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ABSTRACT

Classifier-Free Guidance (CFG), which combines the conditional and uncondi-
tional score functions with two coefficients summing to one, serves as a practical
technique for diffusion model sampling. Theoretically, however, denoising
with CFG cannot be expressed as a reciprocal diffusion process, which may
consequently leave some hidden risks during use. In this work, we revisit the
theory behind CFG and rigorously confirm that the improper configuration of the
combination coefficients (i.e., the widely used summing-to-one version) brings
about expectation shift of the generative distribution. To rectify this issue, we
propose ReCFG1 with a relaxation on the guidance coefficients such that denoising
with ReCFG strictly aligns with the diffusion theory. We further show that our
approach enjoys a closed-form solution given the guidance strength. That way, the
rectified coefficients can be readily pre-computed via traversing the observed data,
leaving the sampling speed barely affected. Empirical evidence on real-world
data demonstrate the compatibility of our post-hoc design with existing state-
of-the-art diffusion models, including both class-conditioned ones (e.g., EDM2
on ImageNet) and text-conditioned ones (e.g., SD3 on CC12M), without any
retraining. We will open-source the code to facilitate further research.

1 INTRODUCTION

Diffusion probabilistic models (DPMs) (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al.,
2020), known simply as diffusion models, have achieved unprecedented capability improvement
of high-resolution image generation. It is well recognized that, DPMs are the most prominent
generative paradigm for a broad distribution (i.e., text-to-image generation) (Podell et al., 2024;
Chen et al., 2024; Esser et al., 2024). Among DPM literature, Classifier-Free Guidance (CFG) (Ho
& Salimans, 2021) serves as an essential factor, enabling better conditional sampling. Vanilla con-
ditional sampling via DPMs introduces the conditional score function st(x, c) = ∇xt

log qt(xt|c),
resulting in poor performance in which synthesized samples appear to be visually incoherent and not
faithful to the condition, even for large-scale models (Rombach et al., 2022). By drawing lessons
from Bayesian theory, CFG employs an interpolation between conditional and unconditional score
functions with a preset weight γ, i.e.,

st,γ(x, c) = γ∇xt
log qt(xt|c) + (1− γ)∇xt

log qt(xt), (1)

in which ∇xt
log qt(xt) is the unconditional score function by annihilating the condition effect.

By doing so, DPMs turn out to formulate the underlying distribution with a gamma-powered
distribution (Bradley & Nakkiran, 2024), i.e.,

qt,γ(x|c) = qt(x|c)γqt(x)1−γ , (2)

which is proportional to qt(x)qt(c|x)γ . Enlarging γ > 1 focuses more on the classifier effect
qt(c|x), concentrating on better exemplars of given condition and thereby sharpening the gamma-
powered distribution. In other words, CFG is designed to promote the influence of the condition.

However, inspired by seminal works (Bradley & Nakkiran, 2024), we argue theoretically that
denoising with CFG cannot be expressed as a reciprocal of vanilla diffusion process by adding

1ReCFG, pronounced as “reconfigure”, is the abbreviation for “rectified Classifier-Free Guidance”.
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(a) LDM, NFE = 10 (b) EDM2, NFE = 63 (c) SD3, NFE = 5

Figure 1: Visualization of the lookup table on LDM (Rombach et al., 2022), EDM2 (Karras
et al., 2024b), and SD3 (Esser et al., 2024), each of which consists of the expectation ratio
Ext

[ϵθ(xt, c, t)]/Ext
[ϵθ(xt, t)]. Each pixel represents the scale of the pixel-wise ratio, i.e., color

red implies that ratio is greater than one, while color blue stands for ratio smaller than one. The
darker the color is, the farther the ratio appears away from one. The two images in one cell report
the ratio of the first and the last denoising step under different NFEs.

Gaussian noises, since the expectation of score function of gamma-powered qt,γ(x|c) is normally
nonzero, violating the underlying theory of DPMs. Theoretically, score functions with zero
expectation at all timesteps guarantee that the denoised x̃0 has expectation E[x̃0] =

α0

αT
E[xT ], thus

E[x̃0] = E[x0] and no bias on the conditional fidelity. Therefore, this theoretical flaw leaves some
hidden risks during use, manifesting as a severe expectation shift phenomenon, i.e., the expectation
of the gamma-powered distribution will be shifted away from the ground-truth of the conditional
distribution qt(x|c). This is more conspicuous when applying larger γ. Fig. 2 clearly clarifies the
expectation shift, in which the peak of induced distribution via CFG in red fails to coincide with that
of ground-truth q0(x0|c). This theoretical flaw is known in theory (Du et al., 2023; Karras et al.,
2024a; Bradley & Nakkiran, 2024), while being largely ignored in practice.

In this work, we first revisit the formulation of native CFG, theoretically confirming its flaw
that we concluded above and summarizing as Theorem 1. Then, to quantitatively reveal the
consequent expectation shift phenomenon by CFG, we employ a toy distribution, enjoying closed-
form description of the behavior on the gamma-powered distribution. Under the toy settings, we
analytically calculate the function of the precise value of expectation shift in correspondence with γ,
as summarized in Theorem 2. Motivated by theoretical compatibility and canceling the expectation
shift, we apply relaxation on the guidance coefficients in native CFG by circumventing the constraint
that two coefficients sum to one, enabling a more flexible control on the induced distributions. To
be more concrete, we propose to formulate the underlying distribution with two coefficients, i.e.,

qt,γ1,γ0(x|c) = qt(x|c)γ1qt(x)
γ0 . (3)

Aiming at consistency with the diffusion theory and thus better guidance efficacy, we specially
design the constraints on γ1 and γ0, and theoretically confirm the feasibility. We further provide
a closed-form solution to the constraints, and propose an algorithm to analytically determine γ0
from a pre-computed lookup table in a post-hoc fashion. Thanks to the neat formulation, we can
employ pixel-wise γ0 according to the lookup table involving guidance strength γ1, condition c and
timestep t, as demonstrated in Fig. 1. We name the above process ReCFG. Experiments with state-
of-the-art DPMs, including both class-conditioned ones (e.g., EDM2 (Karras et al., 2024b)) and
text-conditioned ones (e.g., SD3 (Esser et al., 2024)) under different NFEs and guidance strengths
show that our ReCFG can achieve better guidance efficacy without retraining or extra time cost
during inference stage. Hence, our work offers a new perspective on guided sampling of DPMs,
encouraging more studies in the field of guided generation.

2 RELATED WORK

DPMs and conditional generation. Diffusion probabilistic model (DPM) introduces a new scheme
of generative modeling, formulated by forward diffusing and reverse denoising processes (Sohl-
Dickstein et al., 2015; Ho et al., 2020; Song et al., 2020). It is trained by optimizing the variational
lower bound. Benefiting from this breakthrough, DPM achieves high generation fidelity, and even
beat GANs on image generation. Conditional generation (Choi et al., 2021; Huang et al., 2023)
takes better advantage of intrinsic intricate knowledge of data distribution, making DPM easier to
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scale up and the most promising option for generative modeling. Among the literature, text-to-
image generation injects the embedding of text prompts to DPM, faithfully demonstrating the text
content (Podell et al., 2024; Chen et al., 2024; Esser et al., 2024).

Classifier-Free Guidance. Classifier-Free Guidance (CFG) serves as the successor of Classifier
Guidance (CG) (Dhariwal & Nichol, 2021), circumventing the usage of a classifier for noisy
images. Both CFG and CG attempt to formulate the underlying distribution by concentrating more
on condition influence, achieving better conditional fidelity. Despite great success in large-scale
conditional generation, CFG faces a technical flaw that the guided distribution is not theoretically
guaranteed to recover the ground-truth conditional distribution (Du et al., 2023; Karras et al., 2024a;
Bradley & Nakkiran, 2024). There exists a shifting issue that the expectation of guided distribution is
drifted away from the correct one. This phenomenon may harm the condition faithfulness, especially
for extremely broad distribution (e.g., open-vocabulary synthesis).

3 METHOD

3.1 BACKGROUND ON CONDITIONAL DPMS AND CFG

Let x0 ∈ RD be a D-dimensional random variable with an unknown distribution q0(x0|c), where
c ∼ q(c) is the given condition. DPM (Sohl-Dickstein et al., 2015; Song et al., 2020; Ho et al., 2020)
introduces a forward process {xt}t∈(0,T ] by gradually corrupting data signal of x0 with Gaussian
noise, i.e., the following transition distribution holds for any t ∈ (0, T ]:

q0t(xt|x0, c) = q0t(xt|x0) = N (αtx0, σ
2
t I), (4)

in which αt, σt ∈ R+ are differentiable functions of t with bounded derivatives, referred to as the
noise schedule. Let qt(xt|c) be the marginal distribution of xt conditioned on c, DPM ensures
that qT (xT |c) ≈ N (0, σ2I) for some σ > 0, and the signal-to-noise-ratio (SNR) α2

t /σ
2
t is strictly

decreasing with respect to timestep t (Kingma et al., 2021).

