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Abstract

Existing work in scientific machine learning
(SciML) has shown that data-driven learning of
solution operators can provide a fast approximate
alternative to classical numerical partial differ-
ential equation (PDE) solvers. Of these, Neu-
ral Operators (NOs) have emerged as particu-
larly promising. We observe that several uncer-
tainty quantification (UQ) methods for NOs fail
for test inputs that are even moderately out-of-
domain (OOD), even when the model approx-
imates the solution well for in-domain tasks.
To address this limitation, we show that ensem-
bling several NOs can identify high-error regions
and provide good uncertainty estimates that are
well-correlated with prediction errors. Based on
this, we propose a cost-effective alternative, DI-
VERSENO, that mimics the properties of the en-
semble by encouraging diverse predictions from
its multiple heads in the last feed-forward layer.
We then introduce OPERATOR-PROBCONSERV,
a method that uses these well-calibrated UQ esti-
mates within the PROBCONSERV framework to
update the model. Our empirical results show
that OPERATOR-PROBCONSERV enhances OOD
model performance for a variety of challenging
PDE problems and satisfies physical constraints
such as conservation laws.
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1. Introduction
A promising approach to scientific machine learning
(SciML) involves so-called Neural Operators (NOs) (Lu
et al., 2019; Li et al., 2020a; Kovachki et al., 2021; Li
et al., 2020b; Gupta et al., 2021; Boullé & Townsend, 2023)
(as well as other operator learning methods such as Deep-
ONet (Lu et al., 2019)). These data-driven methods use neu-
ral networks (NNs) to try to learn a mapping from the input
data, e.g., initial conditions, boundary conditions, and partial
differential equation (PDE) coefficients, to the PDE solution.
Advantages of NOs are that, if properly designed, they are
discretization-invariant and can learn a mapping usable on
different underlying discrete meshes. Furthermore, NOs can
be orders of magnitude faster at inference than conventional
numerical solvers, especially for moderate accuracy levels.
Once trained, they can solve a PDE for different values of
the physical PDE parameters efficiently. For instance, con-
sider the 1-d heat equation, ∂u/∂t = k · ∂2u/∂x2, where
u(x, t) denotes the solution as a function of space x and
time t, and where k denotes the diffusivity. A NO can be
trained to learn the parameter mapping between the diffu-
sivity parameter k (input) and the solution u(x, t) (output)
for fixed initial and boundary conditions.

NOs have been shown to approximate the ground truth so-
lution operator well for in-domain tasks (Lu et al., 2019;
Li et al., 2020a; Saad et al., 2023; Alesiani et al., 2022).
However, to be useful, they also need to be robust for out-
of-domain (OOD) applications. The robustness of OOD
predictions is necessary in practical applications, as the
test-time PDE parameters are typically not known during
training. Figure 1 shows the sharp moving (discontinuous)
shock solution to the “hard” Stefan problem, where the PDE
parameter u∗ denotes the solution value at the shock point.
We see that while a NO model trained to map the input PDE
parameter u∗ to the solution of the Stefan problem accu-
rately captures the sharp dynamics for in-domain values of
u∗, it fails for OOD values of u∗, i.e., those values of u∗

that are outside the range covered by the training data. This
failure shows that NOs are not robust in OOD scenarios
and thus may not effectively capture the “true” underlying
operator map in practical applications. It is important when
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Figure 1. 1-d Stefan Equation. In-domain (a) and OOD (b) pre-
dictions from FNO with post-hoc uncertainty estimates (3 standard
deviations) obtained by BayesianNO (Magnani et al., 2022) and
the proposed method at time t = 0.5. BayesianNO outputs an
accurate solution with reasonable uncertainty bounds in-domain
(a), where the training and test input parameters are drawn from
the same distribution, i.e., u∗train, u∗test ∈ [0.6, 0.7]. It fails to do
so when the test inputs are OOD (b), with u∗test ∈ [0.5, 0.55]. The
large oscillation occurs at different locations for different seeds.
Proposed method (red) outputs accurate solution in-domain and
improves the OOD predictions.

developing these models to use reliable mechanisms to de-
tect and correct such inaccurate predictions, as this limits
their widespread deployment in critical scientific applica-
tions.

