
Published as a conference paper at ICLR 2025

EDITROOM: LLM-PARAMETERIZED GRAPH DIFFU-
SION FOR COMPOSABLE 3D ROOM LAYOUT EDITING

Kaizhi Zheng1 Xiaotong Chen2 Xuehai He1 Jing Gu1 Linjie Li3
Zhengyuan Yang3 Kevin Lin3 Jianfeng Wang3
Lijuan Wang3 Xin Eric Wang1
1UC Santa Cruz 2University of Michigan, Ann Arbor 3Microsoft
{kzheng31,xwang366}@ucsc.edu

Scene configuration:

Object 1: class=sofa...

Object 2: class=side table...
Object 3: class=tv stand...

"Sure, I can do that. I will first use remove function to remove the side tables and
then use replace function to change the sofa to a larger one."

Command
Parameterizer

Step 1/2: [Remove, the side
table, (left/right of, multi-seat sofa)]

Step 3: [Replace, the multi-seat
sofa, the large wooden bed]

Scene
Editor

Step Command
Source Scene Graph
Source Scene Layout

Graph Diffusion
Target Scene Graph w/ Layout

"I want to remove the side
tables so that I can have a

larger sofa."

Figure 1: Editing Pipeline with EditRoom. EditRoom is a unified language-guided 3D scene lay-
out editing framework that can automatically execute all layout editing types with natural language
commands, which includes the command parameterizer for natural language comprehension and
the scene editor for editing execution. Given a source scene and natural language commands, it can
generate a coherent and appropriate target scene.

ABSTRACT

Given the steep learning curve of professional 3D software and the time-
consuming process of managing large 3D assets, language-guided 3D scene edit-
ing has significant potential in fields such as virtual reality, augmented reality,
and gaming. However, recent approaches to language-guided 3D scene editing
either require manual interventions or focus only on appearance modifications
without supporting comprehensive scene layout changes. In response, we pro-
pose EditRoom, a unified framework capable of executing a variety of layout
edits through natural language commands, without requiring manual intervention.
Specifically, EditRoom leverages Large Language Models (LLMs) for command
planning and generates target scenes using a diffusion-based method, enabling six
types of edits: rotate, translate, scale, replace, add, and remove.
To address the lack of data for language-guided 3D scene editing, we have de-
veloped an automatic pipeline to augment existing 3D scene synthesis datasets
and introduced EditRoom-DB, a large-scale dataset with 83k editing pairs, for
training and evaluation. Our experiments demonstrate that our approach con-
sistently outperforms other baselines across all metrics, indicating higher accu-
racy and coherence in language-guided scene layout editing. Project website:
https://eric-ai-lab.github.io/edit-room.github.io/

1

https://eric-ai-lab.github.io/edit-room.github.io/

Published as a conference paper at ICLR 2025

1 INTRODUCTION

Traditionally, editing 3D scenes requires manual intervention through specialized software like
Blender (Community, 2024), which demands substantial expertise and considerable time for re-
source management. As a result, language-guided 3D scene editing has emerged as a promising
technology for next-generation 3D software. To build an automated system capable of interpreting
natural language and manipulating scenes, the system must be able to align complex, diverse, and
often ambiguous language commands with various editing actions while also comprehending the
global spatial structure of the scene. Additionally, the relatively small size of available 3D scene
datasets presents a challenge for developing large-scale pretrained models necessary for fully auto-
mated, end-to-end language-guided scene editing.

Recently, there have been some works (Zhuang et al., 2023; Bartrum et al., 2024; Karim et al., 2023)
focusing on leveraging pretrained image generation models to edit single object appearance inside
the scene, but they fail to modify the layout of original scenes. Meanwhile, other approaches (Chen
et al., 2023; Ye et al., 2023) further incorporate pretrained segmentation models to enable individual
object manipulation. However, they require manual intervention to determine the edited object
and editing type for any layout adjustments, like adding a new object or changing the object pose.
Furthermore, these methods are all limited to executing a single editing step and are hard to deal
with commands with multiple potential steps.

Therefore, we propose EditRoom, a unified framework that can execute all editing types by com-
plex natural language commands without intermediate manual interventions. It consists of two main
modules: the command parameterizer and the scene editor. The command parameterizer employs
an pretrained LLM, specifically GPT-4o (OpenAI, 2024), to transform natural language commands
into sequences of breakdown commands for six basic editing types on single object: adding,
removing, replacing, translating, rotating, and scaling. These breakdown com-
mands, along with the source scenes, are then fed sequentially into the scene editor for execution.
To unify all editing types, we convert scenes into graph representations and construct scene editor as
conditional graph generation models, where we take source scenes and text commands as conditions
and train diffusion models to generate the target scene graphs with the layout. By conditioning on
the user’s natural language prompts, our model generates reasonable editing results that serve as a
foundation for further refinement. Importantly, the scenes remain fully editable, allowing users to
provide additional prompts for iterative improvements to achieve their desired outcome.

Another challenge is the lack of language-guided scene editing datasets, which constrains both train-
ing and evaluation of scene editing models. To enable the scene editor to accurately execute every
basic editing type, we construct an automatic data generation pipeline and collect a synthetic scene
editing dataset named EditRoom-DB for both training and evaluation, which includes approxi-
mately 83k editing pairs with commands. We implement several functions to simulate the single
editing process on the existing 3D scene synthetic dataset, 3D FRONT (Fu et al., 2021a), which
contains 16k indoor scene designs equipped with high-quality object models, and generate corre-
sponding language commands using predefined templates. To mimic the human inputs, we employ
LLMs to transform the templated commands into natural language forms, serving both as training
material for our baselines and as test cases for single-operation evaluations.

In the experiments, we quantitatively assess the performance of EditRoom in scenarios with single-
operation commands. From the results, we find that EditRoom outperforms other baselines in all
metrics across different room types and editing types, which indicates higher precision and co-
herence in single-operation editing. Furthermore, we qualitatively evaluate EditRoom in scenarios
involving multi-operation commands. We find that the model can successfully generalize to these
scenarios even though we do not train the model on multi-operation data.

Our contributions are summarized as follows:

• We propose a new framework, named EditRoom, consisting of the command parameterizer
and scene editor, which accepts scene inputs and can edit scenes using natural language
commands by leveraging LLM for planning.

• We propose a unified graph diffusion-based module that serves as the scene editor, capa-
ble of executing every basic editing type, including adding, removing, replacing,
translating, rotating, and scaling.

2

Published as a conference paper at ICLR 2025

• We introduce the EditRoom-DB dataset with 83k editing pairs for the first language-guided
3D scene layout editing dataset by augmenting the existing 3D scene synthesis dataset.

• From the experiments, we demonstrate that EditRoom outperforms other baselines across
all editing types and room types on single operation commands, and it can generalize to
complex operation commands without further training.

2 RELATED WORK

Language-Guided 3D Scene Generation Language-guided 3D scene generation works claiming
editing capabilities can be categorized into two main approaches. The first approach utilizes large
language models to generate scene configurations and perform edits (Vilesov et al., 2023; Zhou et al.,
2024b; Aguina-Kang et al., 2024). However, these methods are limited to editing scenes they gen-
erate and cannot accept external source scenes. The second approach trains diffusion-based models
for text-conditional scene generation (Haque et al., 2023; Tang et al., 2023; Zhai et al., 2024). These
methods often require manual masking for edits and have limited editing functionalities. For ex-
ample, InstructScene (Haque et al., 2023) lacks support for operations like translation, rotation, and
scaling, while EchoScene (Zhai et al., 2024), which directly take target scene graphs as input, only
modifies object relations manually and does not process textual instructions. In contrast, EditRoom
accepts existing scenes and supports free-form editing commands for 3D layouts. By leveraging dif-
fusion models trained on clean data, EditRoom enables comprehensive edits, including translating,
rotating, scaling, adding, and removing objects, without manual intervention.

