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A Preliminaries

Here we describe preliminaries necessary for Appendices[B]and|C] This includes some basic properties
of the Laplace—Beltrami operator on compact manifolds, partitions of unity subordinate to atlases,
function spaces such as Holder, Sobolev and Besov, and general Gaussian random elements on
Banach spaces.

A.1 Laplace—Beltrami Operator and Subordinate Partitions of Unity

Recall that M denotes a compact Riemannian manifold. The Laplace-Beltrami operator A on M
is self-adjoint and positive semi-definite [40, Theorem 2.4]. Let (L?(M), (-, -)) denote the Hilbert
space of square integrable functions on M with respect to the standard Riemannian volume measure

By standard theory [ 10} [20], there exists an orthonormal basis { f; };.”:0 of L?(M) consisting of the

eigenfunctions of A, such that Af; = A; f; with A; > 0. We assume that the pairs (;, f;) are sorted
such that 0 = A\g < A; < Aj4q. The growth of A; can be characterized as follows.

Result 10 (Weyl’s Law). There exists a constant C > 0 such that for all j large enough
CjHt <\ < 0P (16)

Proof. See Chavel [[10], Chapter 1. O

Following De Vito et al. [[13]] and GroBe and Schneider [21] we fix a family T = (U, ¢, Xl)zL:1
of M, where L € N, the local coordinates ¢; : Uy C M — V; = ¢;(U;) C R? are smooth
diffeomorphisms, and the functions x; form a partition of the unity subordinate to {Ul}lL:p i.e.
X1 € C®(M),supp(x;) CU,0< x; <land ), x; = 1E] For convenience and without loss of

generality we assume that V; C [0, 1]¢ and that it is of the form V; = (a;, b;)?,0 < a; < b;1F] With
this, we can start defining function spaces on M.

A.2 Holder Spaces

We start with the manifold versions of the Euclidean Holder spaces C” (]Rd), whose definitions may
be found, for instance, in Giné and Nickl [[18]] and Triebel [42]].

Definition 11 (Holder spaces). For all v > 0 we define the Hélder space CY (M) on the manifold
M to be the space of all f : M — R satisfying

L
1 levany = DN0af) 0 &7 Hlgn gy < o0 (17)
=1

Since the charts ¢; are smooth, Definition [[T|can be easily seen to be independent of the chosen atlas,
with equivalence of norms.

A.3 Sobolev and Besov Spaces

We now introduce the manifold versions of the Sobolev and Besov spaces, whose definitions in the
standard Euclidean case may be found, for instance, in Triebel [42]]. For Sobolev spaces we use the
Bessel-potential-based definition, following De Vito et al. [[13]].

Definition 12 (Sobolev spaces). For any s > 0 we define the Sobolev space H*(M) on the manifold
M as the Hilbert space of functions f € L*(M) such that ||f||?{5(M) = (fs ) #rs(my < 00 where

o0

<f7 g>Hb(/\/[) = Z(l + )‘J)S<f7 fj>L2(M)<ga fj>L2(M)~ (18)

J=0

2Strictly speaking, L*(M) consists of equivalence classes with respect to the almost everywhere equality.

3We can choose L finite by compactness of M.

“To see this, take él = exp;l1 and define ¢; = T; o <;§l where 77 is an appropriate affine transformation. We
can assume that V; = (az, b;)? by positivity of the injectivity radius at z;.
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Remark 13. It is easy to see that substituting (1 + \;)® in Equation with B(a + \;)® or with
a+ BA; for any o, B > O results in the same set of functions and an equivalent norm. The former
follows from Borovitskiy et al. [8]], eq. (109). The latter follows from the Binomial Theorem.

For Besov spaces we follow Coulhon et al. [|11]] and Castillo et al. [9]] and define them in terms of
approximations by low-frequency functions. We fix a function ® € C*° (R, R, ) such that K =

supp(®) C [0,2] and ®(z) = 1 for z € [0, 1]. We also define functions ®; by ®;(z) = ®(277z).

Coulhon et al. [11], Corollary 3.6 shows that the operators ®;(1/A) defined by functional calculus—
discussed, for instance, in Borovitskiy et al. [|8]—are bounded in the space L? (M) forall 1 < p <

oo Moreover, it shows that f = lim;_,, ®;(v/A)f in LP(M) for every f € LP(M). ®;(vVA)f
can intuitively be considered as a version of f filtered by a low-pass filter. More explicitely we can

write
@, (VR)r =Y o(VA) U N (19)
Jj=0
which is indeed a filtered version of f as ® has compact support. The next definition introduces the
Besov spaces B , (M), which are formulated in terms of quality-of-approximation by low-frequency
functions.

Definition 14 (Besov spaces). For any s > 0 and 1 < p,q < oo we define the Besov space B, ,(M)
on the manifold M as the space of functions f € LP(M) such that || f| 5: (ag) < 00 where

. 1/q
L+ (S (2210:VB) = £10)) T a0

11l s ) _
" 1110 + sup;0 2% @5(VA) f = fllLs ifq = +oo.

It turns out that B3 ,(M) coincide with the Sobolev spaces H*(M), in the sense that they define
the same set of functions and equivalent norms. The same is known for Besov and Sobolev spaces
on R?—see for instance Giné and Nickl [[18] section 4.3.6—and even on manifolds if one follows
the construction of Triebel [42], pages 7.3—7.4 for Besov spaces. Since our definition is somewhat
non-standard, we present the proof.

Proposition 15. Forall s > 0, H*(M) = B ,(M) as sets and there exist two constants C1,Cy > 0
such that for all f € H*(M) = B3 5(M) we have

Cle“Hs(M) < HfHB;,z(M) < C2Hf||Hs(M)~ 2n

Proof. 1t is enough to prove (21)), the rest will follow automatically. The main technical tools used in
the proof are Result|10]and summation by parts. Let X' = supp(®). For the upper bound, notice that

2 s ?
155,00 :j§22j @; (\/Z>f - f‘ L2(M)
=S98 S [l @3

J20 LAk
<> "2U N [l (24)

j=0 LA >27
The last inequality results from the fact that [0,1] C K. By Weyl’s law Result [10| there exists a

constant ¢ > 0 such that \; < ¢/2/¢. Without loss of generality we can assume that ¢ = 22", r € N.
Since v/A; > 27 implies | > 2?0U~") we have

(22)

2 is 2
115y oy <27 D [(fis ol (25)
’ j=>0 1>2d(i—)
=525 3T [ P32 ST Pl (26)
j<r 1>2d(G—r) j>r [>2d(i—m)
<228 £ ey + 277D 255 ) (i £)ol @7)
3=>0 1>2d5

>The space L” (M) is the Banach space of functions (or rather their equivalence classes) that are integrable
when raised to the power p, see for instance Triebel [41] for details on these spaces.
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Now let Rj =32, oai [{f1; f>2|2 and Sy = ijo 2275 <

D025 N (f £olP =) (S~ Si1)R; (28)

5.5_1 = 0. Write

j=0 1>2d j=0
= " Sj(Rj — Rj11) — SoRy (29)

j=>0
<> Si(Rj —Rjt1) (30)

j>1

=78 Y bl 31)

j>0 2di <]<2(+1)d

—223_ - D DT NG (32)

>0 2dj <]<2(i+1)d

D DI LT N (33)

7 >0 245 <l<2(]+1)d

/9229

Somog2. 2 Ml G34)

720 2di <1<2(i+1)d

/5225
=0z 1 2 Nl 1) (35)
l>2d
/€22€
<oz 2 AL Al (36)
1>o
Where we have used Result|10/to get existence of ¢’ such that [2/¢ < ¢’ ;. This proves the upper
bound with Cy = 7227 (1 + 5;2_21 ) The proof for the lower bound is similar. O

Propositionprovides a characterization of the Sobolev spaces H*(M). There is yet another charac-
terization of these spaces that will be useful later, in terms of charts. We present this characterization
as part of the following result.

