
A Appendix

A.1 Additional Details on Models and Original Evaluations

We collect here the implementation details of the models considered in our experimental analysis,
along with their original evaluations used to determine their adversarial robustness.

Distillation (DIST). Papernot et al. [29], develop a model to have zero gradients around the training
points. However, this technique causes the loss function to saturate and produces zero gradients for
the Cross-Entropy loss, but the defense was later proven ineffective when removing the Softmax
layer [8]. We re-implemented such defense, by training a distilled classifier on the MNIST dataset to
mimic the original evaluation. Then, we apply the original evaluation, by using ℓ∞-PGD [25], with
step size α = 0.01, maximum perturbation ϵ = 0.3 for 50 iterations on 100 samples, resulting in a
robust accuracy of 95%.

k-Winners-Take-All (k-WTA). Xiao et al. [43] propose a defense that applies discontinuities on
the loss function, by keeping only the top-k outputs from each layer. This addition causes the output
of each layer to drastically change even for very close points inside the input space. Unfortunately,
this method only causes gradient obfuscation that prevents the attack optimization to succeed, but
it was proven to be ineffective by leveraging more sophisticated attacks [41]. We leverage the
implementation provided by Tramèr et al.. [41] trained on CIFAR10, and we replicate the original
evaluation by attacking it with ℓ∞-PGD [25] with a step size of α = 0.003, maximum perturbation
ϵ = 0.031 and 50 iterations, scoring a robust accuracy of 67% on 100 samples.

Input-transformation Defense (IT). Guo et al. [22] propose to preprocess input images with
random affine transformations, and later feed them to the neural network. This preprocessing step
is differentiable, thus training is not affected by these perturbations, and the network should be
more resistant to adversarial manipulations. Similarly to k-WTA, this model is also affected by a
highly-variable loss landscape, leading to gradient obfuscation [3], again proven to be ineffective as
a defense [41]. We replicate the original evaluation, by attacking this defense with PGD [25] with
α = 0.003, with 10 iterations and a maximum perturbation of 0.031, scoring 32% of robust accuracy.

Ensemble diversity (EN-DV). Pang et al. [28] propose a defense that is composed of different neural
networks, trained with a regularizer that encourages diversity. This defense was found to be evaluated
with a number of iterations not sufficient for the attack to converge [41]. We adopt the implementation
provided by Tramèr et al. [41]. Then, following its original evaluation, we apply ℓ∞-PGD [25], with
step size α = 0.003, maximum perturbation ϵ = 0.031 for 10 iterations on 100 samples, resulting in
a robust accuracy of 48%.

Turning a Weakness into a Strength (TWS). Yu et al. [45] propose a defense that applies a
mechanism for detecting the presence of adversarial examples on top of an undefended model,
measuring how much the decision changes locally around a sample. The authors evaluated this model
with a self-implemented version of PGD that does not apply the sign operator to the gradients and
hinders the optimization performance as the magnitude of the gradients is too small for the attack to
improve the objective [41]. We apply this defense on a VGG model trained on CIFAR10, provided
by PyTorch torchvision module 2. Following the original evaluation, we attack this model with
ℓ∞-PGD without the normalization of the gradients, with step size α = 0.01, maximum perturbation
ϵ = 0.031 for 50 iterations on 100 samples, and then we query the defended model with all the
computed adversarial examples, scoring a robust accuracy of 77%.

JPEG Compression (JPEG-C). Das et al. [16] propose a defense that applies the JPEG compression
to input images, before feeding them to a convolutional neural network. We combine this defense
with a defense from Lee et al. [23], originally proposed against black-box model-stealing attacks.
This defense adds a reverse sigmoid layer after the model, causing the gradients to be misleading.
This model was evaluated first directly, raising errors because of the non-differentiable transformation
applied to the input, then re-evaluated with BPDA but with DeepFool, a minimum-distance attack,
and finally found vulnerable to maximum-confidence attacks [3]. We attack this model by replicating
the original evaluation proposed by the author, and we first apply a standard PGD [25] attack that
triggers the F1 failures (as also mentioned by the author of the defense). Hence, we continue the
original evaluation by applying the DeepFool attack against a model without the compression, with

2https://pytorch.org/

15

https://pytorch.org/

maximum perturbation ϵ = 0.031, 100 iterations on 100 samples. These samples are transferred to
the defended model, scoring a robust accuracy of 85%.