Seminal works (Kingma et al., 2021; Song et al., 2020) studied the underlying stochastic differential
equation (SDE) and ordinary differential equation (ODE) theory of DPM. The forward and reverse
processes are as below for any t ∈ [0, T ]:

dxt = f(t)xtdt+ g(t)dwt, x0 ∼ q0(x0|c), (5)

dxt = [f(t)xt − g2(t)∇xt
log qt(xt|c)]dt+ g(t)dw̄t, (6)

where wt, w̄t are standard Wiener processes in forward and reverse time, respectively, and f, g have
closed-form expressions with respect to αt, σt. The unknown ∇xt

log qt(xt|c) is referred to as the
conditional score function. Probability flow ODE (PF-ODE) from Fokker-Planck equation enjoys
the identical marginal distribution at each t as that of the SDE in Eq. (6), i.e.,

dxt

dt
= f(t)xt −

1

2
g2(t)∇xt log qt(xt|c). (7)

Technically, DPM implements sampling by solving the reverse SDE or ODE from T to 0.
To this end, it introduces a neural network ϵθ(xt, c, t), namely the noise prediction model, to
approximate the conditional score function from the given xt and c at timestep t, i.e., ϵθ(xt, c, t) =
−σt∇xt

log qt(xt|c), where the parameter θ can be optimized by the objective below:

Ex0,ϵ,c,t[ωt∥ϵθ(xt, c, t)− ϵ∥22], (8)

where ωt is the weighting function, ϵ ∼ N (0, I), c ∼ q(c), xt = αtx0 + σtϵ, and t ∼ U [0, T ].
For better condition fidelity, during denoising stage, CFG (Ho & Salimans, 2021) turns to use a
linear interpolation between conditional and unconditional score functions, i.e.,

∇xt
log qt,γ(xt|c) = γ∇xt

log qt(xt|c) + (1− γ)∇xt
log qt(xt). (9)

Then PF-ODE can be rewrote as
dxt

dt
= f(t)xt −

1

2
g2(t)∇xt

log qt,γ(xt|c). (10)

3
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𝛾 = 𝛾1 = 2.0, 𝛾0 = 0.0 𝛾 = 𝛾1 = 2.5, 𝛾0 = 0.0𝛾 = 𝛾1 = 1.5, 𝛾0 = 0.0

Figure 2: Visualization of expectation shift. The demonstrated toy data is simulated by
q0(x0|c) ∼ N (c, 1), q(c) ∼ N (0, 1), q0(x0) ∼ N (0, 2). Gamma-powered distribution q0,γ(x0|c)
from CFG (Ho & Salimans, 2021) fails to recover the same conditional expectation as ground-truth
due to expectation shift (i.e., probability density function and histogram by DDIM (Song et al.,
2021) sampler in red). To make a further step, larger γ suggests more severe expectation shift, i.e.,
the peak of q0,γ(x0|c) tends further away from q0(x0|c) (i.e., probability density function in blue)
as γ goes from 1.5 to 2.5. As a comparison, our ReCFG successfully recovers the ground-truth
expectation and smaller variance (i.e., probability density function and histogram by DDIM (Song
et al., 2021) sampler in green), consistent with the motivation of guided sampling.

We further describe the CFG under the original DDIM theory. Recall that DDIM turns out to
formulate non-Markovian forward diffusing process such that the reverse denoising process obeys
the distribution with parameters {δt}t (Song et al., 2021):

qδ(xt−1|xt,x0, c) = qδ(xt−1|xt,x0) ∼ N
(
αt−1x0 +

√
σ2
t−1 − δ2t ·

xt − αtx0

σt
, δ2t I

)
. (11)

Trainable generative process pθ(xt−1|xt, c) is designed to leverage qδ(xt−1|xt,x0, c) with a further
designed denoised observation f tθ with noise prediction model ϵθ, i.e.,

f tθ(xt, c) =
1

αt
(xt − σtϵθ(xt, c, t)), (12)

pθ(xt−1|xt, c) =

{
qδ(xt−1|xt, f

t
θ(xt, c), c), t > 1,

N (f tθ(x1), σ
2
1I), t = 1.

(13)

DDIM proves that for any {δt}t, score matching of non-Markovian process above is equivalent to
native DPM up to a constant. Under CFG setting with weight γ, we generalize the theory as below:

f tθ,γ(xt, c) =
1

αt
(xt − σt(γϵθ(xt, c, t) + (1− γ)ϵθ(xt, t))), (14)

pθ,γ(xt−1|xt, c) =

{
qδ(xt−1|xt, f

t
θ,γ(xt, c), c), t > 1,

N (f tθ,γ(x1, c), σ
2
1I), t = 1.

(15)

Native DDIM theory still holds since qδ(xt−1|xt,x0, c) = qδ(xt−1|xt,x0), i.e., with the definition
Jδ,γ(ϵθ) = Eqδ(x0:T |c)[log qδ(x1:T |x0, c)− log pθ,γ(x0:T |c)], (16)

we have the following theorem. Proof is in Appendix A.1.
Theorem 1. For any {δt}t and γ > 1, Jδ,γ is equivalent to native DPM under CFG up to a constant.
However, denoising with CFG is not a reciprocal of the original diffusion process with Gaussian
noise due to nonzero expectation of unconditional score function Eqt(xt|c)[∇xt

log qt(xt)].
Remark 1. ϵθ(xt, c, t) and ϵθ(xt, t) are proportional to ∇xt

log qt(xt|c) and ∇xt
log qt(xt) with

coefficients being each minus standard deviation respectively, and empirically we use the same fixed
variance for both q(xt−1|xt,x0, c) and q(xt−1|xt,x0). Therefore, Theorem 1 is consistent with the
original CFG using score functions in Eq. (9).

3.2 MISCONCEPTIONS ABOUT CFG ON EXPECTATION SHIFT

CFG is designed to concentrate on better exemplars for each denoising step by sharpening the
gamma-powered distribution as below (Bradley & Nakkiran, 2024)

qt,γ(x|c) = qt(x|c)γqt(x)1−γ . (17)
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We first generalize the counterexample in Bradley & Nakkiran (2024) to confirm the expectation
shift phenomenon. For VE-SDE with deterministic sampling recipe, we consider the 1-dimensional
distribution with q0(x0|c) ∼ N (c, 1), q(c) ∼ N (0, 1), q0(x0) ∼ N (0, 2). Then we can formulate
the forward process and score functions as below:

qt(xt|c) ∼ N (c, 1 + t), (18)
qt(xt) ∼ N (0, 2 + t), (19)

∇xt
log qt(xt|c) = −xt − c

1 + t
, (20)

∇xt
log qt(xt) = − xt

2 + t
. (21)

We state the theorem below describing the expectation shift. Proof is addressed in Appendix A.2.

Theorem 2. Denote by qdeter0,γ (x0|c) the conditional distribution by solving PF-ODE in Eq. (10)
with CFG weight γ > 1. Then qdeter0,γ (x0|c) follows the closed-form expression as below.

qdeter0,γ (x0|c) ∼ N
(
cϕ(γ, T ), 21−γ T + 1

(T + 1)γ(T + 2)1−γ

)
, (22)

in which

ϕ(γ, T ) = 2
1−γ
2

(
1

(T + 1)
γ
2 (T + 2)

1−γ
2

+
γ

2

∫ T

0

(s+ 1)−
γ+2
2 (s+ 2)−

1−γ
2 ds

)
. (23)

Specifically, when T → +∞, denote by ϕ(γ) with

ϕ(γ) = lim
T→+∞

ϕ(γ, T ), (24)

we have ϕ(γ) ⩾ γ 7
15

(
10
7

) 5−γ
2 for γ ∈ [1, 3], ϕ(1) = 1, ϕ(3) = 2, ϕ(γ) ⩾ 2 for all γ > 3, and

qdeter0,γ (x0|c) ∼ N (cϕ(γ), 21−γ). (25)

Furthermore, we have closed-form expression for ϕ(γ) when γ ∈ N and γ > 1, i.e.,

ϕ(γ) =



2−n

(
n∑

k=0

Ck
n

2n+ 1

2n− 2k + 1

)
, γ = 2n+ 1,

2−
1
2

(
√
2− 1

2
log

√
2− 1√
2 + 1

)
, γ = 2,

(2n− 1)!!
√
2n

(2n)!!2n

((
n∑

k=2

1

k

(2k)!!2k−
1
2

(2k − 1)!!

)
+ 2

√
2− log

√
2− 1√
2 + 1

)
, γ = 2n ⩾ 4.

(26)

However, note that the ground-truth conditional distribution q0(x0|c) ∼ N (c, 1), indicating that the
ground-truth expectation is equal to c. That is to say, denoising with CFG achieves at least twice as
large expectation as the ground-truth one. Fig. 2 clearly describes the phenomenon.

