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A IMPLEMENTATION DETAILS

In this section, we will provide more implementation details of our methods. Though some contents,
such as the SE(3)-equivariant layer and the loss function, can be referred to Guan et al. (2023b), we
still include them here to make our paper more self-containing.

A.1 FEATURIZATION

We follow the decomposition algorithm proposed by Guan et al. (2023b) to decompose ligand
molecules into arms and a scaffold. We define the part of proteins that lies within 10Å of any atom of
an arm as its corresponding subpocket.

Following DecompDiff (Guan et al., 2023b), we represent each protein atom with the following
features: one-hot element indicator (H, C, N, O, S, Se), one-hot amino acid type indicator (20
dimension), one-dim flag indicating whether the atom is a backbone atom, and one-hot arm/scaffold
region indicator. If the distance between the protein atom and any arm center is within 10Å, the
protein atom will be labeled as belonging to an arm region and otherwise a scaffold region. The
ligand atom is represented with following features: one-hot element indicator (C, N, O, F, P, S, Cl)
and one-hot arm/scaffold indicator. Different from DecompDiff, the atom features are enhanced by
concatenating an SE(3)-invariant feature of arms and their corresponding subpockets encoded by the
condition encoder after the orignal features.

Two graphs are constructed for message passing in the protein-ligand complex: a k-nearest neighbors
graph GK upon ligand atoms and protein atoms (we choose k = 32 in all experiments) and a
fully-connected graph GL upon ligand atoms. The edge features are the outer products of distance
embedding and edge type. The distance embedding is obtained by expanding distance with radial
basis functions (RBF) located at 20 centers between 0Å and 10Å. The edge type is a 4-dim one-hot
vector indicating the edge is between ligand atoms, protein atoms, ligand-protein atoms or protein-
ligand atoms. In the ligand graph, the ligand bond is represented with a one-hot bond type vector
(non-bond, single, double, triple, aromatic), an additional feature indicating whether or not two ligand
atoms are from the same arm/scaffold.

A.2 MODEL DETAILS

The controllable and decomposed diffusion model consist of two parts: a condition encoder and a
diffusion-based decoder. The building block is an SE(3)-equivariant layer that is composed of three
layers: atom update layer, bond update layer, and position update layer.

We denote the protein pocket as P = {(xP
i , vP

i )}i2{1,...,NP} and the ligand molecule as M =
{(xi,vi, bij)}i,j2{1,...,NM}, where x is the atom position, v is the atom type, and bij is the chemical
bond type between the atom i and the atom j. For brevity, we omit the superscript P or M in the
following. We use hi to denote the the SE(3)-invariant hidden state of i-th atom, xi to denote the i-th
atom’s coordinate, which is SE(3)-equivariant, and eij to denote the hidden state of the edge between
the i-th atom and the j-th atom. They can be obtained as we described in the previous subsection.
And we use t to denote the time embedding as that in Ho et al. (2020).

Atom Update Layer We denote the atom update layer as �a := {�a1,�a2,�a3,�a4}.

We first use the atom update layer �a1 to model protein-ligand interation as follows:

�hK,i  
X

j2NK(i)

�a1(hi,hj , ||xi � xj ||, eij , t), (3)

where NK(i) is the set of neighbors of the i-th atom in the protein-ligand complex graph GK .
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We then further use the atom update layer �a2 and �a3 to model the interaction inside the ligand as
follows:

mij  �a2(||xi � xj ||, eij), (4)

�hL,i  
X

j2NL(i)

�a3(hi,hj ,mji, t), (5)

where NL(i) represents the set of neighbors of the i-th atom in the ligand graph GL. Finally, we
update the hidden state of atoms by the atom update layer �a4 as follows:

hi  hi + �a4(�hK,i +�hL,i). (6)

Bond Update Layer We update the hidden states of the edges by the bond update layer �b as
follows:

eij  
X

k2NL(i)\{j}

�b(hi,hj ,hk,mkj ,mji, t). (7)

Position Update Layer The atom positions are updated by the position update layer �p :=
{�p1,�p2} as follows:

�xK,i  
X

j2NK(i)

(xj � xi)�p1(hi,hj , ||xi � xj ||, t), (8)

�xL,i  
X

j2NL(i)

(xj � xi)�p2(hi,hj , ||xi � xj ||,mji, t), (9)

xi  xi + (�xK,i +�xL,i) · 1mol, (10)

where 1mol is the indicator of ligand atoms since we assume the protein atoms are fixed as the context.