To identify and correct OOD robustness issues, tools from
regression diagnostics (Chatterjee & Hadi, 1988) and un-
certainty quantification (UQ) (Schwaiger et al., 2020) may
be used. Recent work (Magnani et al., 2022; Psaros et al.,
2023) has shown that several UQ methods (Bayesian ap-
proaches, ensembles, variational methods) (Graves, 2011;
Gal & Ghahramani, 2016; Lakshminarayanan et al., 2017;
Teye et al., 2018; Yang et al., 2022) originally proposed for
standard NNs provide well-calibrated uncertainty estimates
for NOs when the test inputs are in-domain. In parallel
with this, Hansen et al. (2023) proposed PROBCONSERV,
a method to use well-calibrated uncertainty estimates to
help constrain PDE solutions to satisfy conservation laws.
A reliable UQ framework can offer valuable insights more
generally: into sensitivity analysis; to identify regions with
high sensitivities and study how perturbations (epistemic
or aleatoric) impact the PDE solution (Xiu & Karniadakis,
2002; Le Maı̂tre & Knio, 2012; Rezaeiravesh et al., 2020);
and potentially to enhance the accuracy and reliability of
the original PDE method.

Problems with the existing UQ methods for NOs are that
they either (i) fail to provide good uncertainty estimates for
NOs for OOD predictions, or (ii) are computationally expen-
sive, limiting the practical advantages of NOs over classical
solvers. For example, Figure 1a shows that the Bayesian
Neural Operator (BayesianNO) (Magnani et al., 2022) cap-
tures the associated uncertainty accurately for in-domain
predictions, while Figure 1b shows that it is inaccurate for

OOD tasks. This example shows that the uncertainty es-
timates from existing UQ methods may not be correlated
with the prediction errors OOD, highlighting the need for
improved UQ metrics and methods to detect this issue.

In this work, we address this challenge. We start by identi-
fying failure modes of most existing UQ methods for NOs
OOD, and we demonstrate that ensembling methods outper-
form other methods in this context, characterizing the bene-
fits of the output diversity. However, ensembling can be ex-
pensive. Inspired by the success of ensembling, we propose
DIVERSENO, a method for scalable UQ for NOs that detects
and reduces OOD prediction errors. Lastly, we use these
uncertainty estimates within the recently-developed PROB-
CONSERV framework (Hansen et al., 2023) in OPERATOR-
PROBCONSERV, which further improves the OOD perfor-
mance by satisfying known physical constraints of the prob-
lem. Our main contributions are as follows:

• We identify an important challenge when using NOs to
solve PDE problems in practical OOD settings. In
particular, we show that NOs fail to provide accu-
rate solutions when test-time PDE parameters are out-
side the domain of the training data, even under mild
domain shifts and when the model performs well in-
domain. We also show that existing UQ methods for
NOs (e.g., BayesianNO (Magnani et al., 2022)) that
provide “good” in-domain uncertainty estimates fail to
do so for OOD and/or are computationally very expen-
sive. (See Section 3.1.)

• We demonstrate empirically that ensembles of NOs pro-
vide improved uncertainty estimates OOD, compared
with existing UQ methods; and we identify diversity
in the predictions of the individual models as the key
reason for better OOD UQ. (See Section 3.2.)

• We propose DIVERSENO, a simple cost-efficient alter-
native to ensembling that encourages diverse predic-
tions (via regularization) to mimic the OOD properties
of an ensemble. (See Section 4.1.)

• We use the error-correlated uncertainty estimates from
DIVERSENO as an input to the PROBCONSERV frame-
work (Hansen et al., 2023). Our resulting OPERATOR-
PROBCONSERV uses the variance information to cor-
rect the prediction to satisfy known physical con-
straints, e.g., conservation laws. (See Section 4.2.)

• We provide an extensive empirical evaluation across
a wide range of OOD PDE tasks that shows DI-
VERSENO achieves 2× to 70× improvement in
the meaningful UQ metric n-MeRCI compared to
other computationally cheap UQ methods. Cost-
performance tradeoff curves demonstrate its compu-
tational efficiency. We also show that using the un-
certainty estimates from DIVERSENO in OPERATOR-
PROBCONSERV further improves the OOD accuracy
by up to 34%. (See Section 5.)
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2. Background and Problem Setup
In this section, we introduce the basic problem, and we
provide background on relevant UQ and sensitivity analysis.

