives the desired for 𝑤𝑡+1 = 𝑤𝑡 − 𝜂∇𝐹 (𝑤𝑡 ) by direct computation.

Lastly, we have ∥𝑤𝑡 ∥ ≤ 1 by Theorem 18, and the proof is complete.

A.2. GD Dynamics: The first iterates

Lemma 14 Under the conditions of Theorem 5, if E occurs and 𝑤𝑡 is the iterate of Unprojected
GD on 𝐹, with step size 𝜂 ≤ 1√

𝑇
and 𝑤1 = 0, then, for 𝑡 = 2 it holds that,

𝑤2
(𝑘 ) =

{
𝜂

𝑛

∑𝑛
𝑖=1 𝜙(𝑉𝑖 , 𝑗𝑖) 𝑘 = 0

0 𝑘 > 0.

Proof For 𝑡 = 1, 𝑤1 = 0. By Theorem 11 we know that for every 𝑖, ∇ℓ1(𝑤1, 𝑉𝑖) = 0. Moreover, by
the fact that 𝛿1, 𝛿2 > 0 the maximum in ℓ3 and ℓ4 is attained in 𝛿1 and 𝛿2, respectively, thus we get
that

∇ℓ3(𝑤1) = ∇ℓ4(𝑤1) = 0

As a result,

∇𝐹 (𝑤1)
(𝑘 )

=
1
𝑛

𝑛∑︁
𝑖=1

∇ℓ2(𝑤1, (𝑉𝑖 , 𝑗𝑖)) (𝑘 ) =
{
− 1
𝑛

∑𝑛
𝑖=1(𝑉𝑖 , 𝑗𝑖) 𝑘 = 0

0 otherwise,
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hence,

𝑤2
(𝑘 ) =

{
𝜂

𝑛

∑𝑛
𝑖=1 𝜙(𝑉𝑖 , 𝑗𝑖) 𝑘 = 0

0 otherwise.

Lemma 15 Under the conditions of Theorem 5, if E occurs and 𝑤𝑡 is the iterate of Unprojected
GD on 𝐹, with step size 𝜂 ≤ 1√

𝑇
and 𝑤1 = 0, then, for 𝑡 = 3 it holds that,

𝑤3
(𝑘 ) =


𝜂

𝑛

∑𝑛
𝑖=1 𝜙(𝑉𝑖 , 𝑗𝑖) 𝑘 = 0

𝜂

4
𝜖

𝑇2 𝑢0 𝑘 = 1
0 2 ≤ 𝑘 ≤ 𝑇,

where 𝑢0 ∈ 𝑈 \ ⋃𝑛
𝑖=1𝑉𝑖 .

Proof By Theorem 14, 𝑤2
(1) , ..., 𝑤2

(𝑇 ) = 0, thus, by Theorem 11, we know that for every 𝑖,
∇ℓ1(𝑤1, 𝑉𝑖) = 0. Moreover, by the fact that 𝛿2 > 0, we get that ∇ℓ4(𝑤2) = 0. For ℓ3(𝑤2), by
Theorem 12, using the fact that 𝑤2

(1) = 0 and 𝑤2
(0) = 𝜂

𝑛

∑𝑛
𝑖=1 𝜙(𝑉𝑖 , 𝑗𝑖), we get that

∇ℓ3(𝑤2) (𝑘 ) =


1
𝑛

∑𝑛
𝑖=1 𝜙(𝑉𝑖 , 𝑗𝑖) 𝑘 = 0

− 1
4
𝜖

𝑇2 𝑢0 𝑘 = 1
0 otherwise.

For ℓ2(𝑤2), for every 𝑖, the gradient is

∇ℓ2(𝑤2, (𝑉𝑖 , 𝑗𝑖)) (𝑘 ) =
{
−𝜙(𝑉𝑖 , 𝑗𝑖) 𝑘 = 0
0 otherwise.

(Note that this implies in particular, 1
𝑛

∑𝑛
𝑖=1 ∇ℓ2(𝑤2, (𝑉𝑖 , 𝑗𝑖)) (0) = −∇ℓ3(𝑤2) (0) .) Combining all

together, we conclude that, for 𝑢0 ∈ 𝑈 \ ⋃𝑛
𝑖=1𝑉𝑖 , it holds that,

∇𝐹 (𝑤2)
(𝑘 )

=


0 𝑘 = 0
− 1

4
𝜖

𝑇2 𝑢0 𝑘 = 1
0 2 ≤ 𝑘 ≤ 𝑇,

and the result follows from 𝑤3 = 𝑤2 − 𝜂∇𝐹 (𝑤2).

Lemma 16 Under the conditions of Theorem 5, if E occurs and 𝑤𝑡 is the iterate Unprojected GD
on 𝐹, with step size 𝜂 ≤ 1√

𝑇
and 𝑤1 = 0, then, for 𝑡 = 4 it holds that,

𝑤4
(𝑘 ) =


𝜂

𝑛

∑𝑛
𝑖=1 𝜙(𝑉𝑖 , 𝑗𝑖) 𝑘 = 0

− 3𝜂
8 𝑢0 + 𝜂

2
𝜖

𝑇2 𝑢0 𝑘 = 1
𝜂

2 𝑢0 𝑘 = 2
0 3 ≤ 𝑘 ≤ 𝑇,

where 𝑢0 ∈ 𝑈 \ ⋃𝑛
𝑖=1𝑉𝑖 .
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Proof We start with ℓ1, ℓ2, ℓ3. For ℓ1, by Theorem 15, for every 2 ≤ 𝑘 ≤ 𝑇 , 𝑤3
(𝑘 ) = 0, thus, by

Theorem 11, we know that for every 𝑖, ∇ℓ1(𝑤1, 𝑉𝑖) = 0. For ℓ2, we know that, for every 𝑖,

∇ℓ2(𝑤3, (𝑉𝑖 , 𝑗𝑖)) (𝑘 ) =
{
−𝜙(𝑉𝑖 , 𝑗𝑖) 𝑘 = 0
0 otherwise.

For ℓ3, by Theorem 12, using the fact that 𝑤3
(1) = 𝑐𝜂𝑢0 for |𝑐 | ≤ 1 and 𝑤3

(0) = 𝜂

𝑛

∑𝑛
𝑖=1 𝜙(𝑉𝑖 , 𝑗𝑖),

we get that,

∇ℓ3(𝑤3) (𝑘 ) =


1
𝑛

∑𝑛
𝑖=1 𝜙(𝑉𝑖 , 𝑗𝑖) 𝑘 = 0

− 1
4
𝜖

𝑇2 𝑢0 𝑘 = 1
0 otherwise.

Now, for ℓ4, we show that the maximum is attained uniquely in 𝑘 = 1 and 𝑢 = 𝑢0: For 𝑘 ≠ 1, for
every 𝑢 ∈ 𝑈

3
8
⟨𝑢, 𝑤3

(𝑘 )⟩ − 1
2
⟨𝑢, 𝑤3

(𝑘+1)⟩ = 0.

For 𝑘 = 1 and 𝑢 ≠ 𝑢0,
3
8
⟨𝑢, 𝑤3

(𝑘 )⟩ − 1
2
⟨𝑢, 𝑤3

(𝑘+1)⟩ = 3
8
⟨𝑢, 𝑤3

(1)⟩ − 1
2
⟨𝑢, 𝑤3

(2)⟩

=
3
8
⟨𝑢, 𝜂

4
𝜖

𝑇2 𝑢0⟩

≤ 3𝜂
256

𝜖

𝑇2

< 𝛿2. (17)

For 𝑘 = 1 and 𝑢 = 𝑢0,
3
8
⟨𝑢, 𝑤3

(𝑘 )⟩ − 1
2
⟨𝑢, 𝑤3

(𝑘+1)⟩ = 3
8
⟨𝑢0, 𝑤3

(1)⟩ − 1
2
⟨𝑢0, 𝑤3

(2)⟩

=
3
8
⟨𝑢0,

𝜂

4
𝜖

𝑇2 𝑢0⟩

=
3𝜂
32

𝜖

𝑇2

> 𝛿2. (18)

We derive that,

∇ℓ4(𝑤3) (𝑘 ) =


3
8𝑢0 𝑘 = 1
− 1

2𝑢0 𝑘 = 2
0 3 ≤ 𝑘 ≤ 𝑇
0 𝑘 = 0.

Combining all together, we get that,

∇𝐹 (𝑤3)
(𝑘 )

=


3
8𝑢0 − 1

4
𝜖

𝑇2 𝑢0 𝑘 = 1
− 1

2𝑢0 𝑘 = 2
0 3 ≤ 𝑘 ≤ 𝑇
0 𝑘 = 0,

24



Dimension Strikes Back with Gradients

and

𝑤4
(𝑘 ) =


𝜂

𝑛

∑𝑛
𝑖=1 𝜙(𝑉𝑖 , 𝑗𝑖) 𝑘 = 0

−3𝜂
8 𝑢0 + 𝜂

2
𝜖

𝑇2 𝑢0 𝑘 = 1
𝜂

2 𝑢0 𝑘 = 2
0 3 ≤ 𝑠 ≤ 𝑇,

where 𝑢0 ∈ 𝑈 \ ⋃𝑛
𝑖=1𝑉𝑖 .

Lemma 17 Under the conditions of Theorem 5, if E occurs and 𝑤𝑡 is the iterate Unprojected GD
on 𝐹, with step size 𝜂 ≤ 1√

𝑇
and 𝑤1 = 0, then, for 𝑡 = 5 it holds that,

𝑤5
(𝑘 ) =



1
𝑛

∑𝑛
𝑖=1 𝜙(𝑉𝑖 , 𝑗𝑖) 𝑘 = 0,

− 3
8𝜂𝑢0 + 3𝜂

4
𝜖

𝑇2 𝑢0 𝑘 = 1
1
8𝜂𝑢0 𝑘 = 2
1
2𝜂𝑢0 𝑘 = 3
0 4 ≤ 𝑠 ≤ 𝑇

where 𝑢0 ∈ 𝑈 \ ⋃𝑛
𝑖=1𝑉𝑖 .

Proof We begin with ℓ1, ℓ2, ℓ3. Note that, by Theorem 16, for every 2 ≤ 𝑘 ≤ 𝑇 , 𝑤4
(𝑘 ) = 𝑐𝜂𝑢0 for

𝑐 ≤ 1
2 , thus, by Theorem 11, for every 𝑖, ∇ℓ1(𝑤4, 𝑉𝑖) = 0. For ℓ2, we know that, for every 𝑖,

∇ℓ2(𝑤4, (𝑉𝑖 , 𝑗𝑖)) (𝑘 ) =
{
−𝜙(𝑉𝑖 , 𝑗𝑖) 𝑘 = 0
0 otherwise.

For ℓ3, by Theorem 12, using Theorem 16, where we showed that 𝑤4
(1) = 𝑐𝜂𝑢0 for |𝑐 | ≤ 1 and

𝑤4
(0) = 𝜂

𝑛

∑𝑛
𝑖=1 𝜙(𝑉𝑖 , 𝑗𝑖), we get that,

∇ℓ3(𝑤4) (𝑘 ) =


1
𝑛

∑𝑛
𝑖=1 𝜙(𝑉𝑖 , 𝑗𝑖) 𝑘 = 0

− 1
4
𝜖

𝑇2 𝑢0 𝑘 = 1
0 otherwise.

It is left to calculate ∇ℓ4(𝑤4). We show that the maximum is attained uniquely at 𝑘 = 2 and
𝑢 = 𝑢0. First,

3
8
⟨𝑢, 𝜂

2
𝜖

𝑇2 𝑢0⟩ =
3𝜂
16

𝜖

𝑇2 ⟨𝑢, 𝑢0⟩ ≤
3𝜂

16𝑇2 ,

thus, since 𝑇 ≥ 4,

3
8
⟨𝑢, 𝑤4

(1)⟩ − 1
2
⟨𝑢, 𝑤4

(2)⟩ = 3
8
⟨𝑢,−3𝜂

8
𝑢0 +

𝜂

2
𝜖

𝑇2 𝑢0⟩ −
1
2
⟨𝑢, 𝜂

2
𝑢0⟩

≤ 9𝜂
512

+ 𝜂

32
+ 9𝜂

256
=

43𝜂
512
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<
3𝜂
16
.

For 𝑘 = 2 and 𝑢 = 𝑢0,

3
8
⟨𝑢, 𝑤4

(2)⟩ − 1
2
⟨𝑢, 𝑤4

(3)⟩ = 3
8
⟨𝑢0,

𝜂

2
𝑢0⟩ −

1
2
⟨𝑢0, 0⟩ =

3𝜂
16

(> 𝛿2).

For 𝑘 = 2 and 𝑢 ≠ 𝑢𝑡−2,

3
8
⟨𝑢, 𝑤4

(2)⟩ − 1
2
⟨𝑢′, 𝑤3

(3)⟩ = 3
8
⟨𝑢, 𝜂

2
𝑢0⟩ −

1
2
⟨𝑢, 0⟩ ≤ 3𝜂

128
.

For every 3 ≤ 𝑘 ≤ 𝑇 − 1,

3
8
⟨𝑢, 𝑤4

(𝑘 )⟩ − 1
2
⟨𝑢′, 𝑤4

(𝑘+1)⟩ = 0.

We derive that,

∇ℓ4(𝑤4) (𝑘 ) =


3
8𝑢0 𝑘 = 2
− 1

2𝑢0 𝑘 = 3
0 3 ≤ 𝑘 ≤ 𝑇
0 𝑘 = 0.

Combining all together, we get that,

∇𝐹 (𝑤4)
(𝑘 )

=



−1
4
𝜖

𝑇2 𝑢0 𝑘 = 1
3
8𝑢0 𝑘 = 2
−1

2𝑢0 𝑘 = 3
0 4 ≤ 𝑘 ≤ 𝑇
0 𝑘 = 0

and

𝑤5
(𝑘 ) =



− 3
8𝜂𝑢0 + 3𝜂

4
𝜖

𝑇2 𝑢0 𝑘 = 1
1
8𝜂𝑢0 𝑘 = 2
1
2𝜂𝑢0 𝑘 = 3
0 4 ≤ 𝑠 ≤ 𝑇
1
𝑛

∑𝑛
𝑖=1 𝜙(𝑉𝑖 , 𝑗𝑖) 𝑘 = 0,

where 𝑢0 ∈ 𝑈 \ ⋃𝑛
𝑖=1𝑉𝑖 .

Lemma 18 Assume the conditions of Theorem 5, and consider the iterates of unprojected GD on
𝐹, with step size 𝜂 ≤ 1/

√
𝑇 initialized at 𝑤1 = 0. Under the event E, we have for all 𝑡 ∈ [𝑇] that

∥𝑤𝑡 ∥ ≤ 1.
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Proof If E holds, by Theorems 8 and 14 to 16, we know that for every 𝑡 ≥ 2, ∥𝑤𝑡 (1) ∥ ≤ 𝜂

2 ,
∥𝑤𝑡 (𝑡−1) ∥ ≤ 𝜂

2 and for every 𝑘 ∈ {2, . . . , 𝑡 − 2}, ∥𝑤𝑡 (𝑡−1) ∥ ≤ 𝜂

8 . As a result,

∥𝑤𝑡 ∥2 ≤
𝑑∑︁
𝑖=1

𝑤𝑡 [𝑖]2

≤
𝑇∑︁
𝑘=0

∥𝑤𝑡 (𝑘 ) ∥2

< 2 ·
(𝜂
2

)2
+ (𝑇 − 3)

(𝜂
8

)2
+




𝜂
𝑛

𝑛∑︁
𝑖=1

𝜙(𝑉𝑖 , 𝑗𝑖)



2

≤ 𝜂2

2
+ 𝜂

2(𝑇 − 3)
64

+ 𝜂2

≤ 1
64

+ 3
2𝑇

(𝜂 ≤ 1√
𝑇

)

≤ 1 (𝑇 ≥ 2)

A.3. Full proof of Theorem 5

Proof [of Theorem 5] By Theorem 7, with probability of at least 1
6 , E occurs and by Theorem 8, it

holds for every 2 ≤ 𝑘 ≤ 𝑇 − 3 that,

𝑤𝑇,𝑚
(𝑘 ) =

1
𝑚

𝑚∑︁
𝑖=1

𝑤𝑇−𝑖+1
(𝑘 ) =

{
𝜂

8 𝑢0 𝑘 ≤ 𝑇 − 𝑚 − 2
1
𝑚

( 𝜂
2 + 𝜂

8 (𝑇 − 𝑘 − 2)
)
𝑢0 𝑘 ≥ 𝑇 − 𝑚 − 1

(19)

=

{
𝜂

8 𝑢0 𝑘 ≤ 𝑇 − 𝑚 − 2
𝜂 (𝑇−𝑘+2)

8𝑚 𝑢0 𝑘 ≥ 𝑇 − 𝑚 − 1

Then, we denote 𝛼𝑉 ∈ ℝ𝑇−4 the vector which its 𝑘th entry is max
(

3𝜂
32 ,max𝑢∈𝑉 ⟨𝑢, 𝑤𝑇,𝑚 (𝑘+1)⟩

)
. By

the fact that every vector 𝑢 ∈ 𝑈 is in 𝑉 with probability 1
2 , the following holds,

𝔼𝑉

√√√
𝑇∑︁
𝑘=2

max
(
3𝜂
32
,max
𝑢∈𝑉

⟨𝑢, 𝑤𝑇,𝑚 (𝑘 )⟩
)2

≥ 𝔼𝑉

√√√
𝑇−3∑︁
𝑘=2

max
(
3𝜂
32
,max
𝑢∈𝑉

⟨𝑢, 𝑤𝑇,𝑚 (𝑘 )⟩
)2

= 𝔼𝑉

√√√
𝑇−4∑︁
𝑘=1

max
(
3𝜂
32
,max
𝑢∈𝑉

⟨𝑢, 𝑤𝑇,𝑚 (𝑘+1)⟩
)2

= 𝔼𝑉 ∥𝛼𝑉 ∥
≥ ∥𝔼𝑉𝛼𝑉 ∥

=

√√√
𝑇−3∑︁
𝑘=2

(
𝔼𝑉 max

(
3𝜂
32
,max
𝑢∈𝑉

⟨𝑢, 𝑤𝑇,𝑚 (𝑘 )⟩
))2
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Then, by Eq. (19),

𝔼𝑉

√√√
𝑇∑︁
𝑘=2

max
(
3𝜂
32
,max
𝑢∈𝑉

⟨𝑢, 𝑤𝑇,𝑚 (𝑘 )⟩
)2

≥

√√√
𝑇−𝑚−2∑︁
𝑘=2

(
𝔼𝑉 max

(
3𝜂
32
,max
𝑢∈𝑉

⟨𝑢, 𝑤𝑇,𝑚 (𝑘 )⟩
))2

+
𝑇−3∑︁

𝑘=𝑇−𝑚−1

(
𝔼𝑉 max

(
3𝜂
32
,max
𝑢∈𝑉

⟨𝑢, 𝑤𝑇,𝑚 (𝑘 )⟩
))2

≥

√√√
𝑇−𝑚−2∑︁
𝑘=2

(
𝔼𝑉 max

(
3𝜂
32
,max
𝑢∈𝑉

⟨𝑢, 𝜂
8
𝑢0⟩

))2
+

𝑇−3∑︁
𝑘=𝑇−𝑚−1

(
𝔼𝑉 max

(
3𝜂
32
,max
𝑢∈𝑉

⟨𝑢, 𝜂(𝑇 − 𝑘 + 2)
8𝑚

𝑢0⟩
))2

=
𝜂

8

√√√
𝑇−𝑚−2∑︁
𝑘=2

(
𝔼𝑉 max

(
3
4
,max
𝑢∈𝑉

⟨𝑢, 𝑢0⟩
))2

+
𝑇−3∑︁

𝑘=𝑇−𝑚−1

(
𝔼𝑉 max

(
3
4
,
𝑇 − 𝑘 + 2

𝑚
max
𝑢∈𝑉

⟨𝑢, 𝑢0⟩
))2

≥ 𝜂

8

√√√
𝑇−𝑚−2∑︁
𝑘=2

(
𝔼𝑉 max

(
3
4
,max
𝑢∈𝑉

⟨𝑢, 𝑢0⟩
))2

+
𝑇−3∑︁

𝑘=𝑇−𝑚−1

(
𝔼𝑉 max

(
3
4
,
𝑇 − 𝑘 + 2

𝑇
max
𝑢∈𝑉

⟨𝑢, 𝑢0⟩
))2

=
𝜂

8

√√√
𝑇−𝑚−2∑︁
𝑘=2

(
𝔼𝑉 max

(
3
4
,max
𝑢∈𝑉

⟨𝑢, 𝑢0⟩
))2

+
𝑚−1∑︁
𝑘=1

(
𝔼𝑉 max

(
3
4
,
𝑘 + 4
𝑇

max
𝑢∈𝑉

⟨𝑢, 𝑢0⟩
))2

Now, treating each of the term separately, with probability 1
2 on 𝑉 , max𝑢∈𝑉 ⟨𝑢, 𝑢0⟩ ≤ 1

8 (otherwise it
is 1), thus,

𝔼𝑉 max
(
3
4
,max
𝑢∈𝑉

⟨𝑢, 𝑢0⟩
)
=

1
2
· 3

4
+ 1

2
· 1 =

7
8

Moreover, if 𝑘 ≤ 3𝑇
4 − 4

𝔼𝑉 max
(
3
4
,
𝑘 + 4
𝑇

max
𝑢∈𝑉

⟨𝑢, 𝑢0⟩
)
=

3
4
,

otherwise,

𝔼𝑉 max
(
3
4
,
𝑘 + 4
𝑇

max
𝑢∈𝑉

⟨𝑢, 𝑢0⟩
)
≥ 1

2
max

(
3
4
,
𝑘 + 4
𝑇

)
+ 1

2
· 3

4

≥ 3
8
+ 𝑘 + 4

2𝑇

Then, we get, if 𝑚 ≥ 𝑇 − 3, (note that it implies 𝑙 − 1 ≥ 3𝑇
4 − 4),

𝔼𝑉

√√√
𝑇∑︁
𝑘=2

max
(
3𝜂
32
,max
𝑢∈𝑉

⟨𝑢, 𝑤𝑇,𝑚 (𝑘 )⟩
)2

≥ 𝜂

8

√√√
𝑚−1∑︁
𝑘=1

(
𝔼𝑉 max

(
3
4
,
𝑘 + 4
𝑇

max
𝑢∈𝑉

⟨𝑢, 𝑢0⟩
))2
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≥ 𝜂

8

√√√√ ∑︁
𝑘:1≤𝑘≤ 3𝑇

4 −4

9
16

+
∑︁

𝑘: 3𝑇
4 −4<𝑘≤𝑚−1

(
3
8
+ 𝑘 + 4

2𝑇

)2

≥ 𝜂

8

√√√√ ∑︁
𝑘:1≤𝑘≤ 3𝑇

4 −4

9
16

+
∑︁

𝑘: 3𝑇
4 <𝑘≤𝑇

(
3
8
+ 𝑘

2𝑇

)2

≥ 𝜂

8

√√√27𝑇 − 144
64

+
∑︁

𝑘: 3𝑇
4 <𝑘≤𝑇

(
9
64

+ 3𝑘
8𝑇

)

≥ 𝜂

8

√√√√√√27𝑇 − 144
64

+
©­­«

9𝑇
256

+ 3
8𝑇

∑︁
𝑘: 3𝑇

4 <𝑘≤𝑇

𝑘
ª®®¬

≥ 𝜂

8

√√√
27𝑇 − 144

64
+

(
9𝑇
256

+ 3𝑇2

16𝑇
−

3( 3𝑇
4 + 1)2

16𝑇

)
( 𝑖22 ≤ ∑𝑛

𝑖=1 𝑖
2 ≤ (𝑖+1)2

2 )

=
𝜂

8

√︄
27𝑇 − 144

64
+

(
9𝑇
256

+ 3𝑇
16

− 27𝑇
256

− 3
16𝑇

− 9
32

)
=
𝜂

8

√︂
148𝑇
256

− 45
32

− 3
16𝑇

≥ 𝜂

8

√︂
147𝑇
256

(𝑇 ≥ 512 =⇒ 45
32 + 3

16𝑇 ≤ 𝑇
256 )

≥ 3𝜂
32

· 101
√
𝑇

100
.

