
Supplementary Material for “Training Over-parameterized
Models with Non-decomposable Objectives”

Algorithm 2 Reductions-based Algorithm for Constraining Coverage (2)
1: Inputs: Training set S, Validation set Sval, Step-size ! 2 R+, Class priors ⇡, CS-loss `G
2: Initialize: Classifier h0, Multipliers �0

2 Rm
+

3: for t = 0 to T � 1 do
4: Update �:
5: �t+1

i = �ti � !
�Pm

j=1
bCji[ht]� 0.95⇡i

�
, 8i

where bCij [h] =
1

|Sval|

P
(x,y)2Sval 1(y = i, h(x) = j)

6: �t+1
i = max{0,�t+1

i }, 8i // Projection to R+

7: Gij =
1

m⇡i
1(i = j) + �t+1

j , 8i, j

8: Cost-sensitive Learning (CSL):
9: st+1

2 argmins
1
|S|

P
(x,y)2S `G(y, s(x)) // Replaced by few steps of SGD

10: ht+1(x) 2 argmaxi2[m] s
t+1
i (x), 8x

11: end for
12: return hT

A Algorithms for Robust and Constrained Learning

Recall that the algorithms discussed in Section 2 have two intuitive steps: (i) update the multipliers �
based on the current classifier’s performance and construct a gain matrix G; (ii) train a new classifier
by optimizing a cost-sensitive loss `G for G. Algorithm 1 in the main text outlined this procedure for
the problem of maximizing the worst-case recall in (1), and Algorithm 2 provided here outlines this
procedure for the problem of maximizing the average recall subject to coverage constraints in (2).
These algorithms additionally incorporate the “two dataset” trick suggested by Cotter et al. [14] for
better generalization, wherein the updates on � are performed using a held-out validation set Sval,
and the minimization of the resulting cost-sensitive loss is performed using the training set S.

In Algorithm 1, we seek to find a saddle-point for the max-min problem for (1). For this, we jointly
minimize the weighted objective over � 2 �m using exponentiated-gradient descent and maximize
the objective over h. The latter can be equivalently formulated as the minimization of a cost-sensitive
loss `G with G = diag(�1/⇡1, . . . ,�m/⇡m). In Algorithm 2, we seek to find a saddle-point for the
Lagrangian max-min problem for (2). In this case, we jointly minimize the Lagrangian over � 2 �m

using projected gradient descent and maximize the Lagrangian over h. The latter is equivalent to
minimizing a cost-sensitive loss `G with G = diag

�
1m
m⇡

�
+ 1m�>. In our experiments, the class

priors ⇡ were estimated from the training sample.

The cost-sensitive learning steps optimizes a scoring function s : X!Rm over a class of scoring
models, and constructs a classifier h(x) 2 argmaxi2[m] si(x) from the learned scoring function.
In practice, we do not perform a full optimization for this step, and instead perform a few steps of
stochastic gradient descent (SGD) on the loss `G, warm-starting each time from the scoring function
from the previous iteration.

See Chen et al. [12], Cotter et al. [16] for theoretical guarantees for the learned classifier, which
usually require the algorithms to output a stochastic classifier that averages over the individual iterates
h1, . . . , hT . Since a stochastic classifier can be difficult to deploy [15], in practice, for the problems
we consider, we find it sufficient to simply output the last iterate hT .

A.1 Extension to General Metrics

The reduction-based iterative approach outlined in Algorithms 1–2 extend to general non-
decomposable metrics such as the F-score (by introducing auxiliary variables), as well as, AUC-based
metrics (via a Riemann approximation to the integral). Eban et al. [25] provide details of how the
optimization of these metrics can be posed as constrained optimization problems, and in turn reduced
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to a sequence of cost-sensitive learning tasks. More generally, using the reduction techniques from
Narasimhan et al. [71], any learning problem of the following form can be reduced to cost-sensitive
learning problems, and thus tackled by the proposed approach:

max
h

 (C[h]) s.t. �k(C[h])  0, k = 1, . . . ,K,

where  and �ks are convex (or fractional-linear) functions of the confusion matrix. Their reduction
techniques are generic and only require to be able to compute gradients for  and �ks.