3.3 RECTIFIED CLASSIFIER-FREE GUIDANCE

Recall that the constraint of the two coefficients with summation one disables the compatibility with
diffusion theory and indicates expectation shift. Theorem 2 quantitatively describes the expectation
shift, claiming that the two coefficients of conditional and unconditional score functions in Eq. (9)
dominate both the expectation and variance of qdeter0,γ (x0|c). To this end, we propose to rectify CFG
with relaxation on the guidance coefficients, i.e.,

∇xt
log qt,γ1,γ0

(xt|c) = γ1 ⊗∇xt
log qt(xt|c) + γ0 ⊗∇xt

log qt(xt), (27)

5
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in which γ1, γ0 ∈ RD are functions with respect to condition c and timestep t, and ⊗ indicates
element-wise product. Denote by q0,γ1,γ0

(x0|c) the attached conditional distribution following PF-
ODE in Eq. (10) with ∇xt

log qt,γ1,γ0
(xt|c).

To make guided sampling compatible with the diffusion theory and annihilate expectation shift,
it suffices to choose more appropriate γ1 and γ0 according to input condition c and timestep t.
Intuitively, we need the constraint such that:

• Each component γ1,i > 1 for strengthened conditional fidelity,

• Denoising with PF-ODE and Eq. (27) is theoretically the reciprocal of forward process,
thus q0,γ1,γ0

(x0|c) enjoys the same expectation as ground-truth q0(x0|c),
• q0,γ1,γ0(x0|c) enjoys smaller or the same variance as ground-truth q0(x0|c) for sharper

distribution and better exemplars.

In the sequel, we omit ⊗ for simplicity. We first focus on the compatibility with the diffusion
theory. We have claimed in Theorem 1 that CFG cannot satisfy the diffusion theory due to nonzero
Eqt(xt|c)[∇xt

log qt(xt)]. To this end, it suffices to annihilate the expectation shift as below:

Eqt(xt|c)[∇xt log qt,γ1,γ0(xt|c)] = − 1

σt
Eqt(xt|c)[γ1ϵθ(xt, c, t) + γ0ϵθ(xt, t)] = 0. (28)

To confirm the feasibility and precisely describe the expectation of q0,γ1,γ0
(x0|c), resembling

Eqs. (14) and (15) we can write:

f tθ,γ1,γ0
(xt, c) =

1

αt
(xt − σt(γ1ϵθ(xt, c, t) + γ0ϵθ(xt, t))), (29)

pθ,γ1,γ0(xt−1|xt, c) =

{
qδ(xt−1|xt, f

t
θ,γ1,γ0

(xt, c), c), t > 1,

N (f tθ,γ1,γ0
(x1, c), σ

2
1I), t = 1.

(30)

And we have the following theorem, in which proof is addressed in Appendix A.3.

Theorem 3. Let xt ∼ qt(xt|c), x̃t ∼ pθ,γ1,γ0
(x̃t|c) induced from DDIM sampler in Eq. (30).

Assume that all δt = 0, denote by ∆t the difference between expectation of xt and x̃t, i.e.,

∆t = Eqt(xt|c)[xt]− Epθ,γ1,γ0
(x̃t|c)[x̃t]. (31)

Then we have the following recursive equality:

∆t−1 =
σt−1

σt
∆t − (σt−1 −

αt−1

αt
σt)Ex̃t

[(γ1 − 1)ϵθ(x̃t, c, t) + γ0ϵθ(x̃t, t)]). (32)

Specifically, when ∆t = 0, we have:

∆t−1 = −(σt−1 −
αt−1

αt
σt)Ext [(γ1 − 1)ϵθ(xt, c, t) + γ0ϵθ(xt, t)]). (33)

Theorem 3 studies the difference between expectation of denoising with Eq. (27) and the ground-
truth. Note that Ext

[ϵθ(xt, c, t)] = Ext
[Eqt(ϵ|xt)[ϵ|xt]] = Ext

[ϵ] = 0, we have

Ext
[(γ1 − 1)ϵθ(xt, c, t) + γ0ϵθ(xt, t)] = Ext

[γ1ϵθ(xt, c, t) + γ0ϵθ(xt, t)], (34)

which coincides with Eq. (28), indicating the feasibility and a closed-form solution given c and t.

As for variance, however, normally we cannot calculate the variance of pθ,γ1,γ0
(xt|c). Instead, we

study the variance in Sec. 3.2 as an empirical evidence, where proof is in Appendix A.4.

Theorem 4. Under settings in Theorem 2, denote by qdeter0,γ1,γ0
(x0|c) the conditional distribution by

PF-ODE and deterministic sampling with γ1 and γ0 as in Eq. (27). Then we have

varqdeter
0,γ1,γ0

(x0|c)[x0] = 2γ0(T + 1)1−γ1(T + 2)−γ0 . (35)

According to Theorem 4, variance of qdeter0,γ1,γ0
(x0|c) is guaranteed to be smaller than the ground-truth

varq0(x0|c)[x0] = 1 when each γ0,i ⩽ 0 and γ1,i + γ0,i ⩾ 1, especially when T → +∞.
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Now we formally propose the constraints. First, we need γ1,i > 1 for strengthened conditional
fidelity. Then for expectation, it is noteworthy that ∆T = 0 satisfies the assumption in Theorem 3.
Therefore by induction, it is feasible to annihilate ∆0 by annihilation of Eq. (28). Finally as for
variance, we empirically set γ0,i ⩽ 0 and γ1,i + γ0,i ⩾ 0.

Practically, we can determine γ0 according to the guidance strength γ1, condition c, and timestep
t, according to the closed-form solution of Eq. (33). Concretely, given condition c, it is feasible to
pre-compute a collection of {(ϵθ(xt, c, t), ϵθ(xt, t))}t by traversing q0(x0|c), and maintain a lookup
table consisting of Ext

[ϵθ(xt, c, t)]/Ext
[ϵθ(xt, t)]. Then given any γ1, we can directly achieve γ0

by multiplying −(γ1 − 1) with the expectation ratio. Pseudo-code is addressed in Appendix B.

We make further discussion about ReCFG. By Cauchy-Schwarz inequality and Eq. (33) we have:

∥∆t−1∥22 ⩽ (σt−1 −
αt−1

αt
σt)

2Ext
[∥(γ1 − 1)ϵθ(xt, c, t) + γ0ϵθ(xt, t)∥22]. (36)

Then we can define the objective resembling DPMs as below, optimizing reversely from t = T to 0.

Lγ1,γ0
= Ext,t[∥(γ1 − 1)ϵθ(xt, c, t) + γ0ϵθ(xt, t)∥22]. (37)

Resembling Theorem 1, with Eq. (37), we can also show the compatibility of ReCFG with DDIM,
which is summarized as the theorem below. Proof is addressed in Appendix A.5

Theorem 5. For any {δt}t, ReCFG with Lγ1,γ0
is compatible with native DPM up to a constant.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUPS

Datasets and baselines. We apply ReCFG to previous seminal DPMs, including LDM (Rombach
et al., 2022) on ImageNet 256 (Deng et al., 2009), EDM2 (Karras et al., 2024b) on ImageNet 512,
and SD3 (Esser et al., 2024) on CC12M (Changpinyo et al., 2021), respectively.

Evaluation metrics. As for LDM and EDM2, we draw 50,000 samples for Fréchet Inception
Distance (FID) (Heusel et al., 2017) to evaluate the fidelity of the synthesized images. We further
use Improved Precision (Prec.) and Recall (Rec.) (Kynkäänniemi et al., 2019) to separately
measure sample fidelity (Precision) and diversity (Recall). As for SD3, following the official
implementation, we use CLIP Score (CLIP-S) (Radford et al., 2021; Hessel et al., 2021) and FID on
CLIP features (Sauer et al., 2021) on 1,000 samples to evaluate conditional faithfulness and fidelity
of the synthesized images, respectively. Both two metrics are evaluated on the MS-COCO validation
split (Lin et al., 2015).

Implementation details. We implement ReCFG with NVIDIA A100 GPUs, and use pre-trained
LDM2, EDM23, and SD34 provided in official implementation. We reproduce all the experiments
with official and more other configurations including NFEs and guidance strengths.

4.2 RESULTS ON TOY EXAMPLE IN SECTION 3.2

We first confirm the effectiveness of our method on toy data, as presented in Sec. 3.2. Given the
closed-form expressions of score functions, we are able to precisely describe the distribution of
both gamma-powered distribution q0,γ(x0|c) by native CFG and q0,γ1,γ0

(x0|c) by ReCFG. The
theoretical and numerical DDIM-based simulation value of probability density functions of both
q0,γ(x0|c) and q0,γ1,γ0(x0|c) are shown in Fig. 2. It is noteworthy that native CFG drifts the
expectation of q0,γ(x0|c) further away from the peak of the ground-truth q0(x0|c) as γ becomes
larger, consistent with Theorem 2. As a comparison, the peaks of q0,γ1,γ0(x0|c) and q0(x0|c)
coincide, while q0,γ1,γ0(x0|c) is sharpened with smaller variance. Therefore, by adopting relaxation
on coefficients γ1 and γ0 with specially proposed constraints, our ReCFG manages to annihilate
expectation shift, enabling better guidance and thus better conditional fidelity.

