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In this document, we provide explanations for the list001
of symbols (Section 1). Subsequently, we present a fail-002
ure case of our method (Section 2). Furthermore, we offer003
additional details on the dataset (Section 3) and the imple-004
mentation and training process (Section 4). We encourage005
readers to refer to our supplementary video for animated006
qualitative results.007

1 Comparison with InterDiff008

Figure 1. Qualitative comparison with InterDiff [7].

As shown in Figure 1, we compare our method FORCE009
with InterDiff [7], a state-of-the-art human-object interac-010
tion method with diffusion model. We compare under the011
offline human motion synthesis setup on testing sequences.012
It can be seen, since InterDiff is not designed to handle goal-013
reaching motion, the interaction may fail.014

Computationally, FORCE runs in real-time, significantly015
(16×) faster than InterDiff, since InterDiff requires iterated016
denoising as part of the diffusion model.017

2 Failure Case018

The object augmentation that we employed for training en-019
ables FORCE to generalize to unseen object shapes at test-020
ing (see all the animations in the supplementary video.)021
However, when the object shape is too large, there may exist022

Figure 2. The interaction exhibits artifact when the object shape is
too large.

interpenetration artifact. 023

3 Dataset 024

Details on the dataset: Our dataset comprises 450 motion 025
sequences involving human-object interactions with a di- 026
verse range of resistance forces. Table 1 provides a detailed 027
breakdown of the dataset categorized by the level of resis- 028
tance. In this context, resistance is measured solely by the 029
mass of the removable weight used. The masses of the ob- 030
jects themselves are not factored into these measurements. 031
They are measured and will be provided with the dataset. 032
The dataset distributions based on the type of action (Ta- 033
ble 2), and the type of hand contact (Table 3) are also pre- 034
sented. 035

Table 1. Distribution of the dataset by the level of resistance. The
data is categorized by the mass of removable weight used. Note,
the masses of the objects themselves are not factored into these
measurements.

Mass Minutes %

0 kg 47.1 33.3
5 kg 18.2 12.9

10 kg 21.4 15.1
15 kg 23.8 16.8
20 kg 7.9 5.6
25 kg 8.9 6.2
>30 kg 14.2 10.1

Details on human tracking. The first stage of our human 036
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Table 2. Distribution of the dataset by the type of action.

Action Type Minutes %

Carry 107.3 75.9
Push 17.4 12.3
Pull 16.7 11.8

Table 3. Distribution of the dataset with different hand contact.

Interaction Type Minutes %

Right Hand 22.7 19.4
Left Hand 27.4 16.0
Both Hand 91.4 64.6

tracking is to fit the SMPL parametric model [4] to the point037
clouds captured by the Kinect cameras. We segment hu-038
mans in captured RGB images using Detectron V2 [6]. The039
resulting masks are then used to segment the human from040
the RGB data, before the the human point cloud is lifted in041
3D. To initialize the SMPL pose, we employ FrankMocap042
[5] from the images. Subsequently, instance-specific opti-043
mization techniques [1] are applied to fit the SMPL model044
to the segmented human point cloud via ICP. For more pre-045
cise fitting, we further derive the SMPL shape parameters of046
each subject from 3D scans using [2]. This stage produces047
the SMPL parameters fitted to the cameras, but they can be048
noisy and erroneous due to occlusion.049
The second stage of our tracking is to refine the IMU-050
captured motion, which is smoother and more robust against051
occlusion. We synchronize the IMU-captured motion with052
the Kinect-fitted results from the previous stage, then per-053
form an optimization to further refine the IMU-captured054
motion with the previously fitted results. The resulting mo-055
tion is smooth and accurately captures the contact between056
the human and the object.057

4 Architecture and Training Details058

The motion synthesis network, MNet, adopts a mixture-059
of-expert structure [3]. Both the gating network and the060
prediction networks consist of three-layer fully-connected061
networks, with hidden dimensions of 128 and 512, respec-062
tively. The model employs 8 experts and is trained for 150063
epochs using an Adam optimizer. The initial learning rate064
is set at 1e-4, and a cosine learning rate scheduler gradually065
reduces it to 5e-6. A batch size of 32 is utilized, and the066
complete training process takes approximately 9 hours on067
an NVIDIA V100 GPU.068

The contact prediction network, CNet encodes the ob-069
ject geometry G through a three-layer fully connected net-070
work of shape {512, 512, 64}, the resistance R, human071
joint positions jpi and desired action oa

i in a separate net-072
work with identical shape. The latent vector z of the VAE073
is of size 6. The weight of the Kullback-Leibler divergence074

β is 0.1. We use the Adam optimizer with a learning rate 075
of 1e-3 and train CNet for 150 epochs. The full training of 076
a subject-specific model takes approximately 10 minutes on 077
an NVIDIA V100 GPU. 078
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