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ABSTRACT

Diffusion models are trained by learning a sequence of models that reverse each
step of noise corruption. Typically, the model parameters are fully shared across
multiple timesteps to enhance training efficiency. However, since the denoising
tasks differ at each timestep, the gradients computed at different timesteps may
conflict, potentially degrading the overall performance of image generation. To
solve this issue, this work proposes a Decouple-then-Merge (DeMe) framework,
which begins with a pretrained model and finetunes separate models tailored to
specific timesteps. We introduce several improved techniques during the finetun-
ing stage to promote effective knowledge sharing while minimizing training inter-
ference across timesteps. Finally, after finetuning, these separate models can be
merged into a single model in the parameter space, ensuring efficient and practical
inference. Experimental results show significant generation quality improvements
upon 6 benchmarks including Stable Diffusion on COCO30K, ImageNet1K, Par-
tiPrompts, and DDPM on LSUN Church, LSUN Bedroom, and CIFAR10. Code
is included in the supplementary material and will be released on Github.

1 INTRODUCTION

Generative modeling has seen significant progress in recent years, primarily driven by the devel-
opment of Diffusion Probabilistic Models (DPMs) (Ho et al., 2020; Nichol & Dhariwal, 2021;
Rombach et al., 2022b). These models have been applied to various tasks such as text-to-image
generation (Rombach et al., 2022a), image-to-image translation (Saharia et al., 2022a), image edit-
ing (Yang et al., 2023a), and video generation (Ho et al., 2022; Blattmann et al., 2023), yielding
excellent performance. Compared with other generative models such as variational auto-encoders
(VAEs) (Kingma & Welling, 2013), and generative adversarial networks (GANs) (Goodfellow et al.,
2014), the most distinct characteristic of DPMs is that DPMs need to learn a sequence of models for
denoising at multiple timesteps. Training the neural network to fit this step-wise denoising condi-
tional distribution facilitates tractable, stable training and high-fidelity generation.

The denoising tasks at different timesteps are similar yet different. On the one hand, the denoising
tasks at different timesteps are similar in the sense that the model takes a noisy image from the
same space as input and performs a denoising task. Intuitively, sharing knowledge between these
tasks might facilitate more efficient training. Therefore, typical methods let the model take both the
noisy image xt and the corresponding timestep t as input, and share the model parameter across all
timesteps. On the other hand, the denoising tasks at different timesteps have clear differences as
the input noisy images are from different distributions, and the concrete “denoising” effect is also
different. Li et al. (2023a) demonstrate that there is a substantial difference between the feature
distributions in different timesteps. Fang et al. (2023b) show that the larger (noisy) timesteps tend to
generate the low-frequency and the basic image content, while the smaller timesteps tend to generate
the high-frequency and the image details.

We further study the conflicts of different timesteps during the training of the diffusion model.
Fig. 1(a) shows the gradient similarity of different timesteps. We can observe that the diffusion
models have dissimilar gradients at different timesteps, especially the non-adjacent timesteps, indi-
cating a conflict between the optimization direction from different timesteps, as shown in Fig. 1(b).
In one word, this gradient conflict indicates that different denoising tasks might have a negative
interference with each other during training, which may harm the overall performance.
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Figure 1: (a) Cosine similarity between gradients at different timesteps on CIFAR10 & distribution
of gradients similarity in t ∈ [0, 1000] and t ∈ [0, 250]. Non-adjacent timesteps have low similarity,
indicating conflicts during their training. In contrast, adjacent timesteps have similar gradients.
(b) & (c): Comparison between the traditional and our training paradigm: The previous paradigm
trains one diffusion model on all timesteps, leading to conflicts in different timesteps. Our method
addresses this problem by decoupling the training of diffusion models in N different timestep ranges.

Considering the similarity as well as difference of these denoising tasks, the next natural and crucial
question is “how can we promote effective knowledge sharing as well as avoid negative interference
between multiple denoising tasks?”. Timestep-wise model ensemble (Liu et al., 2023; Balaji et al.,
2022) solves this problem by training and inferring multiple different diffusion models at various
timesteps to avoid negative interference, though introducing huge additional storage and memory
overhead. For instance, Liu et al. (2023) employs 6 diffusion models during inference, leading to
around 6× increase in storage and memory requirements, which renders the method impractical
in application. Additionally, various loss reweighting strategies (Salimans & Ho, 2022; Hang et al.,
2023) solve this problem by balancing different denoising tasks and mitigating negative interference.
However, it may alleviate but can not truly solve the gradient conflicts in different timesteps.

In this work, considering the challenges faced by timestep-wise model ensemble and loss reweight-
ing, we propose Decouple-then-Merge (DeMe), a novel finetuning framework for diffusion models
that achieves the best side of both worlds: mitigated training interference across different denoising
tasks and inference without extra overhead. DeMe begins with a pretrained diffusion model and
then finetunes its separate versions tailored to no-overlapped timestep ranges to avoid the negative
interference of gradient conflicts. Several training techniques are introduced during this stage to
preserve the benefits of knowledge sharing in different timesteps. Then, the post-finetuned diffu-
sion models are merged into a single model in their parameter space, enabling effective knowledge
sharing across multiple denoising tasks.

Specifically, as shown in Fig. 1(c), we divide the overall timestep range [0, T ) into multiple adjacent
timestep ranges with no overlap as {[(i−1)T/N, iT/N)}Ni=1, where T denotes the maximal timestep
and N denotes the number of timestep ranges. Then, we finetune a pretrained diffusion model for
each timestep range by only training it with the timesteps inside this range. As a result, we decouple
the training of diffusion models at different timesteps. The gradients of different timesteps will not
be accumulated together and their conflicts are naturally avoided. Besides, as shown in Fig. 2, we
further introduce the following three simple but effective techniques during the finetuning stage,
including Consistency Loss and Probabilistic Sampling to preserve the benefits from knowledge
sharing across different timesteps, and Channel-wise Projection that directly enables the model to
learn the channel-wise difference in different timesteps.

After the finetuning stage, we obtain N diffusion models learned the knowledge in N different
timesteps ranges, which also lead to N times costs in storage and memory. Then, we eliminate the
additional costs by merging all these N models into a single model in their parameter space with the
model merging technique (Ilharco et al., 2022). In this way, the obtained merged model has the same
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computation and parameter costs as the original diffusion model while maintaining the knowledge
from the N finetuned model, which indicates a notable improvement in generation quality.

Extensive experiments on 6 datasets have verified the effectiveness of DeMe for both unconditional
and text-to-image generation. In summary, our contributions can be summarized as follows.

• We propose to decouple the training of diffusion models by finetuning multiple diffusion
models in different timestep ranges. Three simple but effective training techniques are
introduced to promote knowledge sharing between multiple denoising tasks in this stage.

• We propose to merge multiple finetuned diffusion models, each specialized for different
timestep ranges, into a single diffusion model, which significantly enhances generation
quality without any additional costs in computation, storage, and memory access. To the
best of our knowledge, we are the first to merge diffusion models across different timesteps.

• Abundant experiments have been conducted on six datasets for both unconditional and
text-to-image generation, demonstrating significant improvements in generation quality.

We note that our framework of combining task-specific training with parameter-space merging offers
a novel method for multi-task learning, distinct from existing loss-balancing techniques (Kendall
et al., 2018; Sener & Koltun, 2018), and can be potentially extended to general multi-task scenarios.