Similar to the formulation in Section 2, the G-matrix for general metrics of the above form can
be constructed by writing out the Lagrangian for the problem, and using the Lagrange multipli-
ers to determine the weights on individual classes. Narasimhan et al. [71] provide details of the
Lagrangian primal-dual optimization for different metrics. For example, to maximize the F-score:

2TP[h]
2TP[h]+FP[h]+FN[h] , one could introduce slack variables ⇠1 and ⇠2 for the numerator and the denomina-
tor, and reformulate the problem as:

max
h,⇠1,⇠22[0,1]

⇠1
⇠2

s.t. ⇠1  2TP[h], ⇠2 � 2TP[h] + FP[h] + FN[h].

The Lagrange multipliers �1 and �2 for the constraints can then be used to derive weights on TP, FP
and FN (i.e., the G-matrix).

B Proofs

We will find the following standard result to be useful in our proofs. Since the negative log is a strictly

proper, in the sense of Gneiting and Raftery [30], Williamson et al. [95], we have that:
Lemma 6 (Gneiting and Raftery [30], Williamson et al. [95]). For any distribution u 2 �m, the

minimizer of the expected risk

Ey⇠u [� log(vy)] = �

mX

i=1

ui log(vi)

over all distributions v 2 �m is unique and achieved at v = u.

B.1 Proof of Proposition 1

Proof. We reproduce the proof from Narasimhan et al. [70]. Expanding the weighted accuracy in (4),
X

i,j

Gij Cij [h] = Ex,y

hX

i,j

Gij 1(y = i, h(x) = j)
i
= Ex,y

hX

j

Gyj 1(h(x) = j)
i

= Ex

h
Ey|x

hX

j

Gyj 1(h(x) = j)
ii

= Ex

hX

i,j

pi(x)Gij1(h(x) = j)
i
.

To compute the Bayes-optimal classifier for (4), it suffices to maximize the above objective point-wise,
and to predict for each x, the label which maximizes the term within the expectation:

h⇤(x) 2 argmaxj2[m]

X

i

pi(x)Gij = argmaxj2[m](G
>p(x))j ,

as desired.

B.2 Proof of Proposition 2

Proof. Given that the training instances x in S are unique, the average training loss bLwt(s) =
1
|S|

P
(x,y)2S `

wt(y, s(x)) is minimized by a scoring function s that yields the minimum loss
`wt(y, s(x)) for each (x, y) 2 S. For a fixed (x, y) 2 S, the loss can be expanded as:

`wt(y, s(x)) = �

mX

i=1

Gy,i log

✓
exp(si(x))P
j exp(sj(x))

◆
= �Cy

mX

i=1

Gy,iP
j Gy,j

log

✓
exp(si(x))P
j exp(sj(x))

◆
,

where Cy =
P

j Gy,j can be treated as a constant for a fixed y. We then have from Lemma 6, that
any scoring function bs that minimizes bLwt(s) evaluates to exp(bsi(x))P

j exp(bsj(x)) =
Gy,iP
j Gy,j

, 8i 2 [m] on the
examples (x, y) in S.
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B.3 Proof of Propositions 3–4

We provide a proof for Proposition 4. The proof of Proposition 3 follows by setting D = G in the
hybrid loss in (9).

Proof of Proposition 4. We wish to show that for any fixed x, the scoring function s⇤ : X!Rm that
minimizes the expected loss E(x,y)⇠D

⇥
`hyb(y, s(x))

⇤
recovers the Bayes-optimal classifier for G.

Appealing to Proposition 1, this would require us to show that for any x:

argmaxy2[m] s
⇤

y(x) ✓ argmaxy2[m](G
>p(x))y. (11)

To this end, we first re-write the expected loss in terms of a conditional risk:

E(x,y)⇠D

⇥
`hyb(y, s(x))

⇤
= Ex⇠DX

⇥
Ey⇠p(x)

⇥
`hyb(y, s(x))

⇤⇤
.

The optimal scoring function s⇤(x) therefore minimizes the conditional risk Ey⇠p(x)

⇥
`hyb(y, s(x))

⇤

for each x. Expanding the conditional risk for a fixed x, we have:

Ey⇠p(x)

⇥
`hyb(y, s(x))

⇤
=

mX

y=1

py(x) `
hyb(y, s(x))

= �

mX

i=1

mX

y=1

Myi py(x) log

✓
exp(si(x)� log(Dii))P
j exp(sj(x)� log(Djj))

◆

= �

mX

i=1

(M>p(x))i log

✓
exp(si(x)� log(Dii))P
j exp(sj(x)� log(Djj))

◆

= �C
mX

i=1

(M>p(x))iP
j(M

>p(x))j
log

✓
exp(si(x)� log(Dii))P
j exp(sj(x)� log(Djj))

◆
,

where C =
P

j(M
>p(x))j can be treated as a constant for a fixed x. Appealing to Lemma 6, we

then have that for any fixed x, because s⇤(x) minimizes the conditional risk,

exp(s⇤i (x)� log(Dii))P
j exp(s

⇤

j (x)� log(Djj))
=

(M>p(x))iP
j(M

>p(x))j
, 8i 2 [m].