Otherwise, if 𝑚 < 𝑇 − 4, by similar arguments,

𝔼𝑉

√√√
𝑇∑︁
𝑘=2

max
(
3𝜂
32
,max
𝑢∈𝑉

⟨𝑢, 𝑤𝑇,𝑚 (𝑘 )⟩
)2

≥ 𝜂

8

√√√
𝑇−𝑚−2∑︁
𝑘=2

(
𝔼𝑉 max

(
3
4
,max
𝑢∈𝑉

⟨𝑢, 𝑢0⟩
))2

+
𝑇−3∑︁

𝑘=𝑇−𝑚−1

(
𝔼𝑉 max

(
3
4
,
𝑇 − 𝑘 + 2

𝑇
max
𝑢∈𝑉

⟨𝑢, 𝑢0⟩
))2

≥ 𝜂

8

√√√√𝑇−𝑚−2∑︁
𝑘=2

(
7
8

)2
+

∑︁
𝑘:1≤𝑘≤ 3𝑇

4 −4

9
16

+
∑︁

𝑘:𝑇2 <𝑘≤𝑚+3

(
3
8
+ 𝑘

2𝑇

)2

=
𝜂

8

√√√√ 𝑇∑︁
𝑘=𝑚+4

(
7
8

)2
+

∑︁
𝑘:1≤𝑘≤ 3𝑇

4 −4

9
16

+
∑︁

𝑘:𝑇2 <𝑘≤𝑚+3

(
3
8
+ 𝑘

2𝑇

)2

≥ 𝜂

8

√√√√ ∑︁
𝑘:1≤𝑘≤ 3𝑇

4 −4

9
16

+
∑︁

𝑘: 3𝑇
4 <𝑘≤𝑇

(
3
8
+ 𝑘

2𝑇

)2
( 3

8 + 𝑘
2𝑇 ≤ 7

8 )
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≥ 3𝜂
32

· 101
√
𝑇

100
.

Moreover, we notice that for every 𝑡, ℓ2(𝑤𝑡 ) ≥ −∥𝑤𝑡 (0) ∥ ≥ −𝜂, ℓ3(𝑤𝑡 ) ≥ 𝛿1 and ℓ4(𝑤𝑡 ) ≥ 𝛿2, thus,
it holds that,

𝐹 (𝑤𝑇,𝑙) ≥
303𝜂
3200

√
𝑇 + 𝛿1 + 𝛿2 − 𝜂 ≥ 𝜂

(
303
3200

√
𝑇 − 1

)
and

𝐹 (𝑤∗) ≤
3𝜂
32

√
𝑇 + 𝜂

Then, with probability of at least 1
6 ,

𝐹 (𝑤𝑇,𝑙) − 𝐹 (𝑤∗) ≥ 𝜂(
303
3200

√
𝑇 − 2 − 3

32
√
𝑇)

≥ 𝜂( 303
3200

√
𝑇 − 302

3200
√
𝑇) (𝑇 ≥ 32002 =⇒ 2 ≤ 2

3200
√
𝑇)

=
𝜂

3200
√
𝑇.

A.4. Deferred Proofs

Proof [of Theorem 3] Let 𝑟 = 2 𝑑′
178 . For every 1 ≤ 𝑖 ≤ 𝑟 and 1 ≤ 𝑗 ≤ 𝑑′ we define the random

variable 𝑢 𝑗
𝑖

to be 1√
𝑑′

with probability 1
2 and − 1√

𝑑′
with probability 1

2 . Then, for every 1 ≤ 𝑖 ≤ 𝑟 ,
we define the vector 𝑢𝑖 = (𝑢1

𝑖
, · · · , 𝑢𝑑′

𝑖
) and look at the set 𝑈 = {𝑢1, 𝑢2, ...𝑢𝑟 }. This set will satisfy

the required property with positive probability. First, for every 𝑖 ≠ 𝑘 , ⟨𝑢𝑖 , 𝑢𝑘⟩ are sums of 𝑑 random
variables that take values in {− 1

𝑑′ ,
1
𝑑′ } with 𝔼⟨𝑢𝑖 , 𝑢𝑘⟩ = 0. Then by Hoeffding’s inequality,

𝑃𝑟 ( |⟨𝑢𝑖 , 𝑢𝑘⟩| ≥
1
8
) ≤ 2𝑒

−2( 1
8 )2

𝑑′ · 4
𝑑′2 = 2𝑒−

𝑑′
128

Then, by union bound on the
(𝑟
2
)

pairs of vectors in𝑈,

𝑃𝑟 (∃𝑖, 𝑘 |⟨𝑢𝑖 , 𝑢𝑘⟩| ≥
1
8
) ≤ 2𝑒−

𝑑′
128 ·

(
𝑟

2

)
< 2𝑒−

𝑑′
128 · 1

2
𝑟2 ≤ 1.

Proof [of Theorem 4] First, we consider an arbitrary enumeration of 𝑃(𝑈) = {𝑉1, ...𝑉𝑁 }, with
𝑁 B |𝑃(𝑈) |, and define 𝑔 : 𝑃(𝑈) → ℝ2, 𝑔(𝑉 𝑖) =

(
sin

(
𝜋𝑖
𝑁

)
, cos

(
𝜋𝑖
𝑁

) )
. Now, we refer to a vector

𝑎 ∈ ℝ2𝑛2 as a concatenation of 𝑛2 vectors in ℝ2, 𝑎 (1) , ..., 𝑎 (𝑛2 ) . Then, we define 𝛿 = 1 − cos
(
𝜋

2𝑁
)
,

𝜖 = 𝛿

𝑛2 and

𝜙(𝑉, 𝑗) ( 𝑗′ ) =
{
𝑔(𝑉) 𝑗 ′ = 𝑗

0 otherwise
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As a result, for every 𝑉 𝑖 , 𝑗 it holds that

∥𝜙(𝑉 𝑖 , 𝑗)∥ = ∥𝑔(𝑉 𝑖)∥ =

√︄
sin

(
𝜋𝑖

2𝑁

)2
+ cos

(
𝜋𝑖

2𝑁

)2
= 1

Moreover, if 𝑗1 ≠ 𝑗2,

⟨𝜙(𝑉 𝑖 , 𝑗1), 𝜙(𝑉 𝑖 , 𝑗2)⟩ = 0,

and if 𝑖 > 𝑘 ,

⟨𝜙(𝑉 𝑖 , 𝑗), 𝜙(𝑉 𝑘 , 𝑗)⟩ =⟨𝑔(𝑉 𝑖), 𝑔(𝑉 𝑘)⟩

= sin
(
𝜋𝑖

2𝑁

)
sin

(
𝜋𝑘

2𝑁

)
+ cos

(
𝜋𝑖

2𝑁

)
cos

(
𝜋𝑘

2𝑁

)
= cos

(
𝜋(𝑖 − 𝑘)

2𝑁

)
≤ cos

( 𝜋
2𝑁

)
(cos is monotonic decreasing in [0, 𝜋/2])

= 1 − 𝛿

We notice that 0 < 𝛿 < 1. Now, we consider an arbitrary enumeration of𝑈 = {𝑣1, ...𝑣 |𝑈 |}, and define
the following set Ψ ⊆ ℝ2𝑛2 and the following two mappings 𝜎 : 𝑅2𝑛2 → 𝑃(𝑈), 𝛼 : 𝑅2𝑛2 → 𝑈,

Ψ = {1
𝑛

𝑛∑︁
𝑖=1

𝜙(𝑉𝑖 , 𝑗𝑖) : ∀𝑖 𝑉𝑖 ⊆ 𝑈, 𝑗𝑖 ∈ [𝑛2] and 𝑖 ≠ 𝑙 =⇒ 𝑗𝑖 ≠ 𝑗𝑙}

Note that, for every 𝜓 ∈ Ψ,

∥𝜓∥ = ∥ 1
𝑛

𝑛∑︁
𝑖=1

𝜙(𝑉𝑖 , 𝑗𝑖)∥ ≤ 1
𝑛

𝑛∑︁
𝑖=1

∥𝜙(𝑉𝑖 , 𝑗𝑖)∥ = 1.

Then, for every 𝑎 ∈ ℝ2𝑛2 and 𝑗 ∈ [𝑛2], we denote the index 𝑞(𝑎, 𝑗) ∈ [|𝑃(𝑈) |] as

𝑞(𝑎, 𝑗) = arg max
𝑟

⟨𝑔(𝑉𝑟 ), 𝑎 ( 𝑗 )⟩,

and define the following mapping 𝜎 : ℝ2𝑛2 → 𝑃(𝑈),

𝜎(𝑎) =
𝑛2⋃

𝑗=1,𝑎 ( 𝑗)≠0

𝑉𝑞 (𝑎, 𝑗 ) .

Moreover, for every 𝑎 ∈ ℝ2𝑛2 , we denote the index 𝑝(𝑎) ∈ [|𝑈 |] as

𝑝(𝑎) =
{
−1 𝜎(𝑎) = 𝑈,
arg min𝑖{𝑖 : 𝑣𝑖 ∈ 𝑈 \ 𝜎(𝑎)} 𝜎(𝑎) ≠ 𝑈,
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and define the following mapping 𝛼 : ℝ2𝑛2 → 𝑈,

𝛼(𝑎) =
{
𝑣 |𝑈 | 𝜎(𝑎) = 𝑈
𝑣𝑝 (𝑎) 𝜎(𝑎) ≠ 𝑈 .

Now, Let 𝑉1, . . . , 𝑉𝑛 ⊆ 𝑈 and 𝑗1, ... 𝑗𝑛 that are sampled uniformly from [𝑛2], We prove the last
part of the lemma under the condition that 𝑗𝑖 ≠ 𝑗𝑘 for 𝑖 ≠ 𝑘 . 𝜓∗ = 1

𝑛

∑𝑛
𝑖=1 𝜙(𝑉𝑖 , 𝑗𝑖) holds

⟨𝜓∗,
1
𝑛

𝑛∑︁
𝑖=1

𝜙(𝑉𝑖 , 𝑗𝑖)⟩ = ⟨1
𝑛

𝑛∑︁
𝑖=1

𝜙(𝑉𝑖 , 𝑗𝑖),
1
𝑛

𝑛∑︁
𝑖=1

𝜙(𝑉𝑖 , 𝑗𝑖)⟩

=
1
𝑛2

𝑛∑︁
𝑖=1

⟨𝜙(𝑉𝑖 , 𝑗𝑖), 𝜙(𝑉𝑖 , 𝑗𝑖)⟩

=
1
𝑛

>
7

8𝑛

Let 𝜓 ∈ Ψ, 𝜓 = 1
𝑛

∑𝑛
𝑙=1 𝜙(𝑉 ′

𝑙
, 𝑗 ′
𝑙
) such that 𝜓 ≠ 𝜓∗, then by the definition of Ψ there are at

most 𝑛 pairs 𝑖, 𝑙 such that ⟨𝜙(𝑉𝑖 , 𝑗𝑖), 𝜙(𝑉 ′
𝑙
, 𝑗 ′
𝑙
)⟩ ≠ 0. Thus, there exists a pair (𝑉 ′

𝑟 , 𝑗
′
𝑟 ) such that

(𝑉 ′
𝑟 , 𝑗

′
𝑟 ) ∉ {(𝑉𝑖 , 𝑗𝑖) : 𝑖 ∈ [𝑛]}, and for every 𝑖, ⟨𝜙(𝑉𝑖 , 𝑗𝑖), 𝜙(𝑉 ′

𝑙
, 𝑗 ′
𝑙
)⟩ ≤ 1 − 𝛿. As a result,

⟨𝜓, 1
𝑛

𝑛∑︁
𝑙=1

𝜙(𝑉𝑖 , 𝑗𝑖)⟩ = ⟨1
𝑛

𝑛∑︁
𝑖=1

𝜙(𝑉 ′
𝑙 , 𝑗

′
𝑙 ),

1
𝑛

𝑛∑︁
𝑖=1

𝜙(𝑉𝑖 , 𝑗𝑖)⟩

=
1
𝑛2

𝑛∑︁
𝑖=1

𝑛∑︁
𝑙=1

⟨𝜙(𝑉𝑖 , 𝑗𝑖), 𝜙(𝑉 ′
𝑙 , 𝑗

′
𝑙 )⟩

≤ 1
𝑛2

(
1 − 𝛿 +

𝑛∑︁
𝑖=1,𝑖≠𝑟

1

)
≤ 1
𝑛2 (1 − 𝛿 + 𝑛 − 1)

=
1
𝑛
− 𝛿

𝑛2

= ⟨𝜓∗,
1
𝑛

𝑛∑︁
𝑖=1

𝜙(𝑉𝑖 , 𝑗𝑖)⟩ − 𝜖

Furthermore, since all 𝑗𝑖 are distinct, for every 𝑖 ∈ [𝑛] it holds that,
(

1
𝑛

∑𝑛
𝑖′=1 𝜙(𝑉𝑖′ , 𝑗𝑖′)

) ( 𝑗𝑖 )
= 1
𝑛
𝑔(𝑉𝑖),

thus,

𝑞

(
1
𝑛

𝑛∑︁
𝑖′=1

𝜙(𝑉𝑖′ , 𝑗𝑖′), 𝑗𝑖

)
= arg max

𝑟

〈
𝑔(𝑉𝑟 ),

(
1
𝑛

𝑛∑︁
𝑖′=1

𝜙(𝑉𝑖′ , 𝑗𝑖′)
) ( 𝑗𝑖 )〉

= arg max
𝑟

⟨𝑔(𝑉𝑟 ),
1
𝑛
𝑔(𝑉𝑖)⟩

= 𝑖,
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and we get,

𝜎(𝜓∗) = 𝜎
(

1
𝑛

𝑛∑︁
𝑖=1

𝜙(𝑉𝑖 , 𝑗𝑖)
)

=

𝑛2⋃
𝑗=1, 1

𝑛

∑𝑛
𝑖=1 𝜙 (𝑉𝑙 , 𝑗𝑖 )

( 𝑗)
≠0

𝑉𝑞( 1
𝑛

∑𝑛
𝑖=1 𝜙 (𝑉𝑖 , 𝑗𝑖 ) , 𝑗)

=

𝑛⋃
𝑖=1
𝑉𝑞( 1

𝑛

∑𝑛
𝑖=1 𝜙 (𝑉𝑖 , 𝑗𝑖 ) , 𝑗𝑖) (The indices that are non-zero are { 𝑗𝑖}𝑛𝑖=1})

=

𝑛⋃
𝑖=1
𝑉𝑖

Finally, assuming that
⋃𝑛
𝑖=1𝑉𝑖 ≠ 𝑈,

𝛼(𝜓∗) = 𝑣𝑝 (𝑎) ∈ 𝑈 \
𝑛⋃
𝑖=1
𝑉𝑖 .

Proof [of Theorem 6] We prove that ℓ1, ℓ2 and ℓ4 are convex and 1-Lipschitz and ℓ3 is convex and
2-Lipschitz. First, by Theorems 3 and 4 for every 𝑢 ∈ 𝑈 and 𝑉 ∈ 𝑃(𝑈), 𝑗 ∈ [𝑛2], it holds that
∥𝑢∥ = 1 and ∥𝜙(𝑉, 𝑗)∥ = 1. Hence, ℓ2 is a 1-Lipschitz linear function, and ℓ4 is a maximum over
1-Lipschitz linear functions, thus, also both functions are convex and 1-Lipschitz. Further, every
𝜓 ∈ Ψ satisfies ∥𝜓∥ ≤ 1 by Theorem 3 (ii), thus, taking into account that 𝛽 < 1, we have ℓ3 is a
maximum over 2-Lipschitz linear functions and therefore convex and 2-Lipschitz.

For ℓ1, for every set 𝑉 ⊆ 𝑈, let 𝛼𝑉 (𝑤) ∈ ℝ𝑇−1 to be the vector which its 𝑘’th coordinate is
𝛼𝑉 (𝑤) (𝑘 ) = max

(
3𝜂
32 ,max𝑢∈𝑉 ⟨𝑢, 𝑤 (𝑘+1)⟩

)
and prove convexity and 1-Lipshitzness. For establishing

convexity, observe√√√
𝑇∑︁
𝑘=2

max
(
3𝜂
32
,max
𝑢∈𝑉

⟨𝑢, (𝜆𝑥 + (1 − 𝜆)𝑦) (𝑘 )⟩
)2

=

√√√
𝑇∑︁
𝑘=2

max
(
3𝜂
32
,max
𝑢∈𝑉

(
𝜆⟨𝑢, 𝑥 (𝑘 )⟩ + (1 − 𝜆)⟨𝑢, 𝑦 (𝑘 )⟩

) )2

≤

√√√
𝑇∑︁
𝑘=2

max
(
3𝜂
32
,max
𝑢∈𝑉

(
𝜆⟨𝑢, 𝑥 (𝑘 )⟩

)
+ max
𝑢∈𝑉

(
(1 − 𝜆)⟨𝑢, 𝑦 (𝑘 )⟩

) )2

(convexity of max & monotonicity of square root)

≤

√√√
𝑇∑︁
𝑘=2

(
𝜆max

(
3𝜂
32
,max
𝑢∈𝑉

(
⟨𝑢, 𝑥 (𝑘 )⟩

) )
+ (1 − 𝜆) max

(
3𝜂
32
,max
𝑢∈𝑉

⟨𝑢, 𝑦 (𝑘 )⟩
))2

= ∥𝜆𝛼𝑉 (𝑥) + (1 − 𝜆)𝛼𝑉 (𝑦)∥2
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≤ 𝜆∥𝛼𝑉 (𝑥)∥2 + (1 − 𝜆)𝛼𝑉 (𝑦)∥2 (convexity of ℓ2 norm)

= 𝜆

√√√
𝑇∑︁
𝑘=2

max
(
3𝜂
32
,max
𝑢∈𝑉

⟨𝑢, 𝑥 (𝑘 )⟩
)2

+ (1 − 𝜆)

√√√
𝑇∑︁
𝑘=2

max
(
3𝜂
32
,max
𝑢∈𝑉

⟨𝑢, 𝑦 (𝑘 )⟩
)2
.

For 1-Lipschitzness, for every 𝑤 ∈ ℝ𝑑 and sub-gradient 𝑔(𝑤,𝑉) ∈ 𝜕ℓ1(𝑤,𝑉), there exists a sub

gradient 𝑔ℎ (𝑤,𝑉) ∈ 𝜕
(∑𝑇

𝑘=2 max
(

3𝜂
32 ,max𝑢∈𝑉 ⟨𝑢, 𝑤 (𝑘 )⟩

)2
)

such that

∥𝑔(𝑤,𝑉)∥ = ∥𝑔ℎ (𝑤,𝑉)∥

2
√︂∑𝑇

𝑘=2 max
(

3𝜂
32 ,max𝑢∈𝑉 ⟨𝑢, 𝑤 (𝑘 )⟩

)2
=

∥𝑔ℎ (𝑤,𝑉)∥

2
√︃∑𝑇

𝑘=2 𝛼𝑉 (𝑤)
(𝑘 )2

.