2 RELATED WORK

Diffusion Models. Diffusion Probabilistic Models(DPMs) (Ho et al., 2020; Nichol & Dhariwal,
2021; Dhariwal & Nichol, 2021; Sohl-Dickstein et al., 2015; Song et al., 2020b) represent a family
of generative models that generate samples via a progressive denoising mechanism, starting from a
random Gaussian distribution. Given that diffusion models suffer from slow generation and heavy
computational costs, previous works have focused on improving diffusion models in various aspects,
including model architectures (Peebles & Xie, 2023; Rombach et al., 2022b), faster sampler (Song
et al., 2020a; Lu et al., 2022; Liu et al., 2022), prediction type and loss weighting (Hang et al.,
2023; Salimans & Ho, 2022). Besides, a few works have attempted to accelerate DPMs genera-
tion through pruning (Fang et al., 2023a), quantization (Shang et al., 2023; Li et al., 2023b) and
knowledge distillation (Kim et al., 2023; Salimans & Ho, 2022; Luhman & Luhman, 2021; Meng
et al., 2023), which have achieved significant improvement on the generation efficiency. Motivated
by the excellent generative capacity of diffusion models, DPMs have been developed in several ap-
plications, including text-to-image generation (Rombach et al., 2022b; Ramesh et al., 2022; Saharia
et al., 2022b), video generation (Ho et al., 2022; Blattmann et al., 2023), image restoration (Saharia
et al., 2022c), natural language generation (Li et al., 2022), audio synthesis (Kong et al., 2020), 3D
content generation (Poole et al., 2022), ai4science such as protein structure generation (Wu et al.,
2024), among others.

Training of Diffusion Models & Multi-task Learning. Multi-task Learning (MTL) is aimed at
improving generalization performance by leveraging shared information across related tasks. The
objective of MTL is to learn multiple related tasks jointly, allowing models to generalize better by
learning representations that are useful for numerous tasks (Crawshaw, 2020). Despite its success in
various applications, MTL faces significant challenges, particularly negative transfer (Wang et al.,
2020; Crawshaw, 2020), which can degrade the performance of individual tasks when jointly trained.
The training paradigm of diffusion models could be viewed as a multi-task learning problem: diffu-
sion models are trained by learning a sequence of models that reverse each step of noise corruption
across different noise levels. A parameter-shared denoiser is trained on different noise levels concur-
rently, which may cause performance degradation due to negative transfer—a phenomenon where
learning multiple denoising tasks jointly hinders performance due to conflicts in timestep-specific
denoising information. To better balance the learning of denoising tasks across different noise lev-
els, previous works reweight training loss on different timesteps, improving diffusion model perfor-
mance (Ho et al., 2020; Salimans & Ho, 2022) or accelerating training convergence (Hang et al.,
2023). Go et al. (2024) analyze and improve the diffusion model by exploring task clustering and
applying various MTL methods to diffusion model training. Kim et al. (2024) analyze the difficulty
of denoising tasks and propose a novel easy-to-hard learning scheme for progressively training dif-
fusion models. Different from (Go et al., 2024), we analyze gradient conflicts between timesteps,
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Figure 2: Pipeline of our framework. The following training techniques are incorporated into the
finetuning process: Consistency loss preserves the original knowledge of diffusion models learned
at all timesteps by minimizing the difference between pre-finetuned and post-finetuned diffusion
models. Probabilistic sampling strategy samples from both the corresponding and other timesteps
with different probabilities, helping the diffusion model overcome forgetting knowledge from other
timesteps. Channel-wise projection enables the diffusion model to directly capture the feature
difference in channel dimension. Model merging scheme merges the parameters of all the finetuned
models into one unified model to promote the knowledge sharing across different timestep ranges.

propose to decouple the training of diffusion models by finetuning multiple diffusion models in
different timestep ranges, and merge these models in the parameter space.

3 METHODOLOGY

3.1 PRELIMINARY

The fundamental concept of diffusion models is to generate images by progressively applying de-
noising steps, starting from random Gaussian noise xT , and gradually transforming it into a struc-
tured image x0. Diffusion models consist of two phases: the forward process and the reverse process.
In the forward process, a data point x0 ∼ q(x) is randomly sampled from the real data distribution,
then gradually corrupted by adding noise step-by-step q(xt | xt−1) = N (xt;

√
1− βtxt−1, βtI),

where t is the current timestep and βt is a pre-defined variance schedule that schedules the noise.
In the reverse process, diffusion models transform a random Gaussian noise xT ∼ N (0, I) into the
target distribution by modeling conditional probability q(xt−1 | xt), which denoises the latent xt to
get xt−1. Formally, the conditional probability in the reverse process can be modeled as:

pθ(xt−1 | xt) = N
(
xt−1;

1
√
αt

(
xt −

1− αt√
1− ᾱt

ϵθ(xt, t)

)
, βtI

)
, (1)

where αt = 1 − βt, ᾱt =
∏T

i=1 αi. ϵθ denotes a noise predictor, which is usually an U-Net (Ron-
neberger et al., 2015) autoencoder in diffusion models, with current timestep t and previous latent
xt as input. It is usually trained with the objective function:

Lθ = Et∼U [0,T ],x0∼q(x),ϵ∼N (0,1)

[
∥ϵ− ϵθ (xt, t)∥2

]
, (2)

where T denotes the number of timesteps and U denotes a uniform distribution. After training, a
clean image x0 can be obtained via an iterative denoising process from the random Gaussian noise
xT ∼ N (0, I) with the modeled distribution xt−1 ∼ pθ(xt−1 | xt) in Equation 1.

3.2 DECOUPLE THE TRAINING OF DIFFUSION MODEL

In this section, we demonstrate how to decouple the training of diffusion model. As illustrated in
Fig. 1(c), we first divide the timesteps of [0, T ) into N multiple continuous and non-overlapped
timesteps ranges, which can be formulated as {[(i−1)T/N, iT/N)}Ni=1. Subsequently, based on a
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Figure 3: Visualization of the difference between the pre-finetuned and the post-finetuned diffusion
model on the channel and spatial dimensions. (a) Visualization of channel activation, spatial activa-
tion, and their difference between the pre-finetuned and the post-finetuned model. (b) Distribution
of difference for channel activation and spatial activation values. It can be observed that activation
values vary mostly in channel dimensions during finetuning on a subset of timesteps.

diffusion model pretrained by Equation 1, we finetune a group of N diffusion models {ϵθi}Ni=1 on
each of the N timestep ranges. The training objective of ϵθi which can be formulated as

Et∼U [(i−1)T/N,iT/N],x0∼q(x),ϵ∼N (0,1)

[
∥ϵ− ϵθi (xt, t)∥2

]
. (3)

However, although Equation 3 can decouple the training of the diffusion model in different timesteps
and avoid the negative interference between multiple denoising tasks, it also eliminates the positive
benefits of learning from different timesteps, which may make the finetuned diffusion model overfit
a specific timestep range and lose its knowledge in the other timesteps. Besides, it is also challenging
for the diffusion model to capture the difference in different timesteps during finetuning. To address
these problems, as shown in Fig. 2, we further introduce the following three techniques.