2.1. Problem Definition

PDEs are used to describe the evolution of a physical quan-
tity u with respect to space and/or time. The general (differ-
ential) form of a PDE is given as:

Fϕu(x, t) = 0, ∀x ∈ Ω,∀t ∈ [0, T ],

u(x, 0) = u0(x), ∀x ∈ Ω,

Bu(x, t) = 0, ∀x ∈ ∂Ω,∀t ∈ [0, T ], (1)

where Ω ⊆ Rd denotes a bounded domain with boundary
∂Ω, Fϕ denotes a (potentially nonlinear) differential op-
erator parameterized by ϕ : Ω → R ∈ Φ acting on the
solution u : Ω × [0, T ] → Rdo , u ∈ U for some final time
T , u0 : Ω → R ∈ U0 denotes the initial condition at time
t = 0, B denotes the boundary constraint operator; here
Φ,U0,U denote appropriate Banach spaces. Our basic goal
is to learn an operator A : Φ → U that accurately approxi-
mates the mapping from PDE parameters ϕ to the solution
u. We consider ϕ ∈ Φ̃ ⊆ Φ so that the problem defined in
Equation (1) is well-posed: it has a unique solution u ∈ U
depending continuously on the input ϕ from Φ̃.

Training distribution and data. We assume that the op-
erator A is learned with an under-specified training distribu-
tion Htrain(ϕ), i.e., the support of Htrain(ϕ) does not cover
the entire subspace Φ̃ ⊂ Φ of inputs for which the problem
is well-posed. Samples from this distribution form our train-
ing data Dtrain = {ϕ(i), u(i)}Ni=1, where ϕ(i) ∼ Htrain(ϕ),
u(i) = A†(ϕ(i)) and A† denotes the ground-truth operator.
Practically, discrete approximations of the functions ϕ(i)

and u(i) are evaluated at a given time t (for time-dependent
problems) on a grid {xl}Ll=1 ⊂ Ω, where L denotes the
number of gridpoints.

OOD test distribution. We define the OOD task, where
the learned operator is tested on inputs ϕtest ∼ Htest(ϕ) from
the test distribution Htest(ϕ), such that the supp(Htest(ϕ)) ̸=
supp(Htrain(ϕ)). We assume ϕtest is evaluated on the same
grid {xl}Ll=1 as during training.

2.2. Sensitivity Analysis for Operator Learning

When used with inputs close to the support of the training
data, NOs can provide cost-efficient and accurate surrogates
to augment traditional PDE solvers. Away from these inputs,
however, it is important to be able to estimate potential un-
certainties in the predictions made by the NO. Learning NN
parameters has been viewed as a fully Bayesian problem
(Teye et al., 2018; Magnani et al., 2022; Psarosa et al., 2022;

Dandekar et al., 2022). To do this, one assumes a prior on
the parameters, and then one adopts a statistical model to
describe the generation of the training pairs and their rela-
tionship to the NN, defining the likelihood. Pursuing a fully
Bayesian approach to learning the parameters of a NN is
arguably unwise for (at least) three reasons: (i) it is compu-
tationally expensive; (ii) uncertainty in the parameters of the
NO does not necessarily translate into uncertainty in outputs;
and (iii) the model likelihood is likely to be mis-specified.
(These are in addition to the fact that nontrivial issues arise
when the NNs are overparameterized (Hodgkinson et al.,
2022; 2023).) Viewing the problem through a Bayesian
lens, even if not adopting a fully Bayesian approach, can
be helpful. For example, using a Bayesian perspective, and
the idea of collections of candidate solutions that match the
data, facilitates the study of the sensitivities of learned NNs
to perturbations of various kinds. In particular, for PDE
operator learning, this approach has the potential to uncover
regions of the physical domain which are most sensitive
to perturbations resulting from deploying a NO outside the
support of the training data.

We now describe the Bayesian model that we adopt. Con-
sider the training data Dtrain = {ϕ(i), u(i)}Ni=1 with u(i) :=
A†(ϕ(i)). On the basis of this data, we attempt to learn the
parameter θ of a NO A(·; θ) so that A(·; θ) ≈ A†(·). To
this end, we place the prior p(θ) = N (θ;0, 1

α2 I) on the pa-
rameters for some α ∈ R. We can assume that the training
data is given by u(i) = A(ϕ(i); θ) + η, where η denotes a
mean zero Gaussian random variable with block-diagonal
covariance, where the identity blocks are scaled, for each
i, by the size of the ground truth operator, generating the
data ∥A†(ϕ(i))∥22. This model accounts for the fact that the
training data is not actually drawn from a realization of the
NN, and it leads to the likelihood

p(u(i)|θ, ϕ(i)) = N (u(i);A(ϕ(i); θ),
1

α2
∥A†(ϕ(i))∥22I).

From Bayes Theorem, we obtain the posterior

p(θ|Dtrain) ∝
N∏
i=1

p(u(i)|θ, ϕ(i))p(θ). (2)

Estimating the exact posterior is intractable for most prac-
tical tasks. A common practice is to use the maximum a
posteriori (MAP) estimate, θMAP = argmax p(θ|Dtrain), ig-
noring the uncertainty information and obtaining a single
point prediction.