Language-guided 3D Scene Editing Previously, some works (Ma et al., 2018) have explored the
rule-based methods for language-guided 3D scene editing. Compared to these works, our diffusion-
based method can generate diverse editing results, generalize across editing types. Recent language-
guided 3D scene editing works mostly incoprate neural field representations and pretrained image
generation models for object appearance editing. Some works are mainly focusing on replacing
single object (Zhuang et al., 2023; Bartrum et al., 2024; Karim et al., 2023) but failing to edit
the layout. Other approaches (Chen et al., 2023; Ye et al., 2023) leverage pretrained segmantation
models to obtain the individual object representation so that they can remove the objects by manually
selecting the target objects. Besides, all these methods can only take one single-operation command
at each interaction. Compared to these previous works, EditRoom can leverage LLM to deal with
multi-operation natural language commands and automatically execute all editing types through a
unified graph diffusion-based module.

LLMs for 3D Scene Understanding Recent works demonstrate that existing LLMs can facilitate
3D spatial reasoning. These works usually leverage the pretrained image caption models to convert
3D scenes into text descriptions and ask the LLM to generate navigation steps (Zhou et al., 2023;
2024a), provide room layout (Feng et al., 2024), or ground 3D objects (Yang et al., 2023; Hong
et al., 2023; Huang et al., 2023). In our work, we are the first work to leverage LLM for natural
language-guided 3D layout editing, where LLM takes source scenes in text format and breaks the
natural language commands into basic editing operations.

Diffusion Models for Graph In recent years, denoising diffusion models have shown impressive
generative capability in the graph generation (Liu et al., 2023a; Kong et al., 2023; Vignac et al.,
2022). Compared to the previous VAE-based Verma et al. (2022) or GAN-based (Martinkus et al.,
2022) models, diffusion-based models have advantages like stable training processes and generaliz-
ability to various graph structures. Some works have presented that graph diffusion-based models
can be used in molecule generation (Guo et al., 2022; Akhmetshin, 2023), protein modeling (Zhang
et al., 2022), 3D scene generation (Haque et al., 2023; Zhai et al., 2024), and etc. In this work, we
first propose to use graph diffusion-based models for language-guided 3D scene layout editing.

3 THE EDITROOM METHOD

In this section, we introduce EditRoom, shown in Figure 1, comprising two primary modules: Com-
mand Parameterizer and the Scene Editor. Given a natural language command C and source scene
S , we aim to estimate the target scene T with conditional distribution q(T |S ,C). Our command pa-
rameterizer takes the source scene S and natural command C to generate the breakdown commands

3

Published as a conference paper at ICLR 2025

Target Graph Generation

Target Layout Generation

Source Scene

Add�object:�a�wooden
wardrobe;�location:�on
the�right�of�the�bed.

Template Command

Text Encoder

Target Scene

Object Node with Category
and Semantic Feature

Directed Edge for Object
Spatial Relations t s r

Scene layout with positions,
rotations and sizes

Frozen Trainable

All masked GraphSource Scene Graph

t s r

t s r

t s r

Source Scene Graph
(w/ layout)

t s r

Target Scene Graph
(w/ random layout)

t s r
t s r

t s r t s r

t s r

wooden
wardrobe

Target Scene Graph
(w/ layout)

t s r
t s r

t s r t s r

t s r

Figure 2: Scene Editor Overview. Scene Editor aims to provide accurate, coherent editing results
according to the given source scene and language commands. It consists of two graph transformer-
based conditional diffusion models. One diffusion model generates semantic target scene graphs.
Another diffusion model can estimate accurate poses and size information for each object inside
the generated target scene graphs. All diffusion processes are conditioned on the source scene and
breakdown command.

L. Then, the scene editor conditions on breakdown commands L to obtain the final target scene T ,
where the whole pipeline can be written as q(T |S ,C) = q(L|S ,C)× q(T |S ,L). All objects inside
source scenes and target scenes are retrieved from a high-quality 3D furniture dataset (Fu et al.,
2021b).

3.1 LLM AS COMMAND PARAMETERIZER

In order to process open natural language commands, we use GPT-4o (OpenAI, 2024) to convert
natural language command C into a set of combinations of basic editing types with breakdown
commands L := {lj}NL

j=1, where NL is the number of breakdown commands. To cover the general
manipulations on the scene, we design six basic editing operations:

• Rotate an object: [Rotate, Target Object Description, Angle]

• Translate an object: [Translate, Target Object Description, Direction, Distance]

• Scale an object: [Scale, Target Object Description, Scale Factor]

• Replace an object: [Replace, Source Object Description, Target Object Description]

• Add an object: [Add, Target Object Description, Target Object Location]

• Remove an object: [Remove, Target Object Description]

When the target object is not unique, we ask the LLM to use another unique object as a reference
to describe the spatial relation. During the inference phase, we prompt the LLM with attributes
of objects within the source scene along with the natural language command, tasking the model to
analyze the scene and delineate basic editing operations through breakdown commands in specified
formats. The attributes include categories, locations, sizes, rotations, and object captions. Detailed
descriptions of the full prompt and examples are provided in Figure 6 of the appendix.

4

Published as a conference paper at ICLR 2025

3.2 GRAPH DIFFUSION AS 3D SCENE EDITOR

Given the breakdown command l and source scene S, our objective is to determine the conditional
target scene distribution q(T |S, l). Drawing inspiration from recent advancements in language-
guided 3D scene synthesis (Lin & Yadong, 2023), we transform scenes into semantic graphs and
employ a graph transformer-based conditional diffusion model to learn the conditional target scene
graph distribution, as depicted in Figure 2. Our approach involves two key graph transformer-
based diffusion models: the Target Graph Diffusion, which generates object shapes and their spatial
relations as graphs, and the Target Layout Diffusion, which computes the final layout of the target
scene. To reduce the alignment challenges between the 3D scene distribution and language, all
commands are encoded using the text encoder of CLIP-ViT-B-32 (Radford et al., 2021).

Scene Graph Representation Each scene is represented as a combination of a layout B and a scene
graph G (Lin & Yadong, 2023). The layout B encapsulates the position, size, and orientation of each
object, while the scene graph G encodes additional high-level semantic information. Formally, a
semantic scene graph G := (V,E) comprises nodes vi ∈ V , where each vi corresponds to an object
oi with high-level attributes. Directed edges eij ∈ E represent spatial relationships: [“in front of”,
“behind”, “right of”, “left of”, “closely in front of”, “closely behind”, “closely right of”, “closely
left of”, “above”, “below”], connecting the i-th object to the j-th object, where “closely” means
the distance between two object centers are less than 1 meter. Each node vi is characterized by
a discrete category ci and continuous semantic features fi, derived from a pretrained multimodal-
aligned point cloud encoder, OpenShape (Liu et al., 2024c), which features a 1280-dimensional
representation space.

Target Graph Diffusion In this stage, we aim to learn target scene graphs Gtg by giving source
scene graphs Gs and language commands l through a discrete graph diffusion model εg , where Gtg

includes category Ctg and semantic features Ftg for each node and the edges Etg for object relative
relations. Since high-dimensional object semantic features (d = 1280) are too complicated to learn
from limited data, we use a VQ-VAE model (Lin & Yadong, 2023; Wang et al., 2019) to compress
them into low-dimensional features z ∈ Rnf×dZ , which consists of nf vectors extracted from a
learned codebook Z ∈ RKf×dZ by a sequence of feature indices fidx := {1, ...,Kf}nf , where Kf

and dZ are the size and dimension of codebook. Then, we use the feature indices to replace the orig-
inal object semantic features as targets for training, denoted as F̂ . Therefore, Gtg = (Ctg, F̂tg, Etg)

and Gs = (Cs, F̂s, Es), and our goal is to learn the conditional distribution q(Gtg|Gs, l). During the
training process, at timestep t, the gaussian noises are added to the Gtg to get Gt

tg , and the model
εg aims to reconstruct G0

tg by conditioning on Gs and l. To add the conditions, we concatenate each
element of source scene graphs into noisy target scene graphs as context and use cross-attention
layers to incorporate language features. The loss function can be written as:

Lg :=Eq(G0
tg)

[

T∑
t=2

Lt−1 − Eq(G1
tg|G0

tg)
[log pεg (G0

tg|G1
tg,Gs, l)]] (1)

Lt−1 :=DKL[q(Gt−1
tg |Gt

tg,G0
tg)||pεg (Gt−1

tg |Gt
tg,Gs, l)] (2)

where DKL indicates the KL divergence.