Consistency Loss. A consistency loss is introduced into the training process to minimize the dif-
ference between the pre-finetuned and post-finetuned diffusion model, which can be formulated as

Et∼U [(i−1)T/N,iT/N]

[
∥ϵθ (xt, t)− ϵθi (xt, t) ∥2

]
, (4)

where ϵθ (xt, t) denotes the output of the original diffusion model. ϵθi (xt, t) denotes the output of
ith post-finetuned diffusion model. Minimizing the consistency loss preserves the initial knowledge
of the diffusion model, and ensures that the finetuned diffusion models do not differ significantly
from the pre-finetuned diffusion model. Besides, the consistency loss also enhances the stability of
the training process for finetuning diffusion models in the timestep range. Combining Equation 3
and Equation 4, we can derive the overall loss:

Et∼U [(i−1)T/N,iT/N],x0∼q(x),ϵ∼N (0,1)

[
∥ϵ− ϵθi (xt, t)∥2 + ∥ϵθ (xt, t)− ϵθi (xt, t) ∥2

]
. (5)

Probabilistic Sampling. To further preserve the initial knowledge learned at all the timesteps, we
design a Probabilistic Sampling strategy which enables the finetuned model to mainly learn from
its corresponding timestep range, but still possible to preserve the knowledge in the other timestep
ranges. Concretely, during the finetuning of ith diffusion model, we sample t from the timestep
range [(i−1)T/N, iT/N) with a probability of 1−p, while sampling from the overall range [0, T ) with
a probability p. The overall sampling strategy can be expressed as follows:

t ∼

[(i−1)T/N, iT/N) , i ∈ [1, N ] with probability 1− p,

[0, T ) with probability p.
(6)

Channel-wise Projection. Fig. 3 shows the difference between the pre-finetuned and the post-
finetuned diffusion models, demonstrating that there is a significant difference in the channel di-
mension instead of the spatial dimension, which further implies that the knowledge learned during
finetuning in a timestep range is primarily captured by channel-wise mapping instead of spatial map-
ping. Based on this observation, we further apply a channel-wise projection layer to facilitate the
training process by directly formulating the channel-wise mapping. Let Ft ∈ RC×H×W denote the
intermediate feature map of the noise predictor ϵθ(xt, t) at the timestep t, where C,H,W denote
the number of channels, height, and width of the feature map Ft, respectively. The channel-wise
projection is designed as P(Ft) = W · Ft, where W ∈ RC×C is a learnable projection matrix
that enables the diffusion model to directly capture the feature difference in the channel dimension.
Please note that we initialize W as an identity matrix to stabilize the training process.
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Figure 4: Loss landscape of the pretrained diffusion model in different timestep ranges on CIFAR10.
Contour line density reflects the frequency of loss variations (i.e., gradients), with blue representing
low loss and red representing high loss. The pretrained model resides at the critical point (with zero
gradients) with sparse contour lines for the overall timesteps t ∈ [0, 1000), but when the training
process is decoupled, it tends to be located in regions with densely packed contour lines, suggesting
that there still exists gradients that enable pretrained model to escape from the critical point.

3.3 MERGING MODELS IN DIFFERENT TIMESTEP RANGES

After finetuning N diffusion models in their corresponding timesteps, it is a natural step to ensemble
these finetuned diffusion models in the inference stage. The sampling process under timestep-wise
model ensemble scheme is achieved by inferring each post-finetuned diffusion model in its corre-
sponding timestep range, which can be formulated as

pθ(xt−1 | xt) = N
(
xt−1;

1
√
αt

(
xt −

1− αt√
1− ᾱt

ϵθi(xt, t)

)
, βtI

)
, i = ⌊ t×N

T
⌋. (7)

For instance, the ith finetuned diffusion model is only utilized in timestep t ∈ [(i−1)T/N, T/N). This
inference scheme does not introduce additional computation costs during the inference period but
does incur additional storage costs. Since model merging methods (Ilharco et al., 2022; Worts-
man et al., 2022) can integrate diverse knowledge from each model, we propose to merge multiple
finetuned diffusion models into a single diffusion model. Notably, this approach avoids additional
computation or storage costs during inference while significantly improving generation quality.

Model Merging Scheme. Fig. 2 shows the overview of the model merge scheme. Inspired by
model merging methods (Ilharco et al., 2022; Wortsman et al., 2022) that aim to merge the parame-
ters of models finetuned in different datasets and tasks, we propose to merge multiple post-finetuned
diffusion models. Specifically, we first compute the task vectors of different post-finetuned diffusion
models, which indicates the difference in their parameters compared with the pre-finetuned version.
The task vector τi of the ith finetuned diffusion model can be denoted as τi = θi − θ, where θ and
θi denote the parameters of the pre-finetuned and the ith post-finetuned diffusion model. Follow-
ing previous work (Ilharco et al., 2022), the model merging can be achieved by adding all the task
vectors to the pre-finetuned model, which can be formulated as

θmerged = θ +
∑N

i=1
wiτi, where τi = θi − θ, (8)

where wi means merging weights of task vectors. To find the optimal combination of wi, we use the
grid search algorithm to explore this combination. In this scheme, we finally obtain θmerged which
can be applied across all timesteps in [0, T ), following the same inference process as in traditional
diffusion models. As a result, the model merge scheme also leads to significant enhancement in gen-
eration quality without introducing any additional costs in computation or storage during inference.

Proposition 1 (DeMe facilities escaping from critical point, informal Prop. 1. Proof in A.3)
Given a pretrained diffusion model with parameter θ converged in a critical point over the entire
timesteps, which implies Et∼U [0,T ) [∇Lθ(t)] = 0. DeMe exhibits a non-zero gradient across the
overall timesteps under the decouple-then-merge framework, indicating Et∼U [0,T ) [∇Lmerge

θ ] ̸= 0,
where Lmerge

θ is the objective function modeled by DeMe.

Proposition 1 indicates that for a pretrained diffusion model converging in a critical point, DeMe
enables it to escape from the critical point, allowing for further optimization, which demonstrates
the effectiveness of DeMe. Proposition 1 can also be validated by the visualization results in Fig. 4.
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Table 1: Quantitative results (FID, lower is better) on CIFAR10, LSUN-Church, and LSUN-
Bedroom with DDPM. Numbers in the brackets indicate the FID difference compared with DDPM.

Method CIFAR10 LSUN-Church LSUN-Bedroom #Iterations
Before-finetuning (Ho et al., 2020) 4.42 10.69 6.46 -

SNR+1 (Salimans & Ho, 2022) 5.41 10.80 6.41 80K
Trun-SNR (Salimans & Ho, 2022) 4.49 10.81 6.42 80K
Min-SNR-γ (Hang et al., 2023) 5.77 10.82 6.41 80K

DeMe (Before Merge) 3.79 (−0.63) 9.57 (−1.12) 5.87 (−0.59) 20K×4
DeMe (After Merge) 3.51 (−0.91) 7.27 (−3.42) 5.84 (−0.62) 20K×4
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Figure 5: Qualitative comparison between our method and original DDPM on LSUN.

4 EXPERIMENTS

4.1 EXPERIMENT SETTING

Datasets and Metrics. For unconditional image generation datasets CIFAR10 (Krizhevsky et al.,
2009), LSUN-Church, and LSUN-Bedroom (Yu et al., 2015), we generated 50K images for eval-
uation. For text-to-image generation, following the previous work (Kim et al., 2023), we finetune
each model on a subset of LAION-Aesthetics V2 (L-Aes) 6.5+ (Schuhmann et al., 2022) and test
model’s capacity of zero-shot text-to-image generation on MS-COCO validation set (Lin et al.,
2014), ImageNet1K (Deng et al., 2009) and PartiPrompts (Yu et al., 2022). Fréchet Inception Dis-
tance (FID) (Heusel et al., 2017) is used to evaluate the quality of generated images. CLIP score
computed by CLIP-ViT-g/14 (Radford et al., 2021) is used to evaluate the text-image alignment.