Further, note that 𝑔ℎ (𝑤,𝑉) is of the form

𝑔ℎ (𝑤,𝑉) = 2
𝑇∑︁
𝑘=2

𝑟𝑘,𝑉 (𝑤)𝛼𝑉 (𝑤) (𝑘 ) ,

where

𝑟𝑘,𝑉 (𝑤) ∈ 𝜕
(
𝑤 ↦→ 𝛼𝑉 (𝑤) (𝑘 )

)
(𝑤),

hence

𝑟𝑘,𝑉 (𝑤) ( 𝑗 ) ∈
{
{0} 𝑗 ≠ 𝑘,

C𝑜𝑛𝑣 ({0} ∪𝑈) 𝑗 = 𝑘,

where C𝑜𝑛𝑣(𝑆) denotes the convex hull of a set 𝑆. This implies that


𝑟𝑘,𝑉 (𝑤)

 ≤ 1, and〈

𝑟𝑘,𝑉 (𝑤), 𝑟𝑘′ ,𝑉 (𝑤)
〉
= 0 for 𝑘 ≠ 𝑘 ′. Therefore,

∥𝑔ℎ (𝑤,𝑉)∥ =





2

𝑇∑︁
𝑘=2

𝑟𝑘,𝑉 (𝑤)𝛼𝑉 (𝑤) (𝑘 )







= 2

√√√√




 𝑇∑︁
𝑘=2

𝑟𝑘,𝑉 (𝑤)𝛼𝑉 (𝑤) (𝑘 )





2

= 2

√√√
𝑇∑︁
𝑘=2

𝛼𝑉 (𝑤) (𝑘 )
2 

𝑟𝑘,𝑉 (𝑤)

2

≤ 2

√√√
𝑇∑︁
𝑘=2

𝛼𝑉 (𝑤) (𝑘 )
2
.

This now implies that ∥𝑔(𝑤,𝑉)∥ ≤ 1, and completes the proof.

Proof [of Theorem 7] By the fact that every 𝑉𝑖 and 𝑗𝑖 are independent, it is enough to show that

Pr

(
𝑛⋃
𝑖=1
𝑉𝑖 ≠ 𝑈

)
≥ 1

2
,
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and,
Pr (for every 𝑘 ≠ 𝑙, 𝑗𝑘 ≠ 𝑗𝑙) ≥

1
3
.

For the former, for every 𝑢 ∈ 𝑈, since 𝑉𝑖 are sampled independently and every vector 𝑢 ∈ 𝑈 is in
every 𝑉𝑖 with probability 1

2 ,

Pr

(
𝑢 ∈

𝑛⋃
𝑖=1
𝑉𝑖

)
= 1 − Pr

(
𝑢 ∉

𝑛⋃
𝑖=1
𝑉𝑖

)
= 1 − 2−𝑛,

thus, since by Theorem 3, |𝑈 | ≥ 2 𝑑′
178 = 2𝑛 , it holds that,

Pr

(
𝑛⋃
𝑖=1
𝑉𝑖 = 𝑈

)
= Pr

(
∀𝑢 ∈ 𝑈 𝑢 ∈

𝑛⋃
𝑖=1
𝑉𝑖

)
= (1 − 2−𝑛) |𝑈 |

≤ (1 − 2−𝑛)2𝑛

≤ 1
𝑒

<
1
2
.

We conclude,

Pr

(
𝑛⋃
𝑖=1
𝑉𝑖 ≠ 𝑈

)
≥ 1

2
.

For the latter, since all 𝑗𝑖s are sampled independently, for a single pair 𝑘 ≠ 𝑙, it holds that

Pr( 𝑗𝑘 ≠ 𝑗𝑙) = 1 − 1
𝑛2

As a result,

Pr (for every 𝑘 ≠ 𝑙, 𝑗𝑘 ≠ 𝑗𝑙) =
(
1 − 1

𝑛2

) 𝑛(𝑛−1)
2

≥
(
1 − 1

𝑛2

) 𝑛2
2

≥ 1
√

2𝑒
≥ 1
𝑒
.

Proof [of Theorem 9] First, differentiability can be derived immediately from Theorem 31. Second,
for 5-Lipschitzness, for every (𝑉, 𝑗) ∈ 𝑍 , we define 𝑓𝑉, 𝑗 : ℝ𝑑 → ℝ as 𝑓𝑉, 𝑗 (𝑤) B 𝑓 (𝑤, (𝑉, 𝑗)). By
the 5-Lipschitzness of 𝑓 with respect to its first argument and Jensen Inequality, for every 𝑥, 𝑦 ∈ ℝ𝑑 ,
it holds that

| 𝑓𝑉, 𝑗 (𝑥) − 𝑓𝑉, 𝑗 (𝑦) | =
��𝔼𝑣∈ 𝛿𝐵 (

𝑓𝑉, 𝑗 (𝑦 + 𝑣)
)
− 𝔼𝑣∈ 𝛿𝐵

(
𝑓𝑉, 𝑗 (𝑤 + 𝑣)

) ��
=

��𝔼𝑣∈ 𝛿𝐵 (
𝑓𝑉, 𝑗 (𝑥 + 𝑣) − 𝑓𝑉, 𝑗 (𝑦 + 𝑣)

) ��
≤ 𝔼𝑣∈ 𝛿𝐵

�� ( 𝑓𝑉, 𝑗 (𝑥 + 𝑣) − 𝑓𝑉, 𝑗 (𝑦 + 𝑣)
) ��

≤ 5|𝑥 − 𝑦 |.
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Third, for convexity, by the convexity of 𝑓 for every 𝑥, 𝑦 ∈ ℝ𝑑 and 𝛼 ∈ [0, 1],

𝑓𝑉, 𝑗 (𝛼𝑥 + (1 − 𝛼)𝑦) = 𝔼𝑣∈ 𝛿𝐵
(
𝑓𝑉, 𝑗 (𝛼𝑥 + (1 − 𝛼)𝑦 + 𝑣)

)
= 𝔼𝑣∈ 𝛿𝐵

(
𝑓𝑉, 𝑗 (𝛼(𝑥 + 𝑣) + (1 − 𝛼) (𝑦 + 𝑣))

)
≤ 𝔼𝑣∈ 𝛿𝐵

(
𝛼 𝑓𝑉, 𝑗 (𝑥 + 𝑣) + (1 − 𝛼) 𝑓𝑉, 𝑗 (𝑦 + 𝑣))

)
= 𝛼𝔼𝑣∈ 𝛿𝐵

(
𝑓𝑉, 𝑗 (𝑥 + 𝑣)

)
+ (1 − 𝛼)

(
𝔼𝑣∈ 𝛿𝐵 𝑓𝑉, 𝑗 (𝑦 + 𝑣)

)
= 𝛼 𝑓𝑉, 𝑗 (𝑥) + (1 − 𝛼) 𝑓𝑉, 𝑗 (𝑦).

Proof [of Theorem 10] We assume that E (Eq. (13)) holds and show Theorem 10 under this event.
We prove the claim by induction on 𝑡. For 𝑡 = 1, it is trivial. Now, we assume that 𝑤𝑡 = �̃�𝑡 .

For ℓ1, in every 𝑡, by the proofs of Theorems 14 to 17 and Theorem 8, it can be observed that
for every 𝑖 ∈ [𝑛], 𝑘 ≥ 2, max𝑡 max𝑢∈𝑉𝑖 ⟨𝑢, 𝑤𝑡 (𝑘 )⟩ ≤

𝜂

16 , thus, in every iteration the term that gets the
maximal value is 3𝜂

32 . Then, by Theorem 33 and the hypothesis of the induction, for every 𝑖,

∇ℓ̃1(�̃�𝑡 , 𝑉𝑖) = ∇ℓ̃1(𝑤𝑡 , 𝑉𝑖) = 0 = ∇ℓ1(𝑤𝑡 , 𝑉𝑖).

For ℓ̃2 and every 𝑤 ∈ ℝ𝑑 , 𝑉 ⊆ 𝑈 and 𝑗 ∈ [𝑛2], by linearity of expectation,

ℓ̃2(𝑤, (𝑉, 𝑗)) = 𝔼𝑣∈ 𝛿𝐵
[
⟨𝑤 (0) + 𝑣 (0) ,−𝜙(𝑉, 𝑗)⟩

]
= ℓ2(𝑤, (𝑉, 𝑗)) + ⟨𝔼𝑣∈ 𝛿𝐵𝑣 (0) ,−𝜙(𝑉, 𝑗)⟩
= ℓ2(𝑤, (𝑉, 𝑗))

Then, we derive that for every 𝑤 and 𝑖, ∇ℓ̃2(𝑤, (𝑉𝑖 , 𝑗𝑖)) = ∇ℓ2(𝑤, (𝑉𝑖 , 𝑗𝑖)).
For ℓ̃3, when 𝑡 = 1 the term that gets the maximal value is 𝛿1. Moreover, it can be observed that

for every 𝜓 ∈ Ψ,

max
𝜓∈Ψ

(
⟨𝑤 (0)

1 , 𝜓⟩ − 1
4
𝜖

𝑇2 ⟨𝛼(𝜓), 𝑤1
(1)⟩

)
= 0.

Then, we can apply Theorem 32, and get by the hypothesis of the induction,

∇ℓ̃3(�̃�1) = ∇ℓ̃3(𝑤1) = 0 = ∇ℓ3(𝑤1).

If 𝑡 ≥ 2, by Theorems 15 to 17 and Theorem 8, we have,

ℓ3(𝑤𝑡 ) = max
(
𝛿2,max

𝜓∈Ψ

(
⟨𝑤 (0)
𝑡 , 𝜓⟩ − 1

4
𝜖

𝑇2 ⟨𝛼(𝜓), 𝑤𝑡
(1)⟩

))
= max
𝜓∈Ψ

(
⟨𝑤 (0)
𝑡 , 𝜓⟩ − 1

4
𝜖

𝑇2 ⟨𝛼(𝜓), 𝑤𝑡
(1)⟩

)
and further by Theorem 12 (i), the maximal value of ⟨𝑤 (0) , 𝜓⟩ − 1

4
𝜖

𝑇2 ⟨𝛼(𝜓), 𝑤 (1)⟩ is attained at
𝜓 = 𝜓∗, and the difference from the second maximal possible value of this term is at least 𝜂𝜖4 . In
addition, by Theorem 12 (ii) we have that this maximum is also larger than 𝛿1 by at least 𝜂

16𝑛 . Hence,
since 𝛿 =

𝜂𝛽

32 =
𝜂𝜖

128𝑇2 <
1
2
𝜂𝜖

4 we can apply Theorem 34 and get by the hypothesis of the induction
that,

∇ℓ̃3(�̃�𝑡 )
(𝑘 )

= ∇ℓ̃3(𝑤𝑡 )
(𝑘 )
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=


1
𝑛

∑𝑛
𝑖=1 𝜙(𝑉𝑖 , 𝑗𝑖) 𝑘 = 0

− 𝜖

4𝑇2𝛼( 1
𝑛

∑𝑛
𝑖=1 𝜙(𝑉𝑖 , 𝑗𝑖)) 𝑘 = 1

0 otherwise

= ∇ℓ3(𝑤𝑡 ) (𝑘 ) .

For ℓ̃4, for 𝑡 ∈ {1, 2}, 𝑤 (𝑘 )
𝑡 = 0 for 𝑘 > 0 by Theorem 14, hence the term that gets the maximal

value is 𝛿2. Moreover, it can be observed that for every such 𝑡, and every 𝑘 ∈ [𝑇 − 1] and 𝑢 ∈ 𝑈,

3
8
⟨𝑢, 𝑤𝑡 (𝑘 )⟩ −

1
2
⟨𝑢, 𝑤𝑡 (𝑘+1)⟩ = 0.

Then, we can apply Theorem 32, and get by the hypothesis of the induction,

∇ℓ̃4(�̃�𝑡 ) = ∇ℓ̃4(𝑤𝑡 ) = 0 = ∇ℓ4(𝑤𝑡 ).

For 𝑡 = 3, it can be observed by Theorem 15 that,

ℓ4(𝑤𝑡 ) = max
(
𝛿2, max

𝑘∈[𝑇−1],𝑢∈𝑈

(
3
8
⟨𝑢, 𝑤𝑡 (𝑘 )⟩ −

1
2
⟨𝑢, 𝑤𝑡 (𝑘+1)⟩

))
= max
𝑘∈[𝑇−1],𝑢∈𝑈

(
3
8
⟨𝑢, 𝑤𝑡 (𝑘 )⟩ −

1
2
⟨𝑢, 𝑤𝑡 (𝑘+1)⟩

)
=

3
8
⟨𝑢, 𝑤𝑡 (1)⟩

=
3
8
𝜂𝜖

4𝑇2 ⟨𝑢0, 𝑢0⟩

=
3𝜂𝜖

32𝑇2 .

The second maximal possible value of this term is 𝛿2 =
3𝜂𝜖
64𝑇2 (by Eqs. (17) and (18)), then, by the

fact that 𝛿 < 3𝜂𝜖
32𝑇2 − 3𝜂𝜖

64𝑇2 =
3𝜂𝜖
64𝑇2 , we can again apply Theorem 34 and get by the hypothesis of the

induction that

∇ℓ̃4(�̃�𝑡 )
(𝑘 )

= ∇ℓ̃4(𝑤𝑡 )
(𝑘 )

=


3
8𝑢0 𝑘 = 1
−1

2𝑢0 𝑘 = 2
0 otherwise

= ∇ℓ4(𝑤𝑡 ) (𝑘 ) .

For 𝑡 ≥ 4, it can be observed by Theorem 8 and the proof of Theorem 17 that,

ℓ4(𝑤𝑡 ) = max
(
𝛿2, max

𝑘∈[𝑇−1],𝑢∈𝑈

(
3
8
⟨𝑢, 𝑤𝑡 (𝑘 )⟩ −

1
2
⟨𝑢, 𝑤𝑡 (𝑘+1)⟩

))
= max
𝑘∈[𝑇−1],𝑢∈𝑈

(
3
8
⟨𝑢, 𝑤𝑡 (𝑘 )⟩ −

1
2
⟨𝑢, 𝑤𝑡 (𝑘+1)⟩

)
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Moreover, the maximal value is 3𝜂
16 and is attained in 𝑘0 = 𝑡 − 2, 𝑢 = 𝑢0 = 𝛼(𝜓∗). The second

maximal possible value of this term is smaller then 5𝜂
64 , then we can apply again Theorem 34 and get

by the hypothesis of the induction that

∇ℓ̃4(�̃�𝑡 )
(𝑘 )

= ∇ℓ̃4(𝑤𝑡 )
(𝑘 )

=


3
8𝑢0 𝑘 = 𝑡 − 2
−1

2𝑢0 𝑘 = 𝑡 − 1
0 otherwise

= ∇ℓ4(𝑤𝑡 ) (𝑘 ) .

In conclusion, we proved that ∇𝐹 (𝑤𝑡 ) = ∇̂̃𝐹 (�̃�𝑡 ), thus, by the hypothesis of the induction,

𝑤𝑡+1 = 𝑤𝑡 − ∇𝐹 (𝑤𝑡 ) = �̃�𝑡 − ∇̂̃𝐹 (�̃�𝑡 ) = �̃�𝑡+1

Appendix B. Underfitting of SGD: Proof of Theorem 2

In this section we provide a formal proof of our main result for SGD given in Theorem 2. Here, our
goal is to establish underfitting: namely, to show that the algorithm may converge to a solution with
an excessively large empirical risk despite successfully converging on the population risk.

As in 𝐺𝐷, we construct a hard loss function, which is defined in a 𝑑-dimensional Euclidean
space such that 𝑑 is polynomial in the number of examples 𝑛. For the first step of the construction,
we use Theorem 3 (see Appendix A), which shows for every dimension 𝑑′ an existence of a set of
approximately orthogonal vectors in𝑈 ∈ ℝ𝑑

′ with size exponential in 𝑑′. We define the set𝑈 to be
𝑈 B 𝑈𝑑′ for 𝑑′ = 712𝑛 log 𝑛, the sample space to be 𝑍SGD B {𝑉 : 𝑉 ⊆ 𝑈}, and the distribution
DSGD to be such that every 𝑢 ∈ 𝑈 is included in 𝑉 ⊆ 𝑈 independently with probability 𝛿 = 1

4𝑛2 .
Henceforth, we consider an arbitrary enumeration of the elements of𝑈:

𝑈 =
{
𝑣1, . . . , 𝑣 |𝑈 |

}
. (20)

As before, we refer to every vector 𝑤 ∈ ℝ𝑑 as a concatenation of vectors, 𝑤 = (𝑤 (0) , . . . , 𝑤 (𝑛) ),
where for 1 ≤ 𝑘 ≤ 𝑛, 𝑤 (𝑘 ) ∈ ℝ𝑑

′ and 𝑤 (0) ∈ ℝ2𝑛2 . In this construction, 𝑤 (0) is also a concatenation
of 𝑛 vectors 𝑤 (0,1) , . . . , 𝑤 (0,𝑛) such that each for every 𝑟 ∈ [𝑛], 𝑤 (0,𝑟 ) ∈ ℝ2𝑛.

Our approach is, as in𝐺𝐷, in every iteration 𝑡, to encode the set𝑉𝑡 , sampled from DSGD into the
iterate 𝑤 (0)

𝑡+1. For this, we construct an encoder, 𝜙 : 𝑃(𝑈) × [𝑛] → ℝ2𝑛, a decoder 𝛼 : ℝ2𝑛 → 𝑈, a
real number 𝜖 > 0 and 𝑛 sets denoted as Ψ1, . . . ,Ψ𝑛. Here, the idea is that the set 𝜓𝑘 may represent
all of the possible training sets with 𝑘 examples, {𝑉1 . . . , 𝑉𝑘}, and in every iteration 𝑡, it is possible to
get the vector 𝜓∗

𝑡−1 ∈ Ψ𝑡−1 — which is identified with the actual sets𝑉1, . . . , 𝑉𝑡−1 that were sampled
before this iteration — as a maximizer of a linear function with margin 𝜖 . Then, we aim to output a
vector 𝑢𝑡 ∈

⋂𝑛
𝑖=𝑡 𝑉𝑖 . The construction of such 𝜙, 𝛼,Ψ1, . . . ,Ψ𝑛 is provided the following.

Lemma 19 Let 𝑛, a set𝑈 ∈ ℝ𝑑 . Let 𝑃(𝑈) be the power set of U. Then, there exist sets {Ψ1, ...Ψ𝑛} ⊆
ℝ2𝑛, a number 0 < 𝜖 < 1

𝑛
and two mappings 𝜙 : 𝑃(𝑈) × [𝑛] → ℝ2𝑛, 𝛼 : ℝ2𝑛 → 𝑈 such that,
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1. For every 𝑗 ∈ [𝑛] and 𝑉 ⊆ 𝑈, ∥𝜙 (𝑉, 𝑗) ∥ ≤ 1.

2. For every 𝑘 , 𝜓 ∈ Ψ𝑘 , ∥𝛼(𝜓)∥ ≤ 1, ∥𝜓∥ ≤ 1.

3. Let 𝑉1, . . . , 𝑉𝑘 ⊆ 𝑈. Then, for every 𝑘 , 𝜓∗
𝑘
= 1
𝑛

∑𝑘
𝑖=1 𝜙(𝑉𝑖 , 𝑖):

• For every 𝜓 ∈ Ψ𝑘 , 𝜓 ≠ 𝜓∗
𝑘
:

⟨𝜓∗
𝑘 ,

1
𝑛

𝑘∑︁
𝑖=1

𝜙(𝑉𝑖 , 𝑖)⟩ ≥ ⟨𝜓, 1
𝑛

𝑘∑︁
𝑖=1

𝜙(𝑉𝑖 , 𝑖)⟩ + 𝜖 ;

• If
⋂𝑘
𝑖=1𝑉𝑖 ≠ ∅ and 𝑚 = arg min{𝑖 : 𝑣𝑖 ∈ 𝑈 ∩ ⋂𝑘

𝑖=1𝑉𝑖}, then 𝛼(𝜓∗) = 𝑣𝑚 ∈ 𝑈.

The proofs of the above and of other lemmas in this section are deferred to Appendix B.4. Proceeding,
we define our loss function 𝑓 SGD, composed of three terms ℓSGD

1 , ℓSGD
2 , ℓSGD

3 :

𝑓 SGD(𝑤,𝑉) B

√√√
𝑇∑︁
𝑘=2

max
(
3𝜂
32
,max
𝑢∈𝑉

⟨𝑢, 𝑤 (𝑘 )⟩
)2

︸                                    ︷︷                                    ︸
ℓSGD

1 (𝑤,𝑉 )B

(21)

+ max
(
𝛿1, max

𝑘∈[𝑛−1],𝑢∈𝑈,𝜓∈Ψ𝑘

(
3
8
⟨𝑢, 𝑤 (𝑘 )⟩ − 1

2
⟨𝛼(𝜓), 𝑤 (𝑘+1)⟩ + ⟨𝑤 (0,𝑘 ) ,

1
4𝑛
𝜓⟩

− ⟨𝑤 (0,𝑘+1) ,
1

4𝑛
𝜓⟩ + ⟨𝑤 (0,𝑘+1) ,− 1

4𝑛2 𝜙(𝑉, 𝑘 + 1)⟩
))

+ ⟨𝑤 (0,1) ,− 1
4𝑛2 𝜙(𝑉, 1)⟩ − ⟨ 1

𝑛3 𝑢1, 𝑤
(1)⟩︸                                            ︷︷                                            ︸

ℓSGD
3 (𝑤,𝑉 )B

,

where the second term is denoted ℓSGD
2 (𝑤,𝑉) and 𝑢1 is an arbitrary vector in 𝑈. The next theorem

is the core component of the lower bound.

Theorem 20 Assume that 𝑛 > 2048 and 𝜂 ≤ 1√
𝑇

. Consider the distribution DSGD to be such that
every 𝑢 ∈ 𝑈 is included in 𝑉 ⊆ 𝑈 independently with probability 𝛿 = 1

4𝑛2 , and the loss function
𝑓 SGD with 𝑑 = 712𝑛2 log 𝑛 + 2𝑛2, 𝜀 = 1

𝑛2 (1 − cos( 𝜋
2 |𝑃 (𝑈) | )) and 𝛿1 =

𝜂

8𝑛3 . Then 𝑓 SGD is convex and
4-Lipschitz, and for Unprojected SGD (cf. Eq. (2) with𝑊 = ℝ𝑑) initialized at 𝑤1 = 0 with step size
𝜂, we have, with probability at least 1

2 over the choice of the training sample:

(i) The iterates of SGD remain within the unit ball, namely 𝑤𝑡 ∈ 𝔹𝑑 for all 𝑡 = 1, . . . , 𝑇;

(ii) For all 𝑚 = 1, . . . , 𝑇 , the 𝑚-suffix averaged iterate has:

𝐹SGD(𝑤𝑇,𝑚) − 𝐹SGD(𝑤∗) = Ω
(
𝜂
√
𝑇
)
.