Target Layout Diffusion In this stage, we aim to estimate the target scene layout Btg using another
graph diffusion model εb, conditioning on target scene graph Gtg , source scene graph Gs, source
layout Bs, and language command l. The target scene layout Btg ∈ RM×8 consists of position
Ttg ∈ RM×3, size Stg ∈ RM×3, and rotation Rtg ∈ RM×2. During the training process, gaussian
noises ϵ will be added to the target layout, and the layouts are encoded into the node features by
MLP layers. Similar to the Target Graph Diffusion, we concatenate the source scene graph and
source layout to the target scene graph as context and corrupted target layout. The language features
are incorporated through cross-attention layers. The objective target is to estimate the added noises
at each time step. The loss function can be written as:

Lb := EB0
tg,t,ϵ

[||ϵ− εb(B
t
tg, t,Gtg,Gs, Bs, l)] (3)

Inference Process During the inference phase, the first step consists of transforming the source
scene into a scene graph Gs and a corresponding layout Bs. Subsequently, the Target Graph Gener-
ation model predicts the target scene graph Gtg , conditioned on the source scene graph Gs and the

5

Published as a conference paper at ICLR 2025

Table 1: EditRoom-DB dataset statistics. We collect around 83k training data across all room
types and 500 test data for each room type.

Train Test

Types Bedroom Dining room Living room Bedroom Dining room Living room

Translate 8.6k 3.2k 2.7k 808 253 250
Rotate 4.0k 1.3k 1.3k 804 250 252
Scale 12.7k 4.5k 3.9k 805 251 252
Add 8.9k 3.4k 2.8k 747 232 240
Remove 8.8k 3.3k 2.8k 816 260 253
Replace 6.8k 2.2k 2.1k 820 254 253

Total 49.8k 17.9k 15.6k 4800 1500 1500

language command l. This is followed by the Target Layout Generation model, which computes the
target layout Btg , leveraging all available variables as inputs. The final step in constructing the tar-
get scene, denoted as T := (Gtg, Btg), involves retrieving the object meshes based on the estimated
object features and arranging them according to the generated layout. This systematic approach
enables the dynamic generation of scenes that are aligned with verbal instructions, ensuring that the
resulting scenes accurately represent the specified conditions.

4 THE EDITROOM-DB DATASET

To facilitate comprehensive training and evaluation of our framework, we present the EditRoom-
DB dataset, designed to support a wide range of basic 3D scene editing operations. The dataset
is generated through an automated data augmentation pipeline that produces editing pairs based on
object-level modifications applied to scenes from the 3D-FRONT dataset (Fu et al., 2021a). We
utilize scenes from the bedroom, dining room, and living room categories and enhance them with
high-quality object models from the 3D-FUTURE dataset (Fu et al., 2021c) to simulate real-world
editing workflows.

Our data generation pipeline supports a variety of editing operations, including Add and Remove
Objects, Pose and Size Changes, and Object Replacement. Each modification
produces a new scene paired with a detailed textual description of the changes made, following a
predefined template. For each scene, objects are selected randomly and modified iteratively through
basic editing operations. In the case of Add and Remove Objects, the modified scene serves
as the target for the operation, with the original scene acting as the source. For Pose and Size
Changes, random adjustments are applied to selected objects, and collision checking ensures that
the final scenes are free from object overlap. Similarly, in Object Replacement, new objects
from the same category are substituted for existing ones, with collision checks ensuring high-quality
outputs. More details about automatic pipelines can be found in Appendix C.

To create diverse and realistic language instructions for the editing tasks, we first employ the mul-
timodal understanding model LLAVA-1.6 (Liu et al., 2024b;a; 2023b), which captions front-view
images of the objects in the scenes. Then, these object captions are used to construct the template-
based commands. The template-based commands are then transformed into natural language com-
mands using GPT-4o, making the dataset suitable for training and testing language-guided scene
editing models. Detailed prompts and additional examples are shown in Figure 7 in the appendix.

The resulting dataset consists of approximately 83,000 training samples and 7,800 test samples
(randomly sampled across editing types for each room type). Table 1 provides a detailed breakdown
of the dataset statistics across the three scene categories. Each sample includes a source scene, an
edited target scene, and corresponding language commands. This comprehensive dataset enables
the development and evaluation of robust models capable of performing various scene editing tasks.
By simulating realistic workflows and providing detailed text commands, EditRoom-DB serves as a
valuable resource for advancing language-guided 3D scene editing.

6

Published as a conference paper at ICLR 2025

Table 2: Performance on single operation with different room types. From the table, we can
find EditRoom outperforms baselines among all room types, which indicates that our methods can
provide more accurate and coherent editing across room types.

Bedroom Dining room Living room

Model IOU (↑) S-IOU (↑) LPIPS (↓) CLIP (↑) IOU (↑) S-IOU (↑) LPIPS (↓) CLIP (↑) IOU (↑) S-IOU (↑) LPIPS (↓) CLIP (↑)

DiffuScene-N 0.6220 0.6125 0.1431 0.9415 0.4473 0.4321 0.1921 0.9254 0.4332 0.4161 0.1810 0.9236
SceneEditor-N 0.7055 0.6942 0.1261 0.9510 0.5262 0.5091 0.1557 0.9366 0.4618 0.4498 0.1738 0.9329
EditRoom 0.7342 0.7236 0.1090 0.9597 0.5360 0.5196 0.1460 0.9460 0.4710 0.4629 0.1616 0.9446

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Baselines To the best of the authors’ knowledge, EditRoom is the first work that can automatically
execute all editing types with natural language commands. Therefore, we construct two baselines
by modifying language-guided 3D scene synthesis methods for comparisons: DiffuScene-N and
SceneEditor-N:

• DiffuScene-N: DiffuScene-N is modified from the language-guided 3D scene synthesis
work, DiffuScene (Tang et al., 2023), which includes a UNet-based diffusion model to
generate scene layout. To enable it with language-guided scene editing ability, we lever-
age their scene completion pipeline by incorporating the source scene as context for the
diffusion process. During the training and testing, the model directly conditions natural
commands for target scene layout generation.

• SceneEditor-N: To test our generalization ability, we experiment with another setting,
where the scene editor directly trains on the natural commands got from the GPT-4o. Dur-
ing the inference time, the model conditions the natural commands and generates the final
scenes.

We would like to emphasize that not all language-guided 3D scene synthesis methods can be mod-
ified as 3D scene layout editing methods. There are at least two prerequisites: (1) there is a way to
easily convert the source scene into the required intermediate representations; (2) the scene repre-
sentations have the capability to execute all editing manipulations. Some LLM-relevant 3D scene
generation models (Vilesov et al., 2023; Zhou et al., 2024b; Aguina-Kang et al., 2024; Hu et al.,
2024) can generate 3D scenes based on descriptions, but source scenes are hard to convert into their
intermediate representations, like program language (Aguina-Kang et al., 2024) and blender codes
(Hu et al., 2024).