In practice, the condition encoder consists of two SE(3)-equivariant layers and the diffusion-based
decoder consists of six SE(3)-equivaraint layers. In each SE(3)-equivariant layer, following Guan et al.
(2023b), we apply graph attention to aggregate the message of each node/edge. The key/value/query
embedding is obtained through a 2-layer MLP with LayerNorm and ReLU activation. Stacking these
three layers as a block, our model consists of 6 blocks with hidden dim=128 and n heads=16.
Additionally, the diffusion-based decoder also have two prediction heads (which are simply 2-layer
MLPs and following Softmax function) that maps the learned hidden states of atoms and edges to the
predicted atom type and bond type.

A.3 TRAINING DETAILS

Given a pair of protein and ligand molecule, we first decompose the molecule to get the arms. We add
noise to the ligand molecules in the training set to get the perturbed molecules as the forward process
of diffusion models (equation 1). The forward process is a Markov chain with fixed variance schedule
{�t}t=1,...,T (Ho et al., 2020). We denote ↵t = 1 � �t and ↵̄t =

Qt
s=1 ↵s. More specifically, the

noises at time t are injected as follows:

q(xt|x0) = N (xt;
p
↵̄tx0, (1� ↵̄t)I), (11)

q(vt|v0) = C(vt|↵̄tv0 + (1� ↵̄t)/Ka), (12)
q(bt|b0) = C(vt|↵̄tb0 + (1� ↵̄t)/Kb), (13)

where Ka and Kb are the number of atom classes and bond classes respectively.

Then the arms and subpockets are input to the condition encoder. The output of condition encoder
and the perturbed ligand are further input to the diffusion-based decoder. Then the reconstruction
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Figure 5: Illustration of training. For this case, there are actually three pairs of arms and subpockets
input to the condition encoders separately. For brevity, we only plot one as an example.

loss Lt at time t is defined as follows:

L(v)
t =

KaX

k=1

c(vt,v0)k log
c(vt,v0)k
c(vt, v̂0)k

, (14)

L(b)
t =

KbX

k=1

c(bt,b0)k log
c(bt,b0)k

c(bt, b̂0)k
, (15)

L(x)
t = ||x0 � x̂0||2, (16)

Lt = L(x)
t + �vL

(v)
t + �bL

(b)
t , (17)

where (xt,vt,bt), (x0,vt,bt), and (x̂0, v̂0, b̂0) represents atom positions, atom types, and bond
types of the perturbed molecule at time t, ground truth molecule, and the predicted molecule
respectively, c(vt,v0) = c?/

PKa

k=1 c
?
k and c?(vt,v0) = [↵tvt + (1� ↵t)/Ka]� [↵̄t�1v0 + (1�

↵̄t�1)/Ka], c(bt,b0) = c?/
PKb

k=1 c
?
k and c?(bt,b0) = [↵tbt + (1� ↵t)/Kb]� [↵̄t�1b0 + (1�

↵̄t�1)/Kb]. Note that the condition encoder and the diffusion-based decoder are jointly trained.

In practice, we set the loss weights as �v = 100 and �b = 100. Follwing the setting of Guan et al.
(2023b), we set the number of diffusion steps as 1000. For this diffusion noise schedule, we choose
to use a sigmoid � schedule with �1 = 1e-7 and �T = 2e-3 for atom coordinates, and a cosine �
schedule suggested in Nichol & Dhariwal (2021) with s = 0.01 for atom types and bond types.

We use Adam Kingma & Ba (2014) with init learning rate=0.0005, betas=(0.95,
0.999) to train the model. And we set batch size=16 and clip gradient norm=8. Dur-
ing the training phase, we add a small Gaussian noise with a standard deviation of 0.1 to protein
atom coordinates as data augmentation. We also schedule to decay the learning rate exponentially
with a factor of 0.6 and a minimum learning rate of 1e-6. The learning rate is decayed if there is no
improvement for the validation loss in 10 consecutive evaluations. The evaluation is performed for
every 1000 training steps. We trained our model on one NVIDIA GeForce GTX A100 GPU, and it
could converge within 237k steps.