It follows that
s⇤i (x)� log(Dii) = log

�
(M>p(x))i

�
, 8i 2 [m],

or equivalently
s⇤i (x) = log

�
Dii(M

>p(x))i
�
, 8i 2 [m].

This then gives us:

s⇤(x) = log
�
D>

�
M>p(x)

��
= log

�
(MD)>p(x)

�
= log

�
G>p(x)

�
,

where log is applied element-wise, and we use M = GD�1 in the last equality. Because log is a
strictly monotonic function, s⇤ satisfies the required condition in (11) for each x.

Proof of Proposition 3. The proof follows by setting D = G and applying Proposition 4.

B.4 Proof of Proposition 5

We will assume that ↵y,�y > 0, 8y.

Proof. As shown in the proof of Proposition 4, to compute the optimal scoring function s⇤ for the
expected loss E(x,y)⇠D

⇥
`SMS(y, s(x))

⇤
, it suffices to minimize the conditional risk point-wise for

each x. For a fixed x, the conditional risk for `SMS is given by:

Ey⇠p(x)

⇥
`SMS(y, s(x))

⇤
= �

X

y2[m]

py(x) log

 
C

exp(sy(x)� log(↵y))P
y0 exp(sy0(x)� log(↵y0))

� �y/↵y

!
.
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To prove that the loss is calibrated, we need to show that the minimizer s⇤(x) for each x recovers the
Bayes-optimal prediction for x, i.e., satisfies:

argmaxy2[m] s
⇤

y(x) ✓ argmaxy2[m] ↵ypy(x) + �y, 8x. (12)

We first consider the case where py(x) > 0, 8y. Ignoring the dependence on x, and letting u =
exp(sy�log(↵y))P

y0 exp(sy0�log(↵y0 ))
, consider the problem of maximizing �

P
y2[m] py log (Cu+ �y/↵y) over all

u 2 �m, i.e.:

min
u2RL

�

X

y

py log (Cuy � �y/↵y) s.t. uy � 0, 8y,
X

y

uy = 1. (13)

Introducing Lagrangian multipliers � 2 R for the equality constraint and µy � 0 for the inequality
constraints, the Lagrangian for this problem is given by:

�

X

y

py log (Cuy � �y/↵y) �

X

y

µyuy + �(
X

y

uy � 1). (14)

For this problem, the first-order KKT conditions are sufficient for optimality. We therefore have that
any u⇤ that satisfies the following conditions for some multipliers µ, � is a solution to (14):

Cpy
Cu⇤

y � �y/↵y
= � � µy, 8y (15)

µyu
⇤

y = 0, 8y (16)

X

y

u⇤

y = 1 (17)

We now show that u⇤

y = py+�y/↵y

C , � = C and µy = 0, 8y satisfies (15)–(17). Plugging u⇤

y, � and
µy into the LHS of (15), we get:

Cpy
py + �y/↵y � �y/↵y

= C = � � µy,

which the same as the RHS. It is also easy to see that (16) is satisfied. To see that (17) holds, observe
that:

X

y

u⇤

y =

P
y py +

P
y �y/↵y

C
=

1 +
P

y �y/↵y

C
=

C

C
= 1.

We can now derive the optimal scoring function s⇤ from u⇤:

exp(s⇤y(x)� log(↵y))P
y0 exp(s⇤y0(x)� log(↵y0))

=
py(x) + �y/↵y

C
.

Equivalently,

s⇤y(x)� log(↵y) = log

✓
py(x) + �y/↵y

C

◆

or in other words,
s⇤y(x) / log(↵ypy(x) + �y),

which clearly satisfies the required condition in (12).