Deep Neural Rejection (DNR). Sotgiu et al. [38] propose an adversarial detector built on top of a
pretrained network, by adding a rejection class to the original output. The defense consists of several
SVMs trained on top of the learned feature representation of selected internal layers of the original
neural network, and they are combined to compute the rejection score. If this score is higher than a
threshold, the rejection class is chosen as the output of the prediction. The defense was evaluated,
similarly to TWS, with a PGD implementation not using the sign operator, leading the sample to
reach regions where the gradients become unusable for improving the objective. This model was
never found vulnerable by others, hence we are the first to show its evaluation issues. Following the
original evaluation, we apply PGD without the normalization of gradients, with α = 0.3, 50 iterations
with maximum perturbation ϵ = 0.031, and the scored robust accuracy is 75%.

A.2 Thresholding Indicators I2 and I4

We discuss here how to set the threshold values τ and µ, respectively used to compute I2 and I4.3

For I2, we report the value of V (x) for each model, averaged over the considered N = 10 samples
(along with its standard deviation) in Table 3a. As one may notice, models with unstable/noisy
gradients exhibit values higher than 0.4, whereas non-obfuscated models exhibit values that are very
close to 0 (and the standard deviations are negligible). We set τ = 10% as the per-sample threshold
in this case, but any other value between 0.1 and 0.3 would still detect the failure correctly on all
samples. This threshold is thus not tight, but a conservative choice is preferred, given that missing a
flawed evaluation would be far more problematic than detecting a non-flawed evaluation.

For I4, we report the mean value (and standard deviation) of D(x) for each model and averaged over
N = 10 samples, in Table 3b. Here, attacks that use few iterations (EN-DV), and attacks that use
PGD without the step normalization (TWS, DNR) trigger the indicator. The evaluations that trigger
already I2 are not trusted as it is not worth checking convergence for models that present obfuscated
gradients. Again, we used for I4 a very conservative threshold to avoid missing the failure.

Table 3: Analysis of the threshold values τ and µ for indicators I2 and I4.
Mean V (x) I2 : V (x) > τ = 10%

ST 0.02162 ± 0.00122
ADV-T 0.00059 ± 0.00003
DIST 0.00000 ± 0.00000
k-WTA 0.40732 ± 0.03256 ✓ (10/10)
IT 1.00000 ± 0.00000 ✓ (10/10)
EN-DV 0.00014 ± 0.00001
TWS 0.00862 ± 0.00080
JPEG-C 0.03129 ± 0.00152
DNR 0.00000 ± 0.00000

(a) Threshold analysis for I2.

Mean D(x) I4 : D(x) > µ = 1%

ST 0.00279 ± 0.00778
ADV-T 0.00000 ± 0.00000
DIST 0.00000 ± 0.00000
k-WTA 0.04345 ± 0.10144 not trusted (I2 ✓)
IT 0.00623 ± 0.01869 not trusted (I2 ✓)
EN-DV 1.00000 ± 0.00000 ✓
TWS 0.16835 ± 0.10307 ✓
JPEG-C 0.00002 ± 0.00007
DNR 0.06857 ± 0.01660 ✓

(b) Threshold analysis for I4.

A.3 Application on Windows Malware

We replicate the evaluation of the MalConv neural network [34] for Windows malware detection done
by Demetrio et al. [17]. We used the "Extend" attack, which manipulates the structure of Windows
programs while preserving the intended functionality [17]. We replicate the same setting described
in the paper by executing the Extend attack on 100 samples (all initially flagged as malware by
MalConv), and we report its performances and the values of our indicators in Table 4. As highlighted
by the collected results, this evaluation can be improved by using BPDA instead of the sigmoid
applied on the logits of the model (M1), and also by patching the implementation to return the best
point in the path (M3). Since MalConv applies an embedding layer to impose distance metrics on
byte values (that have no notion of norms and distance), we need to adapt I2 to sample points inside
such embedding space of the neural network. Hence, the sampled values must then be projected back

3Let us remark indeed that the other indicators are already binary and do not require any thresholding.