Theorem 16. On the Sobolev space H® (M), the following norms are equivalent:

oo

1/2
”f“HS(M) = (Z(1+)‘j)s<f7fj>iz(_/\,l)> (37)

J=0

/]

' 5 1/2
By ) = [fllz2 + <Z(2js|‘bj(\/g)f - fHL2(M)) ) (38)

J

I 1/2
1 iz ) = (;H(xlf) o¢;1|!§{3(w)> (39)

Proof. The equivalence between ||-|| Hs(Mm) and IIf] B (M) is given by Proposition The equiva-

lence between [[[| 77 (o) and ||f||H?(M) is proved in De Vito et al. [[13].

A.4 Gaussian Random Elements
Here we recall the definition of a Gaussian process as a Banach-space-valued random variable,
following for instance van Zanten and van der Vaart [49].

Definition 17 (Gaussian random element). Let (B, ||-||z) be a Banach space, and f be a Borel
random variable with values in B almost surely. We say that f is a Gaussian random element if b*( f)
is a univariate Gaussian random variable for every bounded linear functional b* on B.
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Random variables of this kind are also sometimes called Gaussian in the sense of duality. One should
think of a Gaussian random element as a generalization of a Gaussian process, but which is better-
behaved from a function-analytic point of view and in particular does not require the process to be an
actual function—as opposed to, for instance, a distribution. Many connections between the usual
Gaussian processes and Gaussian random elements exist, see Lifshits [27], Ghosal and van der Vaart
[17], Appendix I, van der Vaart and van Zanten [46] for details. The following observation about
Gaussian random elements will be useful later.

Lemma 18. A Gaussian process f on the manifold M with almost surely continuous sample paths is
a Gaussian random element in the Banach space (C(M), ||-|| ) of continuous functions on M.

Proof. Since C(M) is separable, this follows from Lemma 1.6 in Ghosal and van der Vaart [17]. O

B Technical Lemmas

This section contains the lemmas used in Appendix [Cl In this section the expression a < b means
a < Cb for some constant C' > 0 whose value is irrelevant for our claims. We start by an upper
bound on the metric entropy of Sobolev balls on M with respect to the uniform norm.

Lemma 19 (Entropy of Sobolev balls). For all s > 0 let H} = { f € H*(M) : ||fll o) < 1}-
Define the e-covering number of H{ with respect to the norm ||-|| L 1) by

J

N (B e ) = argming I, hy € B+ Hf € |J Blhs.o [iein) ¢ @40)
S .
Jj=1

where B(hj, &, ||| Lo (m)) stands for the ||-|| o (s ball with center hj and radius e.
For any v > 0, there exist C, ey > 0 such that for every ¢ < &g
1nN(s,H1”+d/2, |\-||Lw(M)) < Cem v, (A1)

where the left-hand side of the inequality above, as a function of €, is called the METRIC ENTROPY
of the Sobolev ball Herd/z with respect to the uniform norm ||-|| Lo (aq).-

Proof. Using the charts we will reduce the problem to the entropy of the unit ball of the Sobolev
space H"+%/2([0,1]¢) for which the upper bound is known. Take f € HY +4/2 4nd look for an
approximation of f by f of the form

L
F=> xihog) (42)

=1

for some functions h; : V; — R where V; C R%. We have

L L
If - fHLoo(M) = HZXl(hl ° ¢ — f)HLoo(M) < ZHXZ(’” o — f)HLOO(Z/{l) 43)
=1 =1

L L

< Zth o — f“Loo(u,) < Zth —fo ¢Z_1||L°°(Vz) (44)
=1 =1

< L oo b = £ 0 6 e o,y )

This means that to approximate f by f uniformly on M we need to choose the functions h; that
approximate f o qbfl well with respect to the uniform norm on [0, 1]¢.

Next, we show that the functions f o d)fl are contained in an Euclidean Sobolev ball of radius R,
with R depending only on v and the atlas. We use Grofe and Schneider [21]], Lemma 2.1E] to get

GImportantly, also the remark just above Grofie and Schneider [21], Lemma 2.1, that allows us to consider
Besov spaces B3 5 coinciding with the Sobolev spaces H* instead of the Besov spaces B3 .
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from the second line to the third, and R is the constant hidden behind the notation < in the last line.

L L
Hf ° (bl_l‘ H=([0,1]%) B Hl/z_:l(Xl’f) ° ¢Z_1HH5([0,1]‘1) = EH(XWJC) ° (bl_l‘ H=([0,1]%) 40
L
;H(X”f)w;lo@' °¢1_1HH5([0,1](1) @0
L
< ;Hum 61| oy S 1 -0y (48)

Without loss of generality we assume R = 1. By the Euclidean counterpart [[18, Theorem 4.3.36] of
the result we are proving, we have

v __d
1nN(57H1+d/2([0,1]d),||.||Loo([0,”d)) < e (49)

Let hy, ... hy € H{ " be such that H} */?([0,1]%) € U/_, B(hx, /L, ||-|| o= ((0,1]4)) - Then for
any f € Hf+d/2 there exists a sequence {jg}lel C{1,..,J} such that

L
1 =" g, 0 00| o (0 <L% —c. (50)
=1

This shows that N (¢, Hf, ||| < (g)) < LJ, where L is just the number of charts, proving the claim.
O

For the related diffusion spaces [13]], the RKHS corresponding to the heat (diffusion) kernels, Castillo
et al. [9] uses the results of Coulhon et al. [[11]] to bound the entropy in terms of a wavelet frame
instead of relying on charts. We believe this alternative proof scheme should work in our case as well.
However, we could not, to the best of our effort, get a tight enough bound for the Sobolev spaces by
directly using the results of Coulhon et al. [[11]] and therefore we chose to rely on charts instead.

The next two theorems will be useful to characterize the RKHS of the extrinsic Matérn process on M.
We start by a lemma relating the RKHS of the restriction of a Gaussian process to the original one.
Lemma 20. Assume that k is a kernel on R?, f ~ GP(0, k) with almost surely continuous sample
paths and H is the RKHS of k. If M C R? is a submanifold, then the RKHS H corresponding to the
restricted process fiaq is the set of all restrictions g a4 of functions g € H equipped with the norm
[hllg = _inf  lgllg. (5D

g€H, gjpm=h

Moreover there always exists an element g € H such that gm = fand ||gllz = || fllw
Proof. Lemma 5.1 in Yang and Dunson [53]]. O]

The last result will be used to characterize the RKHS of the extrinsic Matérn Gaussian processes

using trace and extension operators. The second ingredient for this is the following.

Theorem 21. If s > % then the restriction operator extends to a bounded linear map Try :
. ,_D—d , . .

Hs (RD) — H*" 7z (M). Moreover, for every u > 0 there exists a bounded right inverse

Ex, : H'(M) = H"" 72" (RP) such that Tr,., p_a 0 Fxy = Iru ().