Metrics To evaluate the models’ performance, we utilize four metrics: IOU, S-IOU, LPIPS (Zhang
et al., 2018), and CLIP (Radford et al., 2021) scores. The IOU scores are calculated by determining
the 3D Intersection Over Union (IOU) between each object in the generated and target scenes,
selecting pairs with the highest 3D IOU values. The S-IOU represents the semantic-weighted 3D
IOU, where semantic similarities between matching objects are calculated using Sentence BERT
(S-BERT) (Reimers & Gurevych, 2019) based on their captions. For visual evaluation, we render
both the generated and target scenes from 24 fixed camera views. Visual similarity is assessed using
the LPIPS metric for pixel similarity, and semantic similarity is evaluated using the CLIP image
encoder (CLIP-ViT-B32).

5.2 RESULTS

Single-operation Commands To assess model performance on single operations, we test our model
and baselines using the EditRoom-DB test set, which contains 500 samples per room type, with lan-
guage commands generated by GPT-4o. Quantitative results are depicted in Tables 2 and 3, and
qualitative outcomes are illustrated in Figure 3. Table 2 indicates that EditRoom consistently out-
performs other baselines across all room types, with notably superior performance in bedrooms.
According to Table 3, EditRoom also excels across all editing types. Comparisons between Edit-
Room and SceneEditor-N reveal that template-based instructions can simplify the learning process
by more effectively aligning language commands with scene changes. Moreover, the LLM (GPT-4o)
demonstrates a successful bridge between natural language and template commands. SceneEditor-

7

Published as a conference paper at ICLR 2025

Table 3: Performance on single operations with different editing types. From the table, we can
notice EditRoom provides better editing results across all basic editing types.

Translate Rotate

Model IOU (↑) S-IOU (↑) LPIPS (↓) CLIP (↑) IOU (↑) S-IOU (↑) LPIPS (↓) CLIP (↑)

DiffuScene-N 0.5363 0.5279 0.1715 0.9484 0.6010 0.5913 0.1307 0.9511
SceneEditor-N 0.5983 0.5905 0.1534 0.9504 0.6655 0.6556 0.1202 0.9560
EditRoom 0.6148 0.6078 0.1388 0.9584 0.6764 0.6673 0.1067 0.9610

Scale Replace

Model IOU (↑) S-IOU (↑) LPIPS (↓) CLIP (↑) IOU (↑) S-IOU (↑) LPIPS (↓) CLIP (↑)

DiffuScene-N 0.6057 0.5947 0.1250 0.9566 0.5994 0.5754 0.1488 0.9305
SceneEditor-N 0.6754 0.6650 0.1105 0.9603 0.6451 0.6193 0.1418 0.9389
EditRoom 0.6881 0.6788 0.1008 0.9647 0.6549 0.6305 0.1384 0.9419

Add Remove

Model IOU (↑) S-IOU (↑) LPIPS (↓) CLIP (↑) IOU (↑) S-IOU (↑) LPIPS (↓) CLIP (↑)

DiffuScene-N 0.5312 0.5198 0.1799 0.9263 0.4626 0.4511 0.1877 0.9281
SceneEditor-N 0.5863 0.5745 0.1620 0.9355 0.6160 0.6065 0.1290 0.9489
EditRoom 0.6001 0.5887 0.1588 0.9410 0.6399 0.6316 0.1150 0.9583

Table 4: Ablation on different condition types on the bedroom. From the table, we can show
that incorporating source information as context with the self-attention (our design) instead of the
cross-attention mechanism can significantly improve model performance.

Model IOU (↑) S-IOU (↑) LPIPS (↓) CLIP (↑)

EditRoom (Concat-Text) 0.5855 0.5746 0.1432 0.9488
EditRoom (Original) 0.7342 0.7236 0.1090 0.9597

N outperforms DiffScene-E across all metrics and editing types, suggesting that our graph-based
diffusion method yields more coherent and accurate editing results compared to the UNet-based ap-
proach. Thus, EditRoom provides more precise and coherent atomic editing operations from natural
language commands than its counterparts.

Analysis across different room types shows that all models perform better as the average number
of objects in rooms decreases, highlighting potential for improvements in larger, more complex
scenes. Evaluating different editing operations reveals that translating, adding, and removing opera-
tions score lower on IOU, demanding stronger spatial reasoning. Meanwhile, replacing and adding
operations yield lower CLIP scores, indicating a need for better alignment between object descrip-
tions and their semantic features. This underscores the potential for further enhancement of models’
spatial reasoning and object alignment capabilities.

Multi-operation Commands To demonstrate the generalization capabilities of EditRoom, we man-
ually designed several test prompts that combine multiple atomic operations, and we assessed each
model’s performance qualitatively. Figure 4, shows that EditRoom provides more coherent and ap-
propriate responses than the baseline models. For instance, the command in the first row requests a
bed replacement and the addition of a wardrobe. EditRoom successfully interprets the natural lan-
guage command and translates it into the corresponding atomic operations using an LLM, whereas
other baseline models misinterpret the command and perform incorrect operations such as trans-
lation. These outcomes highlight the challenges of directly training models on natural language
commands for compositional editing tasks. EditRoom, by contrast, effectively executes complex
editing operations through strategic LLM planning.

Ablation on Condition Types To validate our model design, we experimented with an alternative
conditioning approach, where a graph transformer encodes the source scene into a sequence of vec-
tors that are then concatenated with text features. These combined features are incorporated into the
cross-attention layers of our graph diffusion process. We specifically tested this method on the bed-
room scene type, with results shown in Table 4. The table indicates a significant decrease in model
performance, both in terms of layout accuracy and visual coherence. This outcome suggests that

8

Published as a conference paper at ICLR 2025

EditRoom SceneEditor-N DiffuScene-N

shrink the green
sofa to half size

move the double
bed towards back
direction a little bit

distance

rotate the black
double bed with

pillows and a black
headboard 90

degrees.

remove the gray
coffee table with

matte finish

add a modern, black
and white wine

cabinet with glass
front on the left of
the dining table

replace the lamp
with a wooden
base and metal
chain to another
one, geometric
design and a

clear glass bulb

Source SceneLanguage
Command

Figure 3: Qualitative results on single-operation commands. The left column is the source scene
with single operation commands for each basic editing type. From the examples, we can find that
EditRoom can provide more coherent and appropriate editing operations across all editing types.

Table 5: Ablation on different text encoders on the bedroom. Due to the limited size of training
data, we find using the larger text encoder with high-dimensional features induces decreasing per-
formance on editing, which indicates further exploration with 3D editing data generation.

Model IOU (↑) S-IOU (↑) LPIPS (↓) CLIP (↑)

EditRoom (OpenCLIP-ViT-bigG-14) 0.6882 0.6743 0.1305 0.9488
EditRoom (Original) 0.7342 0.7236 0.1090 0.9597

utilizing source scene information as the context for self-attention layers, rather than as conditions
for cross-attention, yields better results.

Ablation on Text Encoders In an exploration of text encoder options, we replaced the CLIP-ViT-
B32 text encoder (512 feature dimensions) with a larger pretrained encoder, OpenCLIP-ViT-bigG-14
(1280 feature dimensions), used by OpenShape to align with object semantic features—consistent
with the object features in our models. We conducted tests on the bedroom test set, with outcomes
detailed in Table 5. The results indicate that the model equipped with the larger text encoder un-
derperforms compared to the one using the original encoder. We attribute this decrease in perfor-
mance to the limited size of our training dataset. Given that our diffusion models are trained from

9

Published as a conference paper at ICLR 2025

SceneEditor-NEditRoom DiffuScene-N

Change the bed to a
wooden one and add
a wooden wardrobe
in front of the bed.

Remove the left
nightstand and

rotate the bed 90
degrees to make it
face the cabinet.

Make the cabinet
two times larger
and put it to the
right a little bit.

Source Scene
Language
Command

Make the room to
be modern style.

Change the table
and ceiling lamp to
be more vintage.