2https://github.com/CompVis/latent-diffusion
3https://github.com/NVlabs/edm2
4https://huggingface.co/stabilityai/stable-diffusion-3-medium-diffusers
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Table 1: Sample quality on ImageNet (Deng
et al., 2009). For clearer demonstration, settings
of γ1 + γ0 = 1 (i.e. falling into native CFG) are
highlighted in gray.

ImageNet 256x256, LDM (Rombach et al., 2022)
γ1 γ0 NFE (↓) FID (↓) Prec. (↑) Rec. (↑)
5.0 -4.0 20 18.87 0.95 0.15
5.0 ReCFG 20 16.95 0.91 0.18
3.0 -2.0 20 11.46 0.94 0.27
3.0 ReCFG 20 9.78 0.91 0.32
5.0 -4.0 10 16.78 0.94 0.16
5.0 ReCFG 10 14.46 0.89 0.22
3.0 -2.0 10 10.13 0.91 0.28
3.0 ReCFG 10 8.26 0.91 0.33
ImageNet 512x512, EDM2-S (Karras et al., 2024b)
γ1 γ0 NFE (↓) FID (↓) Prec. (↑) Rec. (↑)
3.0 -2.0 63 6.81 0.85 0.43
3.0 ReCFG 63 5.59 0.84 0.43
2.5 -1.5 63 5.87 0.85 0.46
2.5 ReCFG 63 4.84 0.84 0.48
2.0 -1.0 63 4.18 0.85 0.52
2.0 ReCFG 63 3.61 0.84 0.52
1.4 -0.4 63 2.29 0.83 0.59
1.4 ReCFG 63 2.23 0.83 0.59

Table 2: Sample quality on CC12M (Chang-
pinyo et al., 2021) For clearer demonstration,
settings of γ1 + γ0 = 1 (i.e. falling into native
CFG) are highlighted in gray.

CC12M 512x512, SD3 (Esser et al., 2024)
γ1 γ0 NFE (↓) CLIP-S (↑) FID (↓)
7.5 -6.5 25 0.268 72.24
7.5 ReCFG 25 0.270 71.83
5.0 -4.0 25 0.267 72.37
5.0 ReCFG 25 0.268 71.95
2.5 -1.5 25 0.262 70.50
2.5 ReCFG 25 0.263 69.99
7.5 -6.5 10 0.262 82.71
7.5 ReCFG 10 0.263 76.05
5.0 -4.0 10 0.268 72.55
5.0 ReCFG 10 0.269 70.31
2.5 -1.5 10 0.265 71.17
2.5 ReCFG 10 0.265 68.68
7.5 -6.5 5 0.209 156.60
7.5 ReCFG 5 0.229 140.89
5.0 -4.0 5 0.248 115.51
5.0 ReCFG 5 0.258 101.82
2.5 -1.5 5 0.261 101.95
2.5 ReCFG 5 0.263 96.80

Table 3: Variance of lookup table over condition c. Note that we employ pixel-wise lookup table
involving timestep t. We report the the mean and variance of lookup table over c, which is computed
by averaging on all timesteps t and pixels.

Config. LDM, NFE = 10 EDM2, NFE = 63 SD3, NFE = 5 SD3, NFE = 10

Expectation Ratio 1.0050 ± 0.0012 1.0060 ± 0.0119 1.0250 ± 0.0369 1.0125 ± 0.0281

4.3 RESULTS ON REAL DATASETS

We conduct extensive experiments on state-of-the-art DPMs to quantitatively convey the efficacy
of ReCFG. Results are reported in Tabs. 1 and 2. We can tell that ReCFG is capable of better
performance on both class-conditioned and text-conditioned DPMs under various guidance strengths
and NFEs. Additionally, ReCFG achieves better CLIP-S especially on small NFEs and large
guidance strength, indicating better conditional fidelity on open-vocabulary synthesis.

4.4 ANALYSES

Variance of lookup table over condition c. Note that we need to pre-compute the lookup table
consisting of expectation ratios for all conditions c, which is time-consuming and impractical for
open-vocabulary distributions (e.g., text-conditioned DPMs). In Tab. 3 we report the mean and
variance of expectation ratios over condition c, which is averaged on all timesteps and pixels. It is
noteworthy that the variance of text-conditioned DPMs is larger than that of class-conditioned ones,
while both of which is insignificant compared to the mean. Therefore, it is feasible to prepare the
lookup table for only part of all potential conditions and use the mean for all conditions, serving as
a practical strategy to improve time efficiency.

Ablation studies. Recall that we pre-compute the lookup table by traversing the dataset q0(x0|c).
We conduct comprehensive ablation studies to convey a direct and clear picture of the efficacy of
ReCFG under different numbers of traversals, as reported in Tabs. 4 and 5. We can conclude that
larger number of traversals suggests better guidance performance, yet improvements from 100 to 500
traversals are relatively inconspicuous. In other words, employment of 500 samples per condition is
adequate to serve as an empirical setting.
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Table 4: Ablation study of the number of
traversals (the number after ReCFG) for lookup
table on ImageNet (Deng et al., 2009). For
clearer demonstration, baselines of native CFG
are highlighted in gray.

ImageNet 256x256, LDM (Rombach et al., 2022)
γ1 γ0 NFE (↓) FID (↓) Prec. (↑) Rec. (↑)
3.0 -2.0 10 10.13 0.91 0.28
3.0 ReCFG-10 10 8.88 0.92 0.30
3.0 ReCFG-100 10 8.70 0.92 0.31
3.0 ReCFG-500 10 8.26 0.91 0.33
ImageNet 512x512, EDM2-S (Karras et al., 2024b)
γ1 γ0 NFE (↓) FID (↓) Prec. (↑) Rec. (↑)
2.5 -1.5 63 5.87 0.85 0.46
2.5 ReCFG-10 63 5.06 0.84 0.47
2.5 ReCFG-100 63 4.99 0.84 0.45
2.5 ReCFG-500 63 4.84 0.84 0.48
2.0 -1.0 63 4.18 0.85 0.52
2.0 ReCFG-10 63 3.70 0.84 0.52
2.0 ReCFG-100 63 3.66 0.84 0.52
2.0 ReCFG-500 63 3.61 0.84 0.52

Table 5: Ablation study of the number of
traversals (the number after ReCFG) for lookup
table on CC12M (Changpinyo et al., 2021). For
clearer demonstration, baselines of native CFG
are highlighted in gray.

CC12M 512x512, SD3 (Esser et al., 2024)

γ1 γ0 NFE (↓) CLIP-S (↑) FID (↓)

5.0 -4.0 25 0.267 72.37

5.0 ReCFG-10 25 0.267 72.15

5.0 ReCFG-100 25 0.268 72.03

5.0 ReCFG-500 25 0.268 71.95

5.0 -4.0 10 0.268 72.55

5.0 ReCFG-10 10 0.268 71.61

5.0 ReCFG-100 10 0.268 70.64

5.0 ReCFG-500 10 0.269 70.31

5.0 -4.0 5 0.248 115.51

5.0 ReCFG-10 5 0.252 107.09

5.0 ReCFG-100 5 0.256 103.25

5.0 ReCFG-500 5 0.258 101.82

Pixel-wise lookup table. ReCFG enables pixel-specific guidance coefficients γ1 and γ0, thanks to
the closed-form solution to Eq. (33), i.e., we can assign γ0 for each pixel by maintaining the lookup
table of pixel-wise expectation ratios. Fig. 1 demonstrates the ratios on LDM, EDM2, and SD3
under different NFEs. It is noteworthy that there appears no general rules on the relation between γ1
and γ0, indicating that trivially setting γ1 and γ0 to be scalars is less reasonable. As a comparison,
our method makes it possible to employ more precise control on guided sampling in a simple and
post-hoc fashion without further fine-tuning, enabling better performance.

4.5 DISCUSSIONS

Classifier-Free Guidance is designed from Bayesian theory to facilitate conditional sampling, yet
appears incompatible with original diffusion theory. Therefore, we believe ReCFG is attached to
great importance on guided sampling by fixing the theoretical flaw of CFG. Despite the success
on better conditional fidelity, our algorithm has several potential limitations. We need to pre-
compute the lookup table by traversing the dataset to achieve rectified coefficients for each
condition. Although we conduct extensive ablation studies on the number of traversals and variance
over condition c, providing an adequate strategy especially for open-vocabulary datasets on text-
conditioned synthesis, the optimal strategy is unexplored. Besides, we at present cannot provide
precise control on variance of ReCFG, and turn to employ empirical values. Therefore, how
to further conquer these problems (e.g., employing a predictor network ω(c, t) for better γ0 on
open-vocabulary datasets according to Eq. (37)) will be an interesting avenue for future research.
Although leaving the variance behavior unexplored, we hope that ReCFG will encourage the
community to close the gap in the future.

