Supplementary Material

A Experiments

In this section, we provide additional details about the experiments reported in the main text and
additional experiments with a decreasing stepsize. We implement all the methods using Python 3.8
using PyTorch [[77]] and Ray [68]] and run the experiments on a machine with 24 AMD EPYC 7552 @
2.20GHz processors, 2 GPUs NVIDIA A100-PCIE with 40536 Mb of memory each (Cuda 11.3).

A.1 Additional Details of the Experiments with Training GANs

As mentioned in the main text of the paper, we use DCGAN architecture [[79]], conditioned by the
class labels, similarly to [63]. The illustration of the architecture is provided in Figure[d] In Table 2]
we give the hyperparameters for all the experiments.
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Figure 4: DCGAN architecture.

Hyperparameters

Batch size =64

Weight clipping for the discriminator =0.01

Learning rate for generator and discriminator  =0.002
Initialization: normal

Other parameters: default in PyTorch

Table 2: Hyperparameters for DCGAN training.

Next, we comment on the relation between the main assumptions of the theoretical analysis and the
example of training GANS. First of all, the goal of the DCGAN training experiment is to study how
the network topology influences the convergence of the algorithm. Even if the assumptions do not
hold, we see that the algorithm performs quite well and is flexible w.r.t. the choice of the topology.
Secondly, as we write in the main text, the made assumptions are quite standard and widely used in
the literature. In particular, Assumptions 3.1 and 3.3 are classical and are often used in the literature,
see, e.g. [37], including the literature on the neural networks training. Assumption 3.4 is also widely
used (40, 96,130,185, 14,1311 1201 132} 158]], and holds with a small constant D when the data is uniformly
split among the devices. Such splitting can be easily made when one uses a computational cluster
with a large amount of data, e.g., images. In Section[5.2] we deliberately consider a more difficult
setup and make the distribution of images over the nodes not uniform, but heterogeneous. As we see,
the results of the experiments are quite promising in this case. Assumption 3.2 (NM) is also used
in the literature on the algorithms for training GANs and their analysis [58 163, 157]]. Moreover, this
assumption is shown to hold in some nonconvex minimization problems, for example, when SGD is
used for training neural networks [53} 43| [100].
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A.2 Additional Experiments with Decreasing Stepsize

As it can be seen from the proofs in the next sections, our theoretical results in Theorem@hold for
the fixed stepsizes that optimize the error of the obtained approximate solution given the budget of K
iterations. Thus, given a target accuracy € > 0 and using the bounds in Theorem 4.1 we can choose
the number of iterations K = K (¢) to guarantee the accuracy e. In turn, based on the value K (¢),
we choose the fixed stepsize v = (K (¢)). This procedure of defining the stepsize based on the
target accuracy and the corresponding budget of iterations is quite standard in the literature, see, e.g.,
[10). In Section[D, we provide a generic technique that allows us not to fix the target accuracy
in advance and construct a decreasing sequence of stepsizes. This is useful when the desired target
accuracy e is not known, or not determined. In this section, we numerically illustrate that Algorithm/T]
can reach arbitrarily small error when implemented with quite simple decreasing stepsizes. We note
that, despite not analyzed theoretically, the used in the experiments decreasing stepsize leads to a
good performance of the algorithm, which additionally illustrates the flexibility of our approach for
practical purposes.

For the experiments, we consider the same setup as in Section [5.1] of the main text (see Figure[T}
left), i.e., strongly-monotone bilinear objective functions distributed over the network with the ring
topology. We consider two cases: with and without stochastic noise i.e., we fix either 0 = 0, or
o = 100. During the training, we decrease the stepsize as v, = 95 + 5 where £ is the current iteration

number. We set o = 40, 3 = 800 in the noiseless case and o = 15, 3 = 150 when ¢? = 100. In
Figure E, we can see that the error decreases to zero with a sublinear rate. This is in contrast to the
limiting behavior which we observe in Figure [T, when the algorithm is not able to optimize below
a certain threshold. Sublinear convergence may be expleined by the second and third terms in the
estimate (6).
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Figure 5: Convergence of Algorithmwith the decreasing stepsizes in the noiseless (left) and stochastic (right)
cases.

A.3 Images Generated by the Trained GAN

a) Cluster
Figure 6: Images generated by DCGAN trained distributedly using different communication graph topologies:

(a) Cluster, (b) Local, (c) Full.

(c) Full

B Useful Facts Used in the Proofs

Before we start with the proofs, we give several simple facts that are used throughout the proofs of
the main theorem.
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Upper bound for a squared sum. For an arbitrary integer n > 1 and arbitrary set of vectors

ai,...,a,, we have ,
<n Y ail®. (11)
i=1
Cauchy-Schwarz inequality. For arbitrary vectors a and b and any constant ¢ > 0, we have
2(a,b) < cllal® + 7 Hlo]%, (12)
la+b]* < (1 +o)llal]* + (1 +c )bl (13)

Cauchy-Schwarz inequality for random variables. Let £ and 7 be real-valued random variables
such that E[¢?] < oo and E[?] < oco. Then

E[¢n] < VE[E2]E[p?]. (14)
Frobenius norm of product. For given matrices A and B, it holds that

IAB|r < [|AllF|[ B2, (15)

where || - || 7 denotes the Frobenius norm of a matrix, and || - ||2 is the spectral norm of a matrix, i.e.,
the maximal singular value.

C Missing Proofs for the Main Theorem

In this section, we provide the proof of the main theorem. For convenience, we give its full statement,
including the explicit expressions for the stepsizes.

Theorem C.1 (Theorem . Let Assumptions hold and the sequences z*, Z* be
generated by Algorithm|[I|that is run for K > 0 iterations. Then,

e  Strongly-monotone  case: under — Assumption  [32({SM),  with = —
X 2 2
min { 20rL 2in(mextay :\14(7"0!(/(400 3) } it holds that

~ K o? LA
K+1 2] = O 0 _x2. _ pap .
B (15— 7] = O (10 = =12 omp (a0 2 ) + e + e )

o Monotone case: under Assumption 3.2fM ), for any convex compact C s.t. 2°,z* € C and

1
. . 202M 2 Q2 | .
max; .ec ||z — 2'[| < Q¢, with v = min {31L7 (s(xﬁlw) (6(K+1>2L2A) } i folds that

K LQ O' LSZ A+L Q Q(f\/
E |[(F 7/\ - =0

Under the additional assumption that, for all k, |Z¥|| < Q, with ~

1
)1 QM 2 Q2 4 Q2 B
mln{3L, (QO(K_H)UQ) , (60(K+1)2L2A \ D@0 IvaTa) , we have that

2 LOIVA (94 Qe)LVA + A2
supE [(F(2),25 —2)] =0 Lo o2 + ) = A)% ;
z€C K \/MK K3/4 K

e Non-monotone case: under Assumption 3.2fNM) and if ||2°|| < Q,||z*| < Q, with v =

2 VL
MM S 575 \ (K+1)2L2A :

L2Q? o2 LOA3/4
F(EO?| = +— + LA+ T —— |,
= e | -0 (584 V9L
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) 02 1/3
5L ((K+1)LA) ’

L2Q? o (LQA)%/3
—0( = +M+W+LQ\/Z).

we have that
K

Z 2|17

k
Here A = (DTJrJ)

We start with some convenient notations, and then proceed with the proof on the case-by-case basis:
strongly-monotone, monotone, non-monotone under the Minty condition.