Spread the
furnitures to leave

some space for
walkway.

Figure 4: Qualitative results on multi-operation commands. The left column is the source scene
with multi-operation operation commands. From the figure, we can find the EditRoom can success-
fully generalize to complex natural language commands with multiple operations without further
training on the multi-operation operation data, while baselines fail to execute coherent editing.

scratch, they require more data to effectively align with higher-dimensional features (d = 512 vs
d = 1280). This finding underscores the need for further exploration into constructing larger scene
editing datasets.

6 CONCLUSION

In this work, we introduce EditRoom, a language-guided 3D room layout editing method. EditRoom
incorporates a graph diffusion-based scene editor that facilitates unified basic editing operations, and
it utilizes an LLM for natural language planning. Our experiments demonstrate that EditRoom can
effectively execute appropriate edits for both single and complex operations. We believe this work
will inspire further research into language-guided 3D scene layout editing.

10

Published as a conference paper at ICLR 2025

Limitation Since EditRoom leverages the LLM for the command parameterizer, its performance
is contingent upon the LLM’s capability in 3D scene understanding and natural command com-
prehension. This dependency may lead to the generation of erroneous commands that prompt the
scene editor to execute potentially problematic operations, such as collisions. However, because the
training data predominantly consist of collision-free samples, there is an inherent trade-off between
adhering strictly to the commands and avoiding collisions. If the commands deviate significantly
from typical scenarios—such as moving an object 100 meters away—the model might instead per-
form a similar action that falls within the observed training distributions.

Ethics Statement Our work presents a framework for automated 3D scene editing guided by
natural language. The primary focus of this research is to advance technical capabilities in scene
manipulation. We do not anticipate any ethical concerns or negative societal impacts arising from
this work. All datasets used in our research are synthetic and publicly available, and no personally
identifiable information or human-related data were involved.

Reproducibility Statement All language commands are encoded through the pretrained CLIP-
ViT-B32 text encoder. Each graph diffusion model includes a five-layer graph transformer model
with 512 hidden dimensions and 8 attention heads. Training is conducted using the AdamW op-
timizer over 300 epochs, with a batch size of 512 and a learning rate of 2 × 10−4. All models
are individually trained and tested on each room type. For EditRoom, template commands are em-
ployed for the scene editor during training, whereas other baseline models utilize natural language
commands generated by GPT-4o. During testing, all models receive natural language commands as
input. We set the node number of denoise graphs to the maximum object number for different room
types (bedroom = 12, living room = dining room = 21). During training, we pad the objects with
zeros to facilitate the batch process.

REFERENCES

Rio Aguina-Kang, Maxim Gumin, Do Heon Han, Stewart Morris, Seung Jean Yoo, Aditya Gane-
shan, R Kenny Jones, Qiuhong Anna Wei, Kailiang Fu, and Daniel Ritchie. Open-universe indoor
scene generation using llm program synthesis and uncurated object databases. arXiv preprint
arXiv:2403.09675, 2024.

Tagir Akhmetshin. Graph-based neural networks for generation of synthetically accessible molec-
ular structures. PhD thesis, Université de Strasbourg; Kazanskij gosudarstvennyj universitet im.
VI . . . , 2023.

Edward Bartrum, Thu Nguyen-Phuoc, Chris Xie, Zhengqin Li, Numair Khan, Armen Avetisyan,
Douglas Lanman, and Lei Xiao. Replaceanything3d: Text-guided 3d scene editing with compo-
sitional neural radiance fields. arXiv preprint arXiv:2401.17895, 2024.

Yiwen Chen, Zilong Chen, Chi Zhang, Feng Wang, Xiaofeng Yang, Yikai Wang, Zhongang Cai, Lei
Yang, Huaping Liu, and Guosheng Lin. Gaussianeditor: Swift and controllable 3d editing with
gaussian splatting. arXiv preprint arXiv:2311.14521, 2023.

Blender Online Community. Blender - a 3D modelling and rendering package. Blender Foundation,
Stichting Blender Foundation, Amsterdam, 2024. URL http://www.blender.org.

Weixi Feng, Wanrong Zhu, Tsu-jui Fu, Varun Jampani, Arjun Akula, Xuehai He, Sugato Basu,
Xin Eric Wang, and William Yang Wang. Layoutgpt: Compositional visual planning and gen-
eration with large language models. Advances in Neural Information Processing Systems, 36,
2024.

Huan Fu, Bowen Cai, Lin Gao, Ling-Xiao Zhang, Jiaming Wang, Cao Li, Qixun Zeng, Chengyue
Sun, Rongfei Jia, Binqiang Zhao, et al. 3d-front: 3d furnished rooms with layouts and seman-
tics. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10933–
10942, 2021a.

Huan Fu, Rongfei Jia, Lin Gao, Mingming Gong, Binqiang Zhao, Steve Maybank, and Dacheng
Tao. 3d-future: 3d furniture shape with texture. International Journal of Computer Vision, 129:
3313–3337, 2021b.

11

http://www.blender.org

Published as a conference paper at ICLR 2025

Huan Fu, Rongfei Jia, Lin Gao, Mingming Gong, Binqiang Zhao, Steve Maybank, and Dacheng
Tao. 3d-future: 3d furniture shape with texture. International Journal of Computer Vision, pp.
1–25, 2021c.

Zhichun Guo, Kehan Guo, Bozhao Nan, Yijun Tian, Roshni G Iyer, Yihong Ma, Olaf Wiest, Xian-
gliang Zhang, Wei Wang, Chuxu Zhang, et al. Graph-based molecular representation learning.
arXiv preprint arXiv:2207.04869, 2022.

Ayaan Haque, Matthew Tancik, Alexei A Efros, Aleksander Holynski, and Angjoo Kanazawa.
Instruct-nerf2nerf: Editing 3d scenes with instructions. In Proceedings of the IEEE/CVF In-
ternational Conference on Computer Vision, pp. 19740–19750, 2023.

Yining Hong, Haoyu Zhen, Peihao Chen, Shuhong Zheng, Yilun Du, Zhenfang Chen, and Chuang
Gan. 3d-llm: Injecting the 3d world into large language models. Advances in Neural Information
Processing Systems, 36:20482–20494, 2023.

Ziniu Hu, Ahmet Iscen, Aashi Jain, Thomas Kipf, Yisong Yue, David A Ross, Cordelia Schmid, and
Alireza Fathi. Scenecraft: An llm agent for synthesizing 3d scenes as blender code. In Forty-first
International Conference on Machine Learning, 2024.

Jiangyong Huang, Silong Yong, Xiaojian Ma, Xiongkun Linghu, Puhao Li, Yan Wang, Qing Li,
Song-Chun Zhu, Baoxiong Jia, and Siyuan Huang. An embodied generalist agent in 3d world.
arXiv preprint arXiv:2311.12871, 2023.

Johnny Huynh. Separating axis theorem for oriented bounding boxes. URL:
https://jkh.me/files/tutorials/Separating Axis Theorem for Oriented Bounding Boxes.pdf,
2009.

Nazmul Karim, Umar Khalid, Hasan Iqbal, Jing Hua, and Chen Chen. Free-editor: Zero-shot text-
driven 3d scene editing. arXiv preprint arXiv:2312.13663, 2023.

Lingkai Kong, Jiaming Cui, Haotian Sun, Yuchen Zhuang, B Aditya Prakash, and Chao Zhang.
Autoregressive diffusion model for graph generation. In International conference on machine
learning, pp. 17391–17408. PMLR, 2023.

Chenguo Lin and MU Yadong. Instructscene: Instruction-driven 3d indoor scene synthesis with
semantic graph prior. In The Twelfth International Conference on Learning Representations,
2023.