The proof of Theorem 20 is given in Appendix B.3, and builds upon the lemmas presented next.

Lemma 21 For every 𝑉 ∈ 𝑍 , the loss function 𝑓 SGD(𝑤,𝑉) specified by Theorem 20 is convex and
4-Lipschitz over ℝ𝑑 with respect to its first argument.
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As in GD, we provide a key lemma that characterizes the trajectory of SGD under a certain ”good
event”. Consider a random training set sample 𝑆 = {𝑉𝑖}𝑛𝑖=1, and define:

E′ = {∀𝑡 ≤ 𝑇 𝑃𝑡 ≠ ∅ and 𝐽𝑡 ∈ 𝑆𝑡 }, (22)

where 𝑃𝑡 B
𝑡−1⋂
𝑖=1
𝑉𝑖 , (23)

𝑆𝑡 B
𝑡=𝑛⋂
𝑖=𝑡

𝑉𝑖 , (24)

and for 𝑃𝑡 ≠ ∅ : 𝑟𝑡 B arg min{𝑟 : 𝑣𝑟 ∈ 𝑈 ∩ 𝑃𝑡 } (25)
𝐽𝑡 B 𝑣𝑟𝑡 ∈ 𝑈 (26)

Our next lemma shows that E′ occurs with a constant probability.

Lemma 22 Under the conditions of Theorem 20, it holds that Pr(E′) ≥ 1
2 .

Under this event, the dynamics of 𝑆𝐺𝐷 is characterized as follows,

Lemma 23 Assume the conditions of Theorem 20, and consider the iterates of unprojected 𝑆𝐺𝐷,
with step size 𝜂 ≤ 1√

𝑇
initialized at 𝑤1 = 0. Conditioned on the event E′, we have for 𝑡 ≥ 4,

𝑤𝑡
(𝑘 ) =


−3

8𝜂𝑢1 + (𝑡 − 1) 𝜂
𝑛3 𝑢1 𝑘 = 1

1
8𝜂𝑢𝑘 2 ≤ 𝑘 ≤ 𝑡 − 2
1
2𝜂𝑢𝑡−1 𝑘 = 𝑡 − 1
0 𝑡 ≤ 𝑘 ≤ 𝑛,

and

𝑤𝑡
(0,𝑘 ) =


𝜂

4𝑛2
∑𝑡−1
𝑖=2 𝜙(𝑉𝑖 , 1) 𝑘 = 1

𝜂

4𝑛2
∑𝑡−1
𝑖=1 𝜙(𝑉𝑖 , 𝑖) 𝑘 = 𝑡 − 1

0 𝑘 ∉ {1, 𝑡 − 1}.

where 𝑢1 ∈ 𝑈, and for 𝑘 > 1: 𝑢𝑘 ∈
⋂𝑘−1
𝑖=1 𝑉𝑖 ∩

⋂𝑛
𝑖=𝑘 𝑉𝑖 .

At this point, we are ready to prove Theorem 20. The proof is similar to that of Theorem 5, using
Theorem 23 instead of Theorem 8, and is given in Appendix B.3. All that remains for the proof
of Theorem 2 given next, is to apply smoothing to make the learning problem from Theorem 20
differentiable, and combine its result with a standard optimization lower bound (Theorem 38).
Proof [of Theorem 2] Let

𝑓 SGD(𝑤,𝑉) B 𝔼𝑣∼Unif (𝔹𝑑 )
[
𝑓 SGD(𝑤 + 𝛿𝑣,𝑉)

]
, (27)

where

𝛿 B
𝜂𝜖

32𝑛3 . (28)
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Analogously, we denote the empirical loss and the population loss with respect to the loss function

𝑓 SGD as ̂̃𝐹SGD
(𝑤) = 1

𝑛

∑𝑛
𝑖=1 𝑓

SGD(𝑤,𝑉𝑖) and �̃�SGD(𝑤) = 𝔼𝑉∼D 𝑓 SGD(𝑤,𝑉), respectively. We have
that this loss function is convex and Lipschitz, and that the GD iterates identify with those of the
original, non-smoothed loss.

Lemma 24 For every 𝑉 ∈ 𝑍 , the loss function 𝑓 SGD is differentiable, convex and 4-Lipschitz with
respect to its first argument and over ℝ𝑑 .

Lemma 25 Let 𝑤𝑡 , �̃�𝑡 be the iterates of Unprojected SGD with step size 𝜂 ≤ 1√
𝑇

and 𝑤1 = 0, on

𝐹SGD and ̂̃𝐹SGD
respectively. Then, if E′ occurs, for every 𝑡 ∈ [𝑇] it holds that 𝑤𝑡 = �̃�𝑡 .

Now let 𝑤𝑛,𝑚 be the 𝑚-suffix average of 𝑆𝐺𝐷 on 𝑓 SGD and let 𝑤∗ = arg min𝑤 𝐹SGD(𝑤). By
Theorem 25, we know that, with a probability 1

2 ,𝑤𝑛,𝑚 = 𝑤SGD
𝑛,𝑚 . Then, by Theorem 20 and the fact

that ∥ 𝑓 S𝐺𝐷 − 𝑓 S𝐺𝐷 ∥∞ ≤ 4𝛿 (see Theorem 35),
𝜂

64000
√
𝑛 ≤ 𝐹SGD(𝑤𝑛,𝑚) − 𝐹SGD(𝑤∗)

= 𝐹SGD(𝑤𝑛,𝑚) − 𝐹SGD(𝑤∗)

≤ ̂̃𝐹SGD
(𝑤𝑛,𝑚) + 4𝛿 − ̂̃𝐹SGD

(𝑤∗) + 4𝛿

≤ ̂̃𝐹SGD
(𝑤𝑛,𝑚) + 4𝛿 − ̂̃𝐹SGD

(𝑤∗) + 4𝛿,

hence, ̂̃𝐹SGD
(𝑤𝑛,𝑚) − ̂̃𝐹SGD

(𝑤∗) ≥
𝜂

64000
√
𝑛 − 𝜂𝜖

4𝑛3

≥ 𝜂

64000
√
𝑛 − 𝜂

4𝑛3

≥ 𝜂

128000
√
𝑛 (𝑛 ≥ 40)

C 𝐶1𝜂
√
𝑛.

In addition, by Theorem 38, we know that for Unprojected 𝑆𝐺𝐷 and 𝑑2 = max(25𝜂2𝑇2, 1), there
exist a constant 𝐶2 and a deterministic loss function 𝑓 OPT : ℝ𝑑2 → ℝ such that

𝑓 OPT(𝑤𝑇,𝑚) − 𝑓 OPT(𝑤∗) ≥ 𝐶2 min
(
1,

1
𝜂𝑇

)
Now, let 𝐶 = 1

2 min (𝐶1, 𝐶2). If 𝜂 ≥ 𝑇− 3
4 , then, 𝜂

√
𝑇 ≥ min(1, 1

𝜂𝑇
), and we get,

̂̃𝐹SGD
(𝑤𝑇,𝑚) − ̂̃𝐹SGD

(𝑤∗) ≥ 𝐶
(
𝜂
√
𝑇 + min

(
1,

1
𝜂𝑇

))
≥ 𝐶

(
min

(
1, 𝜂

√
𝑇 + 1

𝜂𝑇

))
.

Otherwise, we get that,

𝑓 OPT(𝑤𝑇,𝑚) − 𝑓 OPT(𝑤∗) ≥ 𝐶
(
𝜂
√
𝑇 + min

(
1,

1
𝜂𝑇

))
≥ 𝐶

(
min

(
1, 𝜂

√
𝑇 + 1

𝜂𝑇

))
.

In both cases, by Theorems 23 and 38, 𝑤𝑡 ∈ 𝔹𝑑 for every 𝑡 ∈ [𝑇], hence the result is applicable also
for Projected SGD, and the proof is complete.
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B.1. SGD Dynamics: Proof of Theorem 23

For proving this key lemma, we analyze how the terms ℓSGD
1 , ℓSGD

2 affects the dynamics of SGD
under the event E′. First, we show that the gradients of ℓSGD

1 do not affect the dynamics of 𝑆𝐺𝐷, as
the gradient of this term at any iterate 𝑤𝑡 is zero.

Lemma 26 Assume the conditions of Theorem 20 and the event E′. Let 𝑤 ∈ ℝ𝑑 and 𝑡 be such that
for every 2 ≤ 𝑘 ≤ 𝑡−1, 𝑤 (𝑘 ) = 𝑐𝜂𝑢𝑘 for 0 ≤ 𝑐 ≤ 1

2 and every such 𝑢𝑘 holds 𝑢𝑘 ∈
⋂𝑘−1
𝑖=1 𝑉𝑖 ∩

⋂𝑛
𝑖=𝑘 𝑉𝑖 ,

and for every 𝑡 ≤ 𝑘 ≤ 𝑇 , 𝑤 (𝑘 ) = 0. Then ℓSGD
1 (·, 𝑉𝑡 ) is differentiable at 𝑤 and ∇ℓSGD

1 (𝑤,𝑉𝑡 ) = 0.

Proof First, by the fact that for every 𝑡 ≤ 𝑘 ≤ 𝑇 , 𝑤 (𝑘 ) = 0, for every such 𝑘 ,

max
𝑢∈𝑉𝑡

⟨𝑢, 𝑤 (𝑘 )⟩ = 0 <
3𝜂
32
,

For 2 ≤ 𝑘 ≤ 𝑡 − 1, 𝑤 (𝑘 ) = 𝑐𝜂𝑢𝑘 , where 0 ≤ 𝑐 ≤ 1
2 and every 𝑢𝑘 ∈

⋂𝑇
𝑖=𝑘 𝑉𝑖 ⊆ 𝑉𝑡 , thus,

max
𝑢∈𝑉𝑡

⟨𝑢, 𝑤 (𝑘 )⟩ ≤ 𝜂

2
· 1

8
<

3𝜂
32
.

We derive that ∇ℓSGD
1 (𝑤𝑡 , 𝑉𝑡 ) = 0.

Now, we analyze the gradient of ℓSGD
2 . The role of this component is to decode the next ”bad

solution” 𝛼
(

1
𝑛

∑𝑡−1
𝑖=1 𝜙(𝑉𝑖 , 𝑖)

)
from the sets 𝑉1, . . . , 𝑉𝑡−1, and make a progress in this direction in

some subspace𝑊 (𝑡−1) . In the following lemma, we show that the gradient of ℓSGD
2 , serves this goal.

Lemma 27 Assume the conditions of Theorem 20 and the event E′. For every 𝑘 , let 𝜓∗
𝑘
=

1
𝑛

∑𝑘
𝑡=1 𝜙(𝑉𝑡 , 𝑡). Moreover, let 𝑚 ≥ 3 and 𝑤 ∈ ℝ𝑑 such that 𝑤 (1) = 𝑐𝜂𝑢1 for − 3

8 ≤ 𝑐 ≤ 0 and
𝑢1 ∈ 𝑈, for every 2 ≤ 𝑘 ≤ 𝑚 − 1, 𝑤 (𝑘 ) = 1

8𝜂𝑢𝑘 such that every 𝑢𝑘 holds 𝑢𝑘 ∈ ⋂𝑘−1
𝑡=1 𝑉𝑡 ∩

⋂𝑛
𝑡=𝑘 𝑉𝑡 ,

𝑤 (𝑚) = 1
2𝜂𝑢𝑚 where 𝑢𝑚 holds 𝑢𝑚 ∈ ⋂𝑚−1

𝑡=1 𝑉𝑡 ∩
⋂𝑛
𝑖=𝑚𝑉𝑡 and for every 𝑚 + 1 ≤ 𝑘 ≤ 𝑇 , 𝑤 (𝑘 ) = 0.

Moreover, assume that 𝑤 holds 𝑤 (0,𝑚) = 𝜂

4𝑛𝜓
∗
𝑚, ∥𝑤 (0,1) ∥ ≤ 𝜂 and for every 𝑘 ∉ {𝑚, 1}, 𝑤 (0,𝑘 ) = 0.

Then, for every 𝑉 ⊆ 𝑈, ℓSGD
2 is differentiable at (𝑤,𝑉) and, we have for 𝑘 ≠ 0,

∇ℓSGD
2 (𝑤,𝑉) (𝑘 ) =


3
8𝑢𝑚 𝑘 = 𝑚

− 1
2𝛼(𝜓

∗
𝑚) 𝑘 = 𝑚 + 1

0 𝑘 ∉ {𝑚, 𝑚 + 1}

and,

∇ℓSGD
2 (𝑤,𝑉) (0,𝑘 ) =


1

4𝑛2
∑𝑚
𝑡=1 𝜙(𝑉𝑡 , 𝑖) 𝑘 = 𝑚

− 1
4𝑛2

∑𝑚
𝑡=1 𝜙(𝑉𝑡 , 𝑖) − 1

4𝑛2 𝜙(𝑉, 𝑖) 𝑘 = 𝑚 + 1
0 𝑘 ∉ {𝑚, 𝑚 + 1}.

Proof First, we show that the maximum of ℓSGD
2 (𝑤,𝑉) is attained with 𝑘 = 𝑚 and 𝑢 = 𝑢𝑚. For

𝑘 ≥ 𝑚 + 1, for every 𝑢 ∈ 𝑈 and 𝜓 ∈ Ψ𝑘 ,

3
8
⟨𝑢, 𝑤 (𝑘 )⟩ − 1

2
⟨𝛼(𝜓), 𝑤 (𝑘+1)⟩ + ⟨𝑤 (0,𝑘 ) ,

1
4𝑛
𝜓⟩
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− ⟨𝑤 (0,𝑘+1) ,
1

4𝑛
𝜓⟩ + ⟨𝑤 (0,𝑘+1) ,− 1

4𝑛2 𝜙(𝑉, 𝑘 + 1)⟩ = 0.

For 𝑘 = 1, for every 𝑢 ∈ 𝑈 and 𝜓 ∈ Ψ1, by Theorem 19, we know that for every 𝜓,𝑉, 𝑗 ,
∥𝜓∥, ∥𝜙(𝑉, 𝑗)∥ ≤ 1, and 𝛼(𝜓) ∈ 𝑈, thus,

3
8
⟨𝑢, 𝑤 (𝑘 )⟩ − 1

2
⟨𝛼(𝜓), 𝑤 (𝑘+1)⟩ + ⟨𝑤 (0,𝑘 ) ,

1
4𝑛
𝜓⟩ − ⟨𝑤 (0,𝑘+1) ,

1
4𝑛
𝜓⟩ + ⟨𝑤 (0,𝑘+1) ,− 1

4𝑛2 𝜙(𝑉, 𝑘 + 1)⟩

=
3𝑐
8
⟨𝑢1, 𝑢⟩ −

𝜂

16
⟨𝑢2, 𝛼(𝜓)⟩ + ⟨𝑤 (0,𝑘 ) ,

1
4𝑛
𝜓⟩ − 0 + 0

≤ 9𝜂
512

+ 𝜂

128
+ 𝜂

4𝑛
<
𝜂

8
. (𝑛 ≥ 4)

For 2 ≤ 𝑘 ≤ 𝑚 − 2, for every 𝑢 ∈ 𝑈 and 𝜓 ∈ Ψ𝑘 , by Theorem 19, we know that for every 𝜓,𝑉, 𝑗 ,
∥𝜓∥, ∥𝜙(𝑉, 𝑗)∥ ≤ 1, and 𝛼(𝜓) ∈ 𝑈, thus,

3
8
⟨𝑢, 𝑤 (𝑘 )⟩ − 1

2
⟨𝛼(𝜓), 𝑤 (𝑘+1)⟩ + ⟨𝑤 (0,𝑘 ) ,

1
4𝑛
𝜓⟩ − ⟨𝑤 (0,𝑘+1) ,

1
4𝑛
𝜓⟩ + ⟨𝑤 (0,𝑘+1) ,− 1

4𝑛2 𝜙(𝑉, 𝑘 + 1)⟩

=
3
64

⟨𝑢𝑘 , 𝑢⟩ −
𝜂

16
⟨𝑢𝑘+1, 𝛼(𝜓)⟩ + 0 − 0 + 0

≤ 3𝜂
64

+ 𝜂

16
<
𝜂

8
.

For 𝑘 = 𝑚 − 1, for every 𝑢 ∈ 𝑈 and 𝜓 ∈ Ψ𝑘 , by Theorem 19, we know that for every 𝜓,𝑉, 𝑗 ,
∥𝜓∥, ∥𝜙(𝑉, 𝑗)∥ ≤ 1, and 𝛼(𝜓) ∈ 𝑈, thus,

3
8
⟨𝑢, 𝑤 (𝑘 )⟩ − 1

2
⟨𝛼(𝜓), 𝑤 (𝑘+1)⟩ + ⟨𝑤 (0,𝑘 ) ,

1
4𝑛
𝜓⟩ − ⟨𝑤 (0,𝑘+1) ,

1
4𝑛
𝜓⟩ + ⟨𝑤 (0,𝑘+1) ,− 1

4𝑛2 𝜙(𝑉, 𝑘 + 1)⟩

=
3
64

⟨𝑢𝑘 , 𝑢⟩ −
𝜂

4
⟨𝑢𝑘+1, 𝛼(𝜓)⟩ + 0 − ⟨𝑤 (0,𝑘+1) ,

1
4𝑛
𝜓⟩ + ⟨𝑤 (0,𝑘+1) ,

1
4𝑛2 𝜙(𝑉, 𝑚)⟩

≤ 3𝜂
64

+ 𝜂

32
+ 1

16𝑛2 + 1
16𝑛3

<
𝜂

8
. (𝑛 ≥ 4)

For 𝑘 = 𝑚, 𝑢 ≠ 𝑢𝑚 and every 𝜓 ∈ Ψ𝑚, by Theorem 19, we know that for every 𝜓,𝑉, 𝑗 ,
∥𝜓∥, ∥𝜙(𝑉, 𝑗)∥ ≤ 1, and 𝛼(𝜓) ∈ 𝑈, thus,

3
8
⟨𝑢, 𝑤 (𝑘 )⟩ − 1

2
⟨𝛼(𝜓), 𝑤 (𝑘+1)⟩ + ⟨𝑤 (0,𝑘 ) ,

1
4𝑛
𝜓⟩ − ⟨𝑤 (0,𝑘+1) ,

1
4𝑛
𝜓⟩ + ⟨𝑤 (0,𝑘+1) ,− 1

4𝑛2 𝜙(𝑉, 𝑘 + 1)⟩

=
3
8
⟨𝑢, 𝑤 (𝑘 )⟩ + ⟨ 1

4𝑛
𝜓, 𝑤 (0,𝑘 )⟩

=
3
8
⟨𝑢, 𝜂

2
𝑢𝑚⟩ + ⟨ 1

4𝑛
𝜓, 𝑤 (0,𝑘 )⟩

≤ 3𝜂
128

+ 𝜂

16𝑛2
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<
𝜂

32
. (𝑛 ≥ 4)

For 𝑘 = 𝑚, 𝑢 = 𝑢𝑚 and every 𝜓 ∈ Ψ𝑚, by Theorem 19, we know that for every 𝜓,𝑉, 𝑗 ,
∥𝜓∥, ∥𝜙(𝑉, 𝑗)∥ ≤ 1, and 𝛼(𝜓) ∈ 𝑈, thus,

3
8
⟨𝑢, 𝑤 (𝑘 )⟩ − 1

2
⟨𝛼(𝜓), 𝑤 (𝑘+1)⟩ + ⟨𝑤 (0,𝑘 ) ,

1
4𝑛
𝜓⟩ − ⟨𝑤 (0,𝑘+1) ,

1
4𝑛
𝜓⟩ + ⟨𝑤 (0,𝑘+1) ,− 1

4𝑛2 𝜙(𝑉, 𝑘 + 1)⟩

=
3
8
⟨𝑢, 𝑤𝑡 (𝑘 )⟩ + ⟨ 1

4𝑛
𝜓, 𝑤𝑡

(0,𝑘 )⟩

=
3
8
⟨𝑢, 𝜂

2
𝑢𝑚⟩ + ⟨ 1

4𝑛
𝜓, 𝑤𝑡

(0,𝑘 )⟩

≥ 3𝜂
16

− 𝜂

16𝑛2

>
5𝜂
32

(𝑛 ≥ 4)

> 𝛿1.

Second, we show that when 𝑘 = 𝑚 and 𝑢 = 𝑢𝑚, the maximum among 𝜓 ∈ Ψ𝑚 is attained
uniquely in 𝜓∗

𝑚 = 1
𝑛

∑𝑚
𝑡=1 𝜙(𝑉𝑡 , 𝑡). For any 𝜓 ∈ Ψ𝑚, with 𝜓 ≠ 𝜓∗

𝑚, by Theorem 19, for 𝑘 = 𝑚,
𝑢 = 𝑢𝑚,

3
8
⟨𝑢, 𝑤 (𝑚)⟩ − 1

2
⟨𝛼(𝜓∗

𝑚), 𝑤 (𝑚+1)⟩ + ⟨𝑤 (0,𝑚) ,
1

4𝑛
𝜓∗
𝑚⟩

− ⟨𝑤 (0,𝑚+1) ,
1

4𝑛
𝜓∗
𝑚⟩ + ⟨𝑤 (0,𝑚+1) ,− 1

4𝑛2 𝜙(𝑉, 𝑚 + 1)⟩

=
3
8
⟨𝑢, 𝑤 (𝑚)⟩ + ⟨ 1

4𝑛
𝜓∗
𝑚, 𝑤

(0,𝑚)⟩

=
3𝜂
16

+ 𝜂

16𝑛2 ⟨𝜓
∗
𝑚,

1
𝑛

𝑚∑︁
𝑡=1

𝜙(𝑉𝑡 , 𝑡)⟩

≥ 3𝜂
16

+ 𝜂

16𝑛2 ⟨𝜓,
1
𝑛

𝑚∑︁
𝑡=1

𝜙(𝑉𝑡 , 𝑡)⟩ +
𝜂𝜖

16𝑛2

=
3
8
⟨𝑢, 𝑤 (𝑘 )⟩ + ⟨ 1

4𝑛
𝜓, 𝑤 (0,𝑚)⟩ + 𝜂𝜖

16𝑛2

=
3
8
⟨𝑢, 𝑤 (𝑚)⟩ − 1

2
⟨𝛼(𝜓), 𝑤 (𝑚+1)⟩ + ⟨𝑤 (0,𝑚) ,

1
4𝑛
𝜓⟩

− ⟨𝑤 (0,𝑚+1) ,
1

4𝑛
𝜓⟩ + ⟨𝑤 (0,𝑚+1) ,− 1

4𝑛2 𝜙(𝑉, 𝑚 + 1)⟩ + 𝜂𝜖

16𝑛2 .