A.4 SAMPLING DETAILS

To sample molecules using the pre-trained controllable and decomposed diffusion model, assume
that there are available arms as conditions, we can first sample a noisy molecule from the prior
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Figure 6: Illustration of the sampling.

distribution and derive a molecule by iteratively denoising following the reverse process (equation 2).
More specifically, the denoising step at time t corresponds to sampling molecules from the following
distributions:

q(xt�1|xt, x̂0) = N (xt�1; µ̃t(xt, x̂0), �̃tI), (18)
q(vt�1|vt, v̂0) = C(vt�1|c̃t(vt, v̂0)), (19)

q(bt�1|bt, b̂0) = C(bt�1|c̃t(bt, b̂0)), (20)

where µ̃t(xt, x̂0) =
p

↵̄t�1�t

1�↵̄t
x̂0 +

p
↵t(1�↵̄t�1)

1�↵̄t
xt, �̃t =

1�↵̄t�1

1�↵̄t
�t, c̃(vt, v̂0) = c̃?/

PKa

k=1 c̃
?
k and

c̃?(vt, v̂0) = [↵tvt + (1� ↵t)/Ka]� [↵̄t�1v̂0 + (1� ↵̄t�1)/Ka], c̃(bt, b̂0) = c̃?/
PKb

k=1 c̃
?
k and

c̃?(bt, b̂0) = [↵tbt+(1�↵t)/Kb]� [↵̄t�1b̂0+(1� ↵̄t�1)/Kb]. Here (x̂0, v̂0, b̂0) is the molecule
output by the diffusion-based decoder, whose input is the noisy molecule at time t and the condition
feature. The sampling step is illustrated as Figure 6. During sampling, we also apply validity guidance
proposed by Guan et al. (2023b), which encourages the model to generate molecules with valid
structures.

A.5 OPTIMIZATION DETAILS
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Figure 7: Illustration of molecular optimization (revised based on Figure 2). It is highlighted where
we apply the condition encoder and the diffusion-based decoder.
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To generate molecules with desired properties, we can apply the pre-trained controllable and decom-
posed diffusion models for structure-based molecular optimization without any fine-tuning. The
optimization procedure is summarized as Algorithm 1 and illustrated as Figure 7. In practice, since
reference ligands are not available, we can initialize the arm lists with 20 ligands generated by
DecompDiff, and this is the actual setting in our experiment. We have provided the optimization
procedure in detail that can be found in Section 3.2 and Section 4.1.

B EVALUATION OF MOLECULAR CONFORMATION

To evaluate generated molecules from the perspective of molecular conformation, we compute the
Jensen-Shannon divergences (JSD) in atom distance distributions between the reference molecules
and the generated molecules (see Figure 8).

We also compute different bond distance and bond angle distributions of the generated molecules and
compare them against the corresponding reference empirical distributions in Tables 5 and 6.

Figure 8: Comparing the distribution for distances of all-atom for reference molecules in the test
set and model-generated molecules. Jensen-Shannon divergence (JSD) between two distributions is
reported.

Table 5: Jensen-Shannon divergence between bond distance distributions of the reference molecules
and the generated molecules, and lower values indicate better performances. “-”, “=”, and “:”
represent single, double, and aromatic bonds, respectively. We highlight the best two results with
bold text and underlined text, respectively.

Bond liGAN GraphBP AR Pocket2
Mol

Target
Diff

Decomp
Diff Ours

C�C 0.601 0.368 0.609 0.496 0.369 0.359 0.362
C=C 0.665 0.530 0.620 0.561 0.505 0.537 0.504
C�N 0.634 0.456 0.474 0.416 0.363 0.344 0.328
C=N 0.749 0.693 0.635 0.629 0.550 0.584 0.566
C�O 0.656 0.467 0.492 0.454 0.421 0.376 0.373
C=O 0.661 0.471 0.558 0.516 0.461 0.374 0.329
C:C 0.497 0.407 0.451 0.416 0.263 0.251 0.196
C:N 0.638 0.689 0.552 0.487 0.235 0.269 0.219