Chengyi Liu, Wenqi Fan, Yunqing Liu, Jiatong Li, Hang Li, Hui Liu, Jiliang Tang, and Qing Li. Gen-
erative diffusion models on graphs: Methods and applications. arXiv preprint arXiv:2302.02591,
2023a.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. arXiv
preprint arXiv:2304.08485, 2023b.

Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual instruction
tuning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion, pp. 26296–26306, 2024a.

Haotian Liu, Chunyuan Li, Yuheng Li, Bo Li, Yuanhan Zhang, Sheng Shen, and Yong Jae Lee.
Llava-next: Improved reasoning, ocr, and world knowledge, January 2024b. URL https://
llava-vl.github.io/blog/2024-01-30-llava-next/.

Minghua Liu, Ruoxi Shi, Kaiming Kuang, Yinhao Zhu, Xuanlin Li, Shizhong Han, Hong Cai,
Fatih Porikli, and Hao Su. Openshape: Scaling up 3d shape representation towards open-world
understanding. Advances in Neural Information Processing Systems, 36, 2024c.

Rui Ma, Akshay Gadi Patil, Matthew Fisher, Manyi Li, Sören Pirk, Binh-Son Hua, Sai-Kit Yeung,
Xin Tong, Leonidas Guibas, and Hao Zhang. Language-driven synthesis of 3d scenes from scene
databases. ACM Transactions on Graphics (TOG), 37(6):1–16, 2018.

12

https://llava-vl.github.io/blog/2024-01-30-llava-next/
https://llava-vl.github.io/blog/2024-01-30-llava-next/

Published as a conference paper at ICLR 2025

Karolis Martinkus, Andreas Loukas, Nathanaël Perraudin, and Roger Wattenhofer. Spectre: Spectral
conditioning helps to overcome the expressivity limits of one-shot graph generators. In Interna-
tional Conference on Machine Learning, pp. 15159–15179. PMLR, 2022.

OpenAI. Hello gpt-4o. https://openai.com/index/hello-gpt-4o/, 2024. Accessed:
2024-07-29.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748–8763. PMLR, 2021.

Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bert-
networks. arXiv preprint arXiv:1908.10084, 2019.

Jiapeng Tang, Yinyu Nie, Lev Markhasin, Angela Dai, Justus Thies, and Matthias Nießner. Dif-
fuscene: Scene graph denoising diffusion probabilistic model for generative indoor scene synthe-
sis. arXiv preprint arXiv:2303.14207, 2023.

Tathagat Verma, Abir De, Yateesh Agrawal, Vishwa Vinay, and Soumen Chakrabarti. Varscene:
A deep generative model for realistic scene graph synthesis. In International Conference on
Machine Learning, pp. 22168–22183. PMLR, 2022.

Clement Vignac, Igor Krawczuk, Antoine Siraudin, Bohan Wang, Volkan Cevher, and Pas-
cal Frossard. Digress: Discrete denoising diffusion for graph generation. arXiv preprint
arXiv:2209.14734, 2022.

Alexander Vilesov, Pradyumna Chari, and Achuta Kadambi. Cg3d: Compositional generation for
text-to-3d via gaussian splatting. arXiv preprint arXiv:2311.17907, 2023.

Xin Wang, Shinji Takaki, Junichi Yamagishi, Simon King, and Keiichi Tokuda. A vector quantized
variational autoencoder (vq-vae) autoregressive neural f 0 model for statistical parametric speech
synthesis. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 28:157–170,
2019.

Jianing Yang, Xuweiyi Chen, Shengyi Qian, Nikhil Madaan, Madhavan Iyengar, David F Fouhey,
and Joyce Chai. Llm-grounder: Open-vocabulary 3d visual grounding with large language model
as an agent. arXiv preprint arXiv:2309.12311, 2023.

Mingqiao Ye, Martin Danelljan, Fisher Yu, and Lei Ke. Gaussian grouping: Segment and edit
anything in 3d scenes. arXiv preprint arXiv:2312.00732, 2023.

Guangyao Zhai, Evin Pınar Örnek, Dave Zhenyu Chen, Ruotong Liao, Yan Di, Nassir Navab, Fed-
erico Tombari, and Benjamin Busam. Echoscene: Indoor scene generation via information echo
over scene graph diffusion. arXiv preprint arXiv:2405.00915, 2024.

Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable
effectiveness of deep features as a perceptual metric. In CVPR, 2018.

Zuobai Zhang, Minghao Xu, Arian Jamasb, Vijil Chenthamarakshan, Aurelie Lozano, Payel Das,
and Jian Tang. Protein representation learning by geometric structure pretraining. arXiv preprint
arXiv:2203.06125, 2022.

Gengze Zhou, Yicong Hong, and Qi Wu. Navgpt: Explicit reasoning in vision-and-language naviga-
tion with large language models. In Proceedings of the AAAI Conference on Artificial Intelligence,
pp. 7641–7649, 2024a.

Kaiwen Zhou, Kaizhi Zheng, Connor Pryor, Yilin Shen, Hongxia Jin, Lise Getoor, and Xin Eric
Wang. Esc: Exploration with soft commonsense constraints for zero-shot object navigation. In
International Conference on Machine Learning, pp. 42829–42842. PMLR, 2023.

Xiaoyu Zhou, Xingjian Ran, Yajiao Xiong, Jinlin He, Zhiwei Lin, Yongtao Wang, Deqing Sun,
and Ming-Hsuan Yang. Gala3d: Towards text-to-3d complex scene generation via layout-guided
generative gaussian splatting. arXiv preprint arXiv:2402.07207, 2024b.

13

https://openai.com/index/hello-gpt-4o/

Published as a conference paper at ICLR 2025

Jingyu Zhuang, Chen Wang, Liang Lin, Lingjie Liu, and Guanbin Li. Dreameditor: Text-driven 3d
scene editing with neural fields. In SIGGRAPH Asia 2023 Conference Papers, pp. 1–10, 2023.

14

Published as a conference paper at ICLR 2025

Source Scne
(Frozen)

Target Scne
(Diffusion

Denoising)

Instruction: "Add a wardrobe to the left of the bed."
t = 0 t = 75 t = 90 t = 100

Figure 5: Visualization of layout diffusion denoising process. The whole diffusion process is
conditioned on both source scene and language commands. At the beginning of the process, the
target scene layout starts from random noises. After the iterative diffusion denoising process, the
target scene layout becomes coherent to source scene and command.

A LLM AS COMMAND PLANNER

(Referred by Section 3.1) A detailed dialog between user and LLM (GPT-4o) is shown in Figure 6.

B DIFFUSION DENOISING PROCESS

In order for a better illustration of target scene layout generation process, we visualize intermediate
steps during the diffusion denoising process for an adding operation example, shown in Fig. 5. At
the start of the layout diffusion process, the poses and scales of all objects inside the target scene
begin as random noise. As the diffusion process progresses, each object’s properties are iteratively
refined and placed into an appropriate configuration that aligns with the source scene and the given
commands. This iterative refinement highlights the strength of the diffusion model in handling
scene edits cohesively. By adopting a unified approach, the diffusion model is capable of jointly
generating the entire scene layout for all editing types, ensuring consistency and coherence across
diverse operations.

C EDITROOM-DB PIPELINE DETAILS

(Referred by Section 4) A detailed example of using LLM to generate natural language description
from template command is shown in Figure 7.

Add and Remove Objects Removing each object in the scene separately could generate the mod-
ified scenes as the result after removal compared to the original scene. Conversely, the original
scene could be treated as the result after object addition. The formatted editing description will be
‘Add/Remove [object description]’. In order to consider the location of the addition and potential
multiple objects in the scene, we will add the relative location description with the closest unique
object in the scene, like ‘location: [relative description] [reference object description]’.