Baselines. We choose three loss reweighting methods as baselines for comparison: SNR+1, trun-
cated SNR (Salimans & Ho, 2022) and Min-SNR-γ (Hang et al., 2023). Appendix A.1 proves that the
aforementioned diffusion loss weights can be unified under the same prediction target with differ-
ent weight forms. Appendix A.2 demonstrates that our decouple-then-merge framework can also be
formally transformed into the loss reweighting framework. To ensure a fair comparison, the baseline
models are trained with an equal number of iterations with our training framework. Additionally, we
also ensemble finetuned diffusion models and compare them with the merging scheme for a more
detailed comparison. Please refer to the Appendix B for more implementation details.

4.2 QUANTITATIVE STUDY

Results on Unconditional Generation. Table 1 presents quantitative results on unconditional
generation, demonstrating great improvement in generation quality across various unconditional
image generation benchmarks. The model merging scheme achieves performance comparable to, or
even better than, the ensemble scheme with a unified diffusion model, highlighting the superiority of
the merging approach. Concretely, 0.63, 1.12, and 0.59 FID reduction can be observed on CIFAR10,
LSUN-Church, and LSUN-Bedroom with the model ensemble scheme, respectively. The model
merging scheme leads to 0.91, 3.42, and 0.62 FID reductions on CIFAR10, LSUN-Church, and
LSUN-Bedroom, respectively. In contrast, previous loss weighting methods obtain very few FID
reductions under the same finetuning setting and even harm the generation quality during finetuning.

Results on Text-to-Image Generation. Table 2 shows that DeMe outperforms the baselines in
both image quality and text-image alignment, as demonstrated by the experiment results on text-to-
image generation benchmarks for Stable Diffusion v1.4 (Rombach et al., 2022b). Specifically, on
MS COCO, our ensemble method achieves a 0.64 FID reduction and a 0.03 CLIP score reduction,
while merging method yields a 0.36 FID reduction along with a 0.23 CLIP score increase. On Ima-
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Table 2: Quantitative studies on MS COCO, PartiPrompts and ImageNet with Stable Diffusion.
Numbers in the brackets indicate the FID or CLIP Score difference compared with Stable Diffusion.

Method
MS-COCO ImageNet PartiPrompts

#IterationsFID↓ CLIP Score↑ FID↓ CLIP Score↑ CLIP Score↑
Before-finetuning (Rombach et al., 2022b) 13.42 29.88 27.62 27.07 29.78 -

SNR+1 (Salimans & Ho, 2022) 13.92 29.96 27.56 27.03 29.86 80K
Trun-SNR (Salimans & Ho, 2022) 13.93 29.95 27.60 27.05 29.85 80K
Min-SNR-γ (Hang et al., 2023) 13.92 29.93 27.59 27.02 29.87 80K

DeMe (Before Merge) 12.78 (−0.64) 29.85 (−0.03) 26.36 (−1.26) 26.90 (−0.17) 30.02 (+0.24) 20K×4
DeMe (After Merge) 13.06 (−0.36) 30.11 (+0.23) 27.23 (−0.39) 27.09 (+0.02) 29.98 (+0.20) 20K×4

Before Finetuning After Finetuning

Prompt Ⅰ: “A graceful white horse galloping through a 

field of wildflowers, its mane flowing in the wind as the 

sun sets behind it.” 

Before Finetuning: Loss of text-image alignment: as the sun sets behind it 
After Finetuning: Superb text-image alignment, lifelike horse

Prompt Ⅱ: “A tropical beach with crystal-clear turquoise water 

gently lapping against white sandy shores, tall palm trees 

swaying in the breeze under a clear blue sky.” 

Before Finetuning: Loss of text-image alignment: white sandy shores

After Finetuning: Superb text-image alignment, excellent coastal view

Prompt Ⅲ: “A dolphin leaping out of the ocean in perfect 

harmony, water splashing around it as the sun sets on the 

horizon, casting a golden glow on the sea.” 

Before Finetuning: Loss of text-image alignment: sun sets on the horizon.. 
After Finetuning: Superb text-image alignment, photorealistic illustration

Prompt Ⅳ: “A foggy morning in a quiet countryside, a small 

wooden cabin surrounded by wildflowers and tall grass, the sun 

just beginning to rise through the mist.” 

Before Finetuning: Loss of text-image alignment: a small wooden cabin 
After Finetuning: Superb text-image alignment, serene landscape 

Before Finetuning After Finetuning

Figure 6: Qualitative comparison between our method and the original Stable Diffusion on various
prompts. More qualitative results based on various text prompts could be found in Appendix G.2.

geNet1k, ensemble method results in a 1.26 FID reduction and a 0.17 CLIP score reduction, whereas
merging method produces a 0.39 FID reduction and a 0.02 CLIP score increase. Additionally, on
PartiPrompts, both the ensemble and merging schemes show improvements in CLIP score, with in-
creases of 0.24 and 0.20, respectively. These results validate the effectiveness of DeMe, showing
significant improvements in both image quality and text-image alignment.

4.3 QUALITATIVE STUDY

Fig. 5 depicts some synthesized images of LSUN and Fig. 6 depicts some fancy generated images
given detailed prompts. As demonstrated in Fig. 5, our method has better captured the underlying
patterns in the images, specifically the church and bedroom scenes, enabling a more detailed and
accurate generation of the church and bedroom. While diffusion that before finetuning fails to gen-
erate churches or bedrooms, diffusion after finetuning successfully generates them with finer details.
The finetuned diffusion demonstrates an improved ability to generate coherent and realistic repre-
sentations of the target objects, as evidenced by the success in producing church-style buildings and
bedroom-style interiors. Additional qualitative results on LSUN could be found in Appendix G.1.

Fig. 6 illustrates that our method effectively generates images that align with the provided text
descriptions, resulting in generated images that are both more detailed and photorealistic. Prompts
highlighted in bold indicate where Stable Diffusion fails to align the image with the text, whereas
our method generates images with better text-image alignment. For example, in the middle image
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pair of Fig. 6, Stable Diffusion fails to generate a small wooden cabin in image, while our method
successfully captures the subject and preserves the detailed information described in the prompt. The
finetuned Stable Diffusion model demonstrates an improved ability to generate visually coherent and
contextually accurate images that closely match the nuances of the prompts, as highlighted in the
comparison between before- and after-finetuning results, showcasing its enhanced capacity for text-
to-image synthesis. More figures based on various text prompts could be found in Appendix G.2.

4.4 ABLATION STUDY

Table 3: Ablation study on CIFAR10. N de-
notes the number of finetuned models.