C.1 Notation

We introduce some auxiliary notation as follows.

e Average across all the devices/nodes values of the iterates z and the stochastic realizations of the
operators ¢ at iteration k:

1 & 1 & 1 &
k —k k kE ¢k
= — = — = - Fm ) 9 16
1 M 1 M
Fh+1/3 . _ 7 Z ZﬁLJrl/S’ gk+1/3 — o7 k+1/3 Z F, k+1/3,£§1+1/3)’ (17)
= m=1
Fh+1/3 _ gk _ ng’ Fh+2/3 _ gk _ ,ng+1/37 Fh+1 _ Zk+2/3. (18)

The last equality with zF+t1 = z5+2/3 follows from the fact that one step of the gossip procedure,

i.e., step 7 of Algorithm [T] preserves the average over m since the matrix W is doubly stochastic (see
Deﬁnition 2.1).

e Matrix notation for the collection over all the nodes of the iterates z, of the averaged iterates Z,
of the stochastic realizations of the operators g and of the averaged stochastic realizations of the
operators § at iteration k:

ZF =28 2N, 2R = ER, 2N, (19)
G :=g,....9n), G":=[g",....5"], (20)
- 1 1
k._ k k k._ k k
OF = [Fi(2f), ... Fu(zfy)], ®F = Mmz_: Fm(zm),...,MglFm(zm) .o@n

This notation allows us to rewrite compactly the iterations of Algorithm 1 and the "averaged"
dynamics given in (L8):

Zk—‘rl/S Zk Gk Zk+1/3 Zk Gk
Zk+2/3 gk _ Gk+1/3 Zk+2/3 — _ ’yék—H/S, (22)
Zk-‘rl Zk+2/3wk Zk:-‘rl Zk+2/3

° Average over devices consensus errors

M
1
=7 2 Il = 21, Em(k +1/3) = Z It t/? = 2532, (23)
o=

m=1
which can be interpreted as the measure of the discrepancy in the values of the current iterate between
the devices at iteration k.

C.2  Proof of Theorem .1} Strongly-Monotone Case.

C.2.1 General Per-Iterate Estimate

The goal of this subsection is to derive a general bound for the per-iteration progress of Algorithm |}
This bound will be further refined in the following subsections. We begin the proof with the following
lemma.
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Lemma C.2. Let z,y € R™. Defining z* = z — vy, for all u € R™, we have

12 —ull® = ||z — ul]® = 2{y, 2" —u) — 2F — 2|

Proof: Simple calculations give the following chain of equalities.
+

2T — 242 —ul?

= llz—ul®+2(z

= llz—ul®+2(

= lz—ul?+2(z" = (z—y), 2" —u) = 2(y, 2" —w) — |27 — 2|?
(

= |z —ul® = 2(y, 2" —u) — [l=7 —2|*.

I = ulf?

—z,z—u) + ||zT z||2

+
T2t ) — 2 -
+

k

Applying the previous lemma with 2+ = z++2/3 2 = zF 4 = 2* and y = 4§ T1/3, we have

HZIc+2/3 *H2 Z*H2 2’)/< k+1/3 k+2/3 . Z*> o ||Zk+2/3 . Zk”Q.

= ||z*

kow=2Ft2/3 y = ~g*, we have

FhHL/S _ Zht2/3)

From the same lemma, but with 2+ = z5+1/3 5 = 7k,

||2k+1/3 _ 2k+2/3”2 2k+2/3”2 _ 27(9 z _ sz+1/3 k||2.

Combining the two previous equalities, we obtain

= |1 -

|‘Zk+2/3 *HZ + ||2k+1/3 _ 2k+2/3”2 Z*H2 _ |2k+1/3 _ 2k||2

=||z*

k+1/3’ Fh+2/3 k sk+1/3 2k+2/3>_

- 27(g —2") = 29(g", 2

A small rearrangement of the terms gives
||Zk+2/3 *H2+ ||Zlc+1/3 —k+2/3H2
= |25 = 2|7 — | - 2P

_ 2,}/<gk+1/3’5k+1/3 )+ 29(g k+1/3 _ gk72k+1/3 _ 2k+2/3>

@
< sz _ Z*H2 ||zk+1/3 —k||2

27<gk+1/372k+1/3 > + ||gk+1/3 7k||2 + ||2k+1/3 _ 2k+2/3”2.
Taking the full expectation, we get
[”—k+2/3 *“2} < E [”Zk - Z*||2] {H_k+1/3 —k||2]

— 29 [(gFH1/2, 28— 20| 447 [l - g2

Since zFt1 = z**2/3 we obtain the following general bound for the per-iteration progress of

Algorithm [T}
B[Il2! = 2*17] < E I - =*||%] — B |15/ - 24|
— 29E [(§3 2| £ 2 (g - g2 s
Our next goal is to consider in more details the last two terms, i.e., —2vyE [( k+1/3 Zh+1/3 z*)]

and 7°E [[|g**1/3 — g¥||?], and estimate them from above.

C.2.2 Two Auxiliary Estimates for the General Bound

In the following two auxiliary lemmas, we prove the estimates mentioned in the end of the previous
subsection.

Lemma C.3. Under Assumptions[3.1] 3.2|SM), [3.3]it holds that

LQ
~E [< RHL/B ght1/3 >} < —yuE [sz+1/3 Z*”Q} +771E[Err(k—|—1/3)]. (25)
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Proof: First, we use the independence of all random vectors £' = (£%, ... &) and take the
conditional expectation E€k+1 /3 W.I.t. the vector & k+1/ 3, conditioned on the other randomness. This
gives:

2K [(g BH1/3 She1/3 z*)} ™ —9E

M
1
<M D Bgen e €5V, 244 >

< o (2RF1/3) k13 z*>]
< (ZETL3), R/ z*>]
+27E <

[Fm( k+1/3) _ Fm(2ﬁ+1/3)],§k+1/3 _ Z*>
— _E {<F(2k+1/3>72k+1/3 _ z*>]

- o -
+29E <M Z k+1/3 Fm(2ﬁ+1/3)], Fh+1/3 _ z*> )
L m

- 26)

Next, we prove that (F(z*),z**+1/3 — 2*) > 0 by contradiction. To that end, assume that
(F(2*),zF1/3 — 2*) < 0. By Assumption F is L-Lipschitz continuous, and, hence, for
a small enough o > 0 it holds that (F(2), 2F*1/3 — 2*) < 0, where 2 = 2* + a(zFT1/3 — 2%).
We substitute az"+1/3 = 2 — (1 — a)z* to the inequality (F(%),az"/3 — az*) < 0 and get
(F(2),%2 — z*) < 0. But, this contradicts the definition of the solution z* in (I) which implies that
(F(2),%— 2*) > 0. Thus, we have that (F(z*), 2871/ — 2*) > (0. We combine this inequality with
(26)) and obtain

—9E {< k+1/3 Zht1/3 _ Zﬂ %’1’ —2E [<F(§k+1/3) _ F(2¥), 2R3 —z*>}

_

@ —27E [

S

E\
NE HMS HME

S

3

i <MZ (+417%) Fm<z:;,“/3>1,2’““/gz*>

(S «
< —2uE [ - 2

] v ]
1 k+1/3 k+1/3\1 sk+1/3 *
+29E <MZ[Fm(z ) — Fp (28173 2 — 2 ).

m=1

Applying (12) with ¢ = p > 0, we further get
_Q,YE [< k+1/3 —k+1/3 Z*>:| < _Q’YNE |:||Zk+1/3 _ Z*”ﬂ

2

_ 2 1
+ yuE sz+1/3 o Z k+1/3 Fm(Zf%H/?’)]
m:l
M 2

= B || = P 4 D[ = (1)

(1) *
< WIE[IIZ’““/3 z||2}+

M
7 B Z HFm(Ek+1/3) —Fm(zﬁlﬂ/?’)‘ﬂ
m=1

M
k1/3 _ %2 yL? _k+1/3 k+1/3 2
—VHE |||z | +WE E z — Zm :
m=1

Applying to the last term, we finish the proof.