16

to byte values by inverting the lookup function of the embedding layer [17]. However, this change to
I2 is minimal, and all the other indicators are left untouched.

Table 4: Indicator values (cols.) computed on the the Windows Malware use case, using the Extend
attack from [17]. The robust accuracy (RA) is reported in the last column.

Model Attack I1 I2 I3 I4 I5 I6 RA
MalConv Extend ✓ ✓(12%) ✓(3/10) 0.26

A.4 Application on Android Malware Detection

We replicate the evaluation of the Drebin malware detector by Arp et al. [1] from Demontis et
al. [19]. The considered attack only injects new objects into Android applications to ensure that
feature-space samples can be properly reconstructed in the problem space. We limit the budget of
the attack to include only 5 and 25 new objects, and we report the collected results in Table 5. The
attack is implemented using the PGD-LS [19] implementation from SecML [32]. Note that, since
the evaluated model is a linear SVM, the input gradient is constant and proportional to the feature
weights of the model. Accordingly, the attack is successfully executed without failures.

Table 5: Indicator values (cols.) computed on the Android Malware use case, using the PGD-LS
attack from [19]. The robust accuracy (RA) is reported in the last column.

Model Attack I1 I2 I3 I4 I5 I6 RA

SVM-ANDROID PGD-LS (budget=5) 0.58
PGD-LS (budget=25) 0.00

A.5 Application on Keyword Spotting

To demonstrate the applicability of our indicators to different domains, we applied our procedure
to the audio domain, using a reduced version of the Google Speech Commands Dataset4, including
only the 4 keywords “up”, “down”, “left”, and “right”. We first convert the audio waveforms to linear
spectrograms and then use these spectrograms to train a ConvNet (AUDIO-ConvNet) that achieves
99% accuracy on the test set. The spectrograms are then perturbed in the feature space using the
PGD ℓ2 attack (in the feature space) and transformed back to the input space using the Griffin-Lim
transformation [31]. The samples are transformed again and passed through the network to ensure
the attack still works after the reconstruction of the perturbed waveform. We leverage the PGD ℓ2
attack with n = 200, α = 5, and ϵ = 50.5 Our indicators do not require any change to be applied to
this domain. We report the values of our indicators and the robust accuracy in Table 6.

Table 6: Indicator values (cols.) computed on the keyword-spotting use case, using the PGD ℓ2 attack.
The robust accuracy (RA) is reported in the last column.

Model Attack I1 I2 I3 I4 I5 I6 RA
AUDIO-ConvNet PGD 0.00

4https://ai.googleblog.com/2017/08/launching-speech-commands-dataset.html
5Note that these values are suitable for the feature space of linear spectrograms, that have a much wider

feature range than images. The resulting perturbed waveforms are still perfectly recognizable to a human.

17

https://ai.googleblog.com/2017/08/launching-speech-commands-dataset.html

A.6 Implementation Errors of Adversarial Machine Learning Libraries

As discussed in Sect. 2, we found F3 in the PGD implementations of the most widely-used adversarial
robustness libraries, namely Cleverhans (PyTorch6, Tensorflow7, JAX8), ART (NumPy9, PyTorch10,
and Tensorflow11), Foolbox (EagerPy12, which wraps the implementation of NumPy, PyTorch,
Tensorflow, and JAX), Torchattacks (PyTorch13). We detail further in Table 7 the specific versions
and statistics. In particular, we report the GitHub stars (✰) to provide an estimate of the number of
users potentially impacted by this issue. Let us also assume that there are a large number of defenses
that have been evaluated with these implementations (or their previous versions, which most likely
have the same problem). After this problem is fixed, all these defenses should be re-evaluated with
the more powerful version of the attack, perhaps revealing faulty robustness performances.