Proof. Theorem 4.10 in GroB3e and Schneider [21]]. O
The last two results allow us to characterize the RKHS of the extrinsic Matérn process on M.

Proposition 22. The RKHS H of a restricted extrinsic Matérn process [ with smoothness parameter
v on M is norm equivalent to the Sobolev space H"+%/2(M).
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Proof. Using Lemma[20] the RKHS H can be characterized as the set of functions f : M — R that
are the restrictions of some g € H, where H is the RKHS of the ambient Matérn process f, with

[fllg=_inf  [lgllz- (52)

gEH, g m=f

Since H is norm-equivalent to the Sobolev spac | Hv+P/2(RP) (see the appendix in Borovitskiy
et al. [8]]), by the trace and extension theorem Theorem. 21|forevery f € H

1 e S NN zspr2@oy S MW s o540 = WF L rrerarzany- (53)

Similarly, for every g € H with gm = f we have

1 W zzvsar2any = N9l grovarn pay S N9llgpvsnr2@oy S gl (54)
(M) (M) (RP)
Hence, taking the infimum we obtain
||f||Hu+d/2(M) S _inf lgllg = I1f [l (55)
g€H, g m=
O

The next lemma describes the RKHS of the intrinsic Matérn processes, including truncated variants.
This result is easy to obtain since we have defined them in terms of the Karhunen—Loe&ve expansions.

Lemma 23. Denote by H j the RKHS of the intrinsic Matérn Gaussian process with smoothness
parameter v truncated at the level J € NU {oo}. Recall that { fj} | denotes the orthonormal basis

of the Laplace—Beltrami eigenfunctions. The space H j is norm eqmvalent—wzth constants depending
only on v, k and Uj%—to the set of functions f = Z}le b fj,b; € R with the inner product

J J J
(Cbifs Y08, = S+ 20 (56)
j=1 j=1 7 =1
In particular, Hy C H"T%2(M) for all J, and for every h € H; we have ||h||HJ = ||hHH,,+d/2(M).

Proof. By direct computation, the covariance k of the (truncated) intrinsic Gaussian process is

2 J (u+d/2)
no_ of 2v
bz ') = Z= ;(,@ + 2 (2)f(). (57)
Hence the kernel operator K : L2(M) — L?(M) defined by (Kf)(z) = [,k (z')da’
2
is diagonal in the basis {f]} ., with K f; = f ( ) V+d/2)fj. Then Theorem 4.2 in

Kanagawa et al. [23]] implies that H ; consists of functlons of form f = Zj:1 a; f; satisfying

) UJ% J 2 v+d/2 )
12, == (B +n) <. 59
vik 5

=5+ . .
2 < max(2,1), we find that this space is norm

equivalent to the space H J+ /2 of functions f= Z =145 f; satisfying

Using the simple inequality min(2%,1) <

J
£ 5geear = D1+ X)) < oo, (59)
j=1

2
H 9 : 2v 9 2v 2
The comparison constants Con mm(l, 52) and Con max(l7 RQ) only depend on v, k, 0. O

7 Actually, this norm-equivalence is the only property of the Gaussian process we use in the proofs. Any other
Gaussian process satisfying this would also work, not only the Matérn processes from Borovitskiy et al. [§]].
This is of potential interest since other Euclidean kernels, such as Wendland kernels [S1]], are known to possess
RKHS’ which are norm-equivalent to those of the Matérn kernel.
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Having characterized the RKHS of the processes, we now prove that they can be seen as Gaussian
random elements in the Banach space (C(M), ||-|| ) of continuous functions on M.

Corollary 24. The intrinsic Matérn Gaussian processes of Definition 4} their truncated versions
as in Theorem|6]as well as the extrinsic Matérn Gaussian processes of Definition[/|are Gaussian
random elements in (C(M), ||-|| . )-

Proof. By Lemma [I8]it suffices to show that the processes have almost surely continuous sample
paths. The Euclidean Matérn Gaussian processes have continuous sample paths, implying the same
for their restrictions, the extrinsic Matérn Gaussian processes on M. For the intrinsic Matérn process,
we use lemma Lemma[27]below. O

The last corollary allows us to use the same proof scheme as van der Vaart and van Zanten [47]]
through the control of the so-called concentration functions that we shall define later. It is also
important that we work with Gaussian random elements in C(M)—and not only with the classical
notion of Gaussian process—as the concentration functions are defined using the Gaussian random
element RKHS defined in van Zanten and van der Vaart [49]], which can be different from the classical
RKHS. Fortunately, when the process is a Gaussian random element in C(M), van Zanten and
van der Vaart [49]], Theorem 2.1 implies that the two notions of RKHS coincide.

In order to extend convergence rates results with respect to the empirical L?-norm to convergence
rates with respect to the full L?-norm, we need to show regularity properties of the prior process’
sample paths. Kolmogorov’s continuity criterion is a standard tool in probability theory to show that
a given stochastic process has a Holder continuous version: we re-prove it here because we will need
a form of the result which gives explicit control of the Holder norms, which is not usually included in
the statement of the theorem.

In the following, if & is a random variable under the probability measure II, we define

T[] = / hII(dh) (60)

for the expectation of h with respect to II, assuming integrability.

Lemma 25 (Kolmogorov’s continuity criterion). If g ~ Il is a zero mean Gaussian process on [0, 1]¢
2 2
[lg@) = 9’| < Clle —y|* (61)

for some 0 < p < 1and C > 0, then there exists a version of g with samples paths in C ([0, l]d)
Sor every 0 < av < p. Moreover for every o < p this version satisfies 11 {||g||za([0 1]d)} < C' where
C' < 400 depends only on C, p and c.

Proof. Take z,y € [0,1], M > 0 and ¢ € N. Since the random variable g(x) — ¢g(y) is Gaussian we
have

(29)!
24¢q!

mlg() - gw)) = ST [lo(x) — 9(w)P]” < Callz =yl (62)

where Cj := (' (22;1;!! . We consider the 2¢-th power for a reason that will become clear later in the

proof. Therefore by Markov’s inequality for every z,y € [0, 1]% we have

_ 2

Mg(x) — g(v)| > u] < Cqu™lz — y|I*” (63)
Now take X = Up>1 X, Xx = 27%Z% N [0,1]%. Then the previous inequality applied to any
x,y € X} adjacent, where we see X, as a graph where two vertices are connected if they differ by at

most one coordinate, and v = M2~k implies

I[|g(x) — g(y)| > M275] < C M 2927 2kalp=e) (64)
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Summing over & > 1 and adjacent points in X—and there are at most C'2¥¢ of them where C' > 0 is

an absolute constant—gives us for ¢ > Q(%Q), where we may take ¢ = ﬁ, that
[3z,y € X, z,y adjacent, [g(z) — g(y)| > M|z — y||*] (65)
<> Y Tflg) - g(y)| > M2k (66)
k>1 x,y€ X adjacent
< CZ okdxr pr—2a9—2ka(p—a) _ LM—M (67)
= a 22q(p—a)—d _ 1 ’

k>1

In particular for all ¢ > max (1, ﬁ) we have

2
H( s g(x)g(y)) oo / wil s 9@ 9@y

« «
z,y€ X adjacent ||.’E - y” x,y€ X adjacent Hl’ - yH

(68)
<Cc,ap (69)
lg(z)=g(y)|
lz—yl™
surely. Since X is dense in [0, 1]¢ and g is almost surely uniformly continuous on X, g admits a
unique continuous extension to [0, 1]¢ on an almost sure event .A. Let us define

for some constant C¢,q,, < +00. In particular K = Sup, , ¢ x adjacent is finite almost

lim g(y)onA
Vo € [0,1]%, g(z) = { yoovex ) (70)
0 otherwise

For any z,y € [0,1]¢ and z,, = 2, Yn — Y, Tn, yn € X we have

(=) — g(y)| <liminf[g(x) - g(wn)| + [F(zn) = Gyn)| + [Gyn) — 5(v)] (71)
<liminf|g(z) — glan)| + Kllzn = ynll* + [9(yn) — 5(v)] (72)
=K|z —y|* (73)