@
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Lemma C.4. Under Assumptions[3.1}[3.3)it holds that

1002
k+1/3 _ —k 2 < 2 k+1/3 _ —k 2
E |llg 1?] < s2%E iz 2]+ =+
+ 5L°E [Err(k 4 1/3)] + 5L°E [Err(k)] . 27

Proof: Consider the following chain of inequalities:

M
1
{Hng/S 7 } %0 = Z Fyp(25H1/3 ghe1/3) = Z F(25 €8)

o 2
1 Z k+1/3 ck+1/3 k+1/3

2

M ) M )
+5E i Z:: (2FH1/3y — F (2R3 +5E M;[Fm( RHL3Y B (5R)]
1 Y 2 1 M 2
+5E ||| 57 ;[Fm(zﬁl) —F,(z))|| | +5E M;[Fm(zﬁw kY Fn(2R)]
@5}}3 i i/[:[F ( k+1/3 §k+1/3) I ( k13 2
- M — m 9
[, X 2
+5E M;[Fm%,fﬁ)—wzm
2 f: {HF (25H1/3) _ (2R +1/3) H ] 5 f:]E MF (:*)— F, (Zk)HQ}
M — m(Zm m
s e
0.3 [ M 2
< OB AlfmZﬂ[Fm<z§f“3,5§f”3> — F (519 ]
) M 2
+5E[ Mmzz (2 €m) = Fm(2)] ]

+ 5L°E [Err(k + 1/3)] + 5L°E [Err(k)] + 5L°E [||zk+1/3 *k\\?]
2

M
1
=5E |Egrriss |||57 O [Fn (i3, 6001 %) = B (25513)]
m=1
M 2
+ 5 Egk Z mvfk Fm(zrlfz)]

+ 5LE [Ere(k + 1/3)] + 5L°E [Err(k)] + 5L°E [|| ghHl/3 _ gk HQ} .
Using the independence of the realizations of £¥, £€¥+1/3 in each node and @), we get:
1002
E[lg"*/* = *2] < =7 + SL?E [Ere(k + 1/3)] + SLE [Ere(k)] + 5LE [|| 2541/ — 252

O

25



C.2.3 Refined General Bound

We now return to the general bound for the per-iteration progress and combine the general bound
(24) with the two estimates (23) and (27) obtained in the previous subsection. In this way, we obtain

[||Zk+1 Z*||2] < E [”Zk _ Z*HQ] |:||Zk+1/3 —k||2

L2
— JuE [||2 % — 2] + %E [Err(k +1/3)]

1002
2 <5L2E [||zk+1/3 - zknﬂ + 7" + 5L2E [Bre(k + 1/3)] + 5L°E [Err(k)]) .
Using (13) with c = 1, a = 2FT1/3 — 2* and b = 2F+1/3 — 2% we get
Sy P  E L ERC
which in combination with the previous inequality gives
B[+ — 2% < (1- ) E[I2* - 2*)2) - (1 - 59°L* — ywE [nzk“/S 22

10202

’YL2 272 2712
+ (N +5v°L )E[Err(k—Fl/B)} + 5y L°E [Err(k)] + i

(28)

Since, by the Theorem assumptions, we have v <
progress becomes

E [ - =)17] < (1- ) E I — =]

+ (752 + 5’72L2> E [Err(k + 1/3)] 4+ 5y>LE [Err(k)] +

3 L , the refined general bound for the per-iteration

10+%02
M

(29)

Our next goal is to bound the consensus error terms [ [Err(k)] and E [Err(k + 1/3)].

C.2.4 Bounds for the Consensus Errors

The bounds for the consensus error terms are proved in the following two technical lemmas that give
recursions for these error terms.

Lemma C.5. Under Assumptions 3.1} for h = |k/7] — 1, it holds that

2712 k—1
E [Err(k)] < <1 - ?f) E[Err(h7)] + 1441# 3 E[En(j +1/3)]
j=ht
72D%*r Al
+ + 802> ,, (30)
() 5
272, k21 272
E [Err(k + 1/3)] < <1 - %f) E[Ere(hr)] + 2167pL 3 E[Ew(+1/3)] + + B LT )
j=ht
2 k-1 2
+ (1085 L 120—2) S+ (1085 L 120—2> 72 (31)

j=ht

Proof: Using the matrix notation introduced in (19), 20), 1), 22), we rewrite the error Err(k) as
follows:
M - E [Err(k)] = E||Z’f — 2% = IE||Z’“ AR A

ZhT H Wz Zh'r v Z GJ+1/3 H Wz

i=hTt j=ht
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_ ZhT H W’L

i=hTt

=FE lEg(k1)+1/3

ZTﬁwi_ZhT_

Zh'r v Z GJ+1/3 H Wz

j=ht

|

k—1
<Zh7' H Wz _ Zh‘f')

i=hTt i=hTt
k—1 k—1
_ j+1/3 _ +1/3 i
§ 3 @ an T e
j=ht i=j
k—1 2
— Z G]+1/3 (I)]-‘rl/?) G]+1/3 +¢]+1/3 H Wz ‘|
j=ht i=j F

Since only G*~D+1/3 and ¢(k=D+1/3 depend on £*=DH1/3 and Egpe-nyr1s GE-DF/3 =

H=1)+1/3, Eg(k71)+1/3é(k71)+1/3

= (k=1+1/3 (stochastic oracle is unbiased, see @)), we have

k—1 k—1
M -EEr(k)] =E|| 2" [ w' - 2" - (Z’" IIw - Z*”)
i=hTt i=hTt
k—1 k—1
_ ,YZ @J-‘rl/?) q)J-‘rl/B H WL
j=ht i=j
k—2 2
— Z (GIHY/3 — @it1/3 _ Qitl/3 4 §I+1/3) H Wt 1
j=ht i=j F

+~°E H(G(kfl)Jrl/S _ @ DH1/3 _ G(k=1)+1/3 4 @(k1)+1/3)Wk1"1] '

Next, we consider the blue term in the previous display and apply with ¢ = 1, where the
constant (3 is defined below, a = &~ I)H/ 3 _ @k—=1+1/3 and b collecting all the other terms in
the first squared norm. This, combined with (I5) and the fact that ||[IW*~1||5 < 1, gives us

k—1 k-1
ZhT H W’L _ Zh‘r _ <Zh'r H Wl _ Zh‘l’)

i=hTt i=hTt

M -E[Err(k)] < (1+ 81)E

k—2
— Z BITI/3 _ It/ H W
j=ht
k—2 2
— Z G]+1/3 (I)]+1/3 G]+1/3 + (I)]-‘rl/?) H Wz ‘|
j=ht i=j F

_ 2
(14 611)72El“¢(k—1)+1/3 _ (I,(k—1)+1/3HF]

+ 72E HG(k71)+1/3 _ @k=D+1/3 _ Glk=1)+1/3 n (I)(lel/?’Hi] .

In the same way, again using the unbiasedness, we separate the terms with index (k — 2) 4+ 1/3 using
also with ¢ = (2, where the constant 33 is defined below

M -E[Err(k)] < (14 B1)E

k—2

k-1 k-1
Zh'r H Wz _ Zh'r _ (Zh'r H Wz _ ZhT)

i=hTt

i=hTt
k—1

— Z (IHL/3 _ it1/3) H Wi

j=ht

=]
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k—3 k—1 2
PN Z (Gj+1/3 _pItL/3 _ Gutl/3 (i)j+1/3) H Wi ]
j=ht i=j F

_ 2
+ (1487 )°E l [@t-n+1/e ‘I’(“)%HF]

+ (14 B1)V°E

HG(k—2)+l/3 _ =2 H+1/3 _ Gk-2)+1/3 | (i)(k—2)+1/3H2 ]
F

+~°E

HG<k_1)+1/3 _ eDH1/3 _ Gk=1)+1/3 4 é(k—1)+1/3H2 1
F

IN

(14 B1)(1+ B2)E

k—1 k—1

Zh'r H Wz _ Zh'r _ <Zh'r H Wz _ Zh'r)
i=hTt i=hTt

k-3 k—1

— Z ((I)j+1/3 _ (i)jJrl/S) H wi
j=ht i=j
k=3 k—1 2
— Z (GIHY/3 — I+1/3 _ GIt1/3 4 $I+1/3) H Wi ]
j=ht i=j F

_ 2
(14 3;1)7211*3 [ H(I)(k—1)+1/3 _ (I)(k_l)H/BHF]