N
Probabilistic

Sampling
Consistency

Loss
Channel-wise

Projection FID ↓

1 4.40
4.45

8
4.32
4.27
3.87

Our framework applies three training techniques to
finetune diffusion model in different timesteps. As
shown in Table 3, we conducted ablation studies on
training techniques individually. All experiments are
conducted on CIFAR10, with a 100-step DDIM sam-
pler (Song et al., 2020a). Several key observations
can be made: (i) The traditional training paradigm
results in the poorest performance. With N set to 1
and none of the specialized training techniques applied-following the traditional diffusion training
paradigm—the model yields a poor results, with a FID of 4.40. Gradient conflicts lead to negative
interference across different denoising tasks, adversely affecting overall training. (ii) Channel-wise
projection struggles to capture feature differences in the channel dimension without alleviating gra-
dient conflicts. With N set to 1 and Channel-wise projection applied, model yields a worse results,
with a FID of 4.45. In contrast, with N set to 8 and Channel-wise projection applied additionally,
model yields the best results, with a FID of 3.87. We posit that channel-wise projection struggles to
capture feature changes due to the significant differences across the timesteps. (iii) Dividing overall
timesteps into N non-overlapping ranges effectively alleviates gradient conflicts, resulting in a sig-
nificant reduction in FID. For instance, with N set to 8, introducing Probabilistic Sampling achieves
a 0.08 FID reduction, while applying Consistency Loss yields a 0.13 FID reduction additionally.
When all techniques are applied during finetuning, a total FID reduction of 0.53 is achieved. Our
experimental results demonstrates that dividing overall timestep into non-overlapping ranges serves
as a necessary condition. Building on this foundation, our training techniques significantly improve
model performance. Sensitive studies on influence of N and p have been conducted in Appendix F,
demonstrating that our method is robust to variations in the choices of N and p.

5 DISCUSSION

DeMe Enables Pretrained Model Escaping from the Critical Point. In Prop. 1 we claim that
DeMe facilities model moving away from the critical point, leading to further optimization. Fig. 4
presents some visualization results on the training loss landscape that supporting our claims. Two
significant findings can be drawn from Fig. 4: (i) The pretrained diffusion model has converged when
t ∈ [0, 1000), residing at the critical point with sparse contour lines (i.e., no gradient). However, it
is evident that the pretrained model is not at an optimal point, as there are nearby points with lower
training loss, suggesting a potential direction for further optimization. (ii) For different timestep
ranges, the pretrained model tends to be situated in regions with densely packed contour lines (i.e.,
larger gradient), suggesting that there exists an optimization direction. For instance, when t ∈
[0, 250), the pretrained model stays at a point with frequent loss variations, indicating a potential
direction for lower training loss. The decoupled training framework facilities the diffusion model to
optimize more efficiently. Based on the above observation, DeMe decouples the training process,
enabling the pretrained model to move away from the critical point, resulting in further improvement.

Loss Landscape Visualization for Task Vectors. To provide some intuitions, we visualize a two-
dimensional training loss representation when applying two task vectors to merge finetuned models
across various datasets, shown in Fig. 7(a). We utilize pretrained model θ, two finetuned model
θi(i = 1, 2) to obtain two task vectors τi(i = 1, 2), which span a plane in parameter space. We
evaluate the diffusion training loss on this plane, and there are three key observations obtained from
Fig. 7(a): (i) For both CIFAR10 and LSUN-Church, the training loss contours are basin-shaped and
none of the model parameters are optimal, which means there exists a direction towards a better
model parameters. (ii) The weighted sum of task vectors τ (i.e., the interpolation of finetuned model
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Figure 7: (a): Loss landscape for applying task vectors. The optimal model parameters are neither
the pretrained one nor the finetuned one, but lie within the plane spanned by the task vectors com-
puted in Sec. 3.3. We utilize the pretrained and two finetuned model parameters to obtain the two
task vectors, respectively. Following (Wortsman et al., 2022; Garipov et al., 2018), we compute an
orthonormal basis from the plane spanned by the task vectors. Axis denotes the movement direction
in the parameter space. (b): Box plot of task vector distribution over different layers on LSUN-
Church. Task vectors exhibit notable value in t ∈ [500, 1000) but only slight value in t ∈ [0, 500).

parameters θi) can yield parameters with a lower training loss. For instance, on CIFAR10, the
weighted sum of the task vectors can produce optimal model parameters, outperforming the two
individual finetuned model parameters. (iii) The loss variation is relatively smooth, opening up the
possibility to employ advanced search methods, such as evolutionary search, which could serve as
a potential avenue for further improvement. In brief summary, the above observations indicate that
by applying a weighted sum to the task vectors, a more optimal set of model parameters can be
achieved, leading to a lower training loss.

Task Vector Analysis. DeMe employs the model merge technique to merge the multiple finetuned
diffusion models by calculating the linear combination of task vectors introduced in Equation 8.
Here we visualize the task vectors in Fig. 7(b), which shows significant differences between the task
vectors in different timestep ranges. Specifically, the magnitude of task vectors has a larger value
for t ∈ [500, 1000) and a smaller value for t ∈ [0, 500), indicating that there are more significant
differences in parameters for diffusion models finetuned for t ∈ [500, 1000). We suggest this be-
cause the original SNR loss term (Ho et al., 2020) has lower values in larger t. As a result, the
original diffusion model bias to the gradients in smaller t when larger t and smaller t have conflicts
in gradients, leading to poor optimization for larger t. In contrast, DeMe decouples the training of
diffusion models across larger t and smaller t, allowing different timestep ranges to be optimized
separately. Hence, the diffusion model finetuned on larger t exhibits a more significant difference
compared with the original model, which leads to better generalization quality.

6 CONCLUSION

Motivated by the observation that different timesteps in the diffusion model training have low simi-
larity in their gradients, this paper proposes DeMe, which decouples the training of diffusion models
in different timesteps and merge the finetuned diffusion models in parameter-space, thereby mitigat-
ing the negative impacts of gradient conflicts. Besides, three simple but effective training techniques
have been introduced to facilitate the finetuning process, which preserve the benefits of knowledge
sharing in different timesteps. Our experimental results on six datasets with both unconditional
and text-to-image generation demonstrate that our approach leads to substantial improvements in
generation quality without incurring additional computation or storage costs during sampling. The
effectiveness of DeMe may promote more research work on the optimization of diffusion models.
Additionally, the feasibility of combining task-specific training with parameter-space merging pre-
sented in this work may stimulate more research into diffusion model merging, and can be potentially
extended to general multi-task learning scenarios.
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APPENDIX

A PROOF

In Sec. A.1 and Sec. A.2, we demonstrate that DeMe can be formally transformed into a loss
reweighting framework, just like previous works (Salimans & Ho, 2022; Hang et al., 2023). Sec. A.3
is a proof for Prop. 1, which demonstrates the effectiveness of DeMe.

A.1 THE DERIVATION OF SOME LOSS REWEIGHTING STRATEGIES

The standard diffusion loss can be formulated as follows:

Lstandard = Et,x0,ϵ

[
∥ϵ− ϵθ (xt, t)∥2

]
. (9)

It is worth noting that Equation 9 is identical to Lθ in Equation 2. For the convenience of subsequent
explanations, it has been restated here.