Table 7: Versions and GitHub stars (✰) of the libraries where we found F3.
Library Version GitHub ✰

Cleverhans 4.0.0 5.6k
ART 1.11.0 3.1k
Foolbox 3.3.3 2.3k
Torchattacks 3.2.6 984

A.7 Pseudo-code of Indicators

We report here the implementation of our proposed indicators. Since we write here a pseudo-code,
we refer to the repository for the actual Python code.

Algorithm 2: Pseudo-code for the Unavailable Gradients indicator I1(x).
Input :x, input sample; L(·, y;θ), the loss function of the attack with fixed label and model
Output :The value of I1(x)

1 try:
2 return ∥ ∇xL(x, y;θ) ∥∞= 0

3 catch gradient not computable:
4 return 1

6https://github.com/cleverhans-lab/cleverhans/blob/master/cleverhans/torch/
attacks/projected_gradient_descent.py

7https://github.com/cleverhans-lab/cleverhans/blob/master/cleverhans/tf2/attacks/
projected_gradient_descent.py

8https://github.com/cleverhans-lab/cleverhans/blob/master/cleverhans/jax/attacks/
projected_gradient_descent.py

9https://github.com/Trusted-AI/adversarial-robustness-toolbox/blob/
38061a630097a67710641e9bd0c88119ba6ee1eb/art/attacks/evasion/projected_gradient_
descent/projected_gradient_descent_numpy.py

10https://github.com/Trusted-AI/adversarial-robustness-toolbox/blob/main/art/
attacks/evasion/projected_gradient_descent/projected_gradient_descent_pytorch.py

11https://github.com/Trusted-AI/adversarial-robustness-toolbox/blob/
38061a630097a67710641e9bd0c88119ba6ee1eb/art/attacks/evasion/projected_gradient_
descent/projected_gradient_descent_tensorflow_v2.py

12https://github.com/bethgelab/foolbox/blob/12abe74e2f1ec79edb759454458ad8dd9ce84939/
foolbox/attacks/gradient_descent_base.py

13https://github.com/Harry24k/adversarial-attacks-pytorch/blob/master/
torchattacks/attacks/pgd.py

18

https://github.com/cleverhans-lab/cleverhans/blob/master/cleverhans/torch/attacks/projected_gradient_descent.py
https://github.com/cleverhans-lab/cleverhans/blob/master/cleverhans/torch/attacks/projected_gradient_descent.py
https://github.com/cleverhans-lab/cleverhans/blob/master/cleverhans/tf2/attacks/projected_gradient_descent.py
https://github.com/cleverhans-lab/cleverhans/blob/master/cleverhans/tf2/attacks/projected_gradient_descent.py
https://github.com/cleverhans-lab/cleverhans/blob/master/cleverhans/jax/attacks/projected_gradient_descent.py
https://github.com/cleverhans-lab/cleverhans/blob/master/cleverhans/jax/attacks/projected_gradient_descent.py
https://github.com/Trusted-AI/adversarial-robustness-toolbox/blob/38061a630097a67710641e9bd0c88119ba6ee1eb/art/attacks/evasion/projected_gradient_descent/projected_gradient_descent_numpy.py
https://github.com/Trusted-AI/adversarial-robustness-toolbox/blob/38061a630097a67710641e9bd0c88119ba6ee1eb/art/attacks/evasion/projected_gradient_descent/projected_gradient_descent_numpy.py
https://github.com/Trusted-AI/adversarial-robustness-toolbox/blob/38061a630097a67710641e9bd0c88119ba6ee1eb/art/attacks/evasion/projected_gradient_descent/projected_gradient_descent_numpy.py
https://github.com/Trusted-AI/adversarial-robustness-toolbox/blob/main/art/attacks/evasion/projected_gradient_descent/projected_gradient_descent_pytorch.py
https://github.com/Trusted-AI/adversarial-robustness-toolbox/blob/main/art/attacks/evasion/projected_gradient_descent/projected_gradient_descent_pytorch.py
https://github.com/Trusted-AI/adversarial-robustness-toolbox/blob/38061a630097a67710641e9bd0c88119ba6ee1eb/art/attacks/evasion/projected_gradient_descent/projected_gradient_descent_tensorflow_v2.py
https://github.com/Trusted-AI/adversarial-robustness-toolbox/blob/38061a630097a67710641e9bd0c88119ba6ee1eb/art/attacks/evasion/projected_gradient_descent/projected_gradient_descent_tensorflow_v2.py
https://github.com/Trusted-AI/adversarial-robustness-toolbox/blob/38061a630097a67710641e9bd0c88119ba6ee1eb/art/attacks/evasion/projected_gradient_descent/projected_gradient_descent_tensorflow_v2.py
https://github.com/bethgelab/foolbox/blob/12abe74e2f1ec79edb759454458ad8dd9ce84939/foolbox/attacks/gradient_descent_base.py
https://github.com/bethgelab/foolbox/blob/12abe74e2f1ec79edb759454458ad8dd9ce84939/foolbox/attacks/gradient_descent_base.py
https://github.com/Harry24k/adversarial-attacks-pytorch/blob/master/torchattacks/attacks/pgd.py
https://github.com/Harry24k/adversarial-attacks-pytorch/blob/master/torchattacks/attacks/pgd.py