We derive that,

∇ℓSGD
2 (𝑤,𝑉) (𝑘 ) =


3
8𝑢𝑚 𝑘 = 𝑚

−1
2𝛼(𝜓

∗
𝑚) 𝑘 = 𝑚 + 1

0 𝑘 ∉ {𝑚, 𝑚 + 1}

∇ℓSGD
2 (𝑤,𝑉) (0,𝑘 ) =


1

4𝑛2
∑𝑚
𝑡=1 𝜙(𝑉𝑡 , 𝑡) 𝑘 = 𝑚

− 1
4𝑛2

∑𝑚
𝑡=1 𝜙(𝑉𝑡 , 𝑡) − 1

4𝑛2 𝜙(𝑉, 𝑚 + 1) 𝑘 = 𝑚 + 1
0 𝑘 ∉ {𝑚, 𝑚 + 1}.
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Now we can prove Theorem 23.
Proof [of Theorem 23] We assume that E′ holds and prove the lemma by induction on 𝑡. We begin
from the basis of the induction, 𝑡 = 4, which is proved in Theorem 30 in Appendix B.2. Now, we
assume the hypothesis of the induction, that the lemma holds for iteration 𝑡 and turn to show the
required for iteration 𝑡 + 1.

First, we notice that for every 2 ≤ 𝑘 ≤ 𝑡 − 1, 𝑤𝑡 (𝑘 ) = 𝑐𝜂𝑢𝑘 for 𝑐 ≤ 1
2 and every such 𝑢𝑘 holds

𝑢𝑘 ∈ ⋂𝑘−1
𝑖=1 𝑉𝑖 ∩

⋂𝑛
𝑖=𝑘 𝑉𝑖 , and for every 𝑡 ≤ 𝑘 ≤ 𝑇 , 𝑤𝑡 (𝑘 ) = 0. Then, by Theorem 26, we have that

∇ℓSGD
1 (𝑤𝑡 , 𝑉𝑡 ) = 0.
Second, ℓSGD

3 is a linear function, thus,

∇ℓSGD
3 (𝑤𝑡 , 𝑉𝑡 )

(𝑠)
=


− 1
𝑛3 𝑢1 𝑠 = 1

− 1
4𝑛2 𝜙(𝑉𝑡 , 1) 𝑠 = 0, 1

0 otherwise.

Third, For ℓSGD
2 (𝑤𝑡 , 𝑉𝑡 ), we notice for 𝑚 = 𝑡 − 1 ≥ 3 it holds that 𝑤𝑡 (1) = 𝑐𝜂𝑢1 for − 3

8 ≤ 𝑐 ≤ 0 and
𝑢1 ∈ 𝑈, for every 2 ≤ 𝑘 ≤ 𝑚 − 1, 𝑤𝑡 (𝑘 ) = 1

8𝜂𝑢𝑘 such that every 𝑢𝑘 holds 𝑢𝑘 ∈ ⋂𝑘−1
𝑡=1 𝑉𝑡 ∩

⋂𝑛
𝑡=𝑘 𝑉𝑡 ,

𝑤𝑡
(𝑚) = 1

2𝜂𝑢𝑚 where 𝑢𝑚 holds 𝑢𝑚 ∈ ⋂𝑚−1
𝑡=1 𝑉𝑡 ∩

⋂𝑛
𝑖=𝑚𝑉𝑡 , and for every 𝑚 + 1 ≤ 𝑘 ≤ 𝑇 , 𝑤 (𝑘 ) = 0.

Moreover, 𝑤𝑡 holds 𝑤 (0,𝑚) = 𝜂

4𝑛𝜓
∗
𝑚, ∥𝑤𝑡 (0,1) ∥ ≤ 𝜂 and for every 𝑘 ∉ {𝑚, 1}, 𝑤𝑡 (0,𝑘 ) = 0. Then, by

Theorem 27, we get that, we have for 𝑘 ≠ 0,

∇ℓSGD
2 (𝑤𝑡 , 𝑉𝑡 )

(𝑘 )
=


3
8𝑢𝑡−1 𝑘 = 𝑡 − 1
−1

2𝛼(𝜓
∗
𝑡−1) 𝑘 = 𝑡

0 𝑘 ∉ {𝑡 − 1, 𝑡}

and,

∇ℓSGD
2 (𝑤𝑡 , 𝑉𝑡 )

(0,𝑘 )
=


1

4𝑛2
∑𝑡−1
𝑖=1 𝜙(𝑉𝑖 , 𝑖) 𝑘 = 𝑚

− 1
4𝑛2

∑𝑡
𝑖=1 𝜙(𝑉𝑖 , 𝑖) 𝑘 = 𝑚 + 1

0 𝑘 ∉ {𝑚, 𝑚 + 1}.

Now, by Theorem 19, for 𝑗 = arg min𝑖{𝑖 : 𝑣𝑖 ∈
⋂𝑡−1
𝑖=1 𝑉𝑖}, we get that

𝛼(𝜓∗
𝑡−1) = 𝑣 𝑗 ∈

𝑡−1⋂
𝑖=1
𝑉𝑖 .

We notice that
⋂𝑡−1
𝑖=1 𝑉𝑖 = 𝑃𝑡 and thus 𝛼(𝜓∗

𝑡−1) = 𝐽𝑡 . Then, by E′, 𝛼(𝜓∗
𝑡−1) also holds 𝛼(𝜓∗

𝑡−1) ∈ 𝑆𝑡 .
Combining the above together, we get, for 𝑢𝑡 = 𝛼(𝜓∗

𝑡−1) ∈ 𝑃𝑡 ∩ 𝑆𝑡 ,

∇ 𝑓 (𝑤𝑡 , 𝑉𝑡 ) (𝑘 ) =


− 1
𝑛3 𝑢1 𝑘 = 1

3
8𝑢𝑡−1 𝑘 = 𝑡 − 1
− 1

2𝑢𝑡 𝑘 = 𝑡

0 𝑘 ∉ {1, 𝑡 − 1, 𝑡},
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and,

∇ 𝑓 (𝑤𝑡 , 𝑉𝑡 ) (0,𝑘 ) =


− 1

4𝑛2 𝜙(𝑉3, 1) 𝑘 = 1
1

4𝑛2
∑𝑡−1
𝑖=1 𝜙(𝑉𝑖 , 𝑖) 𝑘 = 𝑡 − 1

− 1
4𝑛2

∑𝑡
𝑖=1 𝜙(𝑉𝑖 , 𝑖) 𝑘 = 𝑡

0 𝑘 ∉ {1, 𝑡 − 1, 𝑡},

and the lemma follows.

B.2. SGD Dynamics: The first iterates

Lemma 28 Under the conditions of Theorem 20, if E′ occurs and 𝑤𝑡 is the iterate of Unprojected
SGD with step size 𝜂 ≤ 1√

𝑛
and 𝑤1 = 0,

𝑤2
(𝑘 ) =

{
𝜂

𝑛3 𝑢1 𝑘 = 1
0 𝑘 ≥ 2

,

and,

𝑤2
(0,𝑘 ) =

{
𝜂

4𝑛2 𝜙(𝑉1, 1) 𝑘 = 1
0 𝑘 ≠ 1.

Proof 𝑤1 = 0, thus, for every 𝑘 ,
max
𝑢∈𝑉1

⟨𝑢, 𝑤1
(𝑘 )⟩ = 0 <

3𝜂
32
,

and we derive that ∇ℓSGD
1 (𝑤1, 𝑉1) = 0. By the same argument, ∇ℓSGD

2 (𝑤1, 𝑉1) = 0 (where the
maximum is attained uniquely in 𝛿2). Moreover, ℓSGD

3 is a linear function, then, we get that,

∇ℓSGD
3 (𝑤1, 𝑉1)

(𝑘 )
=

{
− 1
𝑛3 𝑢1 𝑘 = 1

0 𝑘 ≥ 2
,

and,

∇ℓSGD
3 (𝑤1, 𝑉1)

(0,𝑘 )
=

{
− 1

4𝑛2 𝜙(𝑉1, 1) 𝑘 = 1
0 𝑘 ≠ 1,

and the lemma follows.

Lemma 29 Under the conditions of Theorem 20, if E′ occurs and 𝑤𝑡 is the iterate of Unprojected
SGD with step size 𝜂 ≤ 1√

𝑛
and 𝑤1 = 0,

𝑤3
(𝑘 ) =


2𝜂
𝑛3 𝑢1 − 3𝜂

8 𝑢1 𝑘 = 1
𝜂

2 𝑢2 𝑘 = 2
0 3 ≤ 𝑘 ≤ 𝑛
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𝑤3
(0,𝑘 ) =


𝜂

4𝑛2 𝜙(𝑉2, 1) 𝑘 = 1
𝜂

4𝑛2 𝜙(𝑉1, 1) + 𝜂

4𝑛2 𝜙(𝑉2, 2) 𝑘 = 2
0 𝑘 ≥ 3.

where 𝑢1 ∈ 𝑈, and 𝑢2 holds 𝑢2 ∈ 𝑃2 ∩ 𝑆2.

Proof
First, by the fact that for every 2 ≤ 𝑘 ≤ 𝑇 , 𝑤2

(𝑘 ) = 0, for every such 𝑘 ,

max
𝑢∈𝑉2

⟨𝑢, 𝑤2
(𝑘 )⟩ = 0 <

3𝜂
32
,

and we derive that ∇ℓSGD
1 (𝑤2, 𝑉2) = 0.

Moreover, ℓSGD
3 is a linear function, thus,

ℓSGD
3 (𝑤2, 𝑉2)

(𝑘 )
=

{
𝜂

𝑛3 𝑢1 𝑘 = 1
0 𝑘 ≥ 2

,

and,

ℓSGD
3 (𝑤2, 𝑉2)

(𝑘 )
=

{
𝜂

4𝑛2 𝜙(𝑉2, 1) 𝑘 = 1
0 𝑘 ≠ 1.

For ℓSGD
2 (𝑤2, 𝑉2), we get by the fact that for every 𝑘 ≥ 1, 𝑤2

(𝑘+1) = 𝑤2
(0,𝑘+1) = 0,

ℓSGD
2 (𝑤2, 𝑉2) = max

(
𝛿2, max

𝑘∈[𝑛−1],𝑢∈𝑈,𝜓∈Ψ𝑘

(
3
8
⟨𝑢, 𝑤2

(𝑘 )⟩ + ⟨ 1
4𝑛
𝜓, 𝑤2

(0,𝑘 )⟩
))

As a first step, we show that the the maximum is attained with 𝑘 = 1 and 𝑢 = 𝑢1, For 𝑘 ≠ 1, for every
𝑢 ∈ 𝑈 and 𝜓 ∈ Ψ𝑘 ,

3
8
⟨𝑢, 𝑤2

(𝑘 )⟩ + ⟨ 1
4𝑛
𝜓, 𝑤2

(0,𝑘 )⟩ = 0.

For 𝑘 = 1, 𝑢 ≠ 𝑢1 and every 𝜓 ∈ Ψ1, by the fact that ∥𝜓∥, ∥𝜙(𝑉1, 1)∥ ≤ 1,

3
8
⟨𝑢, 𝑤2

(𝑘 )⟩ + ⟨ 1
4𝑛
𝜓, 𝑤2

(0,𝑘 )⟩ ≤ 3𝜂
64𝑛3 + 𝜂

16𝑛3 =
7𝜂

64𝑛3 <
3𝜂

16𝑛3 .

For 𝑘 = 1, 𝑢 = 𝑢1 and every 𝜓 ∈ Ψ1, by the fact that ∥𝜓∥, ∥𝜙(𝑉1, 1)∥ ≤ 1,

3
8
⟨𝑢, 𝑤2

(𝑘 )⟩ + ⟨ 1
4𝑛2𝜓, 𝑤2

(0,𝑘 )⟩ ≥ 3𝜂
8𝑛3 − 𝜂

16𝑛3 >
3𝜂

16𝑛3 > 𝛿1.

As a second step we show that the maximum among 𝜓 ∈ Ψ1 is attained uniquely in 𝜓∗
1 =

1
𝑛
𝜙(𝑉1, 1). For any 𝜓 ∈ Ψ1, with 𝜓 ≠ 𝜓∗

1. By Theorem 19, for 𝑘 = 1, 𝑢 = 𝑢1,

3
8
⟨𝑢, 𝑤2

(𝑘 )⟩ + ⟨ 1
4𝑛
𝜓∗

1, 𝑤2
(0,𝑘 )⟩ = 3𝜂

8𝑛3 + ⟨ 1
4𝑛
𝜓∗

1,
𝜂

4𝑛2 𝜙(𝑉1, 1)⟩

=
3𝜂
8𝑛3 + 𝜂

16𝑛2 ⟨𝜓
∗
1,

1
𝑛
𝜙(𝑉1, 1)⟩
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≥ 3𝜂
8𝑛3 + 𝜂

16𝑛2 ⟨𝜓,
1
𝑛
𝜙(𝑉1, 1)⟩ +

𝜂𝜖

16𝑛2

=
3
8
⟨𝑢, 𝑤2

(𝑘 )⟩ + ⟨ 1
4𝑛
𝜓, 𝑤2

(0,𝑘 )⟩ + 𝜂𝜖

16𝑛2

We got that the maximum is uniquely attained at 𝑘 = 1, 𝑢 = 𝑢1, 𝜓 = 1
𝑛
𝜙(𝑉1, 1). Now, by Theorem 19,

for 𝑗 = arg min𝑖{𝑖 : 𝑣𝑖 ∈ 𝑉1}, we get that

𝛼(𝜓) = 𝑣 𝑗 ∈ 𝑉1.

We notice that 𝑉1 = 𝑃2 and thus 𝛼(𝜓) = 𝐽2. Then, by E′, 𝛼(𝜓) also holds 𝛼(𝜓) ∈ 𝑆2. Combining
the above together, we get, for 𝑢2 = 𝛼(𝜓) ∈ 𝑃2 ∩ 𝑆2,

∇ 𝑓 (𝑤2, 𝑉2) (𝑘 ) =


3
8𝑢1 − 1

𝑛3 𝑢1 𝑘 = 1
− 1

2𝑢2 𝑘 = 2
0 𝑘 ≥ 3

and,

∇ 𝑓 (𝑤2, 𝑉2) (0,𝑘 ) =


1

4𝑛2 𝜙(𝑉1, 1) − 1
4𝑛2 𝜙(𝑉2, 1) 𝑘 = 1

− 1
4𝑛2 𝜙(𝑉1, 1) − 1

4𝑛2 𝜙(𝑉2, 2) 𝑘 = 2
0 𝑘 ≥ 3,

and the lemma follows.

Lemma 30 Under the conditions of Theorem 20, if E′ occurs and 𝑤𝑡 is the iterate of Unprojected
SGD with step size 𝜂 ≤ 1√

𝑛
and 𝑤1 = 0,

𝑤4
(𝑘 ) =


3𝜂
𝑛3 𝑢1 − 3𝜂

8 𝑢1 𝑘 = 1
𝜂

8 𝑢2 𝑘 = 2
𝜂

2 𝑢3 𝑘 = 3
0 𝑘 ≥ 4

,

and,

𝑤4
(0,𝑘 ) =


𝜂

4𝑛2 𝜙(𝑉2, 1) + 𝜂

4𝑛2 𝜙(𝑉3, 1) 𝑘 = 1
𝜂

4𝑛2 𝜙(𝑉1, 1) + 𝜂

4𝑛2 𝜙(𝑉2, 2) + 𝜂

4𝑛2 𝜙(𝑉3, 3) 𝑘 = 3
0 𝑘 ∉ {1, 3}

.

Proof First, we notice that by Theorem 29, it holds that 𝑤3
(2) = 𝑐𝜂𝑢2 for 𝑐 ≤ 1

2 and 𝑢2 holds
𝑢2 ∈ 𝑉1 ∩ ⋂𝑛

𝑖=2𝑉𝑖 , and for every 3 ≤ 𝑘 ≤ 𝑇 , 𝑤𝑡 (𝑘 ) = 0. Then, by Theorem 26, we have that
∇ℓSGD

1 (𝑤3, 𝑉3) = 0. Moreover, ℓSGD
3 is a linear function, thus,

ℓSGD
3 (𝑤3, 𝑉3)

(𝑘 )
=

{
𝜂

𝑛3 𝑢1 𝑘 = 1
0 𝑘 ≥ 2

,
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and,

ℓSGD
3 (𝑤3, 𝑉3)

(𝑘 )
=

{
𝜂

4𝑛2 𝜙(𝑉3, 1) 𝑘 = 1
0 𝑘 ≠ 1.

For ℓSGD
2 (𝑤3, 𝑉3), we first show that the the maximum is attained with 𝑘 = 2 and 𝑢 = 𝑢2. For 𝑘 ≥ 3,

for every 𝑢 ∈ 𝑈 and 𝜓 ∈ Ψ𝑘 ,

3
8
⟨𝑢, 𝑤3

(𝑘 )⟩ − 1
2
⟨𝛼(𝜓), 𝑤3

(𝑘+1)⟩ + ⟨𝑤3
(0,𝑘 ) ,

1
4𝑛
𝜓⟩

− ⟨𝑤3
(0,𝑘+1) ,

1
4𝑛
𝜓⟩ + ⟨𝑤3

(0,𝑘+1) ,− 1
4𝑛2 𝜙(𝑉, 𝑘 + 1)⟩ = 0.

For 𝑘 = 1, for every 𝑢 ∈ 𝑈 and 𝜓 ∈ Ψ1, by the fact that for every 𝜓,𝑉, 𝑗 , ∥𝜓∥, ∥𝜙(𝑉, 𝑗)∥ ≤ 1,

3
8
⟨𝑢, 𝑤3

(𝑘 )⟩ − 1
2
⟨𝛼(𝜓), 𝑤3

(𝑘+1)⟩ + ⟨𝑤 (0,𝑘 ) ,
1

4𝑛
𝜓⟩

− ⟨𝑤3
(0,𝑘+1) ,

1
4𝑛
𝜓⟩ + ⟨𝑤3

(0,𝑘+1) ,− 1
4𝑛2 𝜙(𝑉, 𝑘 + 1)⟩

=
3
8
(2𝜂
𝑛3 − 3𝜂

8
)⟨𝑢1, 𝑢⟩ −

𝜂

4
⟨𝑢2, 𝛼(𝜓)⟩ + ⟨ 1

4𝑛2 𝜙(𝑉2, 1), 𝜓⟩ − ⟨ 𝜂
4𝑛2 𝜙(𝑉1, 1) +

𝜂

4𝑛2 𝜙(𝑉2, 2), 𝜓⟩

+ ⟨ 𝜂
4𝑛2 𝜙(𝑉1, 1) +

𝜂

4𝑛2 𝜙(𝑉2, 2),
1

4𝑛2 𝜙(𝑉3, 2)⟩

≤ 9𝜂
512

+ 𝜂

32
+ 𝜂

4𝑛2 + 𝜂

2𝑛2 + 𝜂

8𝑛4

<
29𝜂
256

(𝑛 ≥ 4)

<
𝜂

8
.

For 𝑘 = 2, 𝑢 ≠ 𝑢2 and every 𝜓 ∈ Ψ2, , by the fact that for every 𝜓,𝑉, 𝑗 , ∥𝜓∥, ∥𝜙(𝑉, 𝑗)∥ ≤ 1,

3
8
⟨𝑢, 𝑤3

(𝑘 )⟩ − 1
2
⟨𝛼(𝜓), 𝑤3

(𝑘+1)⟩ + ⟨𝑤3
(0,𝑘 ) ,

1
4𝑛
𝜓⟩

− ⟨𝑤3
(0,𝑘+1) ,

1
4𝑛
𝜓⟩ + ⟨𝑤3

(0,𝑘+1) ,− 1
4𝑛2 𝜙(𝑉, 𝑘 + 1)⟩

=
3
8
⟨𝑢, 𝑤3

(𝑘 )⟩ + ⟨ 1
4𝑛
𝜓, 𝑤3

(0,𝑘 )⟩

=
3
8
⟨𝑢, 𝜂

2
𝑢2⟩ + ⟨ 1

4𝑛
𝜓,

𝜂

4𝑛2 𝜙(𝑉1, 1) +
𝜂

4𝑛2 𝜙(𝑉2, 2)⟩

≤ 3𝜂
128

+ 𝜂

8𝑛3

<
𝜂

32
. (𝑛 ≥ 4)

For 𝑘 = 2, 𝑢 = 𝑢2 and every 𝜓 ∈ Ψ2, by the fact that ∥𝜓∥, ∥𝜙(𝑉1, 1)∥ ≤ 1,

3
8
⟨𝑢, 𝑤3

(𝑘 )⟩ − 1
2
⟨𝛼(𝜓), 𝑤3

(𝑘+1)⟩ + ⟨𝑤3
(0,𝑘 ) ,

1
4𝑛
𝜓⟩
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− ⟨𝑤3
(0,𝑘+1) ,

1
4𝑛
𝜓⟩ + ⟨𝑤3

(0,𝑘+1) ,− 1
4𝑛2 𝜙(𝑉, 𝑘 + 1)⟩

=
3
8
⟨𝑢, 𝑤3

(𝑘 )⟩ + ⟨ 1
4𝑛
𝜓, 𝑤3

(0,𝑘 )⟩

=
3
8
⟨𝑢, 𝜂

2
𝑢2⟩ + ⟨ 1

4𝑛
𝜓,

𝜂

4𝑛2 𝜙(𝑉1, 1) +
𝜂

4𝑛2 𝜙(𝑉2, 2)⟩

≥ 3𝜂
16

− 𝜂

8𝑛3

>
5𝜂
32

(𝑛 ≥ 4)

> 𝛿1.