+ (14 B8)(1+ By HYE

Hq)(k—2)+1/3 B (i)(k—2)+1/3H2 1
F

+(1+ A1) °E

HG(k—2)+1/3 _ =2 H+1/3 _ G(k=2)+1/3 | (i)(k—2)+1/3H2 ]
F

+ 72]}31

HG(k71)+1/3 _e-D+1/3 _ Gl-141/3 é(k71)+1/3H2 1 .
P

Proceeding in a similar way for all the terms, we obtain

k—1 k—1
Zh‘r H Wi o ZhT o (ZhT H Wz _ ZhT)

2
i=hTt 1=hTt F‘|

HGj+1/3 _@it/3 _ Gav1/s @j+1/3H2 ] .
F

M -E[Err(k)] < (1+81)...(1+ Ba_1-nr)E

itL/3 _ (i)j+1/3H2
F

k—1
+2 D (1A +B1) (L Bemj) (L + Bt )R

j=ht

k—1
+92 Y (14 81) ... (1+ Br1-5)E

j=ht

(32)
Setting 3; = ﬁ, where « > 47, gives, foralli =0, ..., (k — 1 — h7), that
(T4 B1)1+B2)... (L4 8i) = P
By the definition of h, we have k — 1 — h7 < 27. Hence, forall i = 0,...,(k — 1 — h1),
(L+B)A+B2)...(1+ ) < (L4 B1)(1+B2) ... (1 + Br—1-nr) <
Moreover, 1 + 3; ! < a. Substituting these estimates into , we obtain

k—1 k—1
Zh‘r H Wz o Zh‘r o (Zh‘r H Wi o ZhT)

i=hTt i=hTt

(67

<2.

|

a— 2T

E

M -E [Err(k)] < po—
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+2fyozZE

j—‘l’

+ 272 2]E

j=ht

Hq>g+1/3 q)g+1/3H ]

HGJ+1/3 _ it _ G+l (f)j+1/3H2 ] .
F

Choosing o = 471 (1 + %), we get

|

1
M-IE[Err(k)]§< 1+4>E

p

k—1 k-1
ZhT H W’L _ Zh‘l’ _ <Zh‘r H W’L _ Zh‘l')

i=hT i=hTt

o k-1
N 24~*T Z E H(I)j—&-1/3 _ (f,j—&-l/SHQ ]
p F
j=ht
k-1 )
4292 Z E HGj+1/3 _@IHL/3 Gt/ (i)jJrl/sH ] .
F
j=ht

Noticing that, for a matrix A € R™M with columns A;, [|[A — A||% = M |4, — 4|2 <
SSM A2 = || A||%, we further obtain

k—1 2
zhT H Wi — ZhT

i=hTt

M -E [Err(k)] < <1+ 1+14> E

24 2 kz_l
~vAT
p k
j=ht

F

H(I)j+1/3 _ cj)j+1/3H2
F

k—1
4242 Z E ng+1/3 _ itL/3 _ Gitl/3 4 @H/:’»HQ ]
j=ht F
2
1 _
g) (1*[)) E Zh‘erhT
1+ 2
D F

242 k—1
+ TN E
p j=h

J=nT

it/ _ (j)j+1/3H2
F

k—1
+ 292 Z E HGj+1/3 _pitl/3 _ qutl/3 (I)jﬂ/gH? ] . (33)
j=ht F
It is easy to see that (1 — p) (1 + 14-%) <(1-p)(1+2) < (1-22). It remains to estimate the

last two terms in the r.h.s. of (33). For the last but one term, we have

M
2
i+1/3 _ &§i+1/3 _
e [Jwsee-wsn]] - 3 o

F(2]+1/3) — Z Fy(zIT%

S

@32

m=1

1 M 1 M
—j+ +1/3
i=1 i=1

EHFm(zgjl/?')—Fm(zj+1/3)H +E|Fn(zt/?) - ZF (2711/3)

2

M M
2, 33 D2 4K 1 ZF Si1/3) ZF J+1/3)
m=1 i:l
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. . 2
+EHFm(an+l/3) _ Fm(«fjﬂ/?’)H ]

E} 6M L*E [Err(j + 1/3)] + 3M D?.

For the last term, we have

E [HGHI/?) L It1/3 _ Git1/3 4 (I)j+1/3H2]
F

M M 2
_ Z E || B, (2713, e741/3) _ (274173 — 1 Z( (413 g +1/3y _ F-(z”l/?’))
m\<m s Sm i\<;
m=1 i=1
m M . ) , 2
<2 BBl € — Pulch )|
m=1
1 < / / / i
j+1/3 ,j+1/3 j+1/3
Bl (BT8R ]
@4]\4&

Substituting the last two bounds into (33)), we obtain (30):

1449227 2 <72D2T 2) =
ST 2N RE(G 4 1/3)] + +80 2.
» > E[Err(j +1/3)] » >

j=hTt j=ht

E [Err(k)] < <1 - %f) E[Err(h7)] +

The estimate for E [Err(k + 1/3)] is obtained in a similar way. Indeed, it is sufficient to note that
ME [Err(k + 1/3)] = E|| Z* —yG* — Z* +~4G*||2. Then, in the proof, we take o = 47 (1 + % -1
and use also By = L for the term associated with G* — G*. In this way, we obtain (14 5,)(1+ 31 )(1+

Bo) ... (L4 8;) < (L4 Bo)L+B1)L+B2) ... (L4 Bro1onr) < 2L <3, (1+8;) <a+1l
This gives us the final bound (31):

216~21.2 — 216~2L2
Blen(i+1/3)] < (1- %) Blew(i)] + 25T 3 BlEnG + 1/3)] + 2B (k)
j=ht
2 k-1 2
= (108D T4 12o2> S+ (108D Ty 12o2> 42
p — p
J=nT
O

We now notice that the r.h.s. of (30) and (31) involve the terms Z E [Err(j + 1/3)]. Thus, in
j=ht

order to resolve the recurrences in (30) and (31)), we need also the bounds for E [Err(j 4 1/3)] for
all ht < j < k—1, where h = Lk/Tj — 1. If (h+1)7 < j < k — 1, then we can use the same
bounds and changing k to j since for such values of j we have |j/7] — 1 = h. Thus, it
remains to consider such j that A7 < j < (h + 1)7. This is done in the second technical lemma of
this subsection.

Lemma C.6. Under Assumptions|3.1| R.2| for (h+1)7 > j > hr with h = |k/7] — 1, it
holds that

, 14472 L27 %
E [Err(5)] < (1 + %) E[Err(hr)] + ——— 2 zh: E [Err(i + 1/3)]
2D% L\ s,
+{ =+ > A (34)

i=hT
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21672L%7 %2 21672 L27

E[Bn(j +1/3) < (1+ g) ElEm(hr)] + = = 3 B[Br(i+1/3)] + E [Err(j)]
i=hTt
+ (108;)27 + 1202) X_: 22 (108;)27 + 1202> 2. (35)

i=hTt

Proof: The proof follows the same lines as the proof of Lemma until (33), which needs to
be modified since in the situation of the current Lemma, we can not use for small j’s. The
modification is as follows:

j—1 2

24727 4=
+ ZIE

p

H(I,i+1/3 _ (i,z'+1/3H2
F

Jj—1
+272ZE HG1+1/3 PitL/3 _ Git1/3 (I)z+1/3H ]
i=hT
. 2
q§D<1+4>E zh —ZhT
1+
P F

2427 12
+ TN E

p 1=hTt

j—1
+22) R

i=hT

H(I)i+1/3 _ @i+1/3”2
F

HGi+1/3 _PitLB _ Gitl/3 (i)i+1/3H2 ] 7
F

where we also used that ||[W¢|| < 1. The rest of the proof is similar to the proof of Lemma @