Hence g is a-Holder continuous on [0, 1]¢ with the same constant K and,using (a +b)? < 2(a? +b?)
that is valid for every a, b > 0, we have

2
_ g\r) —g\y
H[”guga([o,ud)} <2l {(sup 9(95)2)] + 21 sup. ‘()_7&)‘ (714)
zeX x,y€ X adjacent Hx yH

< 21| (19(0)| + K)*| +211 < sup 9<$)_9<y)> (75)

(0%
xz,y€X adjacent Hx - y”

< AIT [9(0)2 + KQ} + 211 ( sup |g(33)—g(y)|> (76)

x,y€X adjacent ||-'1j - yHa
<Ccya,p < +o0 a7

where for the last inequality we have also used g(0) € L2. Moreover g is a version of g: for all
z € [0, 1]¢ we have by definition lim,¢ x . g(y) = g(y) almost surely, and II [|g(:z:) - g(y)ﬂ <

Cllz — y||*” = 0asy — z,y € X, hence the uniqueness of the limit in probability implies that for
all z € [0,1]¢ g(x) = g(z) almost surely, ie that g is a version of g(x). Finally, if & < o/ < p, then
since the two versions corresponding to o and «’ are continuous, they must be indistinguishable. [

Remark 26. We see in the last proof that we can replace 11 {”9”3&([0 1}d)} < Coa,p in the statement

by I1 [||g||ga([071]d)} < C’C,mpﬂd for any r > 0, even though we will only use r = 2 in the following.
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The next lemma applies our version of Kolmogorov’s criterion, Lemma 23] to the intrinsic Matérn
processes on M by considering charts. Another idea would be to use Driscoll’s Theorem—given
in Kanagawa et al. [23]], Theorem 4.9—and the Sobolev embedding theorem—De Vito et al. [[13]],
Theorem 4—but that would only give us that the sample paths are almost surely in C? (M) for every
0 <~y <v—d/2,7 ¢ N, whereas here we improve the range of index to v < v. As we will see
in Appendix [C| we need to ensure that this property holds somewhat uniformly with respect to the
truncation parameter, which is why we tracked the constants in our proof of Kolmogorov’s criterion.
As we will see, the main difficulty in the proof of the next result will be to tackle the case of regularity
strictly larger than 1.

Lemma 27. Let f ~ II,, be an intrinsic Matérn process with smoothness parameter v > 0 truncated
at J, € NU {oc}. Then for every v < v we have

sup Ly [ £113-ug)| < o 78)

Proof. We start by the case v < 1. Take 1 < I < L and define h; = (i f) o ¢l_1. Then h; is a
Gaussian process with covariance kernel given by

Va,y € Vi, K(z,y) = x1 0 ¢; " (2) K (z,y)x1 0 ¢, () (79)

where K (z,y) =IL,[(f o ¢, ' (2)) (Fo ¢ ") (gﬁis the covariance kernel of f. This has an RKHS

that we denote H. The goal is to apply Lemma|25|to h;. For all z,y € V;, where we recall that we
can assume that V; = (a;,b;),0 < a; < b < 1, we have

11, [|hl($) — hl(y)ﬂ :K(x, x)+ f((y, y) — 2[~((z, Y) (80)
~ - 2
= &K@ - K| 81)
~ - 2
= Ssup ‘<K(:U7)_K(y>)7(p>‘ (82)
lpllz=1
= sup |o(x) — o(y)|? (83)
loliz=1
< ‘ St‘lp lelEe ol =yl (84)
|

In order to apply Lemma it suffices to show that we have a continuous embedding H < cr(Vy).
H is by definition the completion of

{Za (i, szaieR,xiew} (85)
p

{Zaz xiodp ) (@) (xio o) (VK (¢ (), 6 1(-)):p>1,aieR,xievl} (86)
i=1

equipped with the RKHS norm

P

E Oé CCZ,

i=1

Z aiag(xa 0oy ) (@) (o oy ') (@)K (0 (i), ¢ (2)) 8T

H iJj=1
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Hence by definition of the Sobolev space H”+%/2(M) and the equality ||-||;; = [l g7+ar2 ag) o0 H
we have

p 2
> aiK (@i, (88)
i=1 Hv+d/2(Rd)
» 2
=D ailao g ) (@) (aod ) (K (S (@), ¢ ()
=1
(89)
p 2
< P aslae o) @)K (g @), ) (90)
i=1 HV+d/2(M)
p 2
= Y ailao o ) @)K (g @), ) O
=1 H
= > (o d ) (@) (xiod ) (@)K (o (i), 7 ()
i,j=1
92)
p 2
=[S ekt | - @)
=1 H

Therefore by completion we find a continuous embedding H « H*+%4/2(R%) with ||-|| ;o-+4 s2(ray <
Il on H. By the Sobolev Embedding Theorem in R%—see for instance Triebel [41], Section 2.7.1,

Remark 2—we have By 3"/ (R?) = H*T4/?(R%) < ¢ (R%), which implies H > ¥ (R?) by
composition. Therefore there exists a constant C' = C), such that

v,y € Vi, 1L |hu(@) = ()] < Cllz =y ©4)
Hence, by applying Lemmathere exists a version /y; of h; with almost surely a-Holder continuous

sample paths for every a < v. Now consider h = Zlel hi o ¢;. Then h is a version of h because,
foralla € Y

L L
1 [n(a) # h(a)| = 11| D" hi(eua) £ > hlwl(a»] (95)
=1 =1
< U {hu(én(@) # hulou(a)) § 96)
L
< Zﬂ[hz(@(a)) # Bl((bl(a))} 97
1=1
=0 (98)
the last equality being true from the fact the each hy is a version of h;. Moreover
12 L _ N
o [ (S
< e 1) B o110 (100)
< CC7Q,ZI7T (101)

still using Lemma 23] and fact that the x; and ¢; are smooth, hence the additional dependence in 7 in
the last constant.
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We now turn to the general case. The proof will be similar to the one of Ghosal and van der Vaart
[17], Proposition 1.3 although we need to control the Holder norms, work through charts and precisely
show that the kernel is regular. Assume for simplicity that d = 1,1 < v < 2, otherwise it suffices
to introduce coordinates and to proceed by induction on |v|. Letl € {1,..., L}, and as before

define K (z,y) = (xi 0 ¢; ) (@) (xt 0 &y ) W) K (¢, (), & ' (y)) the RKHS of by = (x1f) 0 7 *
as well as H its RKHS.

