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1 PHENOMENOLOGICAL THEORY

A typical Autoregressive training task (ATT) consists of a model fθ : Rd → Rd and a sequence of unanimous
data

X⃗t, X⃗t+1, . . . , X⃗t+N ,

where each X⃗t = [Xt,1,Xt,2, · · · ,Xt,s] represents a time snapshot of the state at step t with s degrees of
freedom. For example, a full resolution WeatherBenchsnapshot X⃗t is a large 4D tensor with dimensions
s = 5× 37× 720× 1440 ≈ 2× 108; A typical time series prediction task such as ETTh1consist of series of
1× 7 vector. When the input is a sequence of 96 time stamp, the freedom is viewed as s = 96× 7 = 672.

An ideal model f is expected to reproduce any X⃗t+n+1 by f(X⃗t+n)

X⃗t
f→ X⃗t+1

f→ X⃗t+2
f→ X⃗t+3

f→ · · · f→ X⃗t+N

However, in most tasks, it is impossible to find the ideal model. Therefore, we need to use approximation
functions such as neural networks to simulate this mapping, and the ideal model degenerates to a parameterized
function f → fθ. The task becomes an optimization problem of order N :

min
∑
t

|X⃗t+N − ff · · · f︸ ︷︷ ︸
N

(X⃗t)| = min
∑
t

EN
t = min

∑
t

EN
t,s

Researchers usually back-propagate on the first low-order errors. For example, in the FourCastNetPathak
et al. (2022) forwards twice on the "fine-tune" phase and Pangu only deal with order-1 errors. Several
factors are concerned: Firstly, achieving the ideal model on the order-1 loss E1

∀t → 0 directly implies that
EN
∀t → 0. Secondly, training on EN

t requires N times forward-prediction and back-propagation, making it
quite unaffordable in large system simulations compared to single loss optimization. Thirdly, the marginal
benefit of increasing N decays rapidly in experience, and there must be a trade-off between accuracy and
speed.

Thus, a comprehensive ATT optimization task of order N is formalized as

min E =
∑
t

(E1
t + E2

t + · · ·+ EN
t ) =

∑
N

∑
t

EN
t =

∑
N

∑
t

∑
s

EN
t,s

We expect a model trained on order N to be capable of forecasting a longer future beyond N , as the physical
world is believed to have localized correlations, and a machine learning model trained on neighboring
relationships should be able to extrapolate to a further distance. This pipeline has been validated in many
tasksBi et al. (2022); Lam et al. (2022); Chen et al. (2023), which have significantly outperformed traditional
methods.
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For any step t , its time snapshot Xt and a differentiable and smooth parameter neural function fθ, we will
not only obtain a snapshot chain

XO
t

fθ→ XI
t+1

fθ→ X II
t+2

fθ→ X III
t+3

fθ→ · · · fθ→ XN
t+N

⇕ ⇕ ⇕ ⇕ ⇕
XO

t XO
t+1 XO

t+2 XO
t+3 · · · XO

t+N

but also a snapshot tree. lets take N = 5 as an example:


XO

t XI
t+1 X II

t+2 X III
t+3 X IV

t+4 XV
t+5

XO
t+1 XI

t+2 X II
t+3 X IV

t+4 X IV
t+5

XO
t+2 XI

t+3 X II
t+4 X III

t+5

XO
t+3 XI

t+4 X II
t+5

XO
t+4 XI

t+5

XO
t+5

 (1)

In our notation, the superscript represents the order order. For instance, O refers to the real data, while I
represents the data generated by performing one forward pass from a ground truth through the function f .
The subscript indicates the time stamp of the prediction. It is important to note that only tensors with the
same time stamp can be compared with each other. As a result, we can categorize all errors according to their
order by follow identity:

XO
t+1 = X I

t+1 + εI
t+1

XO
t+2 = X I

t+2 + εI
t+2 = X II

t+2 + εII
t+2

XO
t+3 = X I

t+3 + εI
t+3 = X II

t+3 + εII
t+3 = X III

t+3 + εIII
t+3

· · ·
when the order order meets the smae time stamp, the error is just the original error we want to minimized.
E1
t = ||εI

t+1||, E2
t = ||εII

t+2||, . . .
Those identity reveal the realation between low order error and its higher order partner. Start from N = 2, we
can achieve