To further measure the quality of generated conformation, we optimize the generated structures with
Merck Molecular Force Field (MMFF) (Halgren, 1996) and calculate the energy difference between
pre- and pos- MMFF-optimized coordinates for different rigid fragments that do not contain any
rotatable bonds. As Table 7 and Figure 9 show, DECOMPOPT achieves low energy differences and
outperforms baselines in most cases. We also calculate the energy difference before and after force
field optimization for the whole molecules. As Table 8 and Figure 10 show, notably, DECOMPOPT
outperforms all diffusion-based methods by a large margin and achieve comparable performance with
the best baseline. These results show that the conformation of ligands generated by DECOMPOPT is
high-quality and stable.
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Table 6: Jensen-Shannon divergence between bond angle distributions of the reference molecules and
the generated molecules, and lower values indicate better performances. We highlight the best two
results with bold text and underlined text, respectively.

Angle liGAN GraphBP AR Pocket2
Mol

Target
Diff

Decomp
Diff Ours

CCC 0.598 0.424 0.340 0.323 0.328 0.314 0.280
CCO 0.637 0.354 0.442 0.401 0.385 0.324 0.331
CNC 0.604 0.469 0.419 0.237 0.367 0.297 0.280
OPO 0.512 0.684 0.367 0.274 0.303 0.217 0.198
NCC 0.621 0.372 0.392 0.351 0.354 0.294 0.266

CC=O 0.636 0.377 0.476 0.353 0.356 0.259 0.257
COC 0.606 0.482 0.459 0.317 0.389 0.339 0.338

Table 7: Median energy difference for rigid fragment of different fragment size (3/4/5/6/7/8 atoms)
before and after the force-field optimization.

Methods Median Energy Difference (#)
3 4 5 6 7 8

LiGAN 86.32 165.15 105.96 185.70 243.79 332.81
AR 25.79 73.06 23.89 30.42 56.47 76.50

Pocket2Mol 10.43 33.93 34.47 27.86 33.90 42.97
TargetDiff 7.31 30.57 18.01 11.98 28.92 50.42

DecompDiff 6.01 29.20 10.78 4.33 12.74 30.68
DECOMPOPT 6.00 16.59 9.89 2.61 13.29 31.49

Figure 9: Median energy difference for molecules with different number of rotatable bonds before
and after the force-field optimization.

C ADDITIONAL RESULTS

C.1 FULL EVALUATION RESULTS
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Table 8: Median energy difference for molecules with different number of rotatable bonds
(1/2/3/4/5/6/7 rotatable bonds) before and after the force-field optimization.

Methods Median Energy Difference (#)
1 2 3 4 5 6 7

LiGAN 810.45 981.53 1145.96 1783.95 1960.24 2547.32 2735.75
AR 176.67 222.74 244.51 268.01 332.89 388.70 441.90

Pocket2Mol 105.64 125.19 168.84 199.33 204.82 226.73 263.96
TargetDiff 225.48 253.72 303.60 344.12 360.74 420.47 434.30

DecompDiff 279.44 264.16 268.23 265.57 262.69 279.73 289.07
DECOMPOPT 63.33 169.17 215.19 248.35 202.81 237.38 238.32

Figure 10: Median energy difference for molecules with different number of rotatable bonds before
and after the force-field optimization.

We provide box plots of evaluation metrics as shown in Figure 11.

Figure 11: The boxplots of QED, SA, Vina Score, Vina Minimize, and Vina Dock of ligands generated
by DECOMPOPT and baseline models.

Following Guan et al. (2023b), our model also has variants of priors. Table 9 shows the results
of multiple variants of our models. The setting of Ref Prior, Pocket Prior, and Opt Prior strictly
follows DecompDiff (Guan et al., 2023b). Ref Best means using the best checkpoint instead of the
last checkpoint for each target pocket during optimization with reference priors for evaluation. For
Pocket/Opt Best, it is similar. Best of Best means using the best checkpoint across all checkpoints
with Ref Prior and Pocket Prior during optimization for each target pocket.
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Table 9: Summary of different properties of reference molecules and molecules generated by our
model and other generation (Gen.) and optimization (Opt.) baselines. (") / (#) denotes a larger /
smaller number is better.