5 CONCLUSION

In this paper, we analyze the theoretical flaws of native Classifier-Free Guidance technique and the
induced expectation shift phenomenon. We theoretically claim the exact value of expectation shift on
a toy distribution. Introducing a relaxation on coefficients of CFG and novel constraints, we manage
to complete the theory of guided sampling by fixing the incompatibility between CFG and diffusion
theory. Accordingly, thanks to the closed-form solution to the constraints, we propose ReCFG, a
post-hoc algorithm aiming at more faithful guided sampling by determining the coefficients from a
pre-computed lookup table. We further study the behavior of the lookup table, proposing an adequate
strategy for better time efficiency in practice. Comprehensive experiments demonstrate the efficacy
of our method on various state-of-the-art DPMs under different NFEs and guidance strengths.
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APPENDIX

A PROOFS AND DERIVATIONS

In this section, we will prove the theorems stated in the main manuscript.

A.1 PROOF OF THEOREM 1

We first claim two lemmas which are crucial for the proof.

Lemma 1. Let g(xt) and h(xt, ϵ) be integrable functions, then the following equality holds.

Eq(x)[⟨g(x),Eq(ϵ|x)[h(x, ϵ)|x]⟩] = Eq(x,ϵ)[⟨g(x), h(x, ϵ)⟩], (S1)

in which ⟨·, ·⟩ is inner product.

Proof of Lemma 1. Note that

Eq(x)[⟨g(x),Eq(ϵ|x)[h(x, ϵ)|x]⟩] =
∫

⟨g(x),Eq(ϵ|x)[h(x, ϵ)|x]⟩q(x)dx (S2)

=

∫
⟨g(x),

∫
h(x, ϵ)q(ϵ|x)dϵ⟩q(x)dx (S3)

=

∫∫
⟨g(x), h(x, ϵ)⟩q(x)q(ϵ|x)dϵdx (S4)

= Eq(x,ϵ)[⟨g(x), h(x, ϵ)⟩], (S5)

in which Eq. (S4) is by linearity of integral.

Lemma 2. The following equality of expectation holds:

Ex[ϵθ(x, t)] =
1

σt
Ex[x]−

αt

σt
Ec,x0,x[x0]. (S6)

Proof of Lemma 2. Note that

∇x log qt(x) =
∇xqt(x)

qt(x)
(S7)

=
∇x

∫
qt(x|c)q(c)dc
qt(x)

(S8)

=

∫
∇xqt(x|c)q(c)dc

qt(x)
(S9)

=

∫
qt(x|c)q(c)∇x log qt(x|c)dc

qt(x)
(S10)

=

∫
qt(x|c)q(c)

qt(x)
∇x log qt(x|c)dc (S11)

= Eqt(c|x)[∇x log qt(x|c)|x]. (S12)

Therefore, we have

ϵθ(x, t) = Eqt(c|x)[ϵθ(x, c, t)|x] (S13)

= Eqt(c|x)

[
Eq(x0|x,c)

[
x− αtx0

σt

]
|x
]

(S14)

= Eqt(c,x0|x)

[
x− αtx0

σt
|x
]

(S15)

=
1

σt
x− αt

σt
Eqt(c,x0|x)[x0|x], (S16)
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and

Ex[ϵθ(x, t)] =
1

σt
Ex[x]−

αt

σt
Ex[Eqt(c,x0|x)[x0|x]] (S17)

=
1

σt
Ex[x]−

αt

σt
Ec,x0,x[x0]. (S18)

Then we start to prove Theorem 1.

Proof of Theorem 1. Similar to derivation in DDIM (Song et al., 2021), first rewrite Jδ,γ as below:

Jδ,γ = E

[
− log pθ,γ(x0|x1, c) +

T∑
t=2

DKL(qδ(xt−1|xt,x0, c)∥pθ,γ(xt−1|xt, c))

]
+ C1, (S19)

in which C1 is a constant not involving γ and θ.

Note that ϵθ(xt, c, t) = Eq(ϵ|xt,c)[ϵ|xt]. Hence, for t > 1:

Eq(xt,x0|c)[DKL(qδ(xt−1|xt,x0, c)∥pθ,γ(xt−1|xt, c))] (S20)

= Eq(xt,x0|c)[DKL(qδ(xt−1|xt,x0, c)∥qδ(xt−1|xt, f
t
θ,γ(xt, c), c))] (S21)

∝ Eq(xt,x0|c)[∥x0 − f tθ,γ(xt, c)∥22] (S22)

∝ E x0∼q(x0|c)
ϵ∼N (0,I)

xt=αtx0+σtϵ

[∥ϵ− (γϵθ(xt, c, t) + (1− γ)ϵθ(xt, t))∥22] (S23)

= Ex0,ϵ[∥γ(ϵ− ϵθ(xt, c, t)) + (1− γ)(ϵ− ϵθ(xt, t))∥22] (S24)

= Ex0,ϵ[γ
2∥ϵ− ϵθ(xt, c, t)∥22 + (1− γ)2∥ϵ− ϵθ(xt, t)∥22]

+ 2γ(1− γ)Ex0,ϵ[⟨ϵ− ϵθ(xt, c, t), ϵ− ϵθ(xt, t)⟩] (S25)

= Ex0,ϵ[γ
2∥ϵ− ϵθ(xt, c, t)∥22 + (1− γ)2∥ϵ− ϵθ(xt, t)∥22]

+ 2γ(1− γ)Ex0,ϵ[⟨ϵ− Eq(ϵ|xt,c)[ϵ|xt], ϵ− ϵθ(xt, t)⟩] (S26)

= Ex0,ϵ[γ
2∥ϵ− ϵθ(xt, c, t)∥22 + (1− γ)2∥ϵ− ϵθ(xt, t)∥22]

+ 2γ(1− γ)Ex0,ϵ[⟨ϵ− ϵ, ϵ− ϵθ(xt, t)⟩] (S27)

= γ2Ex0,ϵ[∥ϵ− ϵθ(xt, c, t)∥22] + (1− γ)2Ex0,ϵ[∥ϵ− ϵθ(xt, t)∥22], (S28)

in which Eq. (S27) is from Lemma 1. As for t = 1 we have similar derivation:

Eq(x1,x0|c)[− log pθ,γ(x0|x1, c))] (S29)

∝ Eq(x1,x0|c)[∥x0 − f tθ,γ(x1, c)∥22] + C2 (S30)

∝ E x0∼q(x0|c)
ϵ∼N (0,I)

x1=α1x0+σ1ϵ

[∥ϵ− (γϵθ(x1, c, 1) + (1− γ)ϵθ(x1, 1))∥22] + C3 (S31)

= γ2Ex0,ϵ[∥ϵ− ϵθ(x1, c, 1)∥22] + (1− γ)2Ex0,ϵ[∥ϵ− ϵθ(x1, 1)∥22] + C3, (S32)

in which C2 and C3 are constants not involving γ and θ. Given that CFG involves score matching
using both conditional and unconditional distributions, and that Jδ,γ is proportional to the score
matching objective up to a constant, we confirm the equivalence between Jδ,γ and objective of
native DPM under CFG.

Note that in native PF-ODE, we have

dxt

dt
= f(t)xt −

1

2
g2(t)∇xt log qt(xt|c), (S33)

Eqt(xt|c)[∇xt
log qt(xt|c)] = Eqt(xt|c)[Eqt(x0|xt,c)[∇xt

log qt(xt|x0, c)]] (S34)

= Eqt(x0,xt|c)[∇xt log qt(xt|x0, c)] (S35)

= 0, (S36)
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in which Eq. (S36) holds since forward diffusion process qt(xt|x0, c) is implemented by adding
Gaussian noise. However, according to Eq. (10) and Lemma 2, we have

Ext
[∇xt

log qt,γ(xt|c)] = Ext
[γ∇xt

log qt(xt|c) + (1− γ)∇xt
log qt(xt)] (S37)

= (1− γ)Ext
[∇xt

log qt(xt)] (S38)

=
γ − 1

σ2
t

(Ext
[xt]− αtEc,x0,xt

[x0]) (S39)

=
γ − 1

σ2
t

(Eqt(xt|c)[xt]− αtEq0(x0,c)[x0]). (S40)

Note that Eqt(xt|c)[xt] = αtEq0(x0|c)[x0], and that Ex0,c[x0] =
∫
Eq0(x0|c)[x0]dc. Therefore when

γ ̸= 1, Ext
[∇xt

log qt,γ(xt|c)] is not guaranteed to be identical with 0. In other words, denoising
with CFG cannot be expressed as a reciprocal of diffusion process with Gaussian noise.