Second, we show that the maximum among𝜓 ∈ Ψ2 is attained uniquely in𝜓∗
2 = 1

𝑛
𝜙(𝑉1, 1)+ 1

𝑛
𝜙(𝑉2, 2).

For any 𝜓 ∈ Ψ2, with 𝜓 ≠ 𝜓∗
2, by Theorem 19, for 𝑘 = 2, 𝑢 = 𝑢2,

3
8
⟨𝑢, 𝑤3

(𝑘 )⟩ − 1
2
⟨𝛼(𝜓∗

2), 𝑤3
(𝑘+1)⟩ + ⟨𝑤3

(0,𝑘 ) ,
1

4𝑛
𝜓∗

2⟩

− ⟨𝑤3
(0,𝑘+1) ,

1
4𝑛
𝜓∗

2⟩ + ⟨𝑤3
(0,𝑘+1) ,− 1

4𝑛2 𝜙(𝑉, 𝑘 + 1)⟩

=
3
8
⟨𝑢, 𝑤3

(𝑘 )⟩ + ⟨ 1
4𝑛
𝜓∗

2, 𝑤3
(0,𝑘 )⟩

=
3𝜂
16

+ ⟨ 1
4𝑛
𝜓∗

2,
𝜂

4𝑛2 𝜙(𝑉1, 1) +
𝜂

4𝑛2 𝜙(𝑉2, 2)⟩

=
3𝜂
16

+ 𝜂

16𝑛2 ⟨𝜓
∗
2,

1
𝑛
𝜙(𝑉1, 1) +

1
𝑛
𝜙(𝑉2, 2)⟩

≥ 3𝜂
16

+ 𝜂

16𝑛2 ⟨𝜓,
1
𝑛
𝜙(𝑉1, 1) +

1
𝑛
𝜙(𝑉2, 2)⟩ +

𝜂𝜖

16𝑛2

=
3
8
⟨𝑢, 𝑤3

(𝑘 )⟩ + ⟨ 1
4𝑛
𝜓, 𝑤3

(0,𝑘 )⟩ + 𝜂𝜖

16𝑛2

=
3
8
⟨𝑢, 𝑤3

(𝑘 )⟩ − 1
2
⟨𝛼(𝜓), 𝑤3

(𝑘+1)⟩ + ⟨𝑤3
(0,𝑘 ) ,

1
4𝑛
𝜓⟩

− ⟨𝑤3
(0,𝑘+1) ,

1
4𝑛
𝜓⟩ + ⟨𝑤3

(0,𝑘+1) ,− 1
4𝑛2 𝜙(𝑉, 𝑘 + 1)⟩ + 𝜂𝜖

16𝑛2

We got that the maximum is uniquely attained at 𝑘 = 2, 𝑢 = 𝑢2, 𝜓 = 𝜓∗
2. Now, by Theorem 19, for

𝑗 = arg min𝑖{𝑖 : 𝑣𝑖 ∈ 𝑉1 ∩𝑉2}, we get that

𝛼(𝜓) = 𝑣 𝑗 ∈ 𝑉1 ∩𝑉2.
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We notice that 𝑉1 ∩ 𝑉2 = 𝑃3 and thus 𝛼(𝜓) = 𝐽3. Then, by E′, 𝛼(𝜓) also holds 𝛼(𝜓) ∈ 𝑆3.
Combining the above together, we get, for 𝑢1 ∈ 𝑈, 𝑢2 ∈ 𝑃2 ∩ 𝑆2 and 𝑢3 = 𝛼(𝜓∗

2) ∈ 𝑃3 ∩ 𝑆3,

∇ 𝑓 (𝑤3, 𝑉3) =



− 1
𝑛3 𝑢1 𝑠 = 1

3
8𝑢2 𝑠 = 2
− 1

2𝑢3 𝑠 = 3
0 4 ≤ 𝑠 ≤ 𝑛
− 1

4𝑛2 𝜙(𝑉3, 1) 𝑠 = 0, 1
1

4𝑛2 𝜙(𝑉1, 1) + 1
4𝑛2 𝜙(𝑉2, 2) 𝑠 = 0, 2

− 1
4𝑛2 𝜙(𝑉1, 1) − 1

4𝑛2 𝜙(𝑉2, 2) − 1
4𝑛2 𝜙(𝑉3, 3) 𝑠 = 0, 3

0 𝑠 = 0, 𝑘 for 𝑘 ≥ 3,

and the lemma follows.

B.3. Proof of Theorem 20

Proof [of Theorem 20] We show that the theorem holds if the event E′ occurs. First, we prove that
for every 𝑡, ∥𝑤𝑡 ∥ ≤ 1. By Theorem 23,

∥𝑤𝑡 ∥ ≤

√√√
𝑑∑︁
𝑖=1

𝑤𝑡 [𝑖]2

≤

√√
𝑛∑︁
𝑘=1

∥𝑤𝑡 (𝑘 ) ∥2 +
𝑛∑︁
𝑙=1

∥𝑤𝑡 (0,𝑙) ∥2

<

√︂
2 ·

(𝜂
2

)2
+ (𝑛 − 2)

(𝜂
8

)2
+ 2 ·

( 𝜂
4𝑛

)2

≤

√︄(
𝜂2

2

)
+ 𝜂

2(𝑛 − 2)
64

+ 2𝜂2

≤
√︂

1
64

+ 5
2𝑛

(𝜂 ≤ 1√
𝑛

)

≤ 1 (𝑛 ≥ 4)

Now, denote 𝛼𝑉 ∈ ℝ𝑛−3 the vector which its 𝑘th entry is max
( 𝜂

16 ,max𝑢∈𝑉𝑖 ⟨𝑢, (𝑛 − 𝑘 + 2) 𝜂8 𝑢𝑘+1⟩
)
.

For 𝑤𝑛 = 𝑤𝑛,𝑛, and any 2 ≤ 𝑠 ≤ 𝑛 − 2,

𝑤𝑛
(𝑠) =

𝜂

2𝑛
𝑢𝑠 + (𝑛 − 𝑠 − 1) 𝜂

8𝑛
𝑢𝑠 = (𝑛 − 𝑠 + 3) 𝜂

8𝑛
𝑢𝑠 .

Then,

1
𝑛

𝑛∑︁
𝑖=1

√√
𝑛∑︁
𝑘=2

max
(
3𝜂
32
,max
𝑢∈𝑉𝑖

⟨𝑢, 𝑤𝑛 (𝑘 )⟩
)2

≥ 1
𝑛

𝑛∑︁
𝑖=1

√√√
𝑛−2∑︁
𝑘=2

max
(
3𝜂
32
,max
𝑢∈𝑉𝑖

⟨𝑢, 𝑤𝑛 (𝑘 )⟩
)2
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=
1
𝑛

𝑛∑︁
𝑖=1

√√√
𝑛−2∑︁
𝑘=2

max
(
3𝜂
32
,max
𝑢∈𝑉𝑖

⟨𝑢, (𝑛 − 𝑘 + 3) 𝜂
8𝑛
𝑢𝑘⟩

)2

=
1
𝑛

𝑛∑︁
𝑖=1

√√√
𝑛−3∑︁
𝑘=1

max
(
3𝜂
32
,max
𝑢∈𝑉𝑖

⟨𝑢, (𝑛 − 𝑘 + 2) 𝜂
8𝑛
𝑢𝑘+1⟩

)2

=
1
𝑛

𝑛∑︁
𝑖=1

√√√
𝑛−3∑︁
𝑘=1

max
(
3𝜂
32
,max
𝑢∈𝑉𝑖

⟨𝑢, (𝑛 − 𝑘 + 2) 𝜂
8𝑛
𝑢𝑘+1⟩

)2

=
1
𝑛

𝑛∑︁
𝑖=1

∥𝛼𝑉𝑖 ∥

≥ ∥ 1
𝑛

𝑛∑︁
𝑖=1

𝛼𝑉𝑖 ∥

=

√√√
𝑛−2∑︁
𝑘=2

(
1
𝑛

𝑛∑︁
𝑖=1

max
(
3𝜂
32
,max
𝑢∈𝑉𝑖

⟨𝑢, (𝑛 − 𝑘 + 3) 𝜂
8𝑛
𝑢𝑘⟩

))2

=
𝜂

8

√√√
𝑛−2∑︁
𝑘=2

(
1
𝑛

𝑛∑︁
𝑖=1

max
(
3
4
,max
𝑢∈𝑉𝑖

⟨𝑢, 𝑛 − 𝑘 + 3
𝑛

𝑢𝑘⟩
))2

=
𝜂

8

√√√
𝑛−2∑︁
𝑘=2

(
1
𝑛

𝑛∑︁
𝑖=1

max
(
3
4
,max
𝑢∈𝑉𝑖

⟨𝑢, 𝑛 − 𝑘 + 2
𝑛

𝑢𝑘⟩
))2

Now, by the fact that if E′ holds, by Theorem 23, for 2 ≤ 𝑘 ≤ 𝑛 − 2, 𝑢𝑘 ∈ 𝑃𝑘 =
⋂𝑘−1
𝑖=1 𝑉𝑘 ,

1
𝑛

𝑛∑︁
𝑖=1

√√
𝑛∑︁
𝑘=2

max
(
3𝜂
32
,max
𝑢∈𝑉𝑖

⟨𝑢, 𝑤𝑛 (𝑘 )⟩
)2

≥ 𝜂

8

√√√√
𝑛−2∑︁
𝑘=2

(
1
𝑛

𝑘−1∑︁
𝑖=1

max
(
3
4
,max
𝑢∈𝑉𝑖

⟨𝑢, 𝑛 − 𝑘 + 2
𝑛

𝑢𝑘⟩
)
+ 1
𝑛

𝑛∑︁
𝑖=𝑘

max
(
3
4
,max
𝑢∈𝑉𝑖

⟨𝑢, 𝑛 − 𝑘 + 2
𝑛

𝑢𝑘⟩
))2

≥ 𝜂

8

√√√
𝑛−2∑︁
𝑘=2

(
3(𝑛 − 𝑘 + 1)

4𝑛
+ 𝑘 − 1

𝑛
max

(
3
4
,
𝑛 − 𝑘 + 2

𝑛

))2

≥ 𝜂

8

√√√ ∑︁
2≤𝑘≤ 𝑛

4 −2

(
3(𝑛 − 𝑘 + 1)

4𝑛
+ (𝑘 − 1) (𝑛 − 𝑘 + 1)

𝑛2

)2
+

∑︁
𝑛
4 −3<𝑘≤𝑛−2

(
3(𝑛 − 𝑘 + 1)

4𝑛
+ 3(𝑘 − 1)

4𝑛

)2

=
𝜂

8

√√√ ∑︁
2≤𝑘≤ 𝑛

4 −2

(
(𝑛 − 𝑘 + 1) (3𝑛 + 4(𝑘 − 1))

4𝑛2

)2
+ 27𝑛

64

=
𝜂

8

√√√ ∑︁
1≤𝑘≤ 𝑛

4 −3

(
(𝑛 − 𝑘) (3𝑛 + 4𝑘)

4𝑛2

)2
+ 27𝑛

64
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≥ 𝜂

8

√√√ ∑︁
1≤𝑘≤ 𝑛

4 −3

(
3
4
+ 𝑘

4𝑛
− 𝑘2

𝑛2

)2
+ 27𝑛

64

Now, the fact that for 𝑛
8 ≤ 𝑘 ≤ 𝑛

4 , 𝑘
4𝑛 ≤ 𝑘2

𝑛2 and for 𝑘 ≤ 𝑛
8 , 𝑘

8𝑛 ≤ 𝑘2

𝑛2 ,

1
𝑛

𝑛∑︁
𝑖=1

√√
𝑛∑︁
𝑘=2

max
(
3𝜂
32
,max
𝑢∈𝑉𝑖

⟨𝑢, 𝑤𝑛 (𝑘 )⟩
)2

≥ 𝜂

8

√√√ ∑︁
1≤𝑘≤ 𝑛

8

(
3
4
+ 𝑘

8𝑛

)2
+ 9𝑛

128
− 27

16
+ 27𝑛

64

≥ 𝜂

8

√√√√
9𝑛
128

+ 3
64𝑛

⌊ 𝑛8 ⌋∑︁
𝑘=1

𝑘 + 9𝑛
128

− 27
16

+ 27𝑛
64

≥ 𝜂

8

√︂
1
2

(𝑛
8
− 1

)2
− 27

16
+ 36𝑛

64

≥ 𝜂

8

√︂
𝑛

512
− 27

16
+ 36𝑛

64
(𝑛 ≥ 16)

≥ 𝜂

8

√︂
577𝑛
1024

(𝑛 ≥ 2048)

≥ 3𝜂
32

· 2001
2000

Now, for 𝑚 < 𝑛 and 2 ≤ 𝑘 ≤ 𝑛 − 2,

𝑤𝑛,𝑚
(𝑘 ) =

{
𝜂

8 𝑢𝑘 𝑘 ≤ 𝑛 − 𝑚 − 1
1
𝑚

( 𝜂
2 𝑢𝑘 + (𝑛 − 𝑘 − 1) 𝜂8 𝑢𝑠

)
𝑘 ≥ 𝑛 − 𝑚

=

{
𝜂

8 𝑢𝑘 𝑘 ≤ 𝑛 − 𝑚 − 1
𝜂 (𝑛−𝑘+3)

8𝑚 𝑢𝑠 𝑘 ≥ 𝑛 − 𝑚.

Then, by similar arguments, it holds that,

1
𝑛

𝑛∑︁
𝑖=1

√√
𝑛∑︁
𝑘=2

max
(
3𝜂
32
,max
𝑢∈𝑉𝑖

⟨𝑢, 𝑤𝑛,𝑚 (𝑘 )⟩
)2

≥ 1
𝑛

𝑛∑︁
𝑖=1

√√√
𝑛−2∑︁
𝑘=2

max
(
3𝜂
32
,max
𝑢∈𝑉𝑖

⟨𝑢, 𝑤𝑛,𝑚 (𝑘 )⟩
)2

≥

√√√
𝑛−2∑︁
𝑘=2

(
1
𝑛

𝑛∑︁
𝑖=1

max
(
3𝜂
32
,max
𝑢∈𝑉𝑖

⟨𝑢, 𝑤𝑛,𝑚 (𝑘 )⟩
))2

=
𝜂

8

√√√
𝑛−𝑚−1∑︁
𝑘=2

(
1
𝑛

𝑛∑︁
𝑖=1

max
(
3
4
,max
𝑢∈𝑉𝑖

⟨𝑢, 𝑢𝑘⟩
))2

+
𝑛−2∑︁
𝑘=𝑛−𝑚

(
1
𝑛

𝑛∑︁
𝑖=1

max
(
3
4
,max
𝑢∈𝑉𝑖

⟨𝑢, 𝑛 − 𝑘 + 3
𝑚

𝑢𝑘⟩
))2

≥ 𝜂

8

√√√
𝑛−𝑚−1∑︁
𝑘=2

(
1
𝑛

𝑛∑︁
𝑖=1

max
(
3
4
,max
𝑢∈𝑉𝑖

⟨𝑢, 𝑢𝑘⟩
))2

+
𝑛−2∑︁
𝑘=𝑛−𝑚

(
1
𝑛

𝑛∑︁
𝑖=1

max
(
3
4
,max
𝑢∈𝑉𝑖

⟨𝑢, 𝑛 − 𝑘 + 2
𝑛

𝑢𝑘⟩
))2
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≥ 𝜂

8

√√√
𝑛−2∑︁
𝑘=2

(
1
𝑛

𝑛∑︁
𝑖=1

max
(
3
4
,max
𝑢∈𝑉𝑖

⟨𝑢, 𝑛 − 𝑘 + 2
𝑛

𝑢𝑘⟩
))2

(𝑘 ≥ 2 =⇒ 𝑛−𝑘+2
𝑛

≤ 1)

≥ 3𝜂
32

· 2001
2000

(calculation for 𝑤𝑛,𝑛)

As a result, we notice that for every 𝑡, ℓSGD
2 (𝑤𝑡 ) ≥ − 1

4𝑛2 − 1
𝑛3 and ℓ2(𝑤𝑡 ) ≥ 𝛿1 thus, it holds that,

𝐹 (𝑤𝑛,𝑚) ≥
3𝜂

√
𝑛

32
· 2001

2000
− 1

4𝑛2 − 1
𝑛3 + 𝛿1

≥ 3𝜂
√
𝑛

32
· 2001

2000
− 𝜂

2𝑛2

≥ 3𝜂
√
𝑛

32
· 2001

2000
− 𝜂

√
𝑛

80000
(𝑛 ≥ 256)

≥ 3𝜂
√
𝑛

32
·
(
2001
2000

− 1
4000

)
≥ 3𝜂

√
𝑛

32
· 4001

4000

and

𝐹 (𝑤∗) ≤ 𝐹 (0) ≤ 3𝜂
32

√
𝑛

Then, if E′ holds

𝐹 (𝑤𝑛,𝑚) − 𝐹 (𝑤∗) ≥
3𝜂

√
𝑛

32
· 2001

2000
− 3𝜂

32
√
𝑛

=
𝜂
√
𝑛

64000

B.4. Deferred Proofs

Proof [of Theorem 19] The construction is similar to Theorem 4. First, we consider an arbitrary enu-
meration of𝑃(𝑈) = {𝑉1, ...𝑉 |𝑃 (𝑈) |} and define 𝑔 : 𝑃(𝑈) → ℝ2, 𝑔(𝑉 𝑖) =

(
sin

(
𝜋𝑖

2 |𝑃 (𝑈) |

)
, cos

(
𝜋𝑖

2 |𝑃 (𝑈) |

))
.

Here, we refer to a vector 𝑎 ∈ ℝ2𝑛 as a concatenation of 𝑛 vectors in ℝ2, 𝑎 (1) , ..., 𝑎 (𝑛) . Then, we
define 𝛿 = 1 − cos

(
𝜋

2 |𝑃 (𝑈) |

)
, 𝜖 = 𝛿

𝑛2 and

𝜙(𝑉, 𝑗) (𝑖) =
{
𝑔(𝑉) 𝑖 = 𝑗

0 otherwise

As a result, for every 𝑉𝑖 , 𝑗 it holds that

∥𝜙(𝑉 𝑖 , 𝑗)∥ = ∥𝑔(𝑉 𝑖)∥ =

√︄
sin

(
𝜋𝑖

2|𝑃(𝑈) |

)2
+ cos

(
𝜋𝑖

2|𝑃(𝑈) |

)2
= 1
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Moreover, if 𝑗1 ≠ 𝑗2,

⟨𝜙(𝑉 𝑖 , 𝑗1), 𝜙(𝑉 𝑖 , 𝑗2)⟩ = 0,

and if 𝑖 > 𝑘 ,

⟨𝜙(𝑉 𝑖 , 𝑗), 𝜙(𝑉 𝑘 , 𝑗)⟩ =⟨𝑔(𝑉 𝑖), 𝑔(𝑉 𝑘)⟩

= sin
(

𝜋𝑖

2|𝑃(𝑈) |

)
sin

(
𝜋𝑘

2|𝑃(𝑈) |

)
+ cos

(
𝜋𝑖

2|𝑃(𝑈) |

)
cos

(
𝜋𝑘

2|𝑃(𝑈) |

)
= cos

(
𝜋(𝑖 − 𝑘)
2|𝑃(𝑈) |

)
≤ cos

(
𝜋

2|𝑃(𝑈) |

)
(cos is monotonic decreasing in [0, 𝜋/2])

= 1 − 𝛿

We notice that 0 < 𝛿 < 1. Now, we consider an arbitrary enumeration of𝑈 = {𝑣1, ...𝑣 |𝑈 |}, and define
the following setsΨ1, . . .Ψ𝑛 ⊆ ℝ2𝑛 and the following two mappings𝜎 : 𝑅2𝑛 → 𝑃(𝑈), 𝛼 : 𝑅2𝑛 → 𝑈,

Ψ𝑘 = {1
𝑛

𝑘∑︁
𝑖=1

𝜙(𝑉𝑖 , 𝑖) : ∀𝑖 𝑉𝑖 ⊆ 𝑈}

Note that, for every 𝜓 ∈ Ψ,

∥𝜓∥ = ∥ 1
𝑛

𝑘∑︁
𝑖=1

𝜙(𝑉𝑖 , 𝑗𝑖)∥ ≤ 1
𝑛

𝑘∑︁
𝑖=1

∥𝜙(𝑉𝑖 , 𝑗𝑖)∥ ≤ 1.

Then, for every 𝑎 ∈ ℝ2𝑛 and 𝑗 ∈ [𝑛], we denote the index 𝑞(𝑎, 𝑗) ∈ [|𝑃(𝑈) |] as

𝑞(𝑎, 𝑗) = arg max
𝑟

⟨𝑔(𝑉𝑟 ), 𝑎 ( 𝑗 )⟩,

and define the following mapping 𝜎 : ℝ2𝑛 → 𝑃(𝑈),

𝜎(𝑎) =
𝑛⋂

𝑗=1,𝑎 ( 𝑗)≠0

𝑉𝑞 (𝑎, 𝑗 ) .