Methods Vina Score (#) Vina Min (#) Vina Dock (#) High Affinity (") QED (") SA (") Diversity (") Success
Avg. Med. Avg. Med. Avg. Med. Avg. Med. Avg. Med. Avg. Med. Avg. Med. Rate

Reference -6.36 -6.46 -6.71 -6.49 -7.45 -7.26 - - 0.48 0.47 0.73 0.74 - - 25.0%

DECOMPOPT (Ref Prior) -5.68 -5.88 -6.53 -6.49 -7.49 -7.66 59.2% 65.0% 0.56 0.58 0.73 0.73 0.64 0.66 35.4%
DECOMPOPT (Ref Best) -5.75 -5.97 -6.58 -6.70 -7.63 -8.02 62.6% 74.3% 0.56 0.59 0.73 0.72 0.63 0.67 39.4%

DECOMPOPT (Pocket Prior) -5.27 -6.38 -7.07 -7.45 -8.85 -8.72 71.4% 93.8% 0.40 0.36 0.63 0.63 0.60 0.61 29.2%
DECOMPOPT (Pocket Best) -5.33 -6.49 -7.08 -7.60 -9.01 -8.98 73.9% 100% 0.41 0.39 0.63 0.63 0.59 0.60 44.7%
DECOMPOPT (Opt Prior) -5.73 -6.64 -7.29 -7.53 -8.78 -8.72 70.3% 89.9% 0.46 0.44 0.65 0.65 0.61 0.61 38.1%
DECOMPOPT (Opt Best) -5.87 -6.81 -7.35 -7.72 -8.98 -9.01 73.5% 93.3% 0.48 0.45 0.65 0.65 0.60 0.61 52.5%

DECOMPOPT (Best of Best) -6.22 -6.94 -7.50 -7.74 -8.98 -8.95 76.2% 100% 0.51 0.51 0.67 0.67 0.61 0.63 60.6%

C.2 TRADE-OFF BETWEEN SUCCESS RATE AND DIVERSITY

In addition to overall performance, we also show the trade-off between Success Rate and diversity of
RGA, TargetDiff w/ Opt., and DECOMPOPT for each target protein pocket in Figure 12. DECOMPOPT
shows general superiority to the other two baselines in most cases considering both Success Rate and
diversity.

Figure 12: Trade-off of Success Rate and diversity. Each point with coordinate (x, y) represents a
pocket with Success Rate x and diversity y. The closer to the top right, the better.

C.3 EVALUATION OF THE ABILITY TO DESIGN NOVEL LIGANDS

We additionally test the Novelty and Similarity of generated ligands compared with the reference
ligand. Novelty is defined as the ratio of generated ligands that are different from the reference
ligands of the corresponding pockets in the test set. Similarity is defined as the Tanimoto Similarity
between the generated ligands and the corresponding reference ligands. The results show that the
generated ligands are not similar to reference ligands in the test set. Besides, we also test Uniqueness
and Diversity of generated ligands. Uniqueness is the percentage of unique molecules among all the
generated molecules. Diversity is the same as that in Section 4.1. The results are reported in Table 10.
These results show that DECOMPOPT can design novel ligands, which is an important ability for drug
discovery.
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Table 10: Evaluation of the ability to design novel ligands.

Methods Novelty Similarity Uniqueness Diversity

LiGAN 100% 0.22 87.82% 0.66
AR 100% 0.24 100% 0.70

Pocket2Mol 100% 0.26 100% 0.69
TargetDiff 100% 0.30 99.63% 0.72

DecompDiff 100% 0.34 99.99% 0.68
RGA 100% 0.37 96.82% 0.41

DECOMPOPT 100% 0.36 100% 0.60

C.4 EFFECTS OF SUBPOCKETS.

To study the influence of subpockets in controlling the optimization, we further conducted an ablation
study using only arms without subpockets as conditions. As Table 11 shows, while DECOMPOPT,
when solely with arms as conditions, is capable of optimizing all metrics, its efficiency in this scenario
is not as well as DECOMPOPT that utilizes both arms and pockets as conditions. Recall that we use
SE(3)-invaraint features of arms (and subpockets) as conditions. Without subpockets, this feature
would be agnostic to the molecular interaction and spatial relation between the arms and subpockets.
Such information is important to some of the properties (e.g., Vina scores). The SE(3)-invaraint
features from pairs of subpockets and arms contain the aforementioned information and are better
aligned with the protein-ligand complex being generated.