XO
t+2 = XI

t+2 + εIt+2 = X II
t+2 + εII

t+2

→ f(XO
t+1) + εIt+2 = f(X I

t+1) + εII
t+2

→ f(XO
t+1)− f(X I

t+1) + εIt+2 = εII
t+2

→ ∇f(Xδ)(X
O
t+1 −X I

t+1) + εIt+2 = εII
t+2

→ ∇f(Xδ)(ε
I
t+1) + εIt+2 = εII

t+2

→ M I
t+1(ε

I
t+1) + εIt+2 = εII

t+2

Here, we utilize the Mean Value Theorem of multi-dimensional calculus, where Xδ ∈ [XO
t+1,X

I
t+1] and ∇f

represents the Jacobian operator. This operator produces a matrix M I
t+1(δ) for Xδ , which is abbreviated as

M I
t+1. The metric δ is dependent on the model parameter θ and fluctuate between the predicted value X I

t+1

and the ground truth XO
t+1. As δ → 0, the model fθ approaches the ideal model fθ → f and can accurately

estimate any Xδ = XO
t+1 = X I

t+1 = f(XO
t ).

Similarly, any order propagation can be expressed as follows:

εNt+N = εI
t+N +MN−1

t+N−1ε
N−1
t+N−1
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where εNt+N is the N -order error at time t+N , εI
t+N−1 is the first-order error at time t+N−1, and MN−1

t+N−1

is the propagation matrix. We can observe that this is a recursive formulation that goes from εN−1
t+N−1 to εNt+N .

Since all ϵ terms represent the prediction’s error, they are expected to behave like high-dimensional,
non-correlated, and time-independent noise fluctuation. Therefore, when the number of freedoms in
ϵ is large enough, the elements from different time stamps can be considered "almost" orthogonal:
⟨εI

t+N−1|M
N−1
t+N−1ε

N−1
t+N−1⟩ = 0. Then the size of error for each sample is measured as

||ϵNt+N || ≈ ||εI
t+N ||+ ||MN−1

t+N−1ε
N−1
t+N−1||

And the average error is measured as

EN =
1

n

∑
t

||ϵNt+N ||

= E[||ϵI
t+N ||] + E[||MN−1

t+N−1ε
N−1
t+N−1||]

= E I + E[αN
t ||εN−1

t+N−1||]
= E I + E[αN

t ]E[||εN−1
t+N−1||]

= E I + αNEN

It is important to note that E[αN
t ]E[||εN−1

t+N−1||] may not be equal to E[αN
t ]E[||εN−1

t+N−1||] since there is no
guarantee that the random variables αN

t and ||εN−1
t+N−1|| are independent. Geometrically, αN

t is a factor that
amplifies any potential fluctuations of the input Xt+N−1+εN−1

t+N−1 on the result. Since different t corresponds
to different orientations in variable space, and our model has no anisotropic prior, such an amplifier should also
be "almost" independent of the orientation. Therefore, we assume that αN

t = ||MN−1
t+N−1ε

N−1
t+N−1||/||ε

N−1
t+N−1||

is a number that only depends on the order N and the model θ.

Finally, we get the error propagation law of ATT problem when 1-order prediction error δ as small as enough
δ → 0:

EN = (1 + αN + αNαN−1 + αNαN−1αN−2 + . . . )E I (2)

Furthermore, experiments in Sec.2 reveal that αi:1→N follow an exponential decay law:

αN = 1− β1 exp(−β2 ∗N)

This finding implies that optimize α1 and α2 will spontaneously suppress all αi>2. Moreover, we can estimate
long-range performance by computing only the first three errors E III, E II, and E I, using them to compute
α1 and α2, and fitting all αN via this empirical formula. This allows us to quickly estimate the long-range
prediction error EN."

According to Equ.1, to optimize a model with minimum N -order error EN , we need to optimize both the
1-order error E1 and the error amplifier αi:1→N . The traditional ATT loss directly optimizes E1 + E2, which
is actually a coupled version of this view. For example, when N = 2, the traditional loss configuration treats
the 2-order error and 1-order error equally, leading to:

E = E II + E I =
∑
t

∑
s

(εII
t+2,s)

2 +
∑
t

∑
s

(εI
t+1,s)

2

This enforces that both errors are minimized rather than optimizing the amplifier α2 = E II

E I − 1. However, this
approach risks amplifying E II

E I when both E II and E I are minimized, which can lead to very poor long-term
forecasts.
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A good long-term forecast trainer must decouple the errors EN , EN−1, . . . , E I. One approach to achieve this is
to directly optimize E = c1

E II

E I + c2E I. However, the reciprocal loss makes training unstable. An alternative is
to use the logarithm of the mean square error, LogE = ln E II +ln E I. Unfortunately, such a loss is not additive
during mini-batch training, especially.It is equivalent between E =