If an approximation of the p(θ|Dtrain) given in Equation (2)
is known, then the probability distribution on output pre-
dictions utest from a test input ϕtest can be obtained by the
Bayesian model average (BMA),

p(utest|ϕtest,Dtrain) =

∫
θ

p(utest|θ, ϕtest)p(θ|Dtrain)dθ. (3)
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To capture the uncertainty in predictions, several approx-
imate inference techniques have been proposed (Mag-
nani et al., 2022; Lakshminarayanan et al., 2017; Graves,
2011; Teye et al., 2018; Gal & Ghahramani, 2016); these
use a Monte Carlo approximation of Equation (3), i.e.,
p(utest|ϕtest,Dtrain) ≈ 1

J

∑J
j=1 p(u

test|θj , ϕtest) with θj ∼
p(θ|Dtrain), and they differ in the (approximate) procedure
used to obtain samples θj from the posterior. (See related
work in Appendix A for details.)

Effect of training data underspecification. A key differ-
ence between our OOD setting and the traditional setting is
the under-specification of the training data, i.e., the support
of Htrain(ϕ) does not cover the entire space Φ̃. There are
many NOs that can achieve close to zero training loss while
disagreeing on OOD inputs. The posterior p(θ|Dtrain) has
multiple modes, and choosing only one of these models
can result in losing uncertainty information (regarding the
predictions) that is important for the OOD test inputs.

There is a large body of work on numerical and SciML
methods for solving PDEs, UQ for NOs, and diversity in
ensembles; see Appendix A for a detailed discussion.

3. Do Existing Methods Give Good OOD UQ?
In this section, we use the 1-d heat equation as an illustrative
example to evaluate existing UQ methods (Magnani et al.,
2022; Lakshminarayanan et al., 2017; Gal & Ghahramani,
2016) with the aim of determining whether uncertainty esti-
mates from these methods are robust to OOD shifts. We con-
sider the Fourier Neural Operator (FNO) (Li et al., 2022a) as
our base model, and we evaluate the OOD performance of
several UQ methods. We show that EnsembleNO, which is
based on DeepEnsembles in Lakshminarayanan et al. (2017),
performs better than the other UQ methods OOD.

3.1. OOD Failures of Existing UQ methods

While the existing UQ methods perform well in-domain
(e.g., see BayesianNO in Figure 1a), we identify several
canonical cases where they fail OOD. Figure 2 shows the
solution profiles and uncertainty estimates to the 1-d heat
equation for a large OOD shift, where ktrain ∈ [1, 5] and
ktest ∈ [7, 8]. We see that the predictions are inaccurate for
most of the UQ methods, with the solution not contained
within the uncertainty estimate, other than for EnsembleNO.
Quantitatively, we use the Normalized Mean Rescaled Con-
fidence Interval (n-MeRCI) (Moukari et al., 2019) (defined
formally in Equation (7) in Section 5), which measures
how well the uncertainty estimates are correlated with the
prediction errors, with lower values indicating better cor-
relation. Surprisingly, EnsembleNO achieves significantly
lower n-MeRCI value (e.g., 0.05 vs 0.8 in the heat equation)
compared to the other UQ methods across various PDEs and

OOD shifts. In contrast to the other UQ methods that out-
put worse uncertainty estimates as the OOD shift increases,
the ensemble model consistently outputs uncertainty esti-
mates that are correlated with the prediction errors. (See
Appendix B.1 for similar results on a range of PDEs.)

3.2. How do Ensembles Provide Better OOD UQ

In this subsection, we study the reason behind significantly
better OOD uncertainty estimates from a seemingly simple
ensemble of NOs i.e., EnsembleNO. Wilson & Izmailov
(2020) posit that ensembles are able to explore the different
modes of the posterior better than other UQ methods that
use, e.g., variational inference or a Laplace approximation,
since these methods are only able to explore a single poste-
rior mode due to the Gaussian assumption. They show that
samples of weights θj from a single posterior mode are not
functionally very diverse, i.e., the corresponding predictions
from these models A(·; θj) are not very different from each
other. This leads to a suboptimal estimation of the BMA in
Equation (3), as the Monte Carlo sum contains redundant
terms. In contrast, individual models of the ensembles reach
distinct posterior modes due to the random initialization and
the noise in SGD training. The resulting functional diversity
allows the ensemble to better estimate Equation (3). Next,
we show that this diversity with the models in the ensemble
holds empirically for operator learning as well.