O

C.2.5 Combining the Building Blocks for the Final Bound

We are finally ready to combine the building blocks and obtain the convergence rate result for
Algorithm [T]in the strongly-monotone case. We combine the refined general bound for the per-
iteration progress with the bounds for the consensus error terms (30), (31), and (33). We
note that, in general, E [Err(k 4 1/3)] may be smaller than E [Err(k)], but since the r.h.s. of
upper bounds the r.h.s. of (30), we assume, for simplicity, that E [Err(k + 1/3)] > E [Err(k)]. We
additionally use that, by the Theorem assumptions, v < 150~ and v < and write the resulting
recurrences as follows.

e Using that v < 5\ and the assumption that E [Err(k + 1/3)] > E [Err(k)], the recurrence
transforms into

[||Zk+1 *Hz] < (1 -~ %) E [sz _ z*\ﬂ

+ (WMLQ + 572[,2) E [Err(k + 1/3)] + 572 LE [Err(k)] +

3L

107202
M

107202
M

< (1 - %) E[|I2F — 2 |%] + <7ML2 + 1072L2> E [Ere(k + 1/3)] +

10v%02

<(1-)E[EF - + E[Err<k+ 1/3)] +
o Using the assumption that E [Err(k 4+ 1/3)] > E [Err(k)] the recurrence takes the form

21672 L%T
p

21672 L%

E [Err(k +1/3)] < <1 - %f) E[Err(h7)] + Z E [Err(j 4 1/3)] + E [Err(k)]

j=ht
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108D2 ity 1082
+ ( 08p T +1202) DR ( ng T4 1202> 2

j=ht
3 21672 L% 2167°L>
< (1= 2) signtor + 1/ + Z2ET Y giEng + 1)+ 22 L s B+ 1/3)
j=ht
108D? - 108>
+( 08 T+1202) sz+<087+1202)vz.
P P

j=ht
Rearranging, we obtain

(1 N 2167;L27> E [Err(k + 1/3)] < (1 - %f) E[Err(hr + 1/3)] + 2167;L27 > E[Er(j +1/3)]

j=ht
216D =
+< 6 T+2402) 272.
p s
J=nT
Using that v < 120 50T > We get
(1 . £) E[Err(k +1/3)) < (1 2 ) ElEm(hr + 1/3)] + 2= ki E [Err(j +1/3)]
64 - 4 667 i=hr

216 D21 At
+ + 2402> 52,
(= >

j=ht

Finally, using that 0 < p < 1, and, hence, (1 — 3—”) (1- L) <1-Zand(1- i)_l < 64 L 66
we obtain

k—1
E [Bre(k +1/3)] < (1 - 123) E[Err(hr +1/3)] + % 3 E[Ew(+1/3)]

j=ht

225D27 Al

+ ( + 2502) >
p j=ht

Note that the above inequality holds for h = |k/7| — 1 since we started with (31)). In the same way,
fork—12>j > (h+ 1)7, since in this case h = |j/7| — 1, we have the inequality

E[Ere(j + 1/3)] < (1 - g) E[Err(hr +1/3)] + Z E [Ere(i + 1/3)]

i=hT
225 D? =
+< > T+2502> Z'yQ.
p ;
i=hT

o We repeat the same derivations for (35)). First,

216~2L27 1A 216~2L2
67 3" E[En(i+1/3)] + 4 UL

i=hTt

E[En(j +1/3) < (14 2) ElBm(hr)] + === E [Err(j)]

1

108D? T 108D?
+< 08 T+1202> 272+< 08 T+1202>72
p p

i=hTt

216~2L27 1A 216~2L2
67 %E [Err(j + 1/3)]

> E[Br(i+1/3)] +

i=hTt

108D? ik 108D?
+ ( 08D | 120—2> >+ (087 + 1202> 42
p p

i=hT

< (1 + %) E[Ere(hr + 1/3)] +
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Further, rearranging, we obtain

(1 B 21672 L%
p

21672L%7 %
Hoy LT Z E [Err(i + 1/3)]

) E[Err(j +1/3)] < (1 + g) E[Err(h7 + 1/3)] + >

216027 1
+ + 2402> 72
(= 5

i=ht
Since v < 120 7, We get
(1_6%>]E[Err(j+1/3)} < ( 4) E[Err(hT +1/3)] + ZE [Err(i +1/3)]

zh'r

216 D2 =
+< 0 T+2402> 3
p

i=ht
Since 0 < p < 1, and, hence, (1 + &) (1 — &)71 <1+Zand(1- ﬂ) < 82 < %8 we obtain
Jj—1
E [En(j +1/3)] < (1+ 2) ElB(hr + 1/3)] + 2 ;};TE [Ere(i +1/3)]

2952 =
+< > T+2502> 342
p

i=hTt

Summarizing the above three bullet points, we have the following recurrences

. oIy b 2L 10v%02
B[ =) < (1= ) B IS - 1] + = R B+ 1/3)] + =

k—1
E [Bre(k +1/3)] < (1 - ’23) E[Err(hr +1/3)] + % 3 E[Ew(+1/3)]

j=ht
9 k—1
+ (225D u +250’2) Z v, h=|k/T] -1,
E [Bre(j + 1/3)] < (1 - g) E[Ere(hr + 1/3)] + Z E [Err(i + 1/3)]
i=hT

225 D2 i
+( T+2502)Zv2, k—1>j>(h+1)T,
p

i=hT

E[Err(j +1/3)] < ( ) E[Err(hr + 1/3)] + Z E [Ere(i + 1/3)]
i=hT
+ <225D27 + 2502> Ji 72, hr<j<(h+1)T.

i=hT

To simplify the further derivations, we introduce shortcut notations: rj, = E [[|z%F — 2*(|2], e}, =
E [Err(k +1/3)], 0 = 4, A= 252°0 1 9552 B = 2L° ' = 10¢% and h = [k/7| — 1. Then, the
previous recurrences can be written as

rer1 < (1 —~a)ry +vBeg + 720, (36)
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k—1 k—1

ek§<1—§)eh7+&%26]’+A272, h=lk/T| -1,

j=hTt j=ht

-1 j—1
qﬁ(l—%)em—i-%Zei—&-AZ'yz, k—1>3j>(h+1)m,

i=hT i=hT

ejg(l—l—g)e;w Zel—i-AZ'y, hr <j<(h+1r.

i=hT i=hT

The last two recurrent inequalities can be resolved w.r.t. e using the following lemma.

(37

(38)

(39)

Lemma C.7. If a non-negative sequence {ey, } >0 satisfies (37), (38), and (39) with some constants

0<p<1l7>1 A>0, then it holds that

1672 A
en < VAT
D

Proof: We depart from and iteratively substitute all e; for j > (h + 1)7 starting from k& — 1 and

finishing with (h + 1)7:

kﬁ(l—g) (1+64T)6h7—+GZ ( )Zej—l—Any +77- A’§72

j=ht j=ht j=ht
» (h4+1)7—1
S0 e ) o e () S
= ( 2 o) o T 6ar j;T K
(h4+1)7—1 .
» (h+1)7 p \k-1-0
A(l ) A (1 ) .
AT Sur 2. T Z T oar 7
j=ht =(h+1)T

Next, using (39), we substitute all e; for j such that hr < j < (h + 1)7:

» - » 41 (h+1)7—2
<(1-ran (148) (1 gr) et g (i)
€k = ( 5 T4 LT3 toar) T oar U Gar E;T ©
(h+1)7—2 k—1 .
p k()T ) p N1
A (1 —) A (1 —) .
+ + 641 Z LR ) Z + 6471 "
j=ht j=(h+1)7—1
Since g (1+5) < - (1 - &), we get
» » 1 (h+1)7—2
D) () e e ) 3
k= ( 5) U 167) T 6ar) g T Gar j;ﬂ K
(h+1)7—2 k—1 .
P (h+1)74+1 p \F-1-J 9
A (1 ) A (1 —) .
AT b 2 A D T 5ar 7
j=ht j=(h+1)7-1

Proceeding in the same way for the rest of e;, we have

er < (1 — ‘g) (1—!— E)Q enr+A Z <1+ 7>k_1_j72.