∑batch
b Eb and LogE ̸=

∑batch
b LogEb with

dynamic coefficients, as shown below:

dLogEb = d ln E II
b + d ln E I

b =
1

E II
b

dE II
b +

1

E I
b

dE I
b

Take N = 2 as an example, the goal is to minimize

min E I & min αII =
E II

E I − 1

Notice minimize αII equals to minimize E II

E I which can be converted to log format as minimized log(E II)−
log(E I). Remember we still need minimize E I which is same as minimize log(E I). These two part are
independent implying that we need to assign two coefficients to combine them like:

final loss = a ∗ [log(E II)− log(E I)] + b ∗ log(E I)

They are hyper-parameter and we just set a = 1, b = 2 in this paper. This results in:

final loss = log(E II) + log(E I) = MLSE

Machine learning training typically involves batch updating. Thus, the key point here is to decide whether to
"average after computing" or "compute after averaging". We leave this to the experiment.

For three-timestamps optimization MLSE, the derivation is:

min E I & min αII =
E II

E I − 1 & min αIII =
E III

E II − E I

E II

which is equivalent to:

min{E I,
E II

E I ,
E III

E II } and max{ E
I

E II }.

The last term is same as min{E II

E I }. Using the hyper-parameter coefficient trick, we can finally obtain:

MLSEorder3 = log(E III) + log(E II) + log(E I)

In Equation 1, there are many other useful error information that can be utilized. For instance, we can
calculate the error between X II

t+2 and X I
t+2 instead of ||E II

t+2 = XO
t+2 − X II

t+2||. Notice the equation
ln[αII

t ] = ln[||X II
t+2 −X I

t+2||]− ln[||X I
t+1 −XO

t+1||] = ln[εII,I
t+2]− ln[E I

t+1] (as shown in Equation 2), thus
a loss simultaneously optimizing lnαII

t and ln E I
t+1 is equivalent to optimizing ln εII,I

t+2 and ln E I
t+1.

XO
t → X I

t+1 → X II
t+2 → X III

t+3 → X IV
t+4

XO
t+1 → X I

t+2

XO
t+2 → X I

t+3

XO
t+3 → X I

t+4

 (3)

The ideas presented here have inspired us to develop the MASE

MASE =
∑
N

∑
t

[||XN
t+N −X I

t+N ||+ ||XN-1
t+N−1 −XO

t+N−1||]
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Figure 1: The figure shows the amplifier computed using Equation 2 for different convergence points resulting
from various training strategies. The [S] label indicates that the model was trained from a random initialization,
while the [P] label indicates that the model was trained from pre-trained weights of model T+1[L2][L2]. The
[L2] label indicates that the mean squared error (MSE) loss was used, while the [Ln] label indicates that the
mean logarithmic squared error (MLSE) loss was used. The T+n notation indicates that the error for the
attention task (ATT) was optimized from 0 to N-th orders.

2 OBSERVATION

We monitor the amplifier αN on the WeatherBench32x64 dataset for a well-trained FourCastNet model. We
employ different training strategies to encourage the model to converge to different points. The test dataset for
this evaluation consists of a 1480× (70× 32× 64) vector sequence. For each starting point Xt, we calculate
the model’s forecast results up to 19 time steps, i.e., X̂t+ 1, · · · , X̂t+ 19. Finally, we collect 1461 × 18
different order error EN and calculate the amplifier αN by

αN = E[
εNt+N − εI

t+N

εN−1
t+N−1

] = E[
||XN

t+N −X I
t+N ||

||XN−1
t+N−1 −XO

t+N−1||
] (4)

The results, depicted in Fig.1, are based on many different training strategies: The [S] label indicates that the
model was trained from a random initialization, while the [P] label indicates that the model was trained from
pre-trained weights of model T+1[L2][L2]. The [L2] label indicates that the mean squared error (MSE) loss
was used, while the [Ln] label indicates that the mean logarithmic squared error (MLSE) loss was used. The
T+n notation indicates that the error for the attention task (ATT) was optimized from 0 to N-th orders.

The findings depicted in Fig. 1 provide clear evidence that, once a deep learning model has been trained and
converged on a dataset, its long-range prediction errors follow an exponential amplifier law. Specifically,
the amplifier αN between N -order errors and N − 1 errors can be approximated by a geometric fitting
curve, such as αN = 1 − β1 exp(−β2 ∗ N). We validate this law for different models using varying
training strategies, highlighting the fact that the long-term prediction error can be effectively optimized by
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Figure 2: The diagram to show the convex of error propagation. Note it is only a diagram, to vivid demonstrate
the convex of amplifier αN = AN

BN
.

appropriately configuring the short-term error. These findings provide important insights into the relationship
between short-term performance and long-term forecasting accuracy, particularly in cases where the model is
not exposed to the forecasted data during training.

