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In this document, we provide explanations for the list
of symbols (Section 1). Subsequently, we present a fail-
ure case of our method (Section 2). Furthermore, we offer
additional details on the dataset (Section 3) and the imple-
mentation and training process (Section 4). We encourage
readers to refer to our supplementary video for animated
qualitative results.

1 Comparison with InterDiff

InterDiff Ours

Figure 1. Qualitative comparison with InterDiff [7].

As shown in Figure 1, we compare our method FORCE
with InterDiff [7], a state-of-the-art human-object interac-
tion method with diffusion model. We compare under the
offline human motion synthesis setup on testing sequences.
It can be seen, since InterDiff is not designed to handle goal-
reaching motion, the interaction may fail.

Computationally, FORCE runs in real-time, significantly
(16 ) faster than InterDiff, since InterDiff requires iterated
denoising as part of the diffusion model.

2 Failure Case

The object augmentation that we employed for training en-
ables FORCE to generalize to unseen object shapes at test-
ing (see all the animations in the supplementary video.)
However, when the object shape is too large, there may exist

Figure 2. The interaction exhibits artifact when the object shape is
too large.

interpenetration artifact.

3 Dataset

Details on the dataset: Our dataset comprises 450 motion
sequences involving human-object interactions with a di-
verse range of resistance forces. Table | provides a detailed
breakdown of the dataset categorized by the level of resis-
tance. In this context, resistance is measured solely by the
mass of the removable weight used. The masses of the ob-
jects themselves are not factored into these measurements.
They are measured and will be provided with the dataset.
The dataset distributions based on the type of action (Ta-
ble 2), and the type of hand contact (Table 3) are also pre-
sented.

Table 1. Distribution of the dataset by the level of resistance. The
data is categorized by the mass of removable weight used. Note,
the masses of the objects themselves are not factored into these
measurements.

Mass Minutes %
Okg | 471 333
5ke 182 129
10 kg 21.4 15.1
I5ke | 238 168
0kg | 79 56
35k | 89 62
>30kg | 142 10.1

Details on human tracking. The first stage of our human
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Table 2. Distribution of the dataset by the type of action.

Action Type | Minutes %
Carry 107.3 75.9
Push 17.4 12.3
Pull 16.7 11.8

Table 3. Distribution of the dataset with different hand contact.

Interaction Type | Minutes %
Right Hand 227 19.4
Left Hand 27.4 16.0
Both Hand 91.4 64.6

tracking is to fit the SMPL parametric model [4] to the point
clouds captured by the Kinect cameras. We segment hu-
mans in captured RGB images using Detectron V2 [6]. The
resulting masks are then used to segment the human from
the RGB data, before the the human point cloud is lifted in
3D. To initialize the SMPL pose, we employ FrankMocap
[5] from the images. Subsequently, instance-specific opti-
mization techniques [1] are applied to fit the SMPL model
to the segmented human point cloud via ICP. For more pre-
cise fitting, we further derive the SMPL shape parameters of
each subject from 3D scans using [2]. This stage produces
the SMPL parameters fitted to the cameras, but they can be
noisy and erroneous due to occlusion.

The second stage of our tracking is to refine the IMU-
captured motion, which is smoother and more robust against
occlusion. We synchronize the IMU-captured motion with
the Kinect-fitted results from the previous stage, then per-
form an optimization to further refine the IMU-captured
motion with the previously fitted results. The resulting mo-
tion is smooth and accurately captures the contact between
the human and the object.

4 Architecture and Training Details

The motion synthesis network, MNet, adopts a mixture-
of-expert structure [3]. Both the gating network and the
prediction networks consist of three-layer fully-connected
networks, with hidden dimensions of 128 and 512, respec-
tively. The model employs 8 experts and is trained for 150
epochs using an Adam optimizer. The initial learning rate
is set at le-4, and a cosine learning rate scheduler gradually
reduces it to 5e-6. A batch size of 32 is utilized, and the
complete training process takes approximately 9 hours on
an NVIDIA V100 GPU.

The contact prediction network, CNet encodes the ob-
ject geometry G through a three-layer fully connected net-
work of shape {512, 512, 64}, the resistance R, human
joint positions 5% and desired action of in a separate net-
work with identical shape. The latent vector z of the VAE
is of size 6. The weight of the Kullback-Leibler divergence

B is 0.1. We use the Adam optimizer with a learning rate
of le-3 and train CNet for 150 epochs. The full training of
a subject-specific model takes approximately 10 minutes on
an NVIDIA V100 GPU.
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