Table 11: Comparison of DECOMPOPT optimization results with only arms and arm-pocket com-
plexes as conditions. (") / (#) denotes a larger / smaller number is better.

Methods Vina Score (#) Vina Min (#) Vina Dock (#) High Affinity (") QED (") SA (") Diversity (") Success
Avg. Med. Avg. Med. Avg. Med. Avg. Med. Avg. Med. Avg. Med. Avg. Med. Rate

DecompDiff -5.67 -6.04 -7.04 -7.09 -8.39 -8.43 64.4% 71.0% 0.45 0.43 0.61 0.60 0.68 0.68 24.5%
DECOMPOPT (arms-only) -5.52 -6.26 -7.05 -7.26 -8.65 -8.64 66.6% 86.1% 0.46 0.43 0.63 0.63 0.63 0.63 45.7%

DECOMPOPT -5.87 -6.81 -7.35 -7.72 -8.98 -9.01 73.5% 93.3% 0.48 0.45 0.65 0.65 0.60 0.61 52.5%

C.5 INFLUENCE OF THE QUALITY OF INITIAL LIGANDS ON PERFORMANCE.

To study the influence of the quality of initial ligands on performance of structure-based molecular
optimization, we have conducted an ablation study focusing on Vina Min score optimization, using
ligands with high and low Vina Min scores as initializations for the arm lists. Due to limited resources,
we chose to conduct this study on the protein 2V3R, which is randomly chosen from our test set.
We generated 100 ligands using DecompDiff and selected 20 ligands with the highest and lowest
Vina Min scores. These ligands were then used as the initial conditions for the optimization process.
As shown in Table 12, the optimization outcomes are slightly influenced by the quality of the initial
ligands. However, regardless the quality of the initial ligands, DECOMPOPT can consistently improve
the quality of the generated ligands.

Table 12: Comparison of optimization with initial ligands of different quality.

High Vina Min Scores Low Vina Min Scores � (high - low)
Avg. Med. Avg. Med. Avg.

Initial ligands -8.54 -8.48 -7.08 -7.04 -1.46
DECOMPOPT -9.12 -8.96 -9.00 -8.96 -0.12

C.6 INFLUENCE OF THE NUMBER OF INITIAL LIGANDS ON PERFORMANCE.
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To study the influence of the number of initial molecules on the performance of structure-based
molecular optimization, we further run the experiments with initial arm lists of 1 and 5 molecules
generated by DecompDiff. As Table 13 indicates, the initial number of molecules has a modest
impact on the optimization outcomes, with a higher number of molecules generally leading to
improved performance. Notably, even when starting with a single molecule generated by DecompDiff,
DECOMPOPT demonstrates a considerably high success rate.

Table 13: Summary of results using different number of molecules to initialize arm lists. (") / (#)
denotes a larger / smaller number is better.

Methods Vina Score (#) Vina Min (#) Vina Dock (#) High Affinity (") QED (") SA (") Diversity (") Success
Avg. Med. Avg. Med. Avg. Med. Avg. Med. Avg. Med. Avg. Med. Avg. Med. Rate

init num = 1 -5.41 -6.61 -7.12 -7.51 -8.78 -8.82 70.4% 88.9% 0.47 0.45 0.64 0.63 0.61 0.61 47.0%
init num = 5 -5.71 -6.71 -7.25 -7.58 -8.86 -8.97 71.8% 93.3% 0.49 0.46 0.65 0.64 0.60 0.61 49.4%

init num = 20 -5.87 -6.81 -7.35 -7.72 -8.98 -9.01 73.5% 93.3% 0.48 0.45 0.65 0.65 0.60 0.61 52.5%

D EXTENDED RESULTS OF CONTROLLABILITY

D.1 R-GROUP OPTIMIZATION

We provide additional R-group Optimization experiment on protein 4G3D, as shown in Figure 13.
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Figure 13: Additional R-group optimization result. The left column is reference binding molecule, the
middle and right columns are molecules generated by DECOMPOPT with 30 rounds of optimization
on protein 4G3D. Optimized R-group are highlighted in red.

Table 14: R-group optimization results generated using Decompdiff and DECOMPOPT on protein
3DAF and 4F1M. DECOMPOPT was optimized over 30 rounds towards high Vina Min Score and
evaluated using the final round results. Both targets were assessed with 20 generated molecules and
the mean of properties are reported.