The geometric formulation exhibits an exponential behavior experimentally. However, a simple analysis
reveals that the convex behavior can be obtained. Let us denote the series ||εN+1,I

t+N+1|| as AN and the series
||εN,O

t+N || as BN . We know that both AN and BN increase and achieve linear growth at infinity N ; Before that,
they are strictly convex. Since AN is the higher error incresement, we can assume BN+2 ≥ AN ≥ BN+1

for any N . This leads to AN+2+AN

AN+1
≤ BN+2+BN

BN+1
, as the error accumulation speed should be approximately

consistent for both series AN and BN as shown in Diagram.2. Therefore, the second differences of the
sequence αN = AN

BN
becomes

(αn+2 − αn+1)− (αn+1 − αn) =
An+2Bn+1 −An+1Bn+2 −An+1Bn +AnBn+1

BnBn+1Bn+2
≤ 0

. As the model is a black-box, it is difficult to obtain further insights into its behavior beyond the geometric
formulation. However, we are able to analyze the asymptotic behavior as N → ∞. Due to the fact that
time-correlation is not infinite, the prediction at N − 1 step XN

t+N is no longer related to the first step
XO

t+N−1, as well as XN
t+N to X I

t+N . Consequently, if we assume each normlized element XN
t,s ∼ N(0, 1)

follow the normal distribution, then the αN degenerates to the division between two χ2
k distributions, which

corresponds to an F -distribution. The expectation is αN→∞ = S
S−2 → 1, where S is the freedom of X .

This finding implies that the asymptotic behavior of error propagation is linear, which means the difference
between εN and εN−1 is a constant as N → ∞. By combining this with αN→∞ = 1, we can qualitatively
understand the behavior of alpha.

The geometric behavior can aid in quickly estimating the long-term performance of a model based on
a few first-order errors. For example, Fig. 3 shows the estimated performance of model [T+3][P][L2].
Due to the entanglement problem mentioned previously, αN

t and ||εN−1
t+N−1|| typically have the relationship

E[αN
t ]E[||εN−1

t+N−1||] ≤ E[αN
t ]E[||εN−1

t+N−1||], which represents an upper bound on the true error. Fig. 3
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Figure 3: The estimated long-term performance of model [T+3][P][L2] from its first three low order errros.
The three esimated method is low-order expandation, full-amplifier computing, and statistic-fitting. The result
demonstrates that estimation can achieve a considerable approximation of the true long-term error by only
measuring a few short-term errors. In this example, the 19-step error is smaller than 6%.

depicts the results obtained from three different estimation methods that were used to test the influence of
different statistical routes: (1) The estimated1 method uses the statistical means α0 and α1 by only accessing
the E I, E II, and E III, then calculates all α values, and finally accumulates the amplifier using the Equ.2. (2)
The estimated2 method uses all statistical means αn:1→19. This is not a practical method for estimation since
it requires the computation of all En:1→19. However, we plot the results to emphasize the feasibility of the
exponential law for α. (3) The estimated3 method uses the losses E I, E II, and E III directly to compute the
"mean statistical alpha" ᾱ1 = E II−E I

E I and ᾱ2 = E III−E I

E II . The example of model [T+3][P][L2] demonstrates
that estimation can achieve a considerable approximation of the true long-term error by only measuring a few
short-term errors. In this example, the 19-step error is smaller than 6%.

In this section, we have shown that the error amplifier in autoregressive prediction tasks follows an obvious
geometric law. This implies that constraints on one amplifier will spontaneously distribute to all amplifiers.
Therefore, the correct descent direction for minimizing long-term prediction error is the same as the direction
for minimizing the amplifier directly. When the model θ is near the convergence point, it may be better
to constrain the amplifier α and the 1-order error E I rather than directly constraining high-order errors
E I, E II, E III. We have also demonstrated that this phenomenological theory can help estimate long-range
forecast performance by only measuring a few short-term errors. Unfortunately, even if we can analytically
write the relationship between long-term and short-term errors, we cannot use this analytical expression
for descent updates directly for several reasons: (1) It is merely an estimate and is only effective near the
convergence point. (2) It is only effective in a statistical sense and is incompatible with the mini-batch training
mode.(3) The gradient of the analytical expression for E II is always negative.
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3 THE ALPHA MONITOR FOR TIME SERIES DATASET