Actually, Equation 9 uses ϵ as the prediction target, but we can equivalently transform it into a loss
function where x0 is the prediction target:

Lstandard = Et,x0,ϵ

[
∥ϵ− ϵθ(xt, t)∥2

]
= Et,x0,xt

[∥∥∥∥ 1√
1− ᾱt

(
xt −

√
ᾱtx0

)
− 1√

1− ᾱt

(
xt −

√
ᾱtxθ(xt, t)

)∥∥∥∥2
]

= Et,x0,xt

[
ᾱt

1− ᾱt
∥x0 − xθ(xt, t)∥2

]
= Et,x0,xt

[
SNR(t) ∥x0 − xθ(xt, t)∥2

]
,

where SNR(t) = ᾱt

1−ᾱt
. Salimans & Ho (2022) propose a loss reweighting strategy named Truncated

SNR:

LTrun-SNR = Et,x0,xt

[
max (SNR(t), 1) ∥x0 − xθ(xt, t)∥2

]
,

which is primarily designed to prevent the weight coefficient from reaching zero as the SNR ap-
proaches zero. Additionally, Salimans & Ho (2022) propose a new prediction target:

v =
√
ᾱtϵ−

√
1− ᾱtx0. (10)

Similarly, the objective function that uses v as the prediction target can also be equivalently trans-
formed into an objective function where x0 is the prediction target:

LSNR+1 = Et,x0,v

[
∥v − vθ(xt, t)∥2

]
= Et,x0,xt

[∥∥∥∥(√ᾱt

(
1√

1− ᾱt

(
xt −

√
ᾱtx0

))
−
√
1− ᾱtx0

)
−
(√

ᾱt

(
1√

1− ᾱt

(
xt −

√
ᾱtxθ(xt, t)

))
−
√
1− ᾱtxθ(xt, t)

)∥∥∥∥2
]

= Et,x0,xt

[
1

1− ᾱt
∥x0 − xθ(xt, t)∥2

]
= Et,x0,xt

[
(SNR(t) + 1) ∥x0 − xθ(xt, t)∥2

]
.

Furthermore, a new reweighting strategy (Hang et al., 2023) has been proposed to achieve acceler-
ated convergence during the training process, named Min-SNR-γ:

LMin-SNR-γ = Et,x0,xt

[
min (SNR(t), γ) ∥x0 − xθ(xt, t)∥2

]
.

In a word, if the prediction target is x0, the reweighting strategies can be written as follows:
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• Standard diffusion loss (Ho et al., 2020):

Lstandard = Et,x0,xt

[
SNR(t) ∥x0 − xθ(xt, t)∥2

]
(11)

• SNR+1 (Salimans & Ho, 2022):

LSNR+1 = Et,x0,xt

[
(SNR(t) + 1) ∥x0 − xθ(xt, t)∥2

]
(12)

• Truncated SNR (Salimans & Ho, 2022):

LTrun-SNR = Et,x0,xt

[
max (SNR(t), 1) ∥x0 − xθ(xt, t)∥2

]
(13)

• Min-SNR-γ (Hang et al., 2023):

LMin-SNR-γ = Et,x0,xt

[
min (SNR(t), γ) ∥x0 − xθ(xt, t)∥2

]
(14)

A.2 TRANSFORM DEME FRAMEWORK TO LOSS REWEIGHTING FRAMEWORK

In Sec. 3.2, we divide the overall timesteps [0, T ) into N multiple continuous and non-overlapped
timesteps ranges, which can be formulated as {(i−1)T/N, iT/N}Ni=1. For each range, we finetune a
diffusion model ϵθi , the training objective of ϵθi can be formulated as follows:

Li = E
t∼U [

(i−1)T
N , iTN ],x0,ϵ

[
∥ϵ− ϵθi (xt, t)∥2 + ∥ϵθ (xt, t)− ϵθi (xt, t) ∥2

]
. (15)

In Equation 15, the first term is the standard diffusion loss over the subrange, and the second term is
the consistency loss, ensuring that the finetuned model ϵθi stays close to the original model ϵθ.

In Sec. 3.3, we compute task vector τi = θi − θ after finetuning ϵθi , and merge N post-finetuned
diffusion models by

θmerged = θ +

N∑
i=1

wiτi, (16)

where wi are the merging weights determined(via grid search).

The update in parameters τi on due to finetuning on timestep range i is:

τi = θi − θ = −η∇θLi, (17)

where η is the learning rate. The merged model’s parameters in Equation 17 could be rewritten as:

θmerged = θ − η

N∑
i=1

wi∇θLi, (18)

which implies θmerged minimizes the combined loss

Lmerged =

N∑
i=1

wiLi. (19)

Li is computed over its respective timestep range, which menas Lmerged can be viewed as an integra-
tion over the entire timestep range with a piecewise constant weighting function w (t). We rewrite
Lmerged as:

Lmerged = Et∼U [0,T ],x0,ϵ

[
w(t) · ∥ϵ− ϵθ(xt, t)∥2 + ∥ϵθ(xt, t)− ϵθi(xt, t)∥2

]
, (20)

where

w(t) =

{
wi, if t ∈

[
(i−1)T

N , iT
N

)
0, otherwise

. (21)
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In Sec. 3.2, we propose to use θ to initialize θi and to utlize consistency loss to unsure ϵθ(xt, t) ≈
ϵθi(xt, t), which means that the second term in Equation 20 becomes negligible. The merged loss
simplifies to

Lmerged = Et∼U [0,T ],x0,ϵ

[
w(t) · ∥ϵ− ϵθ(xt, t)∥2

]
(22)

= Et∼U [0,T ],x0,ϵ

[
w(t) · SNR(t) · ∥x0 − xθ(xt, t)∥2

]
. (23)

Equation 23 is exactly the form of a reweighted loss function over timesteps, similar to Equa-
tions 11–14.

A.3 PROOF OF PROP.1: DEME FACILITIES ESCAPING FROM CRITICAL POINT

Assuming that a pretrained diffusion model with parameter θ has converged over the entire timesteps
[0, T ]. Its gradient expectation across all the timesteps should be zero, indicating

Et∼[0,T ) [∇Lθ(t)] = 0. (24)
Considering the complexity in non-convex optimization, Equation 24 also implies the possibility
that the converged point θ may be a critical point. In this setting, we show that DeMe enables the
diffusion model to escape from the critical point. The objective of DeMe can be formulated as

Lmerged
θ =

N∑
i=1

wiLθ,i, (25)

where Lθ,i is the loss function of finetuning the ith diffusion models parameterized by θ, which
has been introduced in Equaltion 19. As an example with N = 2, DeMe decouples the training
process into different timestep ranges [0, T1), [T1, T ), respectively. The expection of the gradients
for training loss of DeMe can be formulated as

Et∼U [0,T )

[
∇Lmerged

θ

]
= Et∼U [0,T ) [w1∇Lθ,1(t) + w2∇Lθ,2(t)] . (26)

DeMe decouples the training process into different timestep ranges by sampling timestep t in their
corresponding timesteps, which means

w1Et∼U [0,T ) [∇Lθ,1(t)] = w1Et∼U [0,T1) [∇Lθ(t)] (27)

w2Et∼U [0,T ) [∇Lθ,2(t)] = w2Et∼U [T1,T ) [∇Lθ(t)] . (28)
Therefore, Equation 26 can be rewritten as follows:

Et∼U [0,T )

[
∇Lmerged

θ

]
= w1Et∼U [0,T1) [∇Lθ(t)] + w2Et∼U [T1,T ) [∇Lθ(t)]

= w1

[
Et∼U [0,T1) [∇Lθ(t)] + Et∼U [T1,T ) [∇Lθ(t)]

]
+ (w2 − w1)Et∼U [T1,T ) [∇Lθ(t)] .

(29)

According to Equation 24, we have
Et∼U [0,T1) [∇Lθ(t)] + Et∼U [T1,T ) [∇Lθ(t)] = Et∼[0,T ) [∇Lθ(t)] = 0. (30)

Besides, because w1 ̸= w2, Et∼U [T1,T ) [∇Lθ(t)] ̸= 0, we can derive:

Et∼U [0,T )

[
∇Lmerged

θ

]
= Et∼U [0,T ) [w1∇Lθ,1(t) + w2∇Lθ,2(t)] ̸= 0. (31)

Equation 31 proves that DeMe exhibits a non-zero gradient in the critical point where the original
diffusion converged, which may provide an explanation for the effectiveness of DeMe.

