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1. Introduction
Small-scale precipitation and cloud processes are

crucial for climate modeling yet challenging for tra-
ditional general circulation models (GCMs) [1, 2].
While super-parametrization improves accuracy by
embedding cloud-resolving models in GCMs, it in-
curs substantial computational costs [3]. Deep learn-
ing approaches offer efficient alternatives but strug-
gle with water vapor condensation processes, caus-
ing simulation instability [4, 5, 6]. We introduce
CondensNet, a hybrid framework that incorporates
adaptive physical constraints to address water va-
por oversaturation, delivering accurate precipita-
tion predictionswhilemaintaining numerical stabil-
ity in long-term climate simulations.

2. Method
2.1 Methodology and Platform
We integrate CondensNet within the Community

AtmosphereModel (CAM5.2) [7], where the standard
convection parameterization is replaced by a DL-
based emulator trained on super-parametrized CAM
(SPCAM) [3, 8] outputs (Figure 1, panel a). At each
simulation step, the host GCM (CAM) supplies es-
sential climate state variables (e.g., temperature, hu-
midity, and solar insolation) to CondensNet and re-
ceives prediction tendencies from CondensNet.

2.2 CondensNet
Our CondensNet model (Figure 1, panel b) con-

sists of two integrated neural networks with distinct
tasks. These are BasicNet and Condensation Correc-
tion Network (ConCorrNet). The former is a ResMLP
model that predicts basic tendencies of water va-
por (dQ) and dry-static-energy (ds), capturing fun-
damental cloud physics. The latter is designed to
adaptively correct BasicNet’s predictions by enforc-
ing physical constraints associated with water vapor
saturation through explicit correction terms. Con-
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Fig. 1: Methodology a) and Architecture b) of the
CondensNet.

densNet predicts physically constrained tendencies
that comply with the saturation adjustment mech-
anism. We employ a humidity detection module to
identify grid points where relative humidity (rh) ex-
ceeds 100%, creating a humidity mask (Maskh) that
lets ConCorrNet focus on these regions, and adap-
tively learn whether and howmuch to fix from train-
ing data. The humidity mask (Maskh) is defined as:

Maskh(lon, lat, lev) =

{
1, if rh > 100%
0, otherwise (1)

ConCorrNet computes correction terms dQfix and
dsfix based on the excess water vapor above conden-
sation threshold:

dQfixed = dQ−Maskh ⊙ dQfix (2a)
dsfixed = ds+Maskh ⊙ dsfix, (2b)

This ensures that excess water vapor is appropri-
ately condensed, with corresponding latent heat re-
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Fig. 2: Results of CondensNet. Panel I) is the 10-year total energy evolution for SPCAM, CAM5, NN-GCM, and
PCNN-GCM, respectively; Panel II) is the computional performance; Panel III) is the Relative humidity for
SPCAM reference (a), NN-GCM model failing after 5000 time steps (b), stable NN-GCM (c), and new PCNN-
GCM featuring CondensNet (d); Panel IV) is the annual means (1999-2003) precipitation (a–d) for SPCAM,
CAM5, NN-GCM, and PCNN-GCM, respectively, and corresponding differences with respect to SPCAM ref-
erence (e–g).

lease.

2.3 Training details
BasicNet comprises 7 residual blocks (14 layers

total) with 512-width in hidden layers, while Con-
CorrNet includes 6 residual blocks (12 layers) with
sigmoid activations. During training, we freeze Ba-
sicNet’s parameters and optimize ConCorrNet using
two loss functions:
1. Overall Loss measures the difference between
final predictions and SPCAM data.

2. Condensation Correction Loss focuses specifi-
cally on correction terms in regions marked by
the humidity mask.

By optimizing both losses simultaneously, Conden-
sNet effectively learns the necessary physical con-
straints, resulting in predictions consistent with SP-
CAM data while maintaining simulation stability.

3. Results
The PCNN-GCM (CondensNet integrated with

GCM) achieves long-term stable simulations, bet-
ter precipitation, and more physical representation
compared with NN-GCM, as well as highly efficient
computational performance.
Long-term simulation stability. Figure 2, panel

I, shows that PCNN-GCM’s total energy evolution
closely follows the SPCAM reference, avoiding the
energy surges that lead to crashes in unstable NN-
GCM configurations.
Computational performance Crucially, PCNN-GCM

delivers these improvements with substantial com-
putational efficiency. Figure 2, panel II, demon-
strates that GPU-accelerated PCNN-GCM achieves
up to 372× speedup.

Physical Constraint. The relative humidity pro-
files (Figure 2, panel III) show that CondensNet-
featured PCNN-GCM effectively solves water vapor
over-saturation, closely resembling SPCAM patterns
and significantly improving upon standard NN-GCM
implementations.
Multi-year precipitation. Precipitation (Figure 2,

panel IV) fromPCNN-GCMachieve an RMSE of 0.708
compared to NN-GCM’s 0.894.

4. Conclusion
We presented CondensNet, a physics-constrained

deep learning framework for hybrid ML modeling
that successfully addresses the problems of water
vapor oversaturation and stability plaguing previ-
ous approaches. Integrating adaptive physical con-
straints through our ConCorrNet architecture en-
sures physical, numerically stable, and efficient
simulation. Our results demonstrate that PCNN-
GCM achieves long-term stable simulations with
improved precipitation representation compared to
traditional GCMs and unconstrained neural network
emulators. The hybrid approach effectively balances
the advantages of both data-driven methods (com-
putational efficiency, accuracy) and physics-based
modeling (physical consistency, stability). This work
highlights the promise of physics-guided machine
learning for climate science applications, potentially
enabling more accurate climate projections at re-
duced computational costs.
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