First, let us construct an L?-derivative /; of hy—where here L? = L?(Q, F,P) with (€, F, P) the
underlying probability space—namely a square integrable process on V; such that

| it

— ill (.’L‘)

2
] -0 (102)
as h — 0, for all z € V. For this we will first show that %(J:, )€ H for every x € V), and that

Hax(x7)_8m(x/7)’| Scu|x_$/|u_1 (103)

(‘T+ha) ( ) f((l’#’h/,-)*f{(.%,-)
H -, 7 i (104)
o
~K(z.) K Y~ K.
= sup 1‘—|—h, (.I‘, ) _ (Jf-ﬁ-h, ) (33, )7()0 (105)
= h' _
lellz= i
h) B —
_ ez + () o=+ 3 o(z) (106)
nwnwl h h
1
= sup / [ (z +th) — ¢ (z + th)] dt (107)
llellz=1 0
< sup II@’Ilcufl(V,ﬂh—h’l”_l (108)
lellz=1
< S Ieller uplh = H'1"~ (109)
Plia

As in the case v < 1, we can show show that H s C¥ (Rd). This implies that for a constant C' = C,

K@+h) - K@) K@+h,)- K@)

h h

<Clh—n|"" (110)
i

As |h —h/|""" = 0 when h, h’ — 0, because v > 1, this proves that M

net in H: by completeness of H it converges in H to a limit g. Since convergence in H implies
pointwise convergence by the general properties of RKHSs, the limit g satisfies

K(x+hy) - K(z,y) 9K

is a Cauchy

v =1li = — 111
Y 9(y) = lim 0 5 & Y) (111)
Hence the partial derivative %—K(x y) exists for all y and 9= %f (z,) € H. Moreover, by

the isometry hy(z) € L? — II[h(z)h(-)] = K(z,-) € H, we deduce that h; is actually L2-
differentiable, with an L2-derivative denoted as h;, and that the derivative process h; is Gaussian as

it is an L? limit of Gaussian random variables, satisfying IT {hl(x)hl(y)} = <%(m, ), 2 9K (y, )>]§1'

Having established the existence of an L2-derivative f; of the process h;, we would like now to
show that h; possesses a (v — 1)-regular version for every v < v. For this, we would like to apply
Lemma 25|to h;.
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For this notice that, still by isometry, for all h > 0

. . 2
. . 2 0K  , 0K
H“hl(x)_hl(y)‘ } = (%(337')—%(337')”~ (112)
. . . 2
K($/+h7) — K(ﬂjl,') 0K /
< - .
<3 h o7 (@',) B (113)
i
~ . _ 2
K(x+h,)—K(z,:) 0K,
+3| N o (z,) ) (114)
~ . . . 2
K 3= K(zx. - K(z' N — K(z .-
h h _
H
Therefore by the same arguments as above, we have
, L2 |lek oK
— = JRE— ! o) - — .
H[[hl(x) ()| } o @) = S| (116)
2 . —_ 1 . < ! . —_ 2 / .
h—0 h h ~
i
1
< liminf sup / |/ (x + th) — ' (2 +th)|dt (118)
P20 ellz=1o
< lilrninfC’l,|33—gc’|u_1 (119)
h—0
=Cylz—2|"" (120)

Therefore we can now apply Lemma [25| to h; and find a version iL; of hy with sample paths in
C*~1(V;) almost surely for all & < v and such that

2

Va<1/,HU h;

] <Cpa <400 (121)
co=1(W)

Take any ¢; € (a;, b;) and consider h; := hy(¢;) + fc; hi(t) dt. Then since h/ is almost surely in
C*=1(V), hy is has almost surely C*(V;) sample paths. Moreover, it is easy to check using our
previous results that ; has an L2-derivative given by h. This implies that h; is a version of h;:

indeed, for any H € L2, the function x — II Kizl () — Ml (x)) H} can be seen to have a vanishing
derivative, and is equal to 0 at z = ¢;, hence II [(ﬁl () — hl(z))H] = 0 for every H € L? and
& € V; which implies that for every @ € V; hy(z) = hy(x) almost surely.

Consider now h = Zle Bl o ¢;. Then, arguing as in the case v < 1, we find that h is a version of
2

<
C"(M)] -

O

h with C*(M) sample paths for every a < v, and that for every a < v we have II {Hﬁ‘
Co,p < +00.

Using the last result and known properties of the Euclidean Matérn processes, we prove the next
lemma that shows in a way that all of the Matérn processes presented in this paper are sub-Gaussian,
uniformly with respect to the truncation parameter in the case of the truncated intrinsic Matérn
process, and live in Holder spaces with appropriate exponents. This result will be used to control
Holder norms when going from the empirical L2-norm to the full L2-norm. We use the notation
II,, in the next result to emphasize that the prior depends on the sample size when we consider a
truncated intrinsic Matérn process.
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Lemma 28. For I, the prior in either Definition[d} Theorem|6|or Definition[7} for every v > 0 and
v < v,y &N, there exists a constant o (f) = o-(f) independent of n such that

Ve > 0,10, [ fller gy > (@ + Do(f)] < 267772 (122)

Proof. We start by the restriction f of an extrinsic Matérn process f to M, as in Definition Defini-
tion By section 3.1 in van der Vaart and van Zanten [47], for every v < v we have f € C? ([O, 1]D)

almost surely. By lemma 1.7 in Ghosal and van der Vaart [[17], for every v < v f is a gaussian random
element in the Banach space C” ([0, 1P ) In particular, by the Borell-Sudakov-Tsirelson inequality
(proposition 1.8 in Ghosal and van der Vaart [[17]]) we have :

YV > 0, H{Hf‘

> (¢4 1)0<f>] < 9e7/2 (123)

¢ ([0,117)

1/2
2
X ]D)] < o0. Since M is smooth, the restriction f also satisfies
0,1

where U(f) = H{Hf‘

CY
Ve > 01| fllewrgy > (@ + o (f)] < 2e7572 (124)

perhaps for a possibly larger constant o ( f).
The case of the intrinsic Matérn process f ~ II,, truncated at J,, € N U {oo} follows in the same
way, as we have shown in Lemma 27| that sup,, > IT,, [Hf||?3a(M)} < Coyp- O

In order to apply Bernstein’s inequality when going from the empirical L2-norm to the full L?-norm,
we will also need this following extrapolation lemma.

Lemma 29. For any function g : M — R and v ¢ N we have

1910 HQHQ”“ lgll3 (125)

Proof. We use lemma 15 from van der Vaart and van Zanten [47]] and push it through charts. More
precisely we have, using B, . ([0, 1]”) = €7([0,1]”) for v ¢ N, that

gl < D110xg) © 67 e iy (126)
l
d
Smax||(xig) 0 & |55, | () 0 b 1|z;6‘jl) (127)

By definition of the the manifold Holder spaces this gives

2'7+d

19lloc S llglle™Thry max(| (xag) 1”2?{2) (128)

Finally since the x;’s are bounded, the charts are smooth and pg is lower bounded we have

) o0 [y = [ 100 00" ) < | Pamentan < 1oy 029
l
which gives the result. O

Having established regularity properties for our prior processes, we now turn to the so-called small
ball problem: we want to find sharp lower bounds on II[|| f|| ., < €] where f ~ Il is our prior process.
This will be crucial in order to control the concentration functions. In fact, it is well-known that
this problem is closely related to the estimation of the metric entropy of the unit ball of the RKHS
of f with respect to the uniform norm: see Li and Linde [26]] for details. Since we have already
characterized the RKHS of our processes in Proposition 22| and Lemma 23] we are able to lower
bound the small-ball probabilities. The technicality here involves getting a bound uniform in the
truncation parameter for the truncated intrinsic Matérn process, as the truncated Matérn process is a
sequence of priors rather than a fixed prior.
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Lemma 30. If f ~ IL, the prior in either Definitiond|and Theorem|[6|or Definition[7jwith smoothness
parameter v > 0, then there exist two constants C, o > 0 that do not depend on n such that for all

e < g we have —InIL,[|| f|l ., < €] < Ce—%

Proof. Because the processes are Gaussian random elements in C(M), their stochastic process
RKHS given by Proposition [22| coincide with their Gaussian random element RKHS. Hence, for
the non-truncated intrinsic and the extrinsic Matérn processes the result is a direct application of
Lemma[19]and Li and Linde [26]], Theorem 1.2.