Model 3DAF 4F1M
Vian Min (#) Tanimoto Sim. (") Complete. (") Vian Min (#) Tanimoto Sim. (") Complete. (")

Decompdiff -8.44 0.15 60.0% -5.90 0.15 65.0%
DECOMPOPT -9.39 0.23 95.0% -6.32 0.49 55.0%

D.2 FRAGMENT GROWING

Enhancing the binding affinity of drug candidates through combination of R-group optimization and
fragment growing can effectively leverage capabilities of DECOMPOPT. The quantitative results are
shown in Table 14. For our case study, we perform R-group optimization and fragment growing on
5AEH. Starting from a high binding affinity drug candidate, we first optimize R-group for 30 rounds
same as workflow in Section 4. Subsequently, we design the new arms prior and atom num with
expert guidance, and expand fragments using DECOMPOPT. As Figure 14 shows, DECOMPOPT
ultimately generates molecules with a Vina Min Score more than 4 kcal/mol better than the reference.
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Reference Ligands R-group Optimization Fragment Growing
5AEH

Vina Min: -9.869 Vina Min: -10.645 Vina Min: -13.077

Figure 14: Example of R-group optimization and fragment growing conducted using DECOMPOPT
on 5AEH. The reference ligand, the best R-group result, and the best fragment growing result based
on R-group optimization are displayed from left to right. The selected R-group is highlighted in red,
while the newly extended arm is highlighted in orange.

D.3 SCAFFOLD HOPPING

Additional Evaluation Metrics In addition to evaluation metrics discussed in Section 4, we
evaluated Validity, Uniqueness, Novelty, Complete Rate, and Scaffold Similarity to measure models’
capability in scaffold hopping. Detailed calculation of these metrics as follows:

• Validity is defined as the fraction of generated molecules that can be successfully sanitized.
• Uniqueness measures the proportion of unique molecules among the generated molecules.
• Novelty measures the fraction of generated molecules that not presented in training set.
• Complete Rate measures the proportion of completed molecules within the generated results.
• Scaffold Similarity Following Polykovskiy et al. (2020), Bemis–Murcko scaffolds are extracted

using rdkit function MurckoScaffold. We count the occurrences of scaffolds in all generated
and reference molecules, creating vectors G and R, where each dimension represents the count of
a specific scaffold. The scaffold similarity is calculated as the cosine similarity between vectors G
and R.

More Examples of Generated Results For scaffold hopping, we provide more visualization of
ligands generated by DECOMPOPT and DecompDiff on protein 2Z3H, 4AVW, 4QLK, and 4BEL,
which are shown in Figure 15.

Decompdiff for Scaffold HoppingDecompOpt for Scaffold Hopping

4AAW

2Z3H

4QLK

4BEL

Reference Ligands

Figure 15: More examples of Scaffold Hopping results. The left column shows reference ligands,
Scaffold Hopping results generated by DECOMPOPT are shown at the second and the third rows, and
results generated by DecompDiff are shown at the fourth and the fifth rows. Scaffold are highlighted
in green.
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Changes in Molecular Properties After Scaffold Hopping Scaffold hopping aims at finding
scaffold structures that can connect existing functional groups without disrupting their interactions
with the target protein. The main purpose of this is to find novel scaffolds which are not protected by
existing patents while maintaining comparable properties as the original molecule. Therefore, we did
not implement property optimization mechanisms in scaffold hopping tasks and solely focusing on
designing scaffolds that can connect existing arms. We provide the property comparison before and
after scaffold hopping in Table 15. As the result shows, the properties of the ligands remain relatively
consistent before and after the process of scaffold hopping.

Table 15: Summary of properties of reference molecules and molecules generated through scaffold
hopping using DECOMPOPT. (") / (#) denotes a larger / smaller number is better.

Methods Vina Score (#) Vina Min (#) Vina Dock (#) QED (") SA (")
Avg. Med. Avg. Med. Avg. Med. Avg. Med. Avg. Med.

Reference -6.36 -6.46 -6.71 -6.49 -7.45 -7.26 0.48 0.47 0.73 0.74
Scaffold Hopping by DECOMPOPT -5.89 -6.13 -6.46 -6.28 -7.28 -7.48 0.49 0.48 0.71 0.69
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