For simplicity, we do not explicitly include in (13) constraints Cuy � �y/↵y � 0, 8y that would
require the terms within the log to be non-negative. The form of the optimal scoring function s⇤ does
not change when these constraints are included. We were able to avoid including these constraints
because we assumed that py(x) > 0, 8y. When this is not the case, the additional constraints will be
needed for the proof.
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C Margin Interpretation for `LA

A limiting form of the logit-adjusted loss in (8) is given below:

lim
�!1

1

�
· log

 mX

j=1

exp
�
� ·

�
�yj � (sy � sj)

� �
= max

j2[m]
�yj � (sy � sj).

which has the same form as the loss function proposed by Crammer and Singer [17], Tsochantaridis
et al. [90], where �yj is the penalty associated with predicting class j when the true class is y. The
term �yj can be seen as a margin for class y relative to class j. The only difference between the
limiting form given above and the original loss of Crammer and Singer [17] is that the margin term
there is typically non-negative (defaulting to 1 when all classes are assigned equal costs), whereas it
is set to �yj = log(Gyy)� log(Gjj) in our formulation and can take negative values (defaulting to 0
when all classes are assigned equal costs).

D Practical Variant of `SMS

To avoid a negative value in the softmax-shifted loss in (10), we provide a practical variant of the loss.
Notice that the Bayes-optimal predictions h⇤(x) 2 argmaxy2[m] ↵ypy(x) + �y are unchanged when
we subtract a constant from each �y , and compute h⇤(x) 2 argmaxy2[m] ↵ypy(x) + �y �maxy �y .
This gives us the following variant of the loss in which the log is always evaluated on a non-negative
value:

`SMS⇤(y, s) = � log

 
C

exp(sy � log(↵y))P
j exp(sj � log(↵j))

+ max
y0

�y0/↵y0 � �y/↵y

!
.

One practical difficulty with this formulation is that when the shift term maxy0 �y0/↵y0 � �y/↵y for
class y is large, and the softmax prediction for that class may have minimal effect on the loss. As a
remedy, we prescribe a hybrid variant in which we use a combination of an outer weighting and an
inner shift to the softmax:

`SMS†(y, s) = �

mX

i=1

(1(y = i) + i) log

 
C

exp(si � log(↵i))P
j exp(sj � log(↵j))

+ max
j
0j � 0i

!
,

where the is and 0is are chosen so that i + 0i = �i/↵i. As with Proposition 5, the calibration
properties of this loss depend on our choice of the constant C, which in practice, we propose be
treated as a hyper-parameter.

E Additional Experimental Details

We provide further details for the experiments run in Sections 5–6. The training sample sizes for
the long-tail versions of CIFAR-10, CIFAR-100 and TinyImageNet were as follows: 12406, 10847
and 21748. The test and validation samples had 5000 images each for all three datasets. The CIFAR
datasets had images of size 32⇥ 32, while TinyImageNet had images of size 224⇥ 224.

All models were trained using SGD with a momentum of 0.9 and with a batch size of 128. For
the CIFAR datasets, we ran the optimizer for a total of 256 epochs, with an initial learning rate of
0.4, and with a weight decay of 0.1 applied at the 96th epoch, at the 192th epoch and at the 224th
epoch. We employed the same data augmentation strategy used by Menon et al. [63], with four pixels
padded to each side of an image, a random 32⇥ 32 patch of the image cropped, and the image flipped
horizontally with probability 0.5. For the TinyImageNet dataset, we ran the optimizer for a total of
200 epochs, with an initial learning rate of 0.1, with a weight decay of 0.1 applied at the 75th epoch
and at the 135th epoch.

The step size ! for the reductions-based algorithms (Algorithms 1–2) to 0.1 for CIFAR-10 when
maximizing worst-case recall and to 1.0 when constraining coverage, to 0.5 for CIFAR-100 with both
tasks, and 1.0 for TinyImageNet with both tasks. For the CIFAR datasets, we perform 32 SGD steps
on the cost-sensitive loss `G for every update on the multipliers, and for TinyImageNet, we perform
100 SGD steps for every update on the multipliers.
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Method CIFAR-10-LT CIFAR-100-LT TinyImgNet-LT
Avg Rec Avg Rec Avg Rec

ERM 1.000 0.999 0.641
Balanced [63] 0.997 0.999 0.774
Equalized [88] 0.999 0.991 0.667
Adaptive [10] 1.000 0.999 0.620
CSL [Re-weighted] 0.966 0.987 0.775
CSL [Logit-adjusted] 0.979 0.982 0.767

Table 6: Results of maximizing worst-case recall on CIFAR-10 and the minimum of the head and
tail recalls on CIFAR-100 and TinyImageNet. We report average recall on the training set, averaged
over 5 independent trials. On CIFAR-10 and CIFAR-100, the ERM baselines reach close to 100%
training accuracy, suggesting that the ResNet-56 models we use for these datasets are sufficiently
parameterized to memorize the training labels. We find a similar behavior with the ERM baseline for
TinyImageNet when we train the ResNet-18 model for this dataset for a larger number of epochs, as
elaborated in Appendix E.1.