For the intrinsic Matérn process truncated at .J,, it is not immediately clear that the constants C, &g
can be taken independent of n, and we go through the proof of Li and Linde [26], Proposition 3.1 to
see this. We first need a crude upper bound of the form

L[| f]l. < ¢] < ce° (130)

for some possibly large constant ¢ > 0. To get such a bound, we use Castillo et al. [9]], Proposition 3
which shows the existence of a universal constant C' > 0 such that

Ve < min(1, 4o (f)) —InIL[||f]. <] < Cn(e) 1H<W) (131)
where o(f) = II, [H f||io} "% and n() is defined in Li and Linde [26] by
2
max{j > 0:4l;(f) = eh () = inf{ 1L, [ Zimg|| |72 S 2m, (132)
j=0 o j=0

with @ standing for the equality in distributions and the infimum being taken over every possible
decomposition ) -, Z;h; with h; € C(M), Z; being a sequence of IID N(0, 1) random variables
as in Definition [} and the series being required to converge uniformly almost surely.

_v+d/2
The function f = Z}JQO (%’5 + )\j) ?  Z; f; is a valid decomposition. Therefore
I /o vtz 212
v
(f) <y Z](HQ + Aj) Z;f; . (133)
= o0

Still by the Sobolev Embedding Theorem and by Weyl’s Law, given in Result[I0] for every v >
max(d/2,v) there exists a constant C' = C', a4 such that for all J € N, allowing C' to change from
line to line, we have

2 2
Jn Jn
_ vtd/2 _ v4d/2
W[ D2 (+X)7 2 Zifl| | SCIL||| D) A+ M) = Zif (134)
j=J+1 o j=J+1 HY (M)
Jn
=C? N (1) WY (135)
j=J+1
In
§C2 Z (j+1)—(1+2(1’—’7)/d) (136)
j=J+1
< 02N (j+ 1)U (137)
i>J
< C2(J 4 1)~ 2r=/d (138)

By choosing J = 0 this gives us o(f) < C independent of n. Moreover, by choosing J >

Ce™ o) , again for a comparison constant C' independent of n, this gives us n(e) < Ce™ o)
for C independent of n. This implies using Castillo et al. [9]], Proposition 3 that

—InIL,[|| f]l,, <&l < Ce™€ (139)
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for C' > 0 independent of n.

With this crude bound we can now continue the proof of Li and Linde [26], Proposition 3.1. For this,
we need a metric entropy estimate. For this notice that for all J € NU {oco} we have Bys(0,1) C
By (0,1) = Bpvtasz(aq)(0, 1), and therefore using Lemmawe have the metric entropy estimate

In N (Bgs (0,1)) < Ce™ 7572 (140)

for a constant C' > 0 independent of .J. Therefore following the proof of proposition 3.1 in Li and

Linde [26] we find — InIL,[|| f| ., < €] < Ce=+ for every ¢ < &g, where C, g9 > 0 are constants
independent of n. O

This concludes this section and we now turn to the proofs of our main results.

C Proofs

We recall that in the following the expression a < b means a < Cb for some constant C' > 0 whose
value is irrelevant for our claims. We first define our notation for Gaussian likelihood and probability
distribution of the sample.

Definition 31. For every x € M™ and f : M — R we define py o  to be the joint distribution

corresponding to the marginal p, = po and conditional py|, = N(f (), 021), where f(x) is the
vector with entries f(x;). Expectations with respect to py o o, we denote by B o, o, and to py by E,.

Following van der Vaart and van Zanten [47], Theorem 1, which is valid for any compact space hence
also for M, we can deduce a posterior contraction rate with respect to the empirical Lg-nomﬁ

L& 1/2
£, = (nZﬂxi)?) (141)
i=1

by studying first the so-called concentration functions with respect to the uniform norm. This is the
object of the following lemma. We again recall that the prior II,, may depend on n if we consider a
truncated intrinsic Matérn process.

Theorem 32. Let I1,, denote the prior in either Theorem[5] Theorem|[6|or Theorem[S|with smoothness
parameter v. Let H,, denote the corresponding RKHS. Define the CONCENTRATION FUNCTION for
foe C(M)ande > 0 by

/1

0r(e) = —InIL[||fll <€l + . (142)

inf
FEH,: || f—foll oo <€

min(v,B)

Then if fo € H?(M) N BE, (M), B > 0we have ¢y, (en) < ne? for e, a multiple of n™ 2+ .

Proof. The first term on the right-hand side of Equation || is bounded by C==4/¥ by Lemma
To bound the second term, we assume, without loss of generalityﬂ that v > (. Consider an

approximation f = ®,;(v/A) fo of fo, where cs < 2777 < ¢ and ¢ > 0 is an absolute constant. Since
we assume fo € BS, (M), by definition of BY, (M) we have

1fo = Flloo < W follps, a2 S (143)

where in the last inequality the Bfoyoo(/\/l)-norm is the constant implied by notation <. We now
show that

1fl5 S e~ B =A+d/2) (144)

8This is actually a seminorm, but we follow the rest of the literature in referring to it as a norm.

*Because H” (M) N B, (M) C H™™E) (M) 0 BRES(M), if 8 > v then fo € HP (M) N
v min(8,v)
BE . C HY(M)N BY o (M) gives arate of n~ 2v+d =~ 2v+d .
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First notice that by Lemma 23] and Proposition 22} for any prior considered here we have H C
HY+2(M) and |||z < [l z7-+a/2 a1y for a constant C that does not depend on n. Hence using
Result[T0]and properties of ® we have

11 S 11 s ar2an (145)
= (A 202 (270N ) i, fo) (146)
1>0
< D) @A+ NP fo)l? (147)
I/ <29+
< 2UHD@v=28d) N (1L AP fi, fo) (148)
LA <2i+1
< QUFNC 2B N "1 ) |(f, fo)? (149)
1>0
- 2(j+1)(2v—25+d)||fOHiIﬂ(M) (150)
20, 2
< 92(v=p+d/2) .~ 5( ﬂ+d/2)||f0HiIﬁ(M)5 2 (v—pB+d/2) (151)
Our assumption v > /3 implies that
2 d _d
Zw—B+d2)>> ", (152)
1 CEEES
Hence we have e~4/¥ < ¢~ 5~ +4/2) yhich gives us gy, () S e~ 5(W=F+4/2) It is then easy to
check that ,, = Mn~ %5 satisfies ©f,(en) < ne2 for M > 0 large enough. O

From this we deduce an upper bound on the error in the empirical L* norm ||-||, , i.e. on the Euclidean
distance between the posterior Gaussian process f and the ground truth function f evaluated at data
locations x;.