Pose and Size Changes We can similarly repeat the pose change operation for every object in the
scene as add/remove. Specifically, we design three operations: translation, rotation, and scaling.
For translation, we create random translations as the mix of distances, sampled from 0.1 meters
to 1.5 meters with step 0.1, and directions, sampled along the two axes directions (front/back and
left/right). Then, collision checking is done for every translated object until we find a collision-free
sample. The translation will be skipped if all the samples fail in collision checking. The formatted
editing description will be ‘Move object towards the front/back/left/right direction for [distance] :
[object description]’

15

Published as a conference paper at ICLR 2025

Similarly, we create random rotation angles as the mix of uniform direction samples, clockwise or
counterclockwise, and random values between 15 − 180 degrees with the step of 15 degrees, and
check collision for each sample. The check stops when we find a collision-free sample or all samples
fail the checking. The formatted editing description will be ‘Rotate object [angle] degrees : [object
description]’

For scaling, we separate it as shrinking and enlarging. The scaling factor is randomly generated be-
tween 0.5-0.8 or 1.2-1.5. The scaling factor uniformly applies to three dimensions. Since shrinking
won’t cause a collision with other objects, it can always result in a successfully modified scene. For
enlarging, if collision checking fails on all trials, the enlarging is skipped. Otherwise, we save the
largest collision-free scaling factor. The formatted editing description will be ‘Shrink/Enlarge object
by [scale factor] times : [object description]’

Object Replacement For the replace operation, we access an object dataset with semantic class
labels and 3D meshes. The system will retrieve several objects from the dataset with the same class
label as the replaced object, and check their collision with other existing objects in the scene. If
none of the objects could be placed without collision, we randomly select one object and shrink
its bounding box to be equal or smaller than the replaced object to avoid collision. The formatted
description is ‘Replace source with target : [source object description] to [target object description]’.

Collision Detection Module The objects are abstracted as 3D bounding boxes and further decom-
posed into 2D bounding boxes on a horizontal plane and vertical range, as the objects can only rotate
about the vertical axis. Then, the two objects are only in collision if their 2D bounding boxes overlap
and their vertical ranges overlap. For 2D bounding box collision detection, we apply the Separating
Axis Theorem Huynh (2009) to determine if the boxes intersect.

16

Published as a conference paper at ICLR 2025

System Prompt
Imagine you are a indoor room designer and you are using provided API to control the 3D models in the scene.
Given one scene configuration and a command to edit the scene, you should use the provided APIs to do planning and achieve the target.
All sizes and centroids in scene configurations are in meters. The angles are defined in degrees. The dimension sequence is [x,y,z]. Vertical angles are the angles along the y-axis.
Sizes are the half lengths of the bounding box along the x, y, and z axes when the vertical angle is zero.
We define +x/-x as the right/left direction, +y/-y as the up/down direction, and +z/-z as the front/back direction.
Positive angles are counterclockwise, and negative angles are clockwise.

APIs:
1. Rotate an object: [Rotate, Target Object Description, Angle :(degrees)]
2. Translate an object: [Translate, Target Object Description, Direction :(x/y/z), Distance :(meters)]
3. Scale an object: [Scale, Target Object Description, Scale Factor]
4. Replace an object: [Replace, Source Object Description, Target Object Description]
5. Add an object: [Add, Target Object Description]
6. Remove an object: [Remove, Target Object Description]

Matters needing attention:
1. If there are multiple same objects in the scene and the command is related to the object, you should refer to the object locations.
When you refer to the object locations, you should this format: (Relative Description, Relative Object Description).
When you use add or remove command, you should refer to the object locations.
Relative Description: [left, right, in front of, behind, above, below, closely left, closely right, closely in front of, closely behind]. 'closely' means the distance between two object centroids are
less than 1 meters in x-z plane.
For example, if you want to add a chair in front of the table, you should use the format: [Add, Chair, (in front of, Table)].
2. Translate, rotate, and scale commands should be executed in the order of scale, rotate, and translate.
Consider the protential collision between objects when you execute the commands.
3. When you scale an object, the object should be scaled uniformly. Scale factor should one float number.
4. Replace object will only replace the object with the same class. Replace command will only change the object appearance, not the object poses and sizes.
5. If Translate/Rotate/Scale commands can achieve the target, you should not use Replace/Add/Remove commands.
6. If image is provided, you should use the image to help you understand the scene.
7. Attempt to use the minimum number of commands to achieve the target.
8. If you want to remove and add the object within the same class, you should use the replace command.
9. Object descriptions should be detailed descriptions instead of class names. You can imagine the object descriptions if the object is not in the scene.
10. All apis should be able to converted to a list of strings and numbers, which can be directly processed by json.loads()

For example:
1. If you want to rotate a chair 90 degrees and there is only one chair in the scene, you should use the format: ['Rotate', 'chair', 90].
2. If you want to add a chair in front of the table, you should use the format: ['Add', 'chair', ('in front of', 'table')].
3. If you want to remove a chair, you should use the format: ['Remove', 'chair'].
4. If you want to replace a metal chair with a wooden one and this chair on the left of the bed, you should use the format: ['Replace', 'mental chair', 'wooden chair', ('left', 'bed')].

Think about it step by step. Summarize the used apis at the end by lines. The final output format should be ***api1;api2;...***.

User Input
[Scene configurations]:
Object 0: {"class": "double bed", "size": [1.01, 0.39, 1.08], "vertical angle": -90, "centroid": [3.22, 0.0, -2.48],
"description": "the double bed is a modern, minimalist design with a white color scheme and a simple, clean appearance."}
 Object 1: {"class": "nightstand", "size": [0.28, 0.24, 0.22], "vertical angle": 0, "centroid": [2.05, 0.0, -4.52],
"description": "the nightstand is a modern, dark wood piece with a sleek, minimalist design."}
 Object 2: {"class": "nightstand", "size": [0.33, 0.33, 0.23], "vertical angle": 0, "centroid": [4.54, 0.0, -3.35],
"description": "the nightstand is a simple, white, two-drawer piece with a smooth finish and a small, round knob on each drawer."}
 Object 3: {"class": "wardrobe", "size": [1.04, 1.02, 0.32], "vertical angle": 90, "centroid": [1.51, 0.0, -2.48],
"description": "the wardrobe is a large, white, traditional style piece of furniture with a decorative top and multiple doors."}
 Object 4: {"class": "desk", "size": [1.0, 0.38, 0.3], "vertical angle": -90, "centroid": [5.6, 0.0, -2.47],
"description": "the desk is a modern, minimalist design with a sleek, rectangular shape and a matte gray finish."}
[Command]:"replace the nightstand near the white cabinet with the same model of another nightstand near the black table,
then move it closer to the bed corner to be symmetric with another one."

replace the nightstand near the white cabinet with the same model of another nightstand near the black table,
then move it closer to the bed corner to be symmetric with another one.

LLM Response
To achieve the command of replacing the nightstand near the white cabinet with the other nightstand near the black table and moving it to be symmetric with the other nightstand closer to
the bed corner, we can follow these steps:
1. Identify the nightstands:
 a. Nightstand near the white cabinet (wardrobe): This is the darker wood nightstand at centroid [2.05, 0.0, -4.52].
 b. Nightstand near the black table: This is the white nightstand at centroid [4.54, 0.0, -3.35].
2. Replace the darker wood nightstand with the white nightstand.
3. Move this replaced nightstand closer to the bed so it is symmetric with the other nightstand:
 a. To maintain symmetry, the nightstand should be as positioned close to the bed corner, in the right direction.
Let's execute the steps to achieve the target:
1. **Replace the dark wood nightstand with the white nightstand:**
   ```json
   ['Replace', 'modern, dark wood nightstand', 'simple, white two-drawer nightstand', ('near', 'white cabinet')]
   ```
2. **Translate the replaced nightstand to the right direction to make it symmetric:**
 Considering there is another nightstand near the bed (on the right side), the new one should move closely to the same distance as the first one but in the symmetric position (left of the
bed):
   ```json
   ['Translate', 'simple, white two-drawer nightstand', 'x', 1.22]
   ```
Final API commands used:
- **Replace the nightstand:**
  ```json
  ["Replace", "modern, dark wood nightstand", "simple, white two-drawer nightstand", ("near", "white cabinet")]
  ```
- **Translate the nightstand to ensure symmetry with another nightstand near the bed:**
  ```json
  ["Translate", "simple, white two-drawer nightstand", "x", 1.22]
  ```
Combining these together, the final output is:
Output:
***["Replace", "modern, dark wood nightstand", "simple, white two-drawer nightstand", ("near", "white cabinet")];
["Translate", "simple, white two-drawer nightstand", "x", 1.22]***

Figure 6: Dialog between user and LLM to generate an edit plan to rearrange the bedroom. The
room image in ’User Input’ is not given to LLM, just for illustration purpose.