Moreover, for every 𝑎 ∈ ℝ2𝑛, we denote the index 𝑝(𝑎) ∈ [|𝑈 |] as

𝑝(𝑎) = arg min
𝑖

{𝑖 : 𝑣𝑖 ∈ 𝜎(𝑎)},

and define the following mapping 𝛼 : ℝ2𝑛2 → 𝑈,

𝛼(𝑎) =
{
𝑣 |𝑈 | 𝜎(𝑎) = ∅
𝑣𝑝 (𝑎) 𝜎(𝑎) ≠ ∅ .

Note that for every 𝑎 ∈ ℝ2𝑛, 𝛼(𝑎) ∈ 𝑈, thus, ∥𝛼(𝑎)∥ ≤ 1.
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Now, Let 𝑉1, . . . , 𝑉𝑛 ⊆ 𝑈, 𝑘 ∈ [𝑛] and 𝜓∗
𝑘
= 1
𝑛

∑𝑘
𝑖=1 𝜙(𝑉𝑖 , 𝑖). Then,

⟨𝜓∗,
1
𝑛

𝑘∑︁
𝑖=1

𝜙(𝑉𝑖 , 𝑖)⟩ = ⟨1
𝑛

𝑘∑︁
𝑖=1

𝜙(𝑉𝑖 , 𝑖),
1
𝑛

𝑘∑︁
𝑖=1

𝜙(𝑉𝑖 , 𝑖)⟩

=
1
𝑛2

𝑘∑︁
𝑖=1

⟨𝜙(𝑉𝑖 , 𝑖), 𝜙(𝑉𝑖 , 𝑖)⟩

=
𝑘

𝑛2

For 𝜓 = 1
𝑛

∑𝑘
𝑖=1 𝜙(𝑉 ′

𝑖
, 𝑖) such that 𝜓 ≠ 𝜓∗, there exists a index 𝑟 such that 𝑉 ′

𝑟 ≠ 𝑉𝑟 ,thus,

⟨𝜓, 1
𝑛

𝑘∑︁
𝑙=1

𝜙(𝑉𝑖 , 𝑖)⟩ = ⟨1
𝑛

𝑘∑︁
𝑖=1

𝜙(𝑉 ′
𝑖 , 𝑖),

1
𝑛

𝑘∑︁
𝑖=1

𝜙(𝑉𝑖 , 𝑖)⟩

=
1
𝑛2

𝑘∑︁
𝑖=1

⟨𝜙(𝑉𝑖 , 𝑖), 𝜙(𝑉 ′
𝑖 , 𝑖)⟩

≤ 1
𝑛2

(
1 − 𝛿 +

𝑘∑︁
𝑖=1,𝑖≠𝑟

1

)
≤ 1
𝑛2 (1 − 𝛿 + 𝑘 − 1)

=
𝑘

𝑛2 − 𝛿

𝑛2

= ⟨𝜓∗
𝑘 ,

1
𝑛

𝑛∑︁
𝑖=1

𝜙(𝑉𝑖 , 𝑗𝑖)⟩ − 𝜖

Furthermore, it holds that, 1
𝑛

∑𝑛
𝑖=1 𝜙(𝑉𝑖 , 𝑖)

(𝑖)
= 1
𝑛
𝑔(𝑉𝑖), thus,

𝑞

(
1
𝑛

𝑘∑︁
𝑖=1

𝜙(𝑉𝑖 , 𝑖), 𝑖
)
= arg max

𝑟

⟨𝑔(𝑉𝑟 ),
1
𝑛

𝑘∑︁
𝑖=1

𝜙(𝑉𝑖 , 𝑖)
(𝑖)

⟩

= arg max
𝑟

⟨𝑔(𝑉𝑟 ),
1
𝑛
𝑔(𝑉𝑖)⟩

= 𝑖,

thus, we get,

𝜎(𝜓∗) = 𝜎
(

1
𝑛

𝑘∑︁
𝑖=1

𝜙(𝑉𝑖 , 𝑖)
)

=

𝑛⋂
𝑗=1, 1

𝑛

∑𝑘
𝑖=1 𝜙 (𝑉𝑖 ,𝑖)

( 𝑗)
≠0

𝑉
𝑞 ( 1

𝑛

∑𝑘
𝑖=1 𝜙 (𝑉𝑖 ,𝑖)

( 𝑗)
, 𝑗 )

=

𝑘⋂
𝑗=1
𝑉𝑞 ( 1

𝑛

∑𝑘
𝑖=1 𝜙 (𝑉𝑖 ,𝑖) , 𝑗 )

(The indices that are non-zero are 𝑗 = 1, . . . , 𝑘)
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=

𝑘⋂
𝑖=1
𝑉𝑖

Then, assuming that
⋂𝑘
𝑖=1𝑉𝑖 ≠ ∅, and let and 𝑚 = arg min𝑖{𝑖 : 𝑣𝑖 ∈

⋂𝑘
𝑖=1𝑉𝑖}, 𝑝(𝑎) = 𝑚 and,

𝛼(𝜓∗) = 𝑣𝑚 ∈
𝑘⋂
𝑖=1
𝑉𝑖 .

Proof [of Theorem 21] First, ℓSGD
1 is convex and 1-Lipschitz by the fact that ℓSGD

1 = ℓ1 and Theorem 6.
Moreover, by Theorem 19, ℓSGD

2 is a maximum over 1-Lipschitz linear functions, thus, ℓSGD
2 is convex

and 1-Lipschitz. Finally, ℓSGD
3 is a summation of two 1-Lipschitz linear functions, thus, ℓSGD

3 is
convex and 2-Lipschitz. Combining all together, we get the lemma.

Proof [of Theorem 22] First, by union bound,

Pr (∀𝑡 ∈ [𝑛] 𝑃𝑡 ≠ ∅ and 𝐽𝑡 ∈ 𝑆𝑡 ) = 1 − 𝑃𝑟 (∃𝑡 𝑃𝑡 = ∅ or 𝐽𝑡 ∉ 𝑆𝑡 )

≥ 1 −
𝑛∑︁
𝑡=1

𝑃𝑟 (𝑃𝑡 = ∅ or (𝑃𝑡 ≠ ∅ and 𝐽𝑡 ∉ 𝑆𝑡 ))

≥ 1 −
𝑛∑︁
𝑡=1

Pr (𝑃𝑡 = ∅) −
𝑛∑︁
𝑡=1

Pr (𝑃𝑡 ≠ ∅ and 𝐽𝑡 ∉ 𝑆𝑡 )

= 1 −
𝑛∑︁
𝑡=1

Pr (𝑃𝑡 = ∅) −
𝑛∑︁
𝑡=1

Pr (𝑃𝑡 ≠ ∅) Pr (𝐽𝑡 ∉ 𝑆𝑡 |𝑃𝑡 ≠ ∅) .

Now, for every 𝑣 ∈ 𝑈,

Pr(𝑣 ∉
𝑡−1⋂
𝑖=1
𝑉𝑖) = 1 − Pr(𝑣 ∈

𝑡−1⋂
𝑖=1
𝑉𝑖) = 1 − 𝛿𝑡−1 ≤ 1 − 𝛿𝑛,

and similarly,

Pr (𝑣 ∉ 𝑆𝑡 ) = 1 − (1 − 𝛿)𝑛−𝑡+1 ≤ 1 − (1 − 𝛿)𝑛.

Then,

Pr (𝑃𝑡 = ∅) = Pr

(
𝑡⋂
𝑖=1
𝑉𝑖 = ∅

)
= Pr(∀𝑣 ∈ 𝑈; 𝑣 ∉

𝑡⋂
𝑖=1
𝑉𝑖)

≤ (1 − 𝛿𝑛) |𝑈 | .

Moreover, by the fact that for every 𝑡, 𝑃𝑡 is independent of 𝑉𝑡+1, ...𝑉𝑛,

𝑃𝑟 (𝑃𝑡 ≠ ∅) Pr (𝐽𝑡 ∉ 𝑆𝑡 |𝑃𝑡 ≠ ∅) ≤ 1 − (1 − 𝛿)𝑛.
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Combining all of the above, we get that,

Pr(∀𝑡 ∈ [𝑛] 𝑃𝑡 ≠ ∅ and 𝐽𝑡 ∈ 𝑆𝑡 )

= 1 −
𝑛∑︁
𝑡=1

Pr (𝑃𝑡 = ∅) −
𝑛∑︁
𝑡=1

Pr (𝑃𝑡 ≠ ∅) Pr (𝐽𝑡 ∉ 𝑆𝑡 |𝑃𝑡 ≠ ∅)

≥ 1 − 𝑛(1 − 𝛿𝑛) |𝑈 | − 𝑛 (1 − (1 − 𝛿)𝑛) .

Further, for 𝛿 = 1
4𝑛2 , by the fact that |𝑈 | ≥ 2 𝑑′

178 = 24𝑛 log(𝑛) = 𝑛4𝑛,

|𝑈 |𝛿𝑛 ≥ 𝑛4𝑛𝑛−2𝑛4−𝑛 ≥ 𝑛2𝑛4−𝑛 ≥ log(4𝑛).

Therefore,

Pr (∀𝑡 ∈ [𝑛] 𝑃𝑡 ≠ ∅ and 𝐽𝑡 ∈ 𝑆𝑡 ) ≥ 1 − 𝑛(1 − 𝛿𝑛) |𝑈 | − 𝑛 (1 − (1 − 𝛿)𝑛)
≥ 1 − 𝑛𝑒−|𝑈 | 𝛿𝑛 − 𝑛 (1 − (1 − 𝑛𝛿))
≥ 1 − 𝑛𝑒− log(4𝑛) − 𝑛2𝛿

≥ 1 − 1
4
− 1

4

=
1
2
.

Proof [of Theorem 24] First, differentiability can be derived immediately from Theorem 31. Second,
for 4-Lipschitzness, for every𝑉 ∈ 𝑍 , we define 𝑓 SGD

𝑉
: ℝ𝑑 → ℝ as 𝑓 SGD

𝑉
(𝑤) B 𝑓 SGD(𝑤,𝑉). By the

5-Lipschitzness of 𝑓 SGD with respect to its first argument and Jensen Inequality, for every 𝑥, 𝑦 ∈ ℝ𝑑 ,
it holds that

| 𝑓 SGD
𝑉 (𝑥) − 𝑓 SGD

𝑉 (𝑦) | =
���𝔼𝑣∈ 𝛿𝐵 (

𝑓 SGD
𝑉 (𝑦 + 𝑣)

)
− 𝔼𝑣∈ 𝛿𝐵

(
𝑓 SGD
𝑉 (𝑤 + 𝑣)

)���
=

���𝔼𝑣∈ 𝛿𝐵 (
𝑓 SGD
𝑉 (𝑥 + 𝑣) − 𝑓 SGD

𝑉 (𝑦 + 𝑣)
)���

≤ 𝔼𝑣∈ 𝛿𝐵

���( 𝑓 SGD
𝑉 (𝑥 + 𝑣) − 𝑓 SGD

𝑉 (𝑦 + 𝑣)
)���

≤ 4|𝑥 − 𝑦 |.

Third, for convexity, by the convexity of 𝑓 SGD for every 𝑥, 𝑦 ∈ ℝ𝑑 and 𝛼 ∈ [0, 1],

𝑓 SGD
𝑉 (𝛼𝑥 + (1 − 𝛼)𝑦) = 𝔼𝑣∈ 𝛿𝐵

(
𝑓 SGD
𝑉 (𝛼𝑥 + (1 − 𝛼)𝑦 + 𝑣)

)
= 𝔼𝑣∈ 𝛿𝐵

(
𝑓 SGD
𝑉 (𝛼(𝑥 + 𝑣) + (1 − 𝛼) (𝑦 + 𝑣))

)
≤ 𝔼𝑣∈ 𝛿𝐵

(
𝛼 𝑓 SGD
𝑉 (𝑥 + 𝑣) + (1 − 𝛼) 𝑓𝑉 (𝑦 + 𝑣))

)
= 𝛼𝔼𝑣∈ 𝛿𝐵

(
𝑓 SGD
𝑉 (𝑥 + 𝑣)

)
+ (1 − 𝛼)

(
𝔼𝑣∈ 𝛿𝐵 𝑓

SGD
𝑉 (𝑦 + 𝑣)

)
= 𝛼 𝑓 SGD

𝑉 (𝑥) + (1 − 𝛼) 𝑓 SGD
𝑉, 𝑗 (𝑦).
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Proof [of Theorem 25] We assume that E′ (Eq. (22)) holds and prove Theorem 25 under this event.
We prove the claim by induction on 𝑡. For 𝑡 = 1, it is trivial. Now, we assume that 𝑤𝑡 = 𝑤𝑡 . First,
for ℓ̃SGD

3 and every 𝑤 and 𝑉 , by linearity of expectation,

ℓ̃SGD
3 (𝑤,𝑉) = 𝔼𝑣∈ 𝛿𝐵

(
⟨𝑤 (0,1) + 𝑣 (0,1) ,− 1

4𝑛2 𝜙(𝑉, 1)⟩ − ⟨ 1
𝑛3 𝑢1, 𝑤

(1) + 𝑣 (1)⟩
)

= ℓSGD
3 (𝑤,𝑉) +

(
⟨𝔼𝑣∈ 𝛿𝐵𝑣 (0,1) ,−

1
4𝑛2 𝜙(𝑉, 1)⟩ − ⟨ 1

𝑛3 𝑢1,𝔼𝑣∈ 𝛿𝐵𝑣
(1)⟩

)
= ℓSGD

3 (𝑤,𝑉)

Then, we derive that for every 𝑤, ∇ℓ̃SGD
3 (𝑤,𝑉) = ∇ℓSGD

3 (𝑤,𝑉). Now, for 𝑟 ∈ {1, 2} we show that in
each term ℓ̃SGD

𝑟 (𝑤𝑡 , 𝑉𝑡 ), the argument that gives the maximum value is the same as ℓSGD
𝑟 (𝑤𝑡 , 𝑉𝑡 ).

For ℓ̃SGD
1 (𝑤𝑡 , 𝑉𝑡 ), in every 𝑡, by the proofs of Theorem 28, Theorem 29 and Theorem 23, the

maximal value is 3𝜂
32 . Moreover, it can be observed that for every 𝑘 ≥ 2, max𝑡 max𝑢∈𝑉𝑡 ⟨𝑢, 𝑤SGD

𝑡

(𝑘 )⟩ ≤
𝜂

16 . Then, by Theorem 33, and the hypothesis of the induction,

∇ℓ̃SGD
1 (𝑤𝑡 , 𝑉𝑡 ) = ∇ℓ̃SGD

1 (𝑤𝑡 , 𝑉𝑡 ) = 0 = ∇ℓSGD
1 (𝑤𝑡 , 𝑉𝑡 ).

Now, for ℓ̃SGD
2 , for 𝑡 = 1, ∇ℓSGD

2 (𝑤1, 𝑉1) = 0 and the maximum is attained uniquely in 𝛿1 =
𝜂

8𝑛3

(the second maximal value is zero). Then, we can apply Theorem 32 and by the hypothesis of the
induction, it follows that,

∇ℓ̃SGD
2 (𝑤1, 𝑉1) = ∇ℓ̃SGD

2 (𝑤1, 𝑉1) = 0 = ∇ℓSGD
2 (𝑤1, 𝑉1).

For every 𝑡 ≥ 2, the maximum is attained uniquely in the linear term of 𝑘 = 𝑡 − 1,𝑢 = 𝑢𝑡−1 and
𝜓 = 𝜓∗

𝑡−1 such that the difference between the maximal value the second largest value is larger than
𝜂𝜖

16𝑛2 . Then, we can apply Theorem 34 and by the hypothesis of the induction, it follows that,

∇ℓ̃SGD
2 (𝑤𝑡 , 𝑉𝑡 ) = ∇ℓ̃SGD

2 (𝑤𝑡 , 𝑉𝑡 ) = ∇ℓSGD
𝑡 (𝑤𝑡 , 𝑉𝑡 ).

In conclusion, we proved that ∇ 𝑓 SGD(𝑤𝑡 , 𝑉𝑡 ) = ∇ 𝑓 SGD(𝑤𝑡 , 𝑉𝑡 ), thus, by the hypothesis of the
induction,

𝑤𝑡+1 = 𝑤𝑡 − ∇ 𝑓 SGD(𝑤𝑡 , 𝑉𝑡 ) = �̃�𝑡 − ∇ 𝑓 SGD(�̃�𝑡 , 𝑉𝑡 ) = �̃�𝑡+1.

Appendix C. Differentiability: Auxiliary Lemmas

Lemma 31 (Lemma 1 in Flaxman et al. (2005)) Let 𝑑 and 𝛿 > 0, 𝔹 be the 𝑑-dimensional unit ball
and 𝕊 be the 𝑑-dimensional unit sphere. Moreover, let D𝔹 and D𝕊 be the uniform distributions on
𝔹,𝕊 respectively. If 𝑓 (𝑥) = 𝔼𝑣∼D𝔹

[ 𝑓 (𝑥 + 𝛿𝑣)], then,

∇ 𝑓 (𝑥) = 𝑑

𝛿
𝔼𝑎∼D𝕊

[ 𝑓 (𝑥 + 𝛿𝑎)𝑎]
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Lemma 32 Let 𝑑. Let 𝔹 be the 𝑑-dimensional unit ball and D𝔹 the uniform distributions on
𝔹. Let 𝜁1 > 𝜁2 > 0, a function 𝑔 : ℝ → ℝ and 𝑎1, ...𝑎𝑙 ∈ 𝔹. Moreover, let ℎ : 𝔹 → 𝑅,
ℎ(𝑥) = 𝑔 (max(𝜁1,max1≤𝑟≤𝑙 ⟨𝑎𝑟 , 𝑥⟩) and 𝑥0 ∈ 𝔹 such that max1≤𝑟≤𝑙 ⟨𝑎𝑟 , 𝑥0⟩ ≤ 𝜁2. We define
ℎ̃(𝑥) B 𝔼𝑣∼D𝔹

[ℎ(𝑥 + 𝛿𝑣)]. Then, for any 0 < 𝛿 < 𝜁1 − 𝜁2,

∇ℎ̃(𝑥0) = 0,
ℎ̃(𝑥0) = 𝑔(𝜁1).

Proof First, for every 𝑟 and 𝑣 ∈ 𝔹, by Cauchy-Schwartz Inequality,

⟨𝑎𝑟 , 𝑥0 + 𝛿𝑣⟩ = ⟨𝑎𝑟 , 𝑥0⟩ + ⟨𝑎𝑟 , 𝛿𝑣⟩ ≤ 𝜁2 + 𝛿 < 𝜁1

Then,
max(𝜁1, max

1≤𝑟≤𝑙
⟨𝑎𝑟 , 𝑥0 + 𝛿𝑣⟩) = 𝜁1,

and
ℎ(𝑥0 + 𝛿𝑣) = 𝑔(max(𝜁1, max

1≤𝑟≤𝑙
⟨𝑎𝑟 , 𝑥0 + 𝛿𝑣⟩) = 𝑔(𝜁1).

As a result,

ℎ̃(𝑥0) = 𝔼𝑣∼D𝔹
[ℎ(𝑥0 + 𝛿𝑣)] = 𝑔(𝜁1)

and by Theorem 31,

∇ℎ̃(𝑥0) =
𝑑

𝛿
𝔼𝑣∼D𝕊

[ℎ(𝑥0 + 𝛿𝑣)𝑣]

=
𝑑

𝛿
𝔼𝑣∼D𝕊

[
𝑔

(
max(𝜁1, max

1≤𝑟≤𝑙
⟨𝑎𝑟 , 𝑥0 + 𝛿𝑣⟩

)
𝑣

]
=
𝑑

𝛿
𝔼𝑣∼D𝕊

[𝑔(𝜁1)𝑣]

=
𝑑

𝛿
𝑔(𝜁1)𝔼𝑣∼D𝕊

[𝑣]

= 0

Lemma 33 Let 𝑑 and𝐾 . Let𝔹 be the 𝑑𝐾-dimensional unit ball and D𝔹 the uniform distributions on
𝔹. Let 𝜁1 > 𝜁2 > 0 and 𝑎1, ...𝑎𝑙 ∈ 𝔹𝑑 . Moreover, let 𝑔 : 𝔹𝑑 → 𝑅, 𝑔(𝑥) = max(𝜁1,max1≤𝑟≤𝑙 ⟨𝑎𝑟 , 𝑥⟩)
and ℎ : 𝔹 → ℝ, ℎ(𝑥) =

√︃∑𝐾
𝑘=1 𝑔(𝑥 (𝑘 ) )2. Let 𝑥0 ∈ 𝔹 such that for every 𝑘 , max1≤𝑟≤𝑙 ⟨𝑎𝑟 , 𝑥0

(𝑘 )⟩ ≤ 𝜁2.
We define ℎ̃(𝑥) B 𝔼𝑣∼D𝔹

[ℎ(𝑥 + 𝛿𝑣)]. Then, for any 0 < 𝛿 < 𝜁1 − 𝜁2,

∇ℎ̃(𝑥0) = 0,

ℎ̃(𝑥0) = 𝜁1
√
𝐾.
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Proof First, for every 𝑘, 𝑟 and 𝑢 ∈ 𝔹𝑑 , by Cauchy-Schwartz Inequality,

⟨𝑎𝑟 , 𝑥0
(𝑘 ) + 𝛿𝑢⟩ = ⟨𝑎𝑟 , 𝑥0

(𝑘 )⟩ + ⟨𝑎𝑟 , 𝛿𝑢⟩ ≤ 𝜁2 + 𝛿 < 𝜁1

Then,
𝑔(𝑥0

(𝑘 ) + 𝛿𝑢) = max(𝜁1, max
1≤𝑟≤𝑙

⟨𝑎𝑟 , 𝑥0
(𝑘 ) + 𝛿𝑢⟩) = 𝜁1,

and for every 𝑣 ∈ 𝔹,

ℎ(𝑥0 + 𝛿𝑣) =

√√√
𝐾∑︁
𝑘=1

𝑔(max(𝜁1, max
1≤𝑟≤𝑙

⟨𝑎𝑟 , 𝑥0 (𝑘 ) + 𝛿𝑣 (𝑘 )⟩) = 𝜁1
√
𝐾.