Figure 4: The alpha monitor for the case presented in Table 2 follows the same procedure outlined in Section
2. We only plot the alpha on the prediction sequence equal to 96. The frame colour and size of the 720
rows in Table 2 correspond. A black board indicates that the MLSE+ATT model performs better than the
end-to-end model, while a blue board is the opposite. The bold boundary represents the best model for each
dataset, which is the case with background shading in Table 2. From this figure, we can see that, except for
the Exchange dataset, all alpha relations are approximately monotonically increasing and converge near 1.
There are several abnormal examples, such as Crossformer under ETTh2 and ETTm2 datasets. By observing
its long-term error, we can see that the end-to-end performance of this model is extremely poor and does not
converge at all. However, using MLSE can correct this behavior and bring the long-term prediction into the
same convergence basin. The exchange dataset performs differently from other time series datasets, implying
that it is not a predictable system since economic systems are often filled with complex external factors.
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Figure 5: We evaluated the fine-tuned performance of TimesNet, MICN, and PatchTST on the ETTm2
datasets using MSE/MLSE metrics. The learning rate was adjusted from 1e-5 to 1e-3, and the random seed
was selected from the following options: [19940928, 19950929, 20130901, 20230901]. On the y-axis, we
plotted the mean error up to the lead time, which is the average error across the entire sequence. The shaded
background represents the min-max region of error. The error bars denote the standard deviation, and the
central line indicates the mean value. We conducted 20 samples for both the MLE and MLSE hyperparameter
searches.

Figure 6: A table similar to Table 2, but with the
learning rate initialized at 2e-5 (original value is
1e-5).

Figure 7: A table similar to Table 2, but with the
random seed initialized at 2023. (original value
is 2021)
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4 THE FULL RESULT OF TIME SERIES DATASET

ETTh1 ETTh2 ETTm1 ETTm2 Exchange Weather

096 192 336 720 096 192 336 720 096 192 336 720 096 192 336 720 096 192 336 720 096 192 336 720

A
ut

of
or

m
er A 0.467 0.533 0.535 0.503 0.360 0.443 0.478 0.482 0.480 0.614 0.539 0.719 0.272 0.292 0.337 0.422 0.159 0.287 0.471 1.117 0.264 0.302 0.360 0.418

D 0.416 0.437 0.450 0.489 0.257 0.301 0.338 0.427 0.443 0.482 0.552 0.762 0.241 0.307 0.395 0.654 0.160 0.249 0.372 1.119 0.209 0.279 0.381 0.725

R 0.413 0.464 0.496 0.586 0.232 0.271 0.313 0.385 0.425 0.481 0.551 0.764 0.223 0.279 0.332 0.425 0.159 0.244 0.335 0.986 0.209 0.272 0.341 0.552

C
ro

ss
fo

rm
er A 0.414 0.450 0.731 0.609 0.617 1.585 2.680 3.497 0.374 0.448 0.715 0.687 0.284 0.374 0.803 3.200 0.288 0.661 1.288 1.708 0.175 0.232 0.277 0.368

D 0.367 0.418 0.468 0.631 0.586 0.915 1.334 2.017 0.364 0.444 0.541 0.710 0.296 0.500 0.785 1.570 0.461 0.635 0.803 1.029 0.172 0.215 0.266 0.363

R 0.363 0.410 0.444 0.552 0.533 0.830 1.110 1.491 0.340 0.415 0.506 0.728 0.216 0.298 0.414 0.774 0.391 0.488 0.572 0.730 0.165 0.204 0.243 0.305

D
L

in
ea

r A 0.396 0.445 0.490 0.509 0.348 0.479 0.596 0.825 0.345 0.382 0.414 0.472 0.190 0.275 0.367 0.550 0.094 0.185 0.342 0.747 0.196 0.235 0.282 0.344

D 0.366 0.416 0.446 0.529 0.258 0.362 0.526 1.014 0.327 0.370 0.428 0.547 0.194 0.280 0.389 0.660 0.095 0.190 0.337 0.592 0.188 0.225 0.268 0.358

R 0.366 0.413 0.437 0.496 0.215 0.257 0.300 0.371 0.331 0.371 0.420 0.515 0.184 0.252 0.318 0.421 0.097 0.163 0.225 0.512 0.188 0.226 0.272 0.349

In
fo

rm
er A 0.994 0.923 1.107 1.185 3.577 5.442 5.029 3.876 0.643 0.792 1.215 1.160 0.744 1.050 1.300 3.884 0.911 1.096 1.765 2.698 0.368 0.766 0.549 1.534

