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A MODEL PERFORMANCE WITH STANDARD DEVIATION

Limited by space, we did not report the deviation of the models’ performances. Here, we provide the
full model performance table with the standard deviation of model performance calculated over 3
runs. The results are shown in the form of “mean± std”. Tab.1 records the model performance on
CLEVRTex, CLEVRTex-CAMO, and CLEVRTex-OOD, while the model performance on CLEVR
and ObjectsRoom is available in Tab.2.

Table 1: Full model performance on CLEVRTex, CLEVRTex-CAMO, and CLEVRTex-OOD. Models
with 0 performance standard deviation mean we use the model weight from their official repository.
Models marked with red font are newly added during discussion.

model CLEVRTex CAMO OOD
↑ARI-FG ↓MSE ↑ARI-FG ↓MSE ↑ARI-FG ↓MSE

IODINE (Greff et al., 2019) 59.52±2.20 340±3 36.31±2.57 315±3 53.20±2.55 504±3
DTI (Monnier et al., 2021) 79.90±1.37 438±22 72.90±1.89 377±17 73.67±0.98 590±4

eMORL (Monnier et al., 2021) 45.00±7.77 318±43 42.34±7.19 269±31 43.13±9.28 471±51
MONet (Burgess et al., 2019) 36.66±0.87 146±7 31.52±0.73 112±7 37.29±1.00 231±7

GEN-v2 (Engelcke et al., 2021) 31.19±12.41 315±106 29.60±12.84 278±75 29.04±11.23 539±147
SLATE (Singh et al., 2021) 45.44±5.16 498±12 43.52±4.32 349±9 46.49±5.44 550±14
SA (Locatello et al., 2020) 62.40±2.23 254±8 57.54±1.01 215±7 58.45±1.87 487±16
I-SA (Chang et al., 2022) 78.96±3.88 280±8 72.25±2.25 271±7 73.78±3.41 515±11
BO-QSA (Jia et al., 2023) 80.47±2.49 268±2 72.59±0 246±0 72.45±0 805±0

AST-Seg-B3-BT (Jia et al., 2023) 71.79±22.88 152±39 - - - -
SA+SLP (Jia et al., 2023) 71.00±5 - - - - -

BO-QSA+SLP (Jia et al., 2023) 87.00±5 - - - - -
RHGNet (ours) 89.53±0.46 120±4 81.78±1.12 116±3 79.58±1.01 226±8

+Infer-RHG 89.90±0.42 118±4 82.85±1.06 121±4 80.25±0.93 222±8

B SEARCHING METHODS OF INFER-RHG

Inference-time Reverse Hierarchy Guidance (Infer-RHG) is introduced to search for appropriate
initial slots in the paper. To achieve the search, we choose a search method adapted from the simulated
annealing algorithm, where the temperature starts from a small value (10−8). We also studied other
possible searching methods, including the original simulated annealing and the back-propagation
algorithm. In the original simulated annealing algorithm, the temperature starts from 10−2 and
decreases to 10−8 in a cosine manner. In the back-propagation algorithm, we use an SGD optimizer
with a learning rate of 0.1 to optimize the initial slot.

Our search method achieves the best result over a different number of iterations. The result is shown
in Tab.3. The original simulated annealing algorithm does not bring benefits to the model. Instead,
the model performance deteriorates significantly. The back-propagation algorithm approaches the
performance of our method when the number of iterations is sufficient, which is too computationally
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Table 2: Full model performance on CLEVR and ObjectsRoom. Models marked with red font are
newly added during discussion.

model CLEVR ObjectsRoom
↑ARI-FG ↓MSE ↑ARI-FG

IODINE (Greff et al., 2019) 93.81±0.76 44±9 -
DTI (Monnier et al., 2021) 89.54±1.44 77±12 -

eMORL (Monnier et al., 2021) 93.25±3.24 33±8 -
MONet (Burgess et al., 2019) 54.47±11.41 58±12 54±0

GEN-v2 (Engelcke et al., 2021) 57.90±20.38 158±2 84±1
SA (Locatello et al., 2020) 95.89±2.37 23±3 79±2
I-SA (Chang et al., 2022) - 11±0 85±1
BO-QSA (Jia et al., 2023) 96.90±0.92 12±1 87±3

AST-Seg-B3-BT (Jia et al., 2023) 76.05±36.13 51±63 74.96±10.02
SA+SLP (Jia et al., 2023) - - 87±5

BO-QSA+SLP (Jia et al., 2023) - - 93±5
RHGNet (ours) 98.31±0.12 9±1 87±1

+Infer-RHG 98.55±0.09 8±1 88±0

Table 3: Comparison between different slot searching methods on CLEVRTex and CLEVR. We
compare our searching method (Infer-RHG) with the simulated annealing algorithm (sim-ann) and
back-propagation algorithm (BP) with different numbers of iterations.

Iterations Searching CLEVRTex CLEVR
Method ↑ARI-FG ↑OIoU-S ↑OIoU-M ↑OIoU-L ↑ARI-FG ↑OIoU-S ↑OIoU-M ↑OIoU-L

1(bottom-up) - 89.53 56.24 87.47 93.82 98.31 85.00 97.17 98.73

10
sim-ann 86.57 58.31 86.26 91.88 95.61 80.54 93.36 96.62

BP 89.76 58.61 88.40 93.23 98.34 86.81 97.59 98.66
Infer-RHG 89.90 58.91 88.76 93.88 98.55 87.47 98.02 98.89

100
sim-ann 87.27 59.05 87.14 92.75 96.45 82.47 94.42 97.42

BP 89.92 58.48 89.01 94.43 98.45 86.53 97.73 98.80
Infer-RHG 89.96 59.13 88.44 94.54 98.59 88.27 98.21 98.91

expensive. In contrast, our method achieves an acceptable result with ten iterations. Ninety more
iteration steps bring only a slight performance improvement.