As a result,

ℎ̃(𝑥0) = 𝔼𝑣∼D𝔹
[ℎ(𝑥0 + 𝛿𝑣)] = 𝜁1

√
𝐾.

Now, by Theorem 31,

∇ℎ̃(𝑥0) =
𝑑

𝛿
𝔼𝑣∼D𝕊

[ℎ(𝑥0 + 𝛿𝑣)𝑣]

=
𝑑

𝛿
𝔼𝑣∼D𝕊

©­«
√√√

𝐾∑︁
𝑘=1

(
max(𝜁1, max

1≤𝑟≤𝑙
⟨𝑎𝑟 , 𝑥0 (𝑘 ) + 𝛿𝑣 (𝑘 )⟩

)2ª®¬ · 𝑣


=
𝑑

𝛿
𝔼𝑣∼D𝕊

[
𝜁1
√
𝐾𝑣

]
=
𝑑

𝛿
𝜁1
√
𝐾𝔼𝑣∼D𝕊

[𝑣]

= 0.

Lemma 34 Let 𝑑. Let 𝔹 = 𝔹𝑑
𝐺

be the 𝑑-dimensional ball of radius 𝐺 and D𝔹 the uniform
distributions on 𝔹. Let 𝜁1 > 𝜁2, 𝜁3 > 0 and vectors 𝑎1, ...𝑎𝑙 ∈ 𝔹. Moreover, let ℎ : 𝔹 → ℝ, ℎ(𝑥) =
max (𝜁3,max1≤𝑟≤𝑙 ⟨𝑎𝑟 , 𝑥⟩) and 𝑥0 ∈ 𝔹, 𝑟0 ∈ [𝑙] such that ⟨𝑎𝑟0 , 𝑥0⟩ = 𝜁1 and max1≤𝑟≤𝑙,𝑟≠𝑟0 ⟨𝑎𝑟 , 𝑥0⟩ ≤
𝜁2. We define ℎ̃(𝑥) B 𝔼𝑣∼D𝔹

[ℎ(𝑥 + 𝛿𝑣)]. Then, for any 0 < 𝛿 < 1
2𝐺 (𝜁1 − max (𝜁2, 𝜁3)),

ℎ̃(𝑥0) = ⟨𝑎𝑟0 , 𝑥0⟩
∇ℎ̃(𝑥0) = 𝑎𝑟0

Proof First, by Cauchy-Schwartz Inequality,

max
(
𝜁3,max

𝑟≠𝑟0
⟨𝑎𝑟 , 𝑥0 + 𝛿𝑣⟩

)
≤ max

(
𝜁3,max

𝑟≠𝑟0
⟨𝑎𝑟 , 𝑥0⟩ + max

𝑟≠𝑟0
⟨𝛿𝑣, 𝑎𝑟 ⟩

)
≤ max (𝜁3, 𝜁2 + 𝐺𝛿)
≤ max (𝜁3, 𝜁2) + 𝐺𝛿
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<
1
2
(𝜁1 + max (𝜁3, 𝜁2)) ,

and for 𝑟0,

⟨𝑎𝑟0 , 𝑥0 + 𝛿𝑣⟩ = ⟨𝑎𝑟0 , 𝑥0⟩ + ⟨𝛿𝑣, 𝑎𝑟0⟩ ≥ 𝜁1 − 𝐺𝛿 >
1
2
(𝜁1 + max (𝜁2, 𝜁3)) .

We derive that for every 𝑣 ∈ 𝔹,

ℎ(𝑥0 + 𝛿𝑣) = max
(
𝜁3, max

1≤𝑟≤𝑙
⟨𝑎𝑟 , 𝑥 + 𝛿𝑣⟩

)
= ⟨𝑎𝑟0 , 𝑥 + 𝛿𝑣⟩.

and that the maximum is attained in 𝑟0. Then,

ℎ̃(𝑥0) = 𝔼𝑣∼D𝔹
[ℎ(𝑥0 + 𝛿𝑣)]

= 𝔼𝑣∼D𝔹

[
⟨𝑎𝑟0 , 𝑥0 + 𝛿𝑣⟩

]
= ⟨𝑎𝑟0 , 𝑥0 + 𝛿𝔼𝑣∼D𝔹

𝑣⟩
= ⟨𝑎𝑟0 , 𝑥0⟩

and by Theorem 31,

∇ℎ̃(𝑥0) =
𝑑

𝛿
𝔼𝑣∼D𝕊

[
max

(
𝜁3,

(
max

1≤𝑟≤𝑙
⟨𝑎𝑟 , 𝑥0 + 𝛿𝑣⟩

))
𝑣

]
=
𝑑

𝛿
𝔼𝑣∼D𝕊

[ (
⟨𝑎𝑟0 , 𝑥0 + 𝛿𝑣⟩

)
𝑣
]

= ⟨𝑎𝑟0 , 𝑥0⟩
𝑑

𝛿
𝔼𝑣∼D𝕊

[𝑣] + 𝑑
𝛿
𝔼𝑣∼D𝕊

[
⟨𝑎𝑟0 , 𝛿𝑣⟩𝑣

]
= 0 + 𝑑𝔼𝑣∼D𝕊

[
𝑣𝑣𝑇

]
𝑎𝑟0

= 𝑑𝔼𝑣∼D𝕊

[
𝑣𝑣𝑇

]
𝑎𝑟0

= 𝑑
1
𝑑
𝐼𝑎𝑟0

= 𝑎𝑟0 .

Lemma 35 Let 𝑑 and 𝛿 > 0. Let 𝑓 : ℝ𝑑 → ℝ be a𝐺-Lipschitz function. Let𝔹 be the 𝑑-dimensional
unit ball. Moreover, let D𝔹 be the uniform distributions on 𝔹. If 𝑓 (𝑥) = 𝔼𝑣∼D𝔹

[ 𝑓 (𝑥 + 𝛿𝑣)], then
for every 𝑥,

| 𝑓 (𝑥) − 𝑓 (𝑥) | ≤ 𝐺𝛿

Proof By the fact that 𝑓 is 𝐺-Lipschitz,

| 𝑓 (𝑥) − 𝑓 (𝑥) | = |𝔼𝑣∼D𝔹
[ 𝑓 (𝑥 + 𝛿𝑣)] − 𝑓 (𝑥) |

≤ |𝔼𝑣∼D𝔹
[ 𝑓 (𝑥)] + 𝐺𝛿𝔼𝑣∼D𝔹

+ [∥𝑣∥] − 𝑓 (𝑥) |
= 𝐺𝛿𝔼𝑣∼D𝔹

[∥𝑣∥]
≤ 𝐺𝛿
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Appendix D. Lower bound of Ω
(
min

(
1, 1

𝜂𝑇

))
In this section, we prove the Ω

(
min

(
1, 1
𝜂𝑇

))
lower bound. Since our hard construction for getting

this bound involves a deterministic loss function, GD is equivalent to SGD. For clarity, we refer in
our proof to the performance of GD, however, the same result is applicable also for SGD with 𝑇 = 𝑛

iterations.

D.1. Construction of a non-differentiable loss function.

For 𝑑 = max(25𝜂2𝑇2, 1), we define the hard loss function 𝑓 OPT : ℝ𝑑 → ℝ, as follows,

𝑓 OPT(𝑤) = max
(
0, max
𝑖∈[𝑑 ]

{ 1
√
𝑑
− 𝑤 [𝑖] − 𝜂𝑖

4𝑑
}
)
. (29)

For this loss function, we prove the following lemma,

Lemma 36 Assume 𝑛, 𝑇 > 0, 𝜂 ≤ 1
5
√
𝑇

. Consider the loss function 𝑓 OPT that is defined in Eq. (29)
for 𝑑 = max(25𝜂2𝑇2, 1). Then, for Unprojected GD (cf. Eq. (1) with 𝑊 = ℝ𝑑) on 𝑓 OPT, initialized
at 𝑤1 = 0 with step size 𝜂, we have,

(i) The iterates of GD remain within the unit ball, namely 𝑤𝑡 ∈ 𝔹𝑑 for all 𝑡 = 1, . . . , 𝑇;

(ii) For all 𝑚 = 1, . . . , 𝑇 , the 𝑚-suffix averaged iterate has:

𝑓 OPT(𝑤𝑇,𝑚) − 𝑓 OPT(𝑤∗) = Ω

(
min

(
1,

1
𝜂𝑇

))
.

Algorithm’s dynamics We start by proving a lemma that characterizes the dynamics of the
algorithm.

Lemma 37 Assume the conditions of Theorem 36, and consider the iterate of Unprojected GD on
𝑓 OPT, initialized at 𝑤1 = 0 with step size 𝜂 ≤ 1

5
√
𝑇

Let 𝑤𝑡 be the iterate of Then, it holds that,

(i) For every 𝑖 ∈ [𝑑] and for every 𝑡 ∈ [𝑇],

𝑤𝑡 [𝑖] ≤
1

2
√
𝑑

(ii) For every 𝑡 ∈ [𝑇], there exists an index 𝑗𝑡 ∈ [𝑑] such that 𝑘 ≠ 𝑗𝑡 ,

1
√
𝑑
− 𝑤𝑡 [ 𝑗𝑡 ] −

𝜂 𝑗

4𝑑
>

1
√
𝑑
− 𝑤𝑡 [𝑘] −

𝜂𝑘

4𝑑
+ 𝜂

8𝑑
.

(iii) For every 𝑡 ∈ [𝑇], 𝑗𝑡 also holds

1
√
𝑑
− 𝑤𝑡 [ 𝑗𝑡 ] −

𝜂 𝑗𝑡

4𝑑
>
𝜂

8𝑑
.
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Proof We prove by induction on 𝑡. For 𝑡 = 1, 𝑤𝑡 = 0, thus,

𝑤1 [𝑖] = 0 ≤ 1
2
√
𝑑
.

Moreover, the maximizer is 𝑗1 = 1. Then, we notice that for both 𝑑 = 1 and 𝑑 = 25𝜂2𝑇2,
𝜂 ≤ 1

5
√
𝑇

=⇒ 𝜂 ≤ 1
5
√
𝑑

. Then, it holds that,

1
√
𝑑
− 𝑤1 [ 𝑗1] −

𝜂 𝑗1
4𝑑

≥ 1
√
𝑑
− 𝑤1 [ 𝑗1] −

𝜂

4

≥ 19
20
√
𝑑

>
𝜂

8𝑑
,

and, for every 𝑘 ≠ 𝑗1,

1
√
𝑑
− 𝑤1 [ 𝑗1] −

𝜂 𝑗1
4𝑑

=
1
√
𝑑
− 𝑤1 [𝑘] −

𝜂𝑘

4𝑑
+ 𝜂(𝑘 − 𝑗1)

4𝑑

≥ 1
√
𝑑
− 𝑤1 [𝑘] −

𝜂𝑘

4𝑑
+ 𝜂

4𝑑

>
1
√
𝑑
− 𝑤1 [𝑘] −

𝜂𝑘

4𝑑
+ 𝜂

8𝑑
.

In the step of the induction we assume that the lemma holds for every 𝑠 ≤ 𝑡 and prove it for
𝑠 = 𝑡 + 1. By the hypothesis of the induction, we know that for every iteration 𝑠 ≤ 𝑡, ∥𝑤𝑡 ∥2 ≤ 1

2 , as a
result, we know that the projections does not affect the dynamics of the algorithm until the iteration
𝑡. Moreover, we know that for every iteration 𝑠 ≤ 𝑡 there exists an index 𝑗𝑠 ∈ [𝑑] such that the term
that achieve the maximum value in 𝑤𝑠 is 1√

𝑑
−𝑤𝑠 [ 𝑗𝑠] − 𝜂 𝑗

4𝑑 . This maximum is attained uniquely in 𝑗𝑠
by margin that is strictly larger than 𝜂

8𝑑 . As a result, we derive that, for every 𝑠 ≤ 𝑡, ∇ 𝑓 (𝑤𝑠) = −𝑒 𝑗𝑠 .
Now, for every index 𝑚 ∈ [𝑑], we define,

𝑛𝑚𝑡 = |{𝑠 ≤ 𝑡 : 𝑚 = arg max
𝑖∈[𝑑 ]

{ 1
√
𝑑
− 𝑤𝑠 [𝑖] −

𝜂𝑖

4𝑑
}}|.

We get that, for every 𝑖 it holds that,
𝑤𝑡+1 [𝑖] = 𝜂𝑛𝑖𝑡 .

Then,

∥𝑤𝑡+1∥1 =
∑︁
𝑖

𝜂𝑛𝑖𝑡 ≤ 𝜂𝑡,

and ,thus, there exists a entry 𝑘 ∈ [𝑑] with 𝑤𝑡+1 [𝑘] ≤ 𝜂𝑡

𝑑
. Now, we prove the first part of the lemma

using this observation and the step of the induction. For every 𝑖 ≠ 𝑗𝑡 ,

𝑤𝑡+1 [𝑖] = 𝑤𝑡 [𝑖] ≤
1

2
√
𝑑
.
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Otherwise, we know that, by the definition of 𝑗𝑡

1
√
𝑑
− 𝑤𝑡 [𝑖] −

𝜂𝑖

4𝑑
>

1
√
𝑑
− 𝑤𝑡 [𝑘] −

𝜂𝑘

4𝑑
+ 𝜂

8𝑑
,

𝑤𝑡 [𝑖] < 𝑤𝑡 [𝑘] +
𝜂(𝑘 − 𝑖)

4𝑑
− 𝜂

8𝑑
≤ 𝜂𝑡

𝑑
+ 𝜂

4

≤ 1
25

√
𝑑
+ 1

20
√
𝑑

and,

𝑤𝑡+1 [𝑖] ≤ 𝑤𝑡 [𝑖] + 𝜂

≤ 1
25
√
𝑑
+ 1

20
√
𝑑
+ 1

5
√
𝑑

≤ 1
2
√
𝑑
,

where we again used the fact that 𝜂 ≤ 1
5
√
𝑇

implies 𝜂 ≤ 1
5
√
𝑑

for both 𝑑 = 1 and 𝑑 = 25𝜂2𝑇2.
For the second part of the lemma, we define 𝐽𝑡 ⊆ [𝑑], 𝐽𝑡 = arg min 𝑗{𝑛

𝑗
𝑡 } and 𝑗𝑡+1 = min{ 𝑗 ∈ 𝐽𝑡 }

and show that 𝑗𝑡+1 holds the required. We know, for every 𝑗 ≠ 𝑖 ∈ [𝑑],

𝑤𝑡+1 [𝑖] − 𝑤𝑡+1 [ 𝑗] = 𝜂(𝑛𝑖𝑡 − 𝑛
𝑗
𝑡 ).

For 𝑘 ≠ 𝑗𝑡+1 with 𝑛𝑘𝑡 > 𝑛
𝑗𝑡+1
𝑡 ,

1
√
𝑑
− 𝑤𝑡+1 [ 𝑗𝑡+1] −

𝜂 𝑗𝑡+1
4𝑑

≤ 1
√
𝑑
− 𝑤𝑡+1 [𝑘] − 𝜂 −

𝜂 𝑗𝑡+1
4𝑑

=
1
√
𝑑
− 𝑤𝑡+1 [𝑘] − 𝜂 −

𝜂𝑘

4𝑑
+ 𝜂(𝑘 − 𝑗𝑡+1)

4𝑑

≤ 1
√
𝑑
− 𝑤𝑡+1 [𝑘] − 𝜂 −

𝜂𝑘

4𝑑
+ 𝜂

4

<
1
√
𝑑
− 𝑤𝑡+1 [𝑘] −

𝜂𝑘

4𝑑
− 𝜂

2
.

in contradiction to the fact that 𝑗𝑡+1 gets the maximal value. For 𝑘 ≠ 𝑗𝑡+1 with 𝑛𝑘𝑡 > 𝑛
𝑗𝑡+1
𝑡 , it holds

that 𝑤𝑡+1 [ 𝑗𝑡+1] ≤ 𝑤𝑡+1 [𝑘] − 𝜂, and,

1
√
𝑑
− 𝑤𝑡+1 [ 𝑗𝑡+1] −

𝜂 𝑗𝑡+1
4𝑑

≥ 1
√
𝑑
− 𝑤𝑡+1 [𝑘] + 𝜂 −

𝜂 𝑗𝑡+1
4𝑑

=
1
√
𝑑
− 𝑤𝑡+1 [𝑘] + 𝜂 −

𝜂𝑘

4𝑑
+ 𝜂(𝑘 − 𝑗𝑡+1)

4𝑑

≥ 1
√
𝑑
− 𝑤𝑡+1 [𝑘] + 𝜂 −

𝜂𝑘

4𝑑
− 𝜂

4
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>
1
√
𝑑
− 𝑤𝑡+1 [𝑘] −

𝜂𝑘

4𝑑
+ 𝜂

8𝑑
,

as required. For the third part of the lemma, we know that for every 𝑖 ∈ [𝑑],

1
√
𝑑
− 𝑤𝑡+1 [𝑖] −

𝜂𝑖

4𝑑
≥ 1

2
√
𝑑
− 𝜂

4

=
9

20
√
𝑑

>
𝜂

8𝑑
.

Proof of lower bound. Now we can prove Theorem 36.
Proof [of Theorem 36] The first part of the theorem is an immediate corollary from Theorem 37.
Moreover, by applying this lemma again, we know that, for every 𝑖 ∈ [𝑑],

𝑤𝑇,𝑚 [𝑖] ≤
1

2
√
𝑑
,

thus,

𝑓 OPT(𝑤𝑇,𝑚) − 𝑓 OPT(𝑤∗) ≥
1

2
√
𝑑
− 𝜂

4
− 0

≥ 1
2
√
𝑑
− 𝜂

20
√
𝑑

>
1

4
√
𝑑

= min
(
1
4
,

1
20𝜂𝑇

)
.

D.2. Construction of a differentiable loss function.

In this section, we prove the lower bound for a smoothing of 𝑓 OPT, defined as

𝑓 OPT(𝑤) = 𝔼𝑣∈𝔹𝑑 max
(
0, max
𝑖∈[𝑑 ]

{ 1
√
𝑑
− 𝑤 [𝑖] − 𝛿𝑣 [𝑖] − 𝜂𝑖

4𝑑
}
)
, (30)

namely, we prove the following lemma,

Lemma 38 Assume 𝑛, 𝑇 > 0, 𝜂 ≤ 1
5
√
𝑇

. Consider the loss function 𝑓 OPT that is defined in Eq. (30)
for 𝑑 = max(25𝜂2𝑇2, 1) and 𝛿 = 𝜂

16𝑑 . Then, for Unprojected GD (cf. Eq. (1) with𝑊 = ℝ𝑑) on 𝑓 OPT,
initialized at 𝑤1 = 0 with step size 𝜂, we have,

(i) The iterates of GD remain within the unit ball, namely 𝑤𝑡 ∈ 𝔹𝑑 for all 𝑡 = 1, . . . , 𝑇;
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(ii) For all 𝑚 = 1, . . . , 𝑇 , the 𝑚-suffix averaged iterate has:

𝑓 OPT(𝑤𝑇,𝑚) − 𝑓 OPT(𝑤∗) = Ω

(
min

(
1,

1
𝜂𝑇

))
.

First, we prove that the smoothing of the loss function does not affect the dynamics of the algorithm,
as stated in the following lemma,

Lemma 39 Under the conditions of Theorems 36 and 38, let 𝑤𝑡 , �̃�𝑡 be the iterates of Unprojected
GD with step size 𝜂 ≤ 1

5
√
𝑇

and 𝑤1 = 0, on 𝑓 OPT and 𝑓 OPT respectively. Then, for every 𝑡 ∈ [𝑇], it
holds that 𝑤𝑡 = �̃�𝑡 .

Proof We proof the lemma by induction on 𝑡. For 𝑡 = 1, we know that 𝑤1 = �̃�1 = 0. Now, we
assume that 𝑤𝑡 = �̃�𝑡 . By Theorem 37, we know that the maximum of the loss function is attained
uniquely with the property that the difference between the maximal value and the second maximal
value is larger then 𝜂

8𝑑 . As a result, by the facts that 𝑓 is 1-Lipschitz and 𝛿 =
𝜂

16𝑑 , we can use
Theorem 34 for 𝐹 (𝑤𝑡 ) and get that,

∇𝐹 (𝑤𝑡 ) = ∇̂̃𝐹 (𝑤𝑡 ) = ∇̂̃𝐹 (�̃�𝑡 ).
It follows by the hypothesis of the induction that,

𝑤𝑡+1 = 𝑤𝑡 − ∇𝐹 (𝑤𝑡 ) = �̃�𝑡 − ∇̂̃𝐹 (�̃�𝑡 ) = �̃�𝑡+1.

Now we can prove Theorem 38.
Proof [of Theorem 38] Let 𝑤𝑇,𝑚 be the 𝑚-suffix average of 𝐺𝐷 when is applied on 𝑓 OPT. Let
𝑤∗ = arg min𝑤 𝑓 OPT(𝑤). By Theorem 39, we know that, 𝑤𝑇,𝑚 = 𝑤𝑇,𝑚. Then, by Theorem 36 and
Theorem 35,

1
4
√
𝑑
≤ 𝑓 OPT(𝑤𝑇,𝑚) − 𝑓 OPT(𝑤∗)

= 𝑓 OPT(𝑤𝑇,𝑚) − 𝑓 OPT(𝑤∗)
≤ 𝑓 OPT(𝑤𝑇,𝑚) + 𝛿 − 𝑓 OPT(𝑤∗) + 𝛿
≤ 𝑓 OPT(𝑤𝑇,𝑚) + 𝛿 − 𝑓 OPT(𝑤∗) + 𝛿,

and,

𝑓 OPT(𝑤𝑇,𝑚) − 𝑓 OPT(𝑤∗) ≥
1

4
√
𝑑
− 𝜂

8𝑑

≥ 1
4
√
𝑑
− 1

8
√
𝑑

≥ 1
8
√
𝑑

≥ min(1
8
,

1
40𝜂𝑇

).
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