D 0.737 0.826 0.895 1.058 1.591 1.578 1.510 1.659 0.692 0.722 0.786 0.838 0.816 0.858 0.910 1.042 1.130 1.000 0.917 0.937 0.279 0.330 0.328 0.340

R 0.762 0.844 0.897 0.997 1.590 1.579 1.510 1.659 0.585 0.639 0.725 0.818 0.815 0.867 0.923 1.017 1.059 0.950 0.885 0.885 0.279 0.311 0.326 0.350

L
ig

ht
T

S A 0.435 0.494 0.552 0.613 0.428 0.582 0.688 1.006 0.402 0.431 0.466 0.561 0.208 0.317 0.383 0.778 0.141 0.310 0.478 0.937 0.173 0.234 0.266 0.344

D 0.402 0.443 0.469 0.557 0.351 0.495 0.693 1.118 0.376 0.420 0.474 0.582 0.211 0.299 0.414 0.705 0.165 0.378 0.655 0.942 0.168 0.206 0.250 0.338

R 0.401 0.439 0.457 0.521 0.265 0.311 0.382 0.586 0.376 0.421 0.475 0.576 0.197 0.262 0.325 0.425 0.103 0.196 0.320 0.594 0.167 0.200 0.237 0.296

M
IC

N

A 0.394 0.454 0.598 0.696 0.338 0.494 0.593 0.827 0.322 0.358 0.393 0.506 0.190 0.270 0.355 0.535 0.092 0.184 0.327 0.795 0.183 0.239 0.275 0.349

D 0.362 0.403 0.449 0.620 0.262 0.353 0.488 0.852 0.313 0.364 0.437 0.624 0.195 0.262 0.333 0.528 0.097 0.186 0.318 0.565 0.184 0.216 0.254 0.329

R 0.362 0.403 0.448 0.620 0.212 0.252 0.293 0.369 0.306 0.354 0.415 0.588 0.176 0.243 0.306 0.409 0.091 0.153 0.214 0.453 0.184 0.217 0.250 0.311

Pa
tc

hT
ST A 0.378 0.437 0.466 0.507 0.306 0.377 0.415 0.449 0.323 0.369 0.399 0.459 0.178 0.241 0.321 0.401 0.084 0.184 0.347 0.847 0.175 0.222 0.279 0.355

D 0.346 0.381 0.401 0.455 0.211 0.259 0.313 0.398 0.306 0.347 0.398 0.495 0.184 0.250 0.313 0.415 0.078 0.145 0.216 0.613 0.171 0.213 0.260 0.345

R 0.349 0.386 0.400 0.426 0.206 0.248 0.296 0.365 0.306 0.345 0.387 0.468 0.182 0.248 0.311 0.409 0.079 0.145 0.215 0.606 0.175 0.217 0.264 0.350

Py
ra

fo
rm

er A 0.767 0.857 0.984 1.017 1.719 5.877 5.193 4.637 0.526 0.616 0.849 0.851 0.325 0.633 1.334 4.588 0.678 1.118 1.259 1.957 0.185 0.243 0.295 0.411

D 0.758 0.837 0.891 0.996 1.450 2.304 2.697 3.101 0.567 0.619 0.678 0.806 0.353 0.678 1.248 2.440 0.977 1.190 1.144 1.111 0.187 0.235 0.296 0.412

R 0.750 0.841 0.904 1.022 1.189 2.314 2.697 3.109 0.585 0.637 0.706 0.856 0.274 0.414 0.634 1.155 0.978 1.145 1.116 1.133 0.166 0.206 0.251 0.324

R
ef

or
m

er A 0.815 0.969 0.974 1.216 1.698 2.586 2.756 3.019 0.738 0.887 1.006 1.081 0.859 1.699 1.619 3.257 1.054 1.500 1.977 2.128 0.365 0.784 0.559 0.942

D 0.725 0.776 0.817 0.940 1.430 1.974 2.541 2.936 0.709 0.779 0.840 0.901 0.788 0.913 1.152 1.759 0.465 0.628 0.750 0.953 0.311 0.401 0.484 0.594

R 0.726 0.777 0.817 0.940 1.428 1.943 2.164 2.544 0.709 0.779 0.841 0.901 0.788 0.913 1.152 1.756 0.531 0.672 0.774 0.974 0.304 0.392 0.468 0.562

St
at

io
na

ry A 0.495 0.606 0.738 0.672 0.425 0.510 0.559 0.551 0.407 0.510 0.568 0.625 0.259 0.555 0.441 0.603 0.134 0.220 0.370 1.188 0.197 0.250 0.345 0.418