C GENERALIZATION TO REAL-WORLD SCENARIOS

Our method can easily be adapted to existing methods, thus generalizing to real-world datasets.
Adding more informative signals, such as depth, optical flow, or pre-trained features is a common
idea. Following the thought of DINOSAUR (Seitzer et al., 2022), we change the input and the
reconstruction objective of the model from images to the output features of a DINO-pretrained Vision
Transformer (Caron et al., 2021).

We give more detailed comparison here. The experiment results of MOVi-C and COCO are shown in
Tab.4 and 5 respectively.

In Fig.2, we conduct visualization experiments on MOVi-C similar to those in the paper to prove
our method also works on real-world scenes. We first repeat running our model with the image in
Fig.2(b) as input 50 times, and record the relationship between Top-down Conflict and ARI-FG. The
negative correlation between conflict and model performance also exists. Fig.2(b) illustrates how
Infer-RHG works. Errorly segmented objects cause high conflict in their areas. Infer-RHG provides a
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Table 4: Model performance comparison on MOVi-C, marked with the used pretrained backbone.

model pre-trained model MOVi-C
↑ARI-FG ↑mBO

Slot-Attention - 43.8±0.3 26.2±1.0
SLATE - 43.6±1.3 26.5±1.1

DINOSAUR DINO ViT-S/8 67.2±0.3 38.6±0.1
RHGNet DINO ViT-S/8 70.50±0.3 39.64±0.2

+Infer-RHG 73.00±0.3 40.68±0.2

Table 5: Model performance comparison on COCO, marked with the used pretrained backbone.

model pre-trained model COCO
↑ARI-FG ↑mBO

DINOSAUR DINO ViT-B/16 40.5±0.0 27.7±0.2
DINO ResNet-50 36.0±0.5 22.9±0.4

RHGNet DINO ViT-B/16 41.02±0.5 27.90±0.4
+Infer-RHG 41.14±0.4 28.26±0.4

larger probability of treating them as a whole object by resolving inconsistent boundary segmentation
in object masks and top-down attention. In addition, Reverse Hierarchy Guidance takes effect on
the low-level features. Based on DINO features according to Fig.2(c), the CNN encoder further
highlights the foreground objects.

D FURTHER VISUALIZATION RESULT AND STABLE BACKGROUND
SEGMENTATION

We provide further visualization results of our model to illustrate the reconstructed part of each
slot, showing the object-centric property of our model. Fig.3, 4, 5, 6, 7 are the visualization results
of CLEVR, ObjectsRoom, CLEVRTex, CLEVRTex-CAMO and CLEVRTex-OOD, respectively.
Our model can extract the objects in the scene successfully in all the datasets. We also find that in
ObjectsRoom, CLEVRTex, CLEVRTex-CAMO, and CLEVRTex-OOD, our model provides a stable
background segmentation, where a separate slot reconstructs the images’ background. However,
this property is not observed in the CLEVR dataset. The background pixels are often reconstructed
together with nearby objects. We consider it because the background of CLEVR barely changes.
Thus the model does not need to learn semantic features for distinguishing the background pixels. In
contrast, in other datasets, the background varies among images.

Figure 1: COCO visualization results.
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Figure 2: MOVi-C visualization. (a) Relation between top-down conflict and model performance,
taking the image in (b) as input. (b) Influence of Infer-RHG on segmentation results. Conflicts often
appear when an object is split into several parts due to inconsistent boundaries. (c) low-level feature
visualization. Our approach highlights foreground objects based on DINO feature.
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If it is necessary to segment the background pixels in CLEVR, a solution is to change the KL
divergence KL(·||·) used to compute the top-down conflict to cross-entropy function CE(·||·). That
is,

C(F,S) := CE(M||A) = −
∑
K

Mlog(A). (1)

Minimizing the cross entropy function will bring two distributions close to each other and force them
to be one-hot, thus forcing the background pixels to be assigned to a single slot. However, while this
method enables the model to segment the background, it also reduces the model’s ability to discover
objects. We provide the visualization results in Fig.8, where quite a few small objects are ignored in
the reconstructed images.
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Figure 3: CLEVR visualization results. The first column is the input image, the second column is the
reconstruction result, and the rest are each slot’s reconstructed parts.
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Figure 4: ObjectsRoom visualization results. The first column is the input image, the second column
is the reconstruction result, and the rest are each slot’s reconstructed parts.
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Figure 5: CLEVRTex visualization results. The first column is the input image, the second column
is the reconstruction result, and the rest are each slot’s reconstructed parts.
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Figure 6: CLEVRTex-CAMO visualization results. The first column is the input image, the second
column is the reconstruction result, and the rest is each slot’s reconstructed parts.

9



Under review as a conference paper at ICLR 2024

Figure 7: CLEVRTex-OOD visualization results. The first column is the input image, the second
column is the reconstruction result, and the rest are each slot’s reconstructed parts.
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Figure 8: CLEVR model with a CrossEntropy top-down conflict. The first column is the input image,
the second column is the reconstruction result, and the rest are each slot’s reconstructed parts. The
model successfully segments the background, but more objects are ignored compared with Fig.3, the
result of the model with a KL divergence top-down conflict
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