)k—l—j

Noting that (1 + &= <(1+ &) T < exp(p/8) < 1+ & for p < 1, we further derive

k—1

er < (1 — %) enr + 24 Z 7 < (1 — %) enr + 2473 (k — hr) < (1 — %) enr + 4A?T,

j=ht
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using also that h = | k/7| — 1. It remains to apply the recursion for e, (with ey = 0), and obtain

D\ 2 D 9 9
€ = (1—1) e(h—1)7+(1—*)-4Av TH4AYT <L

4
h » j 0o P j
2 2
§4AVTZ(1—Z) §4A'77'Z(1—Z)
j=0 7=0
< 16’72147"
p

This finishes the proof of the bound for e.
]

We proceed with the proof of the main estimate for the strongly-monotone case by substituting the
above estimate for ¢, into (36)):

1673 AB
16°ABr

ree1 < (1 —~ya)ri + ¥2C.

Running the recursion from 0 to K gives

16y2ABT C 16v2ABT C
ricer < (1—va) rg+ =" 4+ 2 < exp (—yaK) rg + ——L + = (40)
ap a a a
Throughout the proof of this bound we used that v < 72— and v < 5. Let us denote & = =2—.
By the definitions of 7 and p, we have that é = 125’ 7 < 3%, and the choice
_ p  2In(max{2, u?MroK/(405%)}) .| 1 In(max{2,a*roK/C})
4 = min , =min{ —,
1207L 1954 d aK

in the Theorem assumptions is valid to obtain (40). Further, this choice leads to the following
convergence rate estimates.

ln(max{Q,ame/C}) o ln(max{2,a2r0K/C})

oIf > oK then vy = R gives
O exp _a2K ) h’l (maX{27 QQTOK/C}) ro + ABT ) 11’12 (maX{Q,azroK/C}) n 9 . 111 (maX{Q,a2r0K/C})
aK a a2 K2 a WK
? ABT C ~( C ABT C
_ 2
=0 (exp (—In (max{2,a’roK/C})) ro + Pl + a2K> <0 <a2K + e + a2K) .
2
olIf 1 < 1n(maX{2:;<mK/C}) then v = 3 gives
1 ABT 1 C 1
—aK - — - 4.z
ol 5
<0 [ exp _aK ot ABT In? (max{2, a2r K /C}) N C In (max{2, a?roK/C})
d ap alK?2 a oK

- aK ABT C
O\~ )t ere T ek )

Thus, our choice of v leads to the desired estimates for the convergence rate

~ aK ABT C
re+1 = O | exp Y ro + erz + oK)

Finally, we substitute constants A, B, C, a, d and obtain
& puK N T2D2[? N To?L? N o?
Thil = exp | — T )
kot P\ 722072 ) ° T a2 T piAR2 T 2MK

. ., 2 . . .
Using the definition A = % (% + 02), from the last estimate we obtain the bound in the theorem
statement.

This completes the proof in the strongly-monotone case.
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C.3 Proof of Theorem 4.1, Monotone Case

The proof partially relies on the general per-iterate estimate in the previous section, which we slightly
modify and refine for the purposes of this section. We first note that in the proof of inequality (24)
we can take an arbitrary z instead of z*. Rearranging the terms, we obtain for an arbitrary z:

2E {< k+1/3 sh+1/3 _ Z>} < E [sz 72”2] [szﬂ 2”2]
[||Zk+1/3 —k||2:| —|—’}/2E |:||gk+1/3 _ gk”Q} ] (41)

Next, we need two bounds: a lower bound for the Lh.s. that relates it with the true operator F', and an
upper bound for the last term in the r.h.s. that is given by Lemma[C.4

The lower bound is given by the following result.
Lemma C.8. Let the operator F satisfy Assumptions[3.1] 3.3 Then, for any fixed z, we have

E [(g’“““, FhH1/3 _ z>} > E KF(E’“H/S), FhH1/3 _ z>} (42)

AL fykis  shpe] L N |2
: E[Hz ZM 5 BBk +1/3) L/EErt(k + 1/3)\/E||z% — 2|2 (43)

Proof: We take into account the independence of all random vectors £¢ = (&%,. .., ¢! ) and take only
the conditional expectation E¢x11/s w.r.t. the vector § k+1/3 conditioned on all the other randomness:

M
@ 1 k41/3Y ok+1/3
2 E <Mmz_:lFm(zm ), Z —z
INSY
_ L Sk+1/3\ Sk+1/3
= E <M mz::l F..(z ), Z z>]

m=1

e _
1 .
£ <M S [ (213 — By (51%)], 244175 >

- E {<F(2k+1/3>72k+1/3 _ Z>]

_ (h+1/3) k+1/3\) sh+1/3 _
E <M Z — Fo (257, 2 z> .

Next, we estimate from below the last term in the r.h.s. Using (12)) with ¢ = 'yLz, we obtain

_ (z4+1/3) k+1/3\] sh+1/3 _ =k | sk _
IE<M Z — Fo (270, 2 8+ z z>

M

Z k+1/3 Fm(zk+1/3)]

2

2
> _75 EHZIchl/B _ 2k||2

2’yL2 =
M
7 SR — F (a1 |z’€z|]
m=1
© 7L2 “k+1/3 k|2 L? = —k+1/3 k+1/3 2
= 5k “'Z —Z } Lk 2:: Hz ~ Zm H

I M
_Ltg Z H2k+1/3 _ Z7kn+1/3H 125 — z]
m=1
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L2
e JTE [||zk+1/3 - z’ﬂﬂ IEErr k+1/3) — L\/EEre(k + 1/3)\/E||z% — 2|2,

where in the last inequality we used also that

M 2
1 M .
B 3% [ st —aa] < (i 3 oo - k0] v
m=1 m=

M 2
_ k+1/3 —
< \/JQE 5—1 sz“/?’ — 2 H VE|zF — 2|2
@ VEEr(k + 1/3)\/E| 2F — z|2.

Combining the above, we obtain the statement of the Lemma.

]

Combining inequality with Lemma|C.4]and Lemma|[C.8, rearranging the terms, and using the
monotonicity of the operator F, i.e. (SM) with y = 0, we obtain, for any z

2~vE [<F(z), FhH1/3 _ z>} 2~E [<F(2k+1/3), Fht1/3 _ z>}
E[|I2" - z*] —E |25 — z|)%]
_E {‘|2k+1/3 _ Ek” } +572L°E [sz+1/3 716”2}

100272 2 2 2.2
+T + 5L*~°E [Err(k + 1/3)] + 5L°7°E [Err(k)]

+L2E [||254173 = 2512 + Bar(h + 1/3)

IN

IN

+2yL\/EErr(k + 1/3)/E||z% — 2||2

. 1002~
E [z - 2] ~E[J2*+ - 2] + —

+5L%42E [Err(k + 1/3)] + 5L%~°E [Err(k)]

+Err(k + 1/3) + 2yL/EErr(k + 1/3)4/E[| 2% — 2|2

2.2
E [l — 2] ~E [z — 2 + =2

+5v2L2E [Err(k)] 4+ 2yL\/EErr(k 4 1/3)1/E| 2k — 2|2,

where in the last but one inequality we used that, by the Theorem assumptions, v < I f The above

is a refined general bound for the per-iteration progress in the monotone setting. Further, by Lemma
§:.7, we have, for any z,

2E {<F(Z)72k+1/3 _ z>] < E [sz _ ZH2} [sz—H 2”2]

1 2.2 2 29 D2
4100 +(1+572L2)~87T~< > T+2502>
M D D

2 225D?
+5y2L2 - o ( DT 25a2>
P

IN

IN

p

2 (225D2
+27L\/87 . < D77 | 2502> E|zk — 2|2
p p

2.2
E (I 2] - E [+ — o] + =5

8 225D2
H(1 4 1072L2) - 87 ( Ty 2502)
p p

IN
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+ (1 + 5y2LHE [Err(k + 1/3)]

(44)



32+2 225D?2
+7L\/ T ( Ty 2502) E||z% — 2||2
p p

< EfII2F - 2P —E 125 - 2] +¢

+V\/E[|Z* — 2|12, (45)

where we denote A :=32- T . (% + 2502), €= (1+10/2L%)y2A + %, n=~1L2A.

p

Our next goal is to analyze the recurrence ([@3) in two situations: bounded iterates and unbounded

iterates.