A.2 PROOF OF THEOREM 2

Proof. Given Eq. (9), for γ > 1, we have

∇xt
log qt,γ(xt|c) = γ∇xt

log qt(xt|c) + (1− γ)∇xt
log qt(xt) (S41)

= −γ
xt − c

t+ 1
− (1− γ)

xt

t+ 2
, (S42)

dxt

dt
= −1

2
∇xt log qt,γ(xt|c) (S43)

= xt

(
γ

2(t+ 1)
+

1− γ

2(t+ 2)

)
− c

γ

2(t+ 1)
. (S44)

By variation of constants formula, we can analytically solve qdeter0,γ (x0|c) in Eq. (S44).

xt = e
∫ t
T

γ
2(s+1)

+ 1−γ
2(s+2)

ds

(
C −

∫ t

T

c
γ

2(s+ 1)
e−

∫ t
s

γ
2(r+1)

+ 1−γ
2(r+2)

drds

)
(S45)

= (t+ 1)
γ
2 (t+ 2)

1−γ
2

(
C − c

γ

2

∫ t

T

(s+ 1)−
γ+2
2 (s+ 2)−

1−γ
2 ds

)
, (S46)

in which C is a constant to determine. Let t = T , we can see that

C =
xT

(T + 1)
γ
2 (T + 2)

1−γ
2

. (S47)

Therefore, we achieve the closed-form formula for qdeter0,γ (x0|c) as below:

x0 = 2
1−γ
2

(
xT

(T + 1)
γ
2 (T + 2)

1−γ
2

+ c
γ

2

∫ T

0

(s+ 1)−
γ+2
2 (s+ 2)−

1−γ
2 ds

)
. (S48)

Since qT (xT |c) ∼ N (c, T + 1), we can deduce that

qdeter0,γ (x0|c) ∼ N
(
cϕ(γ, T ), 21−γ T + 1

(T + 1)γ(T + 2)1−γ

)
, (S49)

in which

ϕ(γ, T ) = 2
1−γ
2

(
1

(T + 1)
γ
2 (T + 2)

1−γ
2

+
γ

2

∫ T

0

(s+ 1)−
γ+2
2 (s+ 2)−

1−γ
2 ds

)
. (S50)

It is obvious that

ϕ(γ) = 2
1−γ
2

γ

2

∫ +∞

0

(s+ 1)−
γ+2
2 (s+ 2)−

1−γ
2 ds, (S51)

lim
T→+∞

T + 1

(T + 1)γ(T + 2)1−γ
= 1. (S52)
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Then it is suffices to calculate ϕ(γ) for all γ > 1. First note that

ϕ(1) =
1

2

∫ +∞

0

(s+ 1)−
3
2 ds = 1, (S53)

ϕ(3) = 2−1 3

2

∫ +∞

0

(s+ 1)−
5
2 (s+ 2)ds = 2, (S54)

ϕ(5) = 2−2 5

2

∫ +∞

0

(s+ 1)−
7
2 (s+ 2)2ds =

7

3
. (S55)

For γ > 1, denote by I(γ) with

I(γ) =

∫ +∞

0

(s+ 1)−
γ+2
2 (s+ 2)−

1−γ
2 ds. (S56)

Note that for γ > 1 we have

I(γ) =

∫ +∞

0

(s+ 1)−
γ+2
2 (s+ 2)−

1−γ
2 ds (S57)

=
2

γ + 1

∫ +∞

0

(s+ 1)−
γ+2
2 d(s+ 2)

γ+1
2 (S58)

=
2

γ + 1

(
(s+ 1)−

γ+1
2 (s+ 2)

γ+1
2

∣∣∣+∞

0
+

γ + 2

2

∫ +∞

0

(s+ 1)−
γ+4
2 (s+ 2)

γ+1
2 ds

)
(S59)

=
2

γ + 1

(
γ + 2

2
I(γ + 2)− 2

γ+1
2

)
. (S60)

Therefore, for γ > 1 we have

ϕ(γ) =
2γ

γ + 1
(ϕ(γ + 2)− 1), (S61)

ϕ(γ + 2) = 1 +
γ + 1

2γ
ϕ(γ). (S62)

From Eqs. (S53) to (S55) we have

I(1) = 2, I(3) =
8

3
, I(5) =

56

15
. (S63)

For γ ∈ [1, 3], by Cauchy-Schwarz inequality with p ∈ [0, 1], we have(
I(γ)

)p(
I(5)

)1−p

(S64)

=

(∫ +∞

0

(s+ 1)−
γ+2
2 (s+ 2)−

1−γ
2 ds

)p(∫ +∞

0

(s+ 1)−
7
2 (s+ 2)2ds

)1−p

(S65)

⩾
∫ +∞

0

(
(s+ 1)−

γ+2
2 (s+ 2)−

1−γ
2

)p(
(s+ 1)−

7
2 (s+ 2)2

)1−p

ds (S66)

=

∫ +∞

0

(s+ 1)−
γp−5p+7

2 (s+ 2)−
5p−γp−4

2 ds. (S67)

Let p = 2
5−γ ∈ [0, 1] for γ ∈ [1, 3], from Eq. (S67) we have

I(γ) ⩾
(
I(3)

) 5−γ
2
(
I(5)

) γ−3
2

=

(
8

3

) 5−γ
2
(
56

15

) γ−3
2

. (S68)

Therefore for γ ∈ [1, 3], we have

ϕ(γ) ⩾ 2
1−γ
2

γ

2

(
8

3

) 5−γ
2
(
56

15

) γ−3
2

= γ
7

15

(
10

7

) 5−γ
2

=: h1(γ) (S69)
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Since 1
γ − 1

2 log
10
7 > 0 for γ ∈ [1, 3], h1(γ) increases monotonically on ∈ [1, 3] and h1(1) =

20
21 ,

h1(3) = 2. Similarly, for γ ∈ [3, 5], by Cauchy-Schwarz inequality with p ∈ [0, 1], we have(
I(1)

)1−p(
I(γ)

)p
(S70)

=

(∫ +∞

0

(s+ 1)−
3
2 ds

)1−p(∫ +∞

0

(s+ 1)−
γ+2
2 (s+ 2)−

1−γ
2 ds

)p

(S71)

⩾
∫ +∞

0

(
(s+ 1)−

3
2

)1−p(
(s+ 1)−

γ+2
2 (s+ 2)−

1−γ
2

)p
ds (S72)

=

∫ +∞

0

(s+ 1)−
3−p+γp

2 (s+ 2)−
p−γp

2 ds. (S73)

Let p = 2
γ−1 ∈ [0, 1] for γ ∈ [3, 5], from Eq. (S73) we have

I(γ) ⩾
(
I(1)

) 3−γ
2
(
I(3)

) γ−1
2

= 2
3−γ
2

(
8

3

) γ−1
2

. (S74)

Therefore for γ ∈ [3, 5]

ϕ(γ) ⩾ 2
1−γ
2

γ

2
2

3−γ
2

(
8

3

) γ−1
2

= γ

(
2

3

) γ−1
2

=: h2(γ) (S75)

It is easy to see that h2(γ) ⩾ 2 for γ ∈ [3, 5]. Then by mathematical induction and Eq. (S62), we
have ϕ(γ) ⩾ 2 for all γ ⩾ 3. Specially, we have

lim
γ→+∞

ϕ(γ) = 2. (S76)

And specifically, for γ ∈ N, γ > 1, we analytically calculate ϕ(γ, T ) for γ = 2n + 1 and γ = 2n,
respectively. First let γ = 2n+ 1, n ∈ N. We can see that

(s+ 2)−
1−γ
2 = (s+ 2)n =

n∑
k=0

Ck
n(s+ 1)k. (S77)

∫ T

0

(s+ 1)−
γ+2
2 (s+ 2)−

1−γ
2 ds =

∫ T

0

(s+ 1)−
γ+2
2

(
n∑

k=0

Ck
n(s+ 1)k

)
ds (S78)

=

n∑
k=0

(
Ck

n

∫ T

0

(s+ 1)
2k−γ−2

2 ds

)
(S79)

=

n∑
k=0

(
Ck

n

2

2k − γ

(
(T + 1)

2k−γ
2 − 1

))
. (S80)

Since 2k − γ < 0 for k = 0, 1, · · · , n, we have (T + 1)
2k−γ

2 → 0 as T goes to infinity and hence

ϕ(γ, T ) (S81)

= 2
1−γ
2

(
1

(T + 1)
γ
2 (T + 2)

1−γ
2

+
γ

2

∫ T

0

(s+ 1)−
γ+2
2 (s+ 2)−

1−γ
2 ds

)
(S82)