B EXPERIMENTAL DETAILS

Implementation Details. During the finetuning process, we set N = 4 for all four datasets, p =
0.4 for CIFAR10 dataset, p = 0.3 for LSUN-Church, LSUN-Bedroom, and L-Aes 6.5+ datasets.
For CIFAR10, each model is trained for 20K iterations with a batch size of 64 and a learning rate of
2e-4. For LSUN-Church, LSUN-Bedroom, and L-Aes 6.5+ datasets, each model is trained for 20K
iterations with a batch size of 16, a learning rate of 5e-5, and gradient accumulation is set to 4. We
employ a 50-step DDIM sampler (Song et al., 2020a) for DDPM and a 50-step PNDM sampler (Liu
et al., 2022) for Stable Diffusion. All experiments are implemented on NVIDIA A100 80GB PCIe
GPU and NVIDIA GeForce RTX 4090.
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Dataset Details. For unconditional image generation datasets CIFAR10 (Krizhevsky et al., 2009),
LSUN-Church, and LSUN-Bedroom (Yu et al., 2015), we generated 50K images to obtain the
Fréchet Inception Distance (FID) (Heusel et al., 2017) for evaluation. For zero-shot text-to-image
generation, following the previous work (Kim et al., 2023), we finetune each model on a subset of
LAION-Aesthetics V2 (L-Aes) 6.5+ (Schuhmann et al., 2022), containing 0.22M image-text pairs.
We use 30K prompts from the MS-COCO validation set (Lin et al., 2014), downsample the 512×512
generated images to 256×256, and compare the generated results with the whole validation set. We
also use class names from ImageNet1K (Deng et al., 2009) and 1.6K prompts from PartiPrompts (Yu
et al., 2022) to generate 2K images (2 images per class for ImageNet1k) and 1.6K images, individ-
ually. Fréchet Inception Distance (FID) (Heusel et al., 2017) and CLIP score (Radford et al., 2021)
are used to evaluate the quality of generated images.

C RELATED WORKS ON MODEL MERGING

Merging models in parameter space emerged as a trending research field in recent years, aiming at
enhancing performance on a single target task via merging multiple task-specific models (Matena
& Raffel, 2022; Wortsman et al., 2022; Jin et al., 2022; Yang et al., 2024). In contrast to multi-task
learning, model merging fuses model parameters by performing arithmetic operations directly in the
parameter space (Ilharco et al., 2022; Yadav et al., 2024), allowing the merged model to retain task-
specific knowledge from various tasks. Diffusion Soup (Biggs et al., 2024) suggests the feasibility
of model merging in diffusion models by linearly merging diffusion models that are finetuned on dif-
ferent datasets, leading to a mixed-style text-to-image zero-shot generation. MaxFusion (Nair et al.,
2024) fuses multiple diffusion models by merging intermediate features given the same input noisy
image. LCSC (Liu et al., 2024) searches the optimal linear combination for a set of checkpoints in
the training process, leading to a considerable training speedups and FID reduction. Unlike Diffu-
sion Soup (Biggs et al., 2024), MaxFusion (Nair et al., 2024) and LCSC (Liu et al., 2024), DeMe
leverages model merging to fuse models finetuned at different timesteps, combines the knowledge
acquired at different timesteps, and resulting in improved model performance.

D RELATED WORKS ON TIMESTEP-WISE MODEL ENSEMBLE

Previous works (Balaji et al., 2022; Liu et al., 2023; Lee et al., 2024) have revealed that the perfor-
mance of diffusion models varies across different timesteps, suggesting that diffusion models may
excel at certain timesteps while underperforming at others. Inspired by this observation, several
works Balaji et al. (2022); Lee et al. (2024); Zhang et al. (2023) explore the idea of proposing an
ensemble of diffusion experts, each specialized for different timesteps, to achieve better overall per-
formance. MEME (Lee et al., 2024) propose a multi-architecture and multi-expert diffusion models,
which assign distinct architectures to different time-step intervals based on the frequency character-
istics observed during the diffusion process. Zhang et al. (2023) introduce a multi-stage framework
and tailored multi-decoder architectures to enhance the efficiency of diffusion models. eDiff-I (Bal-
aji et al., 2022) propose training an ensemble of expert denoisers, each specialized for different
stages of the iterative text-to-image generation process. Spectral Diffusion (Yang et al., 2023b) can
also be viewed as an ensemble of experts, each specialized in processing particular frequency com-
ponents during the iterative image synthesis. Go et al. (2023) leverages multiple guidance models,
each specialized in handling a specific noise range, called Multi-Experts Strategy. OMS-DPM (Liu
et al., 2023) propose a predictor-based search algorithm that optimizes the model schedule given a
set of pretrained diffusion models.

E SIMILARITY BETWEEN TASK VECTORS

In Fig. 8, we analyze the cosine similarity between task vectors across different timestep ranges
to explore how multiple finetuned diffusion models can be merged into a unified diffusion model
through additive combination. We observe that task vectors from different timestep ranges are gen-
erally close to orthogonal, with cosine similarities remaining low, often near zero. We speculate
that this orthogonality facilitates the additive merging of multiple finetuned diffusion models into
a unified model with minimal interference, allowing for effective combination without conflicting
gradients between the different timestep ranges. For instance, timestep ranges t ∈ [0, 250) and
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Figure 8: The cosine similarity be-
tween task vectors at different timestep
ranges on two datasets: Task vectors
are nearly orthogonal between differ-
ent timestep ranges. This orthogonal-
ity suggests that knowledge from differ-
ent timesteps is largely independent, al-
lowing for effective additive combina-
tion of task vectors with minimal inter-
ference, thereby facilitating the merging
of finetuned models.

t ∈ [500, 750) on LSUN-Church exhibit a cosine similarity of 0.07, this relatively low value in-
dicates that the task vectors for these two non-adjacent ranges are close to orthogonal, allowing
for more effective combination during model merging with minimal interference between different
denoising tasks.

Additionally, the slight deviations from orthogonality within different timestep ranges suggest some
shared information between neighboring denoising tasks, reflecting a degree of continuity in the
model’s learning across these ranges. These deviations also highlight the effectiveness of the Proba-
bilistic Sampling Strategy introduced in Sec. 3.2, which ensures a balance between specialization in
the range and generalization across all timesteps, effectively preserving knowledge across different
stages of denoising task training.

F SENSITIVE STUDY

DeMe decouples the training of diffusion models by finetuning multiple diffusion models in N dif-
ferent timestep ranges. A larger N indicates that the timesteps are divided into finer ranges, further
reducing gradient conflicts and potentially enhancing the model’s performance. Meanwhile, the
probability p determines the tradeoff between learning from specific and global timesteps, thereby
influencing the model’s performance. Therefore, we do some sensitive study on the influence of
number of ranges N and possibility p on CIFAR10.
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Figure 9: Sensitive study of the influence on the
number of ranges N and possibility p of training
of all timesteps on CIFAR10.