Lemma 33. Let I1,, denote the prior in either Theorem 3] Theorem[B|or Theorem S with smoothness
parameter v > 0. Fix fo € H?(M) N BE, (M) with 3 > 0. Then

Efott, (Jaeyllf — follh < & (153)
min(v,8)
forall ¢ > 1 and €, a constant multiple of n~ "2v+d with constant depending on fy, q, v.

min(8,v)

Proof. By Theorem [32|for ¢,, a multiple of n~~2v¥4 , we have ¢y, (g,) < ne2. By virtue of this,
the proof of Theorem 1 and Proposition 11 of van der Vaart and van Zanten [47] imply the result.
Indeed, the proof of Theorem 1 relies solely on the fact that ¢, (£,,/2) < ne? and an application of

van der Vaart and van Zanten [47], Proposition 11. We have ¢y, (e,) < ne2 < n(2e,)” and hence
the condition is satisfies with ¢,, replaced by 2¢,,. Moreover, even if van der Vaart and van Zanten
[47], Theorem 1 is formulated for ¢ = 2, van der Vaart and van Zanten [47]], Proposition 11 gives a
result for all ¢ > 1. O

Notice that for the last result we only assumed v, 8 > 0, and therefore require no constraints on the
smoothness parameters. We now turn to the proofs of our main results, Theorems [5} [6|and[8] For
them, the extra assumption min(3, v) > d/2 is needed in order to go from the empirical L? norm to
the true L?(po) norm, leveraging regularity of the ground truth function and the Gaussian process.
The value d/2 in this assumption is not surprising, as by the Sobolev embedding theorem this is the
minimal natural requirement to guarantee that f and functions in the support of the prior are at least
continuous.

Proof of Theorems[3] [6]and|[8] Given the technical lemmas from Appendix [B]and Lemma [33] the
proof is similar to the one of Theorem 2 in van der Vaart and van Zanten [47]]. We include it for
completeness and to point out the differences in our context.
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min(8,v)

Take &, oc n~ 2v+d  satisfying ¢, (€,/2) < ne? (such a rate exists by Theorem . Then for
each n there exists an element f,, € H,,, where this notation refers to the RKHS corresponding to
I1,,, satisfying

[ fallzy < me? I fn = folloo < €n/2- (154)

Hence for any v such that d/2 < v < v,y ¢ N, any s > 0,7 > 0 and an indexed family of events
.AT that is to be chosen in the future we have

TBay Bty (o | = follbo ) S €0 Bay Epatt, (o | fn = foll 200 (155)
+ €;q Em,y Efwl'[n(~|:c,y) ||f — f”Hqu(po) (156)
,S 1+ E:Lq E%y ]EfNHn(~\ac,y)||f — an%Q(po) (157)
=1 +Em,y/ qr? ML, (B(r) | z,y) dr (158)
0
where the events () are defined by B(r) = {||f = fallpz(py) > anr}. Denote
D) = {20If = fal, > enr} (159)
BI) = {1 flles ey > 7VRET} (160)
BIV) = {Iflevirgy < TVRE, 2f = fally Seur <1 = fallpay J- (16D
Then B(r) € BO(r) u B (r) U B (1) and thus
€n Bey Brott, (o) lf — f0||L2 (po) 5 1 +Em}y/ P4, (B(I) (r) | ac,y) dr (162)
OOO
+1Ea,.,y/ ri' e dr (163)
0

—HEz,y/ ri” 11AH(B ()|my>dr (164)
0

+1Em,y/ rq’llATHn(B ) () | g y) ar. (165)
0

For the first term, by Lemma [33]applied conditionally on the 2:;-values, for which we got a bound on
the integrated empirical L? norm uniformly on the design points, we have

Eqy / P, (BO() | @,y) dr S Bay Epet, (g IS = foll2 (166)
0

5Ew,yEfNHn(~\w,y)||f*fn”(yll+ ”fO*ango (167)

< et (168)

Moreover, by Lemma 14 in van der Vaart and van Zanten [47]] applied with r in the notation of the
reference being equal to v/ne,r*, for each r > 0 the event

)
Pyz 2 2s
a@) =4 [Py s eI = ol < (169)
(fo)( ) o0
Py \Y
is such that (fo) ) o
Py [AS(@)] < e/ (170)

Therefore, by Fubini’s Theorem, since nsi > n2v+d > 1 the second term is bounded by

]E;{g}/ I e (g dr = / ri= 1E E;@[Aﬁ(w)]} dr (171)
0 0
s/ ri-te e B dr (172)
0
< [ rete By (173)
0
<C (174)
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where C = C ; < oo. It remains to bound the last two terms. By Bayes’ Rule, we have the equality

(")
Py
‘f”ch'v(M)>Tﬁ€n7‘S H? 1 dp (n) (df)

o [l ey > V27| = T — (175)
fm]d&fﬂ<#>
therefore on A, (x) we have
I (1 flles () > T\/ﬁanrsly} (176)
2 2s (n)
enenT / dpf
< . 1y, — 11, (df) (177)
[l = folloe < &nm] Jifllgs o >7v/mEnrs pf0 i
Hence taking expectation and using Fubini—Tonelli’s Theorem gives
Egcf;) |:1.Ar(z)Hn [”f”m(/v() > T\/ﬁsnrﬂyﬂ (178)
2 2s (n)
enen’ dp
< ng[/‘ Iy, — L 10, (df) (179)
Ha[llf = folloo <enm 1" [ ) fller ony>vienrs dp",
ensirZS f
= Hn[ f > T nsnrs} (180)
L7~ Follo, < 2] L e
Therefore the third term can be bounded by
BYY [ 1L, (B0 | 2.y) dr (181
OOO en62 TZS
< ra-t IL,, [ f > T\/ﬁEnTs} dr (182)
JARa e LA G

Now using Lemma [28] for a possibly small constant ¢ > 0 independent of n, we have

2_2 s
1L, [IlfllmM) > T\/ﬁenrsly} LeonTEnT (183)

Moreover, by using the bound on the concentration function in Theorem [32]and Ghosal and van der
Vaart [|17]], Proposition 11.19, we can assume that

-1 2, 2s

IL, || f = follo < VnEnr] > e ", (184)

Therefore the third term is bounded by
B [ (B0 [ y)ar < [t S e e
0 0

o0 2s
s/rwfrm<m (186)
0

if 72¢ > 1 4+ ¢~ 10. It remains to bound the last term.
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We have by the same arguments as above that

]Em/ rq’llATHn(B ) () | y) (187)
0
= Em)y/o ’I“q_llAT(w) (188)
LIl vey < 7VAERT" 217 = Fully < 2 <11 = Falloly] (19)
/oo 1 6“63’/7423 (190)
< ri
0 IL{f = foll oo < enr?]
x Eg 11, [”chw(M) < T\/ﬁgnTS’QHf - ann <enr <|If = f’ﬂH2:| dr (191)
< /OO rqfle(c+1)nsir25 (192)
0

<[ pollf = fully = 201 = Full JOa(d)dr. 93)
Hf”c"r(M)ST\/ﬁanTsaanTSHf_anQ

As the squared empirical L2-norm is a sample average of the true L?-norm, the probability in the

integrand can be controlled easily via a concentration inequality. As in van der Vaart and van Zanten
[47], we use Bernstein’s inequality—van der Vaart and Wellner [48]], Lemma 2.2.9—to find that

polllf = falla = 21f = Falla] = o [|f L R T Ry VR ] R

n L = fall?
< ex (195)
ep( 6 [1f — full’, )