Algorithm 3: Pseudo-code for the Unstable Predictions indicator I2(x).
Input :x, input sample; L(·, y;θ), the loss function of the attack with fixed label and model; r,

noise radius; s, number of neighboring samples; τ threshold for triggering the indicator
Output :The value of I2(x)

1 L(0) ← L(xj , y;θ)

2 x(1), ...x(s) ∼ U(xj − r
2I,xj +

r
2I)

3 L(1), ..., L(s) ← L(x(1), y;θ), ..., L(x(s), y;θ)

4 V (x)← min(1s
∑m

i=1 |(L(0) − L(i))/L(0)|, 1)
5 return V (x) > τ

Algorithm 4: Pseudo-code for the Silent Success indicator I3(x).
Input :x, the initial sample; x⋆, the result returned by the attack; δ0, ..., δn, the attack path; θ,

the target model
Output :The value of I3(x)

1 return x⋆ is not adversarial for θ and ∃j ∈ [0, n] | x+ δj is adversarial for θ

Algorithm 5: Pseudo-code for the Incomplete Optimization indicator I4(x).
Input :x, the initial sample; δ0, ..., δn, the attack path; L(·, y;θ), the loss function of the

attack with fixed label and model; k, the length of the last part of the loss to retain;µ
threshold for triggering the indicator

Output :The value of I4(x)
1 L(0), ..., L(n) ← L(x+ δ0, y;θ), ..., L(x+ δn, y;θ)

2 L(0), ..., L(n) ← rescale(L(0), ..., L(n), [0, 1])
3 L̂(0), ..., L̂(n) = cumulative-minimum(L(0), ..., L(n))

4 D(x)← max(L̂(n−k−1), ..., L̂(n))−min(L̂(n−k−1), ..., L̂(n))
5 return D(x) > µ

Algorithm 6: Pseudo-code for the Transfer Failure indicator I5(x).
Input :x, the initial sample; x⋆, the result returned by the attack; δ0, ..., δn, the attack path; θ,

the target model; θ̂, the model used for crafting the attack
Output :The value of I5(x)

1 return x⋆ is adversarial for θ̂ and ∄j ∈ [0, n] | x+ δj is adversarial for θ

Algorithm 7: Pseudo-code for the Unconstrained Attack Failure indicator I6(x).
Input :x, input sample; n, the number of iterations; α, the learning rate; A, an attack that can

be formulated as Algorithm 1
Output :The value of I6(x)

1 x⋆ ← run A as Algorithm 1 skipping line 6 (projection into feasible domain)
2 return x⋆ is not adversarial for θ

19

	Appendix
	Additional Details on Models and Original Evaluations
	Thresholding Indicators I2 and I4
	Application on Windows Malware
	Application on Android Malware Detection
	Application on Keyword Spotting
	Implementation Errors of Adversarial Machine Learning Libraries
	Pseudo-code of Indicators