Influence on Number of ranges N . A larger
N implies each diffusion model is finetuned on
a narrower timestep range, leading to less gra-
dient conflicts. As illustrated in Fig. 9, it is ob-
served that: (i) Training diffusion model across
the entire timestep range results in the poorest
performance. With N = 1, i.e., training diffu-
sion on the overall timesteps, a minor improve-
ment is achieved, with a FID of 4.34. We posit
that severe gradient conflicts occurred, nega-
tively impacting the overall training process. (ii) The finer the division of the overall timesteps
into N non-overlapping ranges, the more effectively it mitigates gradient conflicts, leading to a no-
table reduction in FID. For example, dividing the timesteps into 4 ranges can result in a 0.63 FID
reduction, whereas dividing them into only 2 ranges leads to a reduction of just 0.4 FID. A larger
N is associated with improved model performance, indicating reduced gradient conflicts. (iii) As N
increases, the model’s training exhibits marginal utility. For instance, when N exceeds 4, the FID no
longer follows the decreasing trend observed when N smaller than 4. This suggests that the model’s
gains notably diminish as N increases. Considering the finetuning overhead and the complexity of
model merging, we recommend N = 4 as a trade-off in practice.

Influence on Probability p. Probability p means a sampling probability p for a diffusion model be-
yond its specific timespte range, which indicates a trade-off between specific knowledge and general
knowledge. Varying choices of probability p can enhance model performance to different extents.
As shown in Fig. 9, it is observed that: (i) Training solely on either the full timestep range or specific
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subranges limits knowledge sharing, resulting in only minor improvements. P = 0 corresponds to
training across all timesteps, while p = 1 focuses exclusively on a specific range. Both of these set-
tings restrict knowledge transfer between the overall and specific timestep ranges, leading to modest
FID reductions of 0.28 and 0.37, respectively. (ii) Our method achieves varying degrees of improve-
ment across the range p ∈ [0, 1]. When p > 0.5, sampling occurs more frequently over the overall
timestep, while for p < 0.3, sampling is more concentrated in a specific timestep range. Both cases
restrict knowledge transfer between the overall and specific timestep ranges, leading to minor FID
improvements, shown in Fig. 9. To maximize the effectiveness of the method, we recommend using
p = 0.3 or p = 0.4 in practice.

G ADDITIONAL QUALITATIVE EXPERIMENTS

G.1 ADDITIONAL QUALITATIVE RESULTS ON LSUN FOR DDPM

In Fig. 10 and Fig. 11, additional qualitative results are presented. DeMe has more effectively
captured the underlying patterns in the images, specifically the church and bedroom scenes,
allowing for more detailed and accurate generation of these structures. The finetuned diffusion
model demonstrates an improved ability to generate coherent and realistic representations of the
target objects, as evidenced by the success in producing church-style buildings and bedroom-style
interiors in the bottom rows of both figures.
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Figure 10: Additional qualitative results on LSUN-Church. The top row shows images generated
by DDPM before finetuning, while the bottom row displays images generated by DDPM after fine-
tuning using our training framework. In the bottom row, church-style buildings are successfully
generated, whereas the top row fails to produce similar structures.

G.2 ADDITIONAL QUALITATIVE RESULTS FOR STABLE DIFFUSION

In Fig. 12, Fig. 13 and Fig. 14, additional qualitative results are presented based on various de-
tailed text prompts. DeMe more effectively generates images that align with the provided text
descriptions, producing results that are both more detailed and photorealistic. The finetuned Stable
Diffusion model demonstrates an improved ability to generate visually coherent and contextually
accurate images that closely match the nuances of the prompts, as highlighted in the comparison
between before- and after-finetuning results, showcasing its enhanced capacity for text-to-image
synthesis.
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Figure 11: Additional qualitative results on LSUN-Bedroom. The top row shows images generated
by DDPM before finetuning, while the bottom row displays images generated by DDPM after fine-
tuning using our training framework. In the bottom row, bedroom scenes are successfully generated,
whereas the top row fails to produce coherent structures.

Prompt Ⅴ: “A tranquil beach at sunrise, with soft waves lapping 

at the shore, palm trees swaying gently in the breeze, and a 

vibrant sky painted in shades of pink, orange, and purple.” 

Before Finetuning: Loss of text-image alignment: palm trees swaying gently 

After Finetuning: Superb text-image alignment, gorgeous coastal view 

Prompt Ⅵ: “A vast desert with rolling sand dunes, the golden 

sands stretching endlessly under a cloudless sky, a caravan of 

camels making its way across the horizon.” 

Before Finetuning: Loss of text-image alignment: a caravan of camels 

After Finetune: Superb text-image alignment

Prompt Ⅶ: “A herd of wild horses galloping across a wide 

open field, their manes and tails flowing in the wind, dust 

kicking up beneath their hooves as they run.” 

Before Finetuning: Loss of text-image alignment: dust kicking up.. 
After Finetuning: Superb text-image alignment, vivid graphic depiction

Prompt Ⅷ: “A scientist in a modern laboratory, wearing a 

white coat and safety goggles, examining a vial of glowing blue 

liquid with curiosity and focus.” 

Before Finetuning: Loss details in scientist’s body
After Finetuning: Detailed generation in scientist’s body

Before Finetuning After Finetuning Before Finetuning After Finetuning

Figure 12: Additional qualitative results based on various text prompts for Stable Diffusion
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Prompt Ⅸ: “A majestic eagle soaring high above the 

mountains, its wings spread wide, gliding effortlessly through 

the sky with the distant peaks below.” 

Before Finetuning: Loss of realistic graphic depiction
After Finetuning: Superb text-image alignment, lifelike figure

Prompt Ⅹ: “An old fisherman with weathered hands, sitting on a 

wooden dock by the sea, seagulls fly overhead in the golden light 

of sunset.” 

Before Finetuning: Loss of text-image alignment: seagulls fly overhead 

After Finetuning: Superb text-image alignment

Prompt ⅩⅠ: “A dense, mystical forest in autumn, with rays of 

golden sunlight filtering through the vibrant orange and red 

leaves, a narrow path leading deeper into the trees.” 

Before Finetuning: Loss of text-image alignment: sunlight filtering through.. 
After Finetuning: Superb text-image alignment, photorealistic

Prompt ⅩⅡ: “A snowy winter landscape, a small village nestled 

in a valley, smoke rising from chimneys, snow-covered trees, and 

twinkling lights glowing warmly in the dusk.” 

Before Finetuning : Loss of text-image alignment: smoke .. chimneys

After Finetuning: Superb text-image alignment 

Before Finetuning After Finetuning Before Finetuning After Finetuning

Figure 13: Additional qualitative results based on various text prompts for Stable Diffusion

Prompt ⅩⅢ: “A breathtaking view of a waterfall cascading 

down into a lush jungle, with vibrant green foliage, moss-

covered rocks, and a rainbow forming in the mist.” 

Before Finetuning: Loss of text-image alignment: a rainbow 

After Finetuning: Superb text-image alignment 

Prompt ⅩⅣ: “A grand library with towering bookshelves filled 

with ancient tomes, a spiral staircase winding up to a high ceiling 

adorned with intricate frescoes, and soft light streaming through 

stained glass windows.” 
Before Finetuning: Loss details: twisted staircase
After Finetuning: Excellent details generation

Prompt ⅩⅤ: “A majestic lion standing proudly on a rocky 

ledge, its golden mane blowing in the wind, the vast African 

savannah stretching out behind it at sunset.” 

Before Finetuning: Loss of text-image alignment: standing proudly.. 
After Finetuning: Superb text-image alignment 

Prompt ⅩⅥ: “A curious red fox sitting in a snowy forest, its 

bright fur contrasting against the white snow, its ears perked up 

and eyes focused on something in the distance.” 

Before Finetuning : Loss of text-image alignment: sitting

After Finetuning: Superb text-image alignment 

Before Finetuning After Finetuning Before Finetuning After Finetuning

Figure 14: Additional qualitative results based on various text prompts for Stable Diffusion
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