C.3.1 Unbounded Iterates

First, we consider the general case when the iterates z* are not assumed to be bounded. We carefully
analyze this sequence and prove that this sequence can not go too far from any solution to the
variational inequality. This allows us to obtain the final convergence rate bound. Let us denote

ri(z) := \/E||z¥ — 2||? and let 2* be a solution to the variational inequality. Then, we have

ri(2)

(ri(2))”

IN

<

V2ENZE — 272 2]z — 272 < 2B — 2|2 4 2z - 2P

V(=) + V2] - 2],
2E[|2* — 2* | + 2 — 2°|> = 20ri(="))? + 2|z — 2 |1*.

Thus, from (45)), we have, for any z and any k& > 0,

2E[(F(), 7 = 2)] < m(2)? = e (202 + €+ Viime(2). (46)

Summing these inequalities from k£ = 0 to K, we obtain, for any z,

K
29(K + DE[(F(2),25 = 2)] < ro(2)* +(KE+ )&+ vy ri(2)
k=0

oK 1
where z" = et

M=

k

2ro(27)% + 2]z — 2| + (K + 1)¢

K
+7 (fz(K + 1)z — 25| + ﬁZrﬂz*)) . (47)

k=0

IN

sh+1/3
0

Our next goal is to bound from above the expression

K
ro(z*)% + (K +1)&+ /21 ) (7).
k=0

Taking z = z* in (46)) and using the fact that z* is a solution to the variational inequality, we obtain,

forany k > 0

0<27E [<F(z*), Zht1/3 _ z*>} < () =g ()2 €+ VIrE(2").

Thus, for all £ > 0,

rre1(2)? < re(2%)? + €4 ire(25).

Summing these inequalities from k£ = 0 to K, we obtain

K
ric1(2)? < ro(2*)? + (K + 1§+ v Y ri(2%).
k=0

Note that this inequality holds for arbitrary X > 0. We next use the following technical result.
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Lemma C.9 (Lemma B.2 in [29])). Let o, ag,...,an_1,b, R1,..., Rn_1 be non-negative numbers
and

-1 -1
ng\/i' <Zak+baZRk> l=1,...,N.
k=0 k=1

Then, forl =1,... N,

-1 -1 -1
> ar+ba) Ry < > a + V2bal
k=0 k=1 k=0

Choosing v = 1,b = /1, ap = ro(z*)2 +&ar =6 k=1,..,K — 1, R, = r(2*), we obtain

K 2
ro(=) + (K + D¢+ iy mlz) < (Vi) + (K + D€+ (K +1)y/2n)

k=0
< 2r0(2*)? +2(K + )6+ 4(K + 1)

Combining the last inequality with (47), we obtain

2v(K + DE [(F(2),25 —2)] < ro(z%)? +2||z 212+ V20(K + 1)z — 27
+ (2ro (%)% 4+ 2(K + 1)€ + 4(K + 1)*n)
< Bro(2)? 4+ 2]z — 2*|? + 2(K + 1)¢
(

+/20(K + 1))z — 2| + 6(K +1)p
Dividing both sides of the inequality by 2y(K + 1) and using the definitions A := 32 - 7
(% + 2502), €= (1+1072L%)y2A + %, n :=~y*L2?A, we obtain, for all z € C

0 * |2 * |2
- - +llz =27 | ¢ n
E[{F(2),25 —2)] < 2”2 | + 24z - 2" +3(K +1)+
[(F(z) )] SK D) - [ [ 272 ( )7
|2° — 2*]2 4 ]z — 2*||* | 1002y 22
< + (14 10y*L°)vA
= (K 1 1) o L)y
+yL||z — 2*|VA + 3(K + 1)y L*A
402 1002
< R T

V(K+1) M
+7LQeVA + 8(K +1)73L2A,

where in the last inequality we used that z°, z, 2* € C, max, ./cc ||z — /|| < Qc, and that K > 1.

1 202M \? 02 i
Y= min By 2 € ) C )
3L \5(K + 1)0? 6(K + 1)2L2A

in the Theorem assumptions implies

Our choice

L/ LQQ Qe LOEVA
WK+ 1) "ViE T VE )
and we obtain
2 LQ3 20)2
SwpE [(F(2),2% —2)) = o B+ 24 A+ Le)0eVA ),
zeC \/7
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C.3.2 Bounded Iterates

Let us now consider the situation under the additional assumption that for all £ the iterations of the
algorithm satisfy ||2”“|| < . In this case, summing (45) from & = 0 to K, we obtain, for any z,

K
2y(K + DE [(F(2),25 = 2)] < [|2° = 2P + (K + D§+ i > \/E[2% — 2|2
k=0
<127 = 2] (K 4 DE+2(K + 1)y/n(Q + [|2])-

Dividing both sides of this inequality by 2y(K + 1) and using the definitions A := 32 - %
(% + 2502),5 = (1 +10v2L?)72A + 10‘7 7 ,n:=~*L?A, we obtain, forall z € C

R EETN: 7
B(re. 2 -2 < LS @u /G

12° — 2| | 100y

< 212
S KT D U + (1 + 10v°L*)vA
+(Q+ |2y LVA
02 10027y
< ¢ 1073 L2A
S sy T W
+7((Q + Q¢)LVA + A),

where in the last inequality we used that 2°, z, 2* € C, max, yec ||z — 2| < Qc, and that K > 1.

Our choice

in the Theorem assumptions implies

O(LQ2 oQ LOIVA (94 Q) L\F+A)QZ>

supEE [(F(2),2 - 2)] =

K w/MK K3/4 K

C.4 Proof of Theorem 4.1, Non-Monotone Case

The proof relies on the general per-iterate estimate in Section[C.2, which we refine for the purposes
of this section. We start with the same estimate (24)):

B (2! — 2*17] < E [l — =% B |5/ - 24|

—2E {< k:+1/3 sh+1/3 _ *>} Jrsz {Hgkﬂ/s _ gknz} ' (48)

We use the same Lemma [C.4]to bound the last term in the r.h.s., and the following counterpart of
LemmalC3/to deal with the last but one term.

Lemma C.10. Under Assumptions[3.1|[3.2{NM), B.3it holds that
—29E [{g"F1/3, 2% - 2] < 29\ R[5 - 20 |2)VE Bre(k + 1/3)]

+LE [543 = 2M2] + yLE [Ere(k+1/3)]. 49)

Proof: First of all, we use the independence of all random vectors £ = (&%, ..., £! ) and take only
the conditional expectation ]E&k+1 /3 W.I.t. the vector & k+1/3 conditioned on all the other randomness.
This gives us the following chain of inequalities:

< Z E£k+1/3 k+1/37£k+1/3)] sht1/3 _ z*>]

_onE [(gh /3, ZhHL/3 _Zﬂ ™ _2E
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M
@ 1 k+1/3\ sk+1/3 _ _«
2 -_21E l<M ZFm(zm ), Z —z

Fm(zk+1/3)’ 5k+1/3 _ Z*>‘|

i M
1
+29E < D Fn () = B (], 248 -

< 2"}/E [|2k+1/3 o Z*

E \

=1

M
< 2’7E [|5k+1/3 _ Z* Z H k+1/3 Fm(z

E

@ 9vLE [szﬂ/:a 2| = Z H k+1/3 ZkH/SM

< 2vLE

M
125 — Z H k+1/3 Zk—&-l/BM

m=1

M
1
“k+1/3 _ k| . k+1/3 _ sk+1/3
+2vLE lz z"| Mmngzm z H]

M
1 S )

M
Z (ZFH13) _ R (k13

2
. 1 M
< 29Ly/E||ZF - 24|?]- |E (M HZ712+1/3 _ 2k+1/3H>
m=1

2
M
1
Sk+1/3 k2 Sk+1/3 _ _k+1/3
+yLE[[|#413 — ¥ ] + 4 LE (M PRl ||>

It is easy to see that, by convexity of the squared norm,

1 M
M Z ||2k+1/3 o

1 - i
(M Z H2k+1/3 _ anJrl/S”)

m=1

m=1

This completes the proof.