D 0.463 0.496 0.539 0.627 0.306 0.334 0.369 0.421 0.389 0.454 0.531 0.667 0.253 0.323 0.390 0.512 0.120 0.219 0.321 0.847 0.191 0.238 0.289 0.403

R 0.451 0.486 0.521 0.613 0.308 0.335 0.369 0.421 0.389 0.454 0.531 0.666 0.253 0.324 0.391 0.513 0.106 0.213 0.307 0.783 0.179 0.236 0.289 0.403

Ti
m

es
N

et A 0.389 0.437 0.490 0.520 0.321 0.390 0.437 0.487 0.336 0.385 0.415 0.476 0.189 0.251 0.328 0.422 0.102 0.211 0.346 0.903 0.169 0.228 0.283 0.354

D 0.360 0.395 0.414 0.462 0.234 0.271 0.320 0.388 0.332 0.374 0.428 0.528 0.191 0.254 0.315 0.414 0.104 0.184 0.265 0.706 0.166 0.208 0.254 0.340

R 0.360 0.397 0.420 0.478 0.230 0.260 0.296 0.357 0.327 0.364 0.406 0.497 0.192 0.252 0.310 0.409 0.104 0.184 0.265 0.704 0.165 0.207 0.254 0.341

Tr
an

sf
or

m
er A 0.839 0.865 1.011 0.944 3.185 5.279 5.441 3.394 0.609 0.735 1.086 1.183 0.526 1.016 1.371 2.917 0.549 0.959 1.450 1.924 0.328 0.519 0.702 0.933

D 0.680 0.772 0.821 0.914 1.956 2.195 2.026 1.983 0.601 0.596 0.613 0.642 0.719 0.864 0.941 1.058 0.474 0.621 0.727 0.882 0.322 0.385 0.458 0.618

R 0.697 0.756 0.790 0.867 2.236 2.190 2.070 2.000 0.584 0.595 0.613 0.642 0.530 0.651 0.720 0.853 0.438 0.590 0.677 0.775 0.305 0.381 0.447 0.594

Table 1: The training information of weatherbench in this paper.

5 NEGITIVE EXAMPLE IN TIME SERIES DATASET

The validation of MLSE is heavily depend the time property of the dataset. One example is the traffic dataset who has clear
periodicity, The Table.8 shows that MLSE is generally ineffective, and most models tend to use end-to-end systems to handle
long-term forecasting rather than ATT.

Figure 8: The table shows the complete experimental results for end-to-end, ATT-MSE, and ATT-MLSE loss performance
on the traffic dataset. Metric A represents the baseline MSE performance of the end-to-end pre-trained model, while Metrics
D and R represent the forecast performance after applying ATT training processing with MSE and MLSE as optimize loss,
respectively.

10



Under review as a conference paper at ICLR 2024

6 THE ERROR BAR (STD) FOR TIME SERIES DATASET

We fix the random seed and repeat the finetune experiment 5 times to get the standard deviation of the results.
(These fluctuations arise from machine and build-in code feature). The results are shown in Table 9.

Figure 9: The table shows the standard derivation for repeated experience among all the time series experiment.
We only repeat experiment for finetune task.
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7 USE MLSE START FROM SKETCH DOESN’T PERFORM BETTER

Figure 10: Directly use MLSE and train a model from sketch has no any benefit. It is only a finetune
technology.

8 EULER EQUATION

The latent inductive bias in physical simulation tasks is that all evolution must follow a physics formula.
For weather simulation, this can be an explicit formula such as the Euler equation(Equ.8)Laprise (1992) or
am unexplicit neural network simulator such as FourCast. This prior implies that the relation between time
frames must be "Space to Time", meaning that next state variables such as velocity Vt+1, geometry ϕt+1 and
temperature Tt+1 can be derived from the current state information Vt, ϕt and Tt.

∂tV = F − V · ∇V − ω∂pV −∇ϕ

∂tT = Q/Cv +
RT

Cp
ω − V · ∇T − ω∂pT

∂tϕ = wg − V · ∇V − ω∂pϕ

where V is the horizontal velocity, ω is the vertical velocity driven by ∂ω
∂p = −∇ · V , ϕ is the geopotential,

T is the temperature, F is the force, all of which are continuous functions of the cartesian coordinates (x, y)
and pressure p. Additionally, Q is the external heat, Cv is the heat capacity and R is the gas constant.
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9 DATASET INFORMATION

In this paper, we have two major dataset:

• WeatherBenchRasp et al. (2020) is a large, high-resolution global atmospheric dataset created to facilitate
the development and benchmarking of machine learning models for weather forecasting. It is widely used
in the AI for weather predicting community, such as PanguBi et al. (2022), GraphCastLam et al. (2022)
and FengwuChen et al. (2023). The dataset includes a range of atmospheric variables, such as temperature
(T ), pressure (ϕ), humidity (H) and wind speed (V ) at multiple levels of the atmosphere, and covers the
entire globe with a resolution of approximately 0.25 degrees (or about 28 km). The data is available at
hourly intervals and covers a period from 1979 to 2018. This paper only involves the 32x64 and 64x128
resolutions. We use the horizontal wind speed information, temperature, pressure and humidity data, but
without the constant variables; these features consist of the 68 channels of one earth snapshot. Following
the same habbit as previous worksBi et al. (2022); Lam et al. (2022); Chen et al. (2023), we sequentially
divide the train/valid/test datasets. More specifically, we take data from years 1979-2016 as the train dataset,
year 2017 as the valid dataset, and year 2018 as the test dataset. The WeatherBench-300k dataset task hourly
snapshot thus has around three hundred thousands rawdata. The WeatherBench-50k dataset downsamples
hourly data into 6-hourly data and holds around 55k rawdata.

dataset WeatherBench32x64-6hour WeatherBench32x64-1hour WeatherBench64x128-1hour

shape 68× 32× 64 68× 32× 64 68× 32× 128

split train valid test train valid test train valid test

years 1979 - 2016 2017 2018 1979 - 20152016 - 2017 2018 1979 - 20152016 - 2017 2018

number 55514 1458 1458 324301 17533 8749 324301 17533 8749

Table 2: The information of weatherbench dataset used in this paper.

• Time series use the long-term forecasting setting in TimesNet Wu et al. (2022) and same hyperparameters
for benchmark. The datasets consist of ETT Zhou et al. (2021), Electricity Trindade (2016), Traffic PeM,
Weather Wet, and Exchange Lai et al. (2018). Each part is a single continuous time series, and we sample
rawdata by a sliding window.

dataset input feature train valid test categorize

ETTm1, ETTm2 7× 96, 192, 336, 720 34465 11521 11521 Electricity(15 mins)

ETTh1, ETTh2 7× 96, 192, 336, 720 8545 2881 2881 Electricity (15 mins)

Electricity 321× 96, 192, 336, 720 18317 2633 5261 Electricity (Hourly)

Traffic 862× 96, 192, 336, 720 12185 1757 3509 Transportation (Hourly)

Weather 21× 96, 192, 336, 720 36792 5271 10540 Weather (10 mins)

Exchange 8× 96, 192, 336, 720 5120 665 1422 Exchange rate (Daily)

Table 3: The information of time series dataset used in this paper.
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10 HYPER-PARAMETER AND TRAINING DETAIL

For the WeatherBench dataset training, the same hyperparameters are used for the settings "MSE", "MASE"
or "MLSE". We usually train the model on 4 or 8 A100-80G GPUs using a DataParallel pipeline. The batch
size is calculated as the total number and the random seed is fixed at 73001. We use a cosine learning rate
scheduler which will anneal the learning rate from 1e-6 to the set learning rate in the warmup epoch and then
fall back to 1e-5. The optimizer is AdamW with parameters β = (0.9, 0.95) and weight decay 0.05. More
details can be found in Table 10. Due to computing resource limitations, we only train the model 64x128 with
a small number of epochs. It can be seen that the model quickly overfits in the 64× 128 resolution during the
finetune procedure. We do not use an earlystop strategy, so all models run for the

dataset WB32x64-50k WB32x64-300k WB64x128-300k

model AFNONet AFNONet Lgnet Lgnet

phase pre-T fine-T pre-T fine-T pre-T fine-T pre-T fine-T

epoch 100 100 40 40 20 20 20 4

batch_size 64 64 64 16 64 16 64 16

op
tim

z type AdamW

beta (0.9, 0.95)

sc
he

d

type Cosine

warmup 5

value 1e-6 → lr → 1e-5

lr 8e-4 8e-4 8e-4 8e-4 2e-4 2e-4 8e-4 1e-6

Table 4: The training information of weatherbench in this paper.

For the timeseries dataset, the hyperparameters for both the “MSE” and “MLSE” settings are identical. The
only difference between the pretrain and finetune phases is the learning rate; the finetune learning rate is set
to 1e-5, which is 10x smaller than the pretrain learning rate of 1e-4. All architecture settings are aligned with
the TimesNet Library Wu et al. (2022). The scheduler is cosine with 0 warmup, so the learning rate will
decay to 1e-6 from its set value. The batch size is listed in Table 10. All experiments were run on a single
A100-80G GPU.
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