= 2
1−γ
2

(
1

(T + 1)
γ
2 (T + 2)

1−γ
2

+
γ

2

(
n∑

k=0

Ck
n

2

2k − γ

(
(T + 1)

2k−γ
2 − 1

)))
(S83)

= 2
1−γ
2

(
1

(T + 1)
γ
2 (T + 2)

1−γ
2

+

(
n∑

k=0

Ck
n

2n+ 1

2n− 2k + 1

(
1− (T + 1)

2k−γ
2

)))
. (S84)

When T → +∞, we have

ϕ(2n+ 1) = 2−n

(
n∑

k=0

Ck
n

2n+ 1

2n− 2k + 1

)
. (S85)
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Then let γ = 2n, n ∈ N, and n ⩾ 1. We have∫
(s+ 1)−

γ+2
2 (s+ 2)−

1−γ
2 ds (S86)

=

∫
2(s+ 1)−n−1(

√
s+ 2)2nd

√
s+ 2 (S87)

=

∫
2(u2 − 1)−n−1u2ndu (S88)

= − 1

n
u2n−1(u2 − 1)−n +

2n− 1

n

∫
(u2 − 1)−nu2n−2du, (S89)

in which Eq. (S88) is due to integration by substitution with u =
√
s+ 2 > 1, and Eq. (S89) is due

to integration by parts. Denote by In with

In =

∫
2(u2 − 1)−n−1u2ndu, n ⩾ 0, (S90)

then we have

In = − 1

n
u2n−1(u2 − 1)−n +

2n− 1

2n
In−1, n ⩾ 1. (S91)

For n ⩾ 1, let In = (2n−1)!!
(2n)!! An, then we have

(2n− 1)!!

(2n)!!
An = − 1

n
u2n−1(u2 − 1)−n +

2n− 1

2n

(2n− 3)!!

(2n− 2)!!
An−1, n ⩾ 2, (S92)

An = An−1 −
1

n

(2n)!!

(2n− 1)!!
u2n−1(u2 − 1)−n, n ⩾ 2. (S93)

Therefore for n ⩾ 2, we have

An = A1 −
n∑

k=2

1

k

(2k)!!

(2k − 1)!!
u2k−1(u2 − 1)−k, (S94)

and

In =


− u

u2 − 1
+

1

2
log

u− 1

u+ 1
, n = 1,

(2n− 1)!!

(2n)!!

(
− 2u

u2 − 1
+ log

u− 1

u+ 1
−

n∑
k=2

1

k

(2k)!!

(2k − 1)!!

u2k−1

(u2 − 1)k

)
, n ⩾ 2.

(S95)

Therefore, for γ = 2 we have

ϕ(γ, T ) = 2
1−γ
2

(
1

(T + 1)
γ
2 (T + 2)

1−γ
2

+
γ

2

∫ T

0

(s+ 1)−
γ+2
2 (s+ 2)−

1−γ
2 ds

)
(S96)

= 2
1−γ
2

1

(T + 1)
γ
2 (T + 2)

1−γ
2

− 2
1−γ
2

γ

2

(√
T + 2

T + 1
−
√
2

)
+ 2

1−γ
2

γ

2

1

2

(
log

√
T + 2− 1√
T + 2 + 1

− log

√
2− 1√
2 + 1

)
, (S97)
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and for γ ⩾ 4 we have

ϕ(γ, T ) (S98)

= 2
1−γ
2

(
1

(T + 1)
γ
2 (T + 2)

1−γ
2

+
γ

2

∫ T

0

(s+ 1)−
γ+2
2 (s+ 2)−

1−γ
2 ds

)
(S99)

= 2
1−γ
2

1

(T + 1)
γ
2 (T + 2)

1−γ
2

− 2
1−γ
2

γ

2

(2n− 1)!!

(2n)!!

(
2
√
T + 2

T + 1
− 2

√
2

)
+ 2

1−γ
2

γ

2

(2n− 1)!!

(2n)!!

(
log

√
T + 2− 1√
T + 2 + 1

− log

√
2− 1√
2 + 1

)

− 2
1−γ
2

γ

2

(2n− 1)!!

(2n)!!

(
n∑

k=2

1

k

(2k)!!

(2k − 1)!!

( (T + 2)
2k−1

2

(T + 1)k
− 2

2k−1
2

))
. (S100)

When T → +∞, we have

ϕ(2n) =


2

1
2−nn

(
√
2− 1

2
log

√
2− 1√
2 + 1

)
, n = 1,

(2n− 1)!!
√
2n

(2n)!!2n

((
n∑

k=2

1

k

(2k)!!

(2k − 1)!!
2k−

1
2

)
+ 2

√
2− log

√
2− 1√
2 + 1

)
, n ⩾ 2.

(S101)

A.3 PROOF OF THEOREM 3

Proof. We first write the closed-form expressions of DDIM sampler as below:

xt−1 =
αt−1

αt
xt + (σt−1 −

αt−1

αt
σt)ϵθ(xt, c, t), (S102)

x̃t−1 =
αt−1

αt
x̃t + (σt−1 −

αt−1

αt
σt)(γ1ϵθ(x̃t, c, t) + γ0ϵθ(x̃t, t)). (S103)

Then we have

∆t−1 = Ext
[xt−1]− Ex̃t

[x̃t−1] (S104)

=
αt−1

αt
(Ext

[xt]− Ex̃t
[x̃t])

+ (σt−1 −
αt−1

αt
σt)(Ext [ϵθ(xt, c)]− Ex̃t [γ1ϵθ(x̃t, c, t) + γ0ϵθ(x̃t, t)]). (S105)

Note that

ϵθ(xt, c, t) = Eq(x0|xt,c)

[
xt − αtx0

σt
|xt

]
, ϵθ(x̃t, c, t) = Eq(x0|x̃t,c)

[
x̃t − αtx0

σt
|x̃t

]
. (S106)

Therefore, by qt(xt|c) =
∫
q0(x0|c)q0t(xt|x0, c)dx0 and Lemma 1 we have

Ext
[ϵθ(xt, c, t)] = Ex0,xt

[
xt − αtx0

σt

]
=

1

σt
Ext

[xt]−
αt

σt
Ex0

[x0]. (S107)

Similarly, by pθ,γ1,γ0(x̃t|c) =
∫
q0(x0|c)q0T (xT |x0, c)pθ,γ1,γ0(x̃t|xT , c)dx0dxT we have

Ex̃t
[ϵθ(x̃t, c, t)] = Ex0,x̃t

[
x̃t − αtx0

σt

]
=

1

σt
Ex̃t

[x̃t]−
αt

σt
Ex0

[x0]. (S108)
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Then we can simplify ∆t as below:

∆t−1 =
αt−1

αt
∆t + (σt−1 −

αt−1

αt
σt)(

1

σt
∆t − Ex̃t

[(γ1 − 1)ϵθ(x̃t, c, t) + γ0ϵθ(x̃t, t)]) (S109)

=
σt−1

σt
∆t − (σt−1 −

αt−1

αt
σt)Ex̃t

[(γ1 − 1)ϵθ(x̃t, c, t) + γ0ϵθ(x̃t, t)]). (S110)

∆t = 0 implies that Eqt(xt|c)[xt] = Epθ,γ1,γ0
(x̃t|c)[x̃t]. Therefore, by Eqs. (S107) and (S108) we

have Ext [ϵθ(xt, c, t)] = Ex̃t [ϵθ(x̃t, c, t)]. According to Lemma 2 and by calculating the expectation
over xt and x̃t respectively, we have

Ex̃t [ϵθ(x̃t, t)] =
1

σt
Ex̃t [x̃t]−

αt

σt
Ec,x0,x̃t [x0] =

1

σt
Ex̃t [x̃t]−

αt

σt
Ec,x0 [x0], (S111)

Ext
[ϵθ(xt, t)] =

1

σt
Ex̃t

[xt]−
αt

σt
Ec,x0,xt

[x0] =
1

σt
Ext

[xt]−
αt

σt
Ec,x0

[x0]. (S112)

Since ∆t = 0, we have Ext [ϵθ(xt, t)] = Ex̃t [ϵθ(x̃t, t)], and thus

∆t−1 = −(σt−1 −
αt−1

αt
σt)Ext

[(γ1 − 1)ϵθ(xt, c, t) + γ0ϵθ(xt, t)]). (S113)

A.4 PROOF OF THEOREM 4

Proof. Given Eq. (27), for any γ1 and γ0, we have

∇xt
log qt,γ1,γ0

(xt|c) = γ1∇xt
log qt(xt|c) + γ0∇xt

log qt(xt) (S114)

= −γ1
xt − c

t+ 1
− γ0

xt

t+ 2
, (S115)

dxt

dt
= −1

2
∇xt

log qt,γ1,γ0
(xt|c) (S116)

= xt

(
γ1

2(t+ 1)
+

γ0
2(t+ 2)