Moreover, by Lemmal[29) since v ¢ N we have

_d__
Hf_anoo /S ”f_ané::U\i/[)Hf fn”zwrd (196)
Using the Sobolev Embedding Theorem—De Vito et al. [13], Theorem 4—I|f — fullcy r) S

[ falla + 1fllev vy S TVnenr® whenever || £l pq) < Tv/nenr®. Therefore, for a constant ¢ > 0
we have

IS =l
pO[Hf_ fn||2 > 2||f_ ann] <exp| —cn (197)
If - fnllz”” (- fn||2”+”
-2 221(1 2g (1=9)
<e e TR K (198)
Hence, we can bound the last term by
Eey / P11, 11, (BUH)(r) | a:y) dr (199)
0
a1 1)ne2 r2e -~ ot T )
S/ ri—le (c+1)ne;r e~ cT n r dr. (200)
0

a/2 \2 _
We have n+1 = n(n 2w+d) . Since e, < n

min(v,8)

2v+d and min(v, 8) > d/2, we have ne2 <

n=+ for some 7 € (d/2,v). Moreover, for this choice of v and s small enough we have 3¢ d(
s) > 2s, which proves that for some possibly small constant C' > 0 the fourth term is bounded by

oo -1
0—1/ r1e=Cr% qr < 00 (201)
0

This concludes the proof. O
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2« D Expressions for Pointwise Worst-case Errors

925 Let k be a kernel on some abstract input domain X', and let H, be the respective RKHS. Consider n
s26 input values X C X and let 02 > 0 be the noise variance. Define

mex,1e(t) = Kix (Kxx + 0217 (f(X) + ¢), (202)
v (t) = v x (t) = k(t, t) — Kix (Kxx + USI)_lKXt. (203)

927 Proposition 34. With notation above
v (t) = sup Een(0,02nf(t) = mix. 1 (1) (204)

FEM,Fllpg, <1

928 Proof. To simplify notation, we shorten E..x(o,o21) to E and denote o = Kx (Kxx + 02I)~"
920  First of all, by direct computation,

Emi,x fe(t) = af(X), (205)
Empx,1:(t)° = af(X)f(X)Ta +cZaa’. (206)
930 Write

E|f(t) — mpx.r.()]” = F(£)? = 2f(t) Emp x. 1.2 () + Emp x 1.2 (1) (207)
= ft)? =2f()af(X) + af(X)f(X) a" +olaa’ (208)
= (f(t) — af(X))? + o2aa” (209)

= 2 2 T
= (k(t,") ;a]k i), >m +olaal. (210)

. . 2 2
901 A [|gll, = SuPrerep1,,, <1495 Fas Implying suppeqy, gy, <189, F)30, = 19l we have

n 2
sup  Ef(t) — mux. ()] = Hk:(t, )= ajk(a;, )H +olaa’ 211)
feHr — Hi
17115, <1
= k(t,t) — 2aKx: + aKxxa' + U?oza—r (212)
aKx:
= k(t,t) — aKx; = k(t, 1) — Kix(Kxx + 021) 'Kx; .
v, x ()

(213)
932 O

933 We now move to the misspecified case. Consider the RKHS .. for some other kernel ¢ : X x X — R
934 instead of 7. Then, continuing from (210), write

n 2
suqu E|f(t) — mk’x’f’g(tﬂz = Hc(t, )= z:ozjc(acj7 )HH +olaa’. (214)
fe — .
1, <

935 The question is how to compute the norm on the right-hand side. There is not much hope of
936 doing this exactly in the misspecified case, thus we consider approximations. To this end, we

937 take some large set of locations X’ C X. Then we use ||g||§_LC ~ g(X)TCxix/g(X') for g(-) =
w8 c(t,-) — Y5 aje(xy,-). Asaresult,

P2 g(X) Crix 9(X) + o2aa =T x(t) =0 (1) (215)

bup IEIf() my X, f,e(t)
Hf\lu

99 where v(®)(t) was first introduced in SectionE]

32



940
941

942

943

944

946
947
948
949
950

951

952
953
954
955
956
957
958
959
960
961
962
963

964
965
966
967
968
969
970

971

972
973
974
975
976
977
978
979
980
981

To compute spatial averages of this quantity, let g;(-) = c(t,-) — >-j_; ajc(x;, ), the same as g
before, but now with explicit dependence on ¢. Similarly, put oy = Kyx (Kxx + 02I)~1. Then

9:(X') = Cx/y — Cx'xaf =Cx/¢ — Cx/x(Kxx +02I) 'Kx;  (216)

gt(X’)TC)_(/lX/gt(X/) — (CtX/ — OthXX/)C)_(,lX, (CX/t — Cx Xa;). (217)
From here we can also deduce that
1 7 1 T—1
bl > tkex(t) = X 3" 9e(X) T Cxlxge(X) 218)
texX’ texX/’
1 —_—
= X tr(gx/ (X') T Cxrxr9x/ (X)) (219)

where gx/(X') = Cx' x' — Cx x (Kxx +02I) ' Kxx.

E Full Experimental Details

All of our kernels were computed using GPJAX|[32] and the GEOMETRIC KERNELS| library. We
use three manifolds, each represented by a mesh: (i) a dumbbell-shaped manifold represented as a
mesh with 1556 nodes, (ii) a sphere represented by an icosahedral mesh with 2562 nodes, and (iii)
the Stanford dragon mesh, preprocessed to keep only its largest connected component, which has
100179 nodes. For the sphere, we also considered a finer icosahedral mesh with 10242, but this was
found to have virtually no effect on the computed pointwise expected errors.

We use extrinsic Matérn and Riemannian Matérn kernels with the following hyperparameters: J]% =1

and o2 = 0.0005. For the truncated Karhunen-Loéve expansion, we used J = 500 eigenpairs
obtained from the mesh. We selected smoothness values to ensure norm-equivalence of the intrinsic
and extrinsic kernels’ reproducing kernel Hilbert spaces, which was v = 5/2 for the intrinsic model,
and v = 5/2 + d/2 for the extrinsic model, where d is the manifold’s dimension. We used different
length scales for each manifold: x = 200 for the dumbbell, x = 0.25 for the sphere, and x = 0.05
for the dragon, selected to ensure that the Gaussian processes were neither approximately constant,
nor white-noise-like. We considered data sizes of N = 50, N = 500, and N = 1000, respectively,
for the dumbbell, sphere, and dragon, sampled uniformly from the mesh’s nodes, which in each case
resulted in a reasonably-uniform distribution of points across the manifold. Finally, for the extrinsic
pointwise error approximation, we used a subset X’ uniformly sampled from each mesh’s nodes, of
size equal to the data size. For each respective test set, we used the full mesh. Each experiment was
repeated for 10 different seeds.

To set the length scales for the extrinsic process, we used maximum marginal likelihood optimization
on the full data, except for the dumbbell whose full data size is small and for which we instead
generated a larger set consisting of 500 points. We optimzied only the length scale, leaving all other
hyperparameters fixed. We used ADAM with a learning rate of 0.005, and an initialization equal to
the length scale ~ of the intrinsic model, except for the dumbbell where this lead to divergence and
we instead used an initial value of /4. We ran the optimizer for a total of 1000 steps. With these
settings, we found empirically that maximum marginal likelihood optimization always converged.
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