+ 2vLy\/E[||zF — 2*||?]/E [Err(k + 1/3)]

+YLE [| #5413 — 242] + yLE [Err(k + 1/3)]

41

zfn+1/3||2] D EErm(k +1/3).

O

We next move to the refinement of the general per-iterate estimate (48). Namely, we substitute (49)
and (27) into (48), and obtain the following counterpart of (28):

[||zk+1 Z*”Q] < E [sz _ Z*||2] [||2k+1/3 7k||2}



2
+ 72 <5L2E [||zk+1/3 - z’“ﬂ - 1(])\2 + 5L°E [Err(k + 1/3)] + 5L°E [Err(k)]) .

1

Since, by the Theorem assumptions, v < =7,

we have

1 = : = = * = *
iE [”Zk:Jrl/S N ZkHQ} <E [sz _ H2} ) [”Zkr+1 _ ”2]

+ 29L\/E[||2% — 2*||2]\/E [Err(k + 1/3)]
2 2

10
+ (592L% + yL)E [Err(k + 1/3)] + 572 L2E [Exr(k)] + X; .
‘We next elaborate the term
E {sz+1/3 _ anz}

(50)

2 1 < - -
=7°E HMmZ_l(Fm(zﬁlﬁﬁl)—Fm(zﬁl)—l—Fm(zﬁl)—Fm(zk)—i—Fm(zk))

D A2 1
> TE|FE| = |22 D (Fnleh€h) = Fu(eh) + Fulh) = Fn(39))
m=1
2 2 1 & : 1 &
@ %E ||F(zk)H - 2°E i Z Fo(zps &) = Fin(23,) - 27’E Z Fin(zy) = Fn(2")
m=1 m=1
O ~2 2 29%0 2v2L? M 2
2 7EHF( k)H M M mz_lE{stl_zkH :|
2 2 2
= TE|FE - 27M” — 292L2E [Exe(k)] .
Substituting this into gives
2
%E [IEEIP] <EflI2° - 2*)1*] — E [ - 2*%]
+ 2vLy/E[||2F — 2*||?]E [Err(k + 1/3)]
272 272 11y%0?
+ (L + 592 L) [Ere(k + 1/3)] + 69°LE [Ere(i)] + 1 T

This is a refined general bound for the per-iteration progress in the non-monotone setting. Applying
Lemma [C.7]for the consensus error terms, we get

,72
TEIFEHIP] <E[lI2* = 2*7] —E Il - 2|17]

27 (225D?2
+2vL\/E[IZkz*|I2}\/877'( > T+2502)
p

b
1162 8(vL + 114*L? 225D
+72( o 80Lt 1y )T-( T+2502>>.
M p
Finally, summation over all £ from 0 to K and averaging gives the following bound.

K . )
; Z ||F(2k)||2 < 4”20 — 2 ||2 B 4K [||ZK+1 — 5 ”2] . 442
K+1& T 3K +1) Y2(K +1) M

32027 [225D2r 1 &
. 2502 | . ——— E[llzF — z*||2
+\/ » ( » —1-50) K—|—1E [z z*||?]

L+1142L2)r (225D°
| 8oLt 1l )T-( ° T+2502).

E

C}))
p

Our next goal is to analyze this bound in two situations: bounded iterates and unbounded iterates.
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C.4.1 Unbounded Iterates

First, we consider the general case when the iterates Z* are not assumed to be bounded. We carefully
analyze this sequence and prove that it can not go too far from the solution to the variational inequality.
This allows us to obtain the final convergence rate bound. To that end, first, we write the following

corollary of (51):

117*(K + 1)0®
[HZK+1 Z*Hz} < HZO _Z*HQ + 2 ( )

M

2vAL2 92952 K
I il T-( T+25a2> ST VE[IZE — 24|J2)
p p P

2(K +1)(yL + 1172 L2 225 D2
V(K +1)(vL + 11y )T,( 5 T+250,2>_

2p

Next, we apply Lemma with R, = /E[||zF — z*[]2], b = \/274:27 . (225D2 + 250’2>

2 272 2 _2
v (vL+114%L%)T 225D%r 2 11v°0 0 P Y2 (yL+1142L?) T
2p ’ P + 250 + > a0 = HZ 4 || + - 2p

(% + 2502) + 1177]\;'2, and get

ar =

K K
o+ VK +1) | <23 ap + 402K +1)%,

k=0 k=0

K K
D akt+b) Ri<
k=0 k=1
which gives

K 1 K
> Ry < 5Zaﬁszf(ﬂ)
k=1 k=0

Substituting this in (51]) with the same notation, we have

K

K
1 2 1 2
K+1ZHF ||]<Zak+b<b2ak+4b(l(+l)>,

k=0 k=0

v} (K +1)
1

and, hence,

16b2( K 166°(K + 1)
i NLE ||2] Zak .

k=0

Finally, we get

KHZHF | =

_ ( — 22 L+ (DQT . 02>

YK +1) P p
2 K 1 2L2 D2
-I-(L—F( + Uy T-( T—|—02> .
M p p
. L0 =gz \1/4
As before, we denote A := 32- % (% + 2502>. Our choice v = min {1L (m) }

in the Theorem assumptions further implies

KHZIIF | =

L2 0 _ x||2
K
2 /L]0 — z*||A3/4>

Q

+—+
M VK
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C.4.2 Bounded iterates

Under the additional assumption that ||z*|| < Q and ||2¥|| < ©, using (51), we obtain

0 _ %2 L+~2L%)r (D*r
F(ZM))?| = 127 — 2" + (v v ] ( + 2)
K—!-IZH I] (72(K+1) P D ?

n o2 n L2027 (DQT n 2)
— | ——+0 .
M P P

1/3
Our choice 7 = min {1L (ﬁ) } in the Theorem assumptions further implies

2002 2 2/3
= (LQ IOkl +LQ\/K>.

2
K+1ZHF )l K M K1/3

D Anytime Convergence via a Restart Technique

In this section, we propose a simple procedure that gives our method more flexibility by avoiding
the fixed budget K for the number of iterations that needs to be set before the start of the method.
We start with a generic interpretation of Theorem [d.1]that combines all the cases considered in the
theorem. In all the cases, there is some optimality measure p(K), e.g., p(K) = E [|[z5+ — 2*[]?]
in the strongly-monotone case. Further, in all the cases there is some function Z(K’) which bounds
p(K) from above after K iterations. Theorem states that if we fix the budget of K iterations
and set the stepsize (K ), then after K iterations it is guaranteed that p(K) < Z(K). Let us refer
to the iterations of Algorithm|I as basic iterations. We organize the restart procedure as follows.
We construct a sequence of the budgets K; = 2! for ¢ > 0. For each restart ¢ we set the stepsize
~(K?), run the algorithm for K basic iterations and use the obtained point as a warm-start for the
next restart. We can also use the same starting point for all the restarts.

Let us now assume that the algorithm has made NV basic iterations. This means that it made at least
T = [logy(N 4 1)] — 1 restarts. Since at the end of the last restart it made K basic iterations with
the stepsize (K ), we obtain, by Theorem 4.1} that we guarantee that

p(Kr) < E(Kr) = 2 (27) = 2 (2lon(VH0171) —=(0(N).
Since in all the cases in Theorem 4. 1, we have that the dependence of Z(K) on K is either exponential
or polynomial, we obtain that p(Kr) = Z(O(N)) = O (E (N)). Thus, we have obtained an anytime-

convergent algorithm with the convergence rates, up to constant factors, similar to that of Algorithm
[I] This algorithm does not require to fix the number of basic steps K in advance.
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