While implementing the equalized loss of Tan et al. [88], we follow the same parameter choices as in
the original paper for CIFAR-10 and CIFAR-100 datasets, and use their ImageNet parameter choices
for the TinyImageNet dataset.

For the distillation experiments in Section 6, the logit scores from the teacher ResNet models were
temperature scaled to produce soft probabilities exp(sy/⌧)/

P
y0 exp(sy0/⌧), with the temperature

scale parameter ⌧ was set to 3.

All experiments were run on 8 chips of TPU v3.

E.1 Results on Training Set

Table 6 contains the average recall attained by different methods on the training set, for the task of
maximizing worst-case recall on CIFAR-10-LT and maximizing the minimum of the head and tail
recalls on CIFAR-100-LT and TinyImageNet. Notice that the ERM baselines (that optimize a standard
cross-entropy loss, using standard hyper-parameter settings) reach close to 100% training accuracy
on CIFAR-10-LT and CIFAR-100-LT datasets. This suggests that the ResNet-56 models we use for
these datasets are sufficiently parameterized to memorize the training labels. On the TinyImageNet
dataset alone, the ResNet-18 models we use do not perfectly fit the training labels. This is because we
stop the trainer early. When we run the optimizer for a larger number of 1200 epochs (with an initial
learning rate of 0.1, and with a weight decay of 0.1 applied at the 400th epoch, at the 800th epoch
and at the 1060th epoch), we find the ERM baseline to converge to a training accuracy of 99.8%,
indicating that the ResNet-18 architecture is also sufficiently parameterized to memorize the training
labels for this dataset. To save on computational resources (with 8 chips of TPU v3, training with
1200 epochs took more than 11 hours), we run all the TinyImageNet experiments with 200 epochs
(with the learning rate schedule mentioned in the previous section).

Interestingly, both CSL [Re-weighted] and CSL [Logit-adjusted] do not reach 100% training accuracy.
This is because these methods adopt the “two dataset” approach of Cotter et al. [14] for better
generalization and tune the per-class costs to maximize performance on a held-out validation sample
(see Section 3). As a result, these methods may converge to a slightly lower training accuracy in
order to generalize better on the validation sample, and as a result on the test sample.

E.2 Implementation of Post-shifting

As noted in Section 6, post-shifting is implemented in two steps: (i) train a base scoring model
s : X!Rm using ERM, (ii) construct a classifier that estimates the Bayes-optimal label for a given x
by applying a gain matrix G 2 Rm⇥m to the predicted probabilities:

h(x) 2 argmaxy2[m]

mX

i=1

Giy⌘i(x), where ⌘(x) = softmax(s(x)). (18)

To choose coefficients G to maximize worst-case recall on the validation sample Sval, we adopt
the optimization-based framework of Narasimhan et al. [70]. The idea is to employ a variant of
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Algorithm 3 Post-shifting to Maximize Worst-case Recall (1)
Inputs: Validation set Sval, Step-size ! 2 R+, Class priors ⇡, Base model ⌘ : X!�m

Initialize: Classifier h0, Multipliers �0
2 �m

for t = 0 to T � 1 do
�t+1
i = �ti exp

⇣
�!

bCii[h
t]

⇡i

⌘
, 8i,where bCij [h] =

1
|Sval|

P
(x,y)2Sval 1(y = i, h(x) = j)

�t+1
i =

�t+1
iPm

j=1 �t+1
j

, 8i

G = diag(�t+1
1 /⇡1, . . . ,�t+1

m /⇡m)
ht+1(x) 2 argmaxi2[m]

Pm
j=1 Gji⌘j(x), 8x

end for
return ht⇤ , where t⇤ 2 argmaxt2[T ] mini

n bCii[h
t]

⇡i

o

Algorithm 3, where the cost-sensitive learning with gain matrix G in each iteration is replaced by a
simpler post-hoc approach that similar to (18) post-shifts the base model ⌘ with G. The details are
outlined in Algorithm 3. In our experiments, we set ! = 1 for the post-shifting algorithm, and pick
from the iterates, the post-shift coefficients that yield the highest worst-case recall.
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