)
− c

γ1
2(t+ 1)

. (S117)

By variation of constants formula, we can analytically solve qdeter0,γ1,γ0
(x0|c) in Eq. (S117).

xt = e
∫ t
T

γ1
2(s+1)

+
γ0

2(s+2)
ds

(
C −

∫ t

T

c
γ1

2(s+ 1)
e−

∫ t
s

γ1
2(r+1)

+
γ0

2(r+2)
drds

)
(S118)

= (t+ 1)
γ1
2 (t+ 2)

γ0
2

(
C − c

γ1
2

∫ t

T

(s+ 1)−
γ1+2

2 (s+ 2)−
γ0
2 ds

)
, (S119)

in which C is a constant to determine. Let t = T , we can see that

C =
xT

(T + 1)
γ1
2 (T + 2)

γ0
2

. (S120)

Therefore, we achieve the closed-form formula for qdeter0,γ (x0|c) as below:

x0 = 2
γ0
2

(
xT

(T + 1)
γ1
2 (T + 2)

γ0
2

+ c
γ1
2

∫ T

0

(s+ 1)−
γ1+2

2 (s+ 2)−
γ0
2 ds

)
. (S121)

Since qT (xT |c) ∼ N (c, T + 1), we can deduce that

varqdeter
0,γ1,γ0

(x0|c)[x0] = 2γ0(T + 1)1−γ1(T + 2)−γ0 . (S122)
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A.5 PROOF OF THEOREM 5

Proof. According to Eqs. (29) and (30), we can write the variational lower bound of pθ,γ1,γ0
(x0:T |c)

as below:

Jδ,γ1,γ0
= Eqδ(x0:T |c)[log qδ(x1:T |x0, c)− log pθ,γ1,γ0

(x0:T |c)] (S123)

= E [− log pθ,γ1,γ0(x0|x1, c)]

+ E

[
T∑

t=2

DKL(qδ(xt−1|xt,x0, c)∥pθ,γ1,γ0
(xt−1|xt, c))

]
+ C1, (S124)

in which C1 is a constant not involving γ1, γ0, and θ.

Note that ϵθ(xt, c, t) = Eq(ϵ|xt,c)[ϵ|xt]. Hence, for t > 1:

Eq(xt,x0|c)[DKL(qδ(xt−1|xt,x0, c)∥pθ,γ1,γ0
(xt−1|xt, c))] (S125)

= Eq(xt,x0|c)[DKL(qδ(xt−1|xt,x0, c)∥qδ(xt−1|xt, f
t
θ,γ1,γ0

(xt, c), c))] (S126)

∝ Eq(xt,x0|c)[∥x0 − f tθ,γ1,γ0
(xt, c)∥22] (S127)

∝ E x0∼q(x0|c)
ϵ∼N (0,I)

xt=αtx0+σtϵ

[∥ϵ− (γ1ϵθ(xt, c, t) + γ0ϵθ(xt, t))∥22] (S128)

= Ex0,ϵ[∥ϵ∥22 + ∥γ1ϵθ(xt, c, t) + γ0ϵθ(xt, t)∥22]
− 2Ex0,ϵ[⟨ϵ, γ1ϵθ(xt, c, t) + γ0ϵθ(xt, t)⟩] (S129)

= Ex0,ϵ[∥ϵ∥22 + ∥γ1ϵθ(xt, c, t) + γ0ϵθ(xt, t)∥22]
− 2Ex0,ϵ[⟨Eq(ϵ|xt,c)[ϵ|xt], γ1ϵθ(xt, c, t) + γ0ϵθ(xt, t)⟩] (S130)

= Ex0,ϵ[∥ϵ∥22 + ∥γ1ϵθ(xt, c, t) + γ0ϵθ(xt, t)∥22]
− 2Ex0,ϵ[⟨ϵθ(xt, c, t), γ1ϵθ(xt, c, t) + γ0ϵθ(xt, t)⟩] (S131)

= Ex0,ϵ[∥ϵθ(xt, c, t)∥22 + ∥γ1ϵθ(xt, c, t) + γ0ϵθ(xt, t)∥22]
− 2Ex0,ϵ[⟨ϵθ(xt, c, t), γ1ϵθ(xt, c, t) + γ0ϵθ(xt)⟩]

+ Ex0,ϵ[∥ϵ∥22 − ∥ϵθ(xt, c, t)∥22] (S132)

= Ex0,ϵ[∥ϵθ(xt, c, t)− (γ1ϵθ(xt, c, t) + γ0ϵθ(xt, t))∥22] + C2 (S133)

= Ex0,ϵ[∥(γ1 − 1)ϵθ(xt, c, t) + γ0ϵθ(xt, t)∥22] + C2, (S134)

in which Eq. (S130) is from Lemma 1, and C2 = Ex0,ϵ[∥ϵ∥22 − ∥ϵθ(xt, c, t)∥22] is constant not
involving γ1 and γ0. As for t = 1 we have similar derivation:

Eq(x1,x0|c)[− log pθ,γ1,γ0
(x0|x1, c))] (S135)

∝ Eq(x1,x0|c)[∥x0 − f tθ,γ1,γ0
(x1, c)∥22] + C3 (S136)

∝ E x0∼q(x0|c)
ϵ∼N (0,I)

x1=α1x0+σ1ϵ

[∥ϵ− (γ1ϵθ(x1, c, 1) + γ0ϵθ(x1, 1))∥22] + C4 (S137)

= Ex0,ϵ[∥(γ1 − 1)ϵθ(x1, c, 1) + γ0ϵθ(x1, 1))∥22] + C5, (S138)

in which C3, C4, and C5 are constants not involving γ1 and γ0.

B PSEUDO-CODES OF LOOKUP TABLE

We below propose the pseudo-codes to achieve the lookup table and corresponding guided sampling
in Algorithms 1 and 2.
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Algorithm 1 Pseudo-code to achieve lookup table of ReCFG in a PyTorch-like style.

1 def calculate_lookup_table(net, gnet, data_loader, timesteps):
2 """Defines the function to maintain the lookup table.
3
4 Args:
5 net: Noise prediction model for conditional score function.
6 gnet: Noise prediction model for unconditional score function.
7 data_loader: Dataloader to calculate score functions.
8 timesteps: All timesteps under the given sampling trajectory.
9

10 Returns:
11 coeffs: Lookup list under all timesteps and conditions.
12 """
13 sum1_dict, sum2_dict = dict(), dict()
14 # Iterate for the whole dataloader.
15 for x, c in data_loader:
16 # Iterate for all timesteps.
17 sum1s, sum2s = list(), list()
18 for nfe_idx, t in enumerate(timesteps):
19 # Forward process.
20 noise = torch.randn_like(x)
21 x_t = alpha_t * x + sigma_t * noise
22
23 # Calculate score functions first.
24 eps_cond, eps_uncond = net(x_t, c, t), gnet(x_t, t)
25
26 # Calculate the expectation in Eq. (34).
27 sum1s.append(eps_cond.mean(dim=0, keepdim=True))
28 sum2s.append(eps_uncond.mean(dim=0, keepdim=True))
29
30 # Save the results.
31 update_dict(sum1_dict, sum2_dict, c, sum1s, sum2s)
32
33 # Calculate coefficients according to Eq. (34) for all timesteps.
34 coeffs = {c: sum1_dict[c] / sum2_dict[c] for c in sum1_dict}
35
36 return coeffs

Algorithm 2 Pseudo-code for guided sampling by lookup table of ReCFG in a PyTorch-like style.

1 def guided_sampler(sampler, net, gnet, gamma_1, noise, c, timesteps, coeffs):
2 """Defines the guided sampling with lookup table.
3
4 Args:
5 sampler: Native sampler without guidance, e.g., DDIM sampler.
6 net: Noise prediction model for conditional score function.
7 gnet: Noise prediction model for unconditional score function.
8 gamma_1: Guidance strength similar to CFG of type ‘float‘.
9 noise: Initial random noise to denoise.

10 c: Input label.
11 timesteps: All timesteps under the given sampling trajectory.
12 coeffs: Pre-calculated lookup table.
13
14 Returns:
15 x: A batch of samples by guided sampling.
16 """
17 # Calculate gamma_0.
18 gamma_0s = (1. - gamma_1) * coeffs[c]
19 # Ensure gamma_0 <= 0 and gamma_1 + gamma_0 >= 1.
20 gamma_0s = clamp(gamma_0s, gamma_1)
21
22 # Guided sampling using gamma_1 and gamma_0.
23 x = noise
24 for t, gamma_0 in zip(timesteps, gamma_0s):
25 # Calculate score functions and apply guided sampling.
26 eps_cond, eps_uncond = net(x, c, t), gnet(x, t)
27 eps = eps_cond * gamma_1 + eps_uncond * gamma_0
28 x = sampler(x, eps, t)
29
30 return x
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