17

Published as a conference paper at ICLR 2025

System Prompt
Given scene configurations and templated commands, you should write new commands using natural language and spatial reference.
Templated commands will be in the 'action: target_object' format. If the location is provided in the templated commands, it can be considered as a hint for the target object's location
compared to the existing object in the scene.
All sizes and centroids in scene configurations are in meters. The angles are defined in degrees. The dimension sequence is [x,y,z]. Vertical angles are the angles along the y-axis.
Sizes are the half lengths of the bounding box along the x, y, and z axes when the vertical angle is zero.
We define +x/-x as the right/left direction, +y/-y as the up/down direction, and +z/-z as the front/back direction.
When you design new commands, please refer to the spatial relations between objects in the scene.
When you design new commands, please consider correctness, conciseness, and naturalness.
You should attempt to make your command need reasoning.
If there are duplicate target objects in the scene, you should refer to object locations by relative spatial relations with one unique object in the scene.
If there are multiple templated commands, you should consider them as the same command with different representations.
If templated commands indicate to add an object where there is already a similar object, you should indicate this is about adding a new object in your command.
Enlarge and shrink in the command should be uniform.
You can add object descriptions according to the scene configurations, commands, and the image (if provided).
For example:
Example1:
[Templated commands]:['move object towards the ***left*** direction for 1 meters: a white bed with a red and white plaid comforter and a red and white plaid pillow.']
If there is a table (only one table inside the scene) on the left side of the bed and length of bed is 2 meters, you can write: 'move the white bed with red and white plaid towards the table
around 1 meters.' or 'move the bed towards the left direction by half of bed length.'
Example2:
[Templated commands]:['move object towards the ***left*** direction for 0.5 meters: a wooden nightstand.]'
If there is a bed parallel to the nightstand and moving to the left will make the nightstand closer to the bed headboard, you can write: 'move the nightstand closer to the bed headboard by 0.5
meters'.
Example3:
[Templated commands]:['replace source with target : [Source] a white bed; [Target] a brown bed.']
You can write: 'replace the white bed with a brown bed.'
Example4:
[Templated commands]:['add object: a white bed; location: ***right*** a wardrobe.']
If there is a wardrobe in the scene, you can write: 'add a white bed on the right side of the wardrobe.'
Now you can start to design new commands based on the scene configurations and templated commands. You can supplement object descriptions on the command.
Think about it step by step and summarize your commands in the end. The final output format should be '###[natural command 1, natural command 2, ...]###', which is a list of strings and
can be processed by ast.literal_eval() or json.loads().

User Input
[Scene configurations]:
Object 0: {"class": "dining table", "size": [0.55, 0.38, 0.23], "vertical angle": 0, "centroid": [-0.8, 0.0, -3.46],
"description": "the dining table is a modern, minimalist design with a black marble top and a silver metal frame."}
Object 1: {"class": "loveseat sofa", "size": [1.24, 0.43, 0.47], "vertical angle": 90, "centroid": [-3.78, 0.0, 1.38],
"description": "the loveseat sofa is brown with a modern design and has a variety of patterned throw pillows."}
Object 2: {"class": "coffee table", "size": [0.69, 0.23, 0.47], "vertical angle": 90, "centroid": [-2.48, 0.0, 1.4],
"description": "the coffee table is a modern, minimalist design with a geometric shape, featuring a combination of dark wood and lighter wood panels."}
Object 3: {"class": "lounge chair", "size": [0.37, 0.45, 0.37], "vertical angle": 153, "centroid": [-2.94, 0.0, 3.11],
"description": "the chair is a modern, minimalist design with a dark wood frame and a cushion featuring a geometric pattern."}
Object 4: {"class": "corner side table", "size": [0.22, 0.23, 0.22], "vertical angle": 90, "centroid": [-3.99, 0.0, -0.25],
"description": "a round, black marble table with a white base."}
Object 5: {"class": "dining chair", "size": [0.31, 0.45, 0.3], "vertical angle": -180, "centroid": [-0.47, 0.0, -2.79],
"description": "the chair is black with a modern design, featuring a high back and armrests."}
Object 6: {"class": "dining chair", "size": [0.31, 0.45, 0.3], "vertical angle": -180, "centroid": [-1.08, 0.0, -2.79],
"description": "the chair is black with a modern design, featuring a high back and armrests."}
Object 7: {"class": "corner side table", "size": [0.22, 0.23, 0.22], "vertical angle": 90, "centroid": [-3.99, 0.0, 3.13],
"description": "a round, black marble table with a white base."}
Object 8: {"class": "dining chair", "size": [0.31, 0.45, 0.3], "vertical angle": 0, "centroid": [-1.08, 0.0, -4.17],
"description": "the chair is black with a modern design, featuring a high back and armrests."}
Object 9: {"class": "dining chair", "size": [0.31, 0.45, 0.3], "vertical angle": 0, "centroid": [-0.48, 0.0, -4.17],
"description": "the chair is black with a modern design, featuring a high back and armrests."}
Object 10: {"class": "console table", "size": [0.7, 0.42, 0.15], "vertical angle": 0, "centroid": [-3.35, 0.0, -4.56],
"description": "the console table is a modern, black, three-tiered design with a flat top and a rectangular base."}
Object 11: {"class": "cabinet", "size": [0.62, 1.08, 0.29], "vertical angle": -90, "centroid": [-3.94, 0.0, -2.04],
"description": "the children's cabinet is a modern, minimalist design with a light wood frame and a blue and white color scheme, featuring a playful bunny motif on the doors."}
Object 12: {"class": "pendant lamp", "size": [0.18, 0.54, 0.18], "vertical angle": 90, "centroid": [-2.71, 1.53, 4.35],
"description": "the pendant lamp is a modern, metallic chandelier with a white finish, featuring a series of vertical, clear glass tubes that create a geometric pattern."}
Object 13: {"class": "pendant lamp", "size": [0.19, 0.52, 0.19], "vertical angle": 90, "centroid": [-2.26, 1.55, -0.3],
"description": "the pendant lamp is black with a woven design and a white interior."}

[Templated commands]:["rotate object 135 degrees : the pendant lamp is black with a woven design and a white interior",
"obviously rotate object 135 degrees :the pendant lamp is black with a woven design and a white interior."]
Hint: The target object is the Object_13.

LLM Response

###['Rotate the black pendant lamp with a woven design and a white interior by 135 degrees.']###To achieve the command of replacing the nightstand near
the white cabinet with the other nightstand near the black table and moving it to be symmetric with the other nightstand closer to the bed corner, we can follow these steps:

Figure 7: Dialog between user and LLM to generate natural language description from the template
command. The room image in ’User Input’ is not given to LLM, just for illustration purposes.

18

	Introduction
	Related Work
	The EditRoom Method
	LLM as Command Parameterizer
	Graph Diffusion as 3D Scene Editor

	The EditRoom-DB Dataset
	Experiments
	Experimental Setup
	Results

	Conclusion
	LLM as Command Planner
	Diffusion Denoising Process
	EditRoom-DB pipeline details