In Figure 3, we illustrate the diversity in operator learning by
visualizing the differences in the Fourier layer weights and
final layer outputs for the models in the ensemble on a 1-d
heat equation task. (See Appendix B.2 for analogous results
across a variety of PDEs and Fourier layers.) Different
models seem to focus on different spectral characteristics of
its input function. For example, the heatmaps of the weights
in Figure 3a show that the first model (left) uses the low-
frequency components across most channels except a few,
whereas another model (right) uses the available Fourier
components across all the channels. Figure 3b illustrates
that this model diversity holds for all models in the ensemble
since the coefficient of variation of the Fourier layer weights
computed across the ten models is large.

The intermediate outputs from the different models in the
ensemble also show diversity in operator learning until the
last layer with a key difference between the in-domain and
OOD final outputs. Given the same in-domain input, the
first feed-forward (lifting) layer of these models already
produces diverse outputs which continues until the penulti-
mate layer (Figure 3c). Figure 3d shows that the last layer
removes the diversity and maps the outputs to the same
ground truth for an in-domain input. Figures 3e and 3f illus-
trates that a different trend occurs for an OOD input. The
OOD intermediate outputs are also diverse, the difference
here is that this diversity does not vanish from the last layer
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Figure 2. 1-d Heat equation, large OOD shift. Uncertainty estimates (3 standard deviations) from various UQ methods under large
OOD shifts in the input diffusivity coefficient, where ktrain ∈ [1, 5], ktest ∈ [7, 8]. The EnsembleNO prediction, which is based on
DeepEnsembles (Lakshminarayanan et al., 2017), is contained within its uncertainty estimate, whereas the predictions from the other
methods have narrow uncertainty estimates and are inaccurate on this “easy” task.
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Figure 3. Diversity of Models in an Ensemble of NOs (EnsembleNO). (a) Heatmaps of the weights, (b) coefficient of variation of the 10
models in the ensemble, and (c-f) penultimate and last layer outputs on a 1-d heat equation task. (c-d) For in-domain (ID) input, the last
layer removes the diversity from the intermediate outputs and maps the final output close to the ground truth. (e-f) For OOD input, this
diversity remains in the output.

outputs since the model is not able to match the ground truth
data. This representative example demonstrates how the
ensemble model captures epistemic uncertainty in the OOD
setting. We see that the individual models in the ensemble fit
the training data with close to zero error, but are diverse and
disagree for OOD inputs. Ensembles can approximate the
BMA in Equation (3) with functionally diverse models from
the posterior, leading to better OOD uncertainty estimates.

4. DIVERSENO + PROBCONSERV

In this section, we first present our DIVERSENO model,
which encourages diverse OOD predictions, while being sig-
nificantly computationally cheaper than EnsembleNO (Lak-
shminarayanan et al., 2017). We then feed these black-box
NO uncertainty estimates into the first step of the proba-
bilistic PROBCONSERV framework (Hansen et al., 2023) to
enforce physical constraints and further improve the OOD

model performance. As opposed to in PROBCONSERV, here
the constraint is applied on the OOD predictions.

4.1. DIVERSENO: Computationally Efficient OOD UQ

The primary challenge with ensembles is their high com-
putational complexity during both training and inference.
An ensemble-based model for surrogate modeling dimin-
ishes the computational benefits gained from using a data-
driven approach over classical solvers. Here, we propose
DIVERSENO, a method which makes a simple modification
to the NO architecture, along with a diversity-enforcing reg-
ularization term, to emulate the favorable UQ properties of
EnsembleNO, while being computationally cheaper.

For the architecture change, we modify the last feed-forward
layer to have M output/prediction heads instead of one. (See
Appendix C.1 for a hyperparameter study on the choice
of M .) The architecture may be viewed as an ensemble

5



Using Uncertainty Quantification to Characterize and Improve Out-of-Domain Learning for PDEs

with the individual models sharing parameters up to the
penultimate layer. While parameter-sharing significantly
reduces the computational complexity, when compared to
using a full ensemble, it simultaneously hinders the diversity
within the ensemble, which we showed is a crucial element
for generating good uncertainty estimates (see Section 3.2).

To encourage diverse predictions, we propose to maxi-
mize the following diversity measure among the last-layer
weights corresponding to the M prediction heads. We also
constrain the in-domain predictions from each of these heads
to match the ground truth outputs. Formally, we solve:

θ̂ = argmin
θ

1

NM

N∑
i=1

M∑
m=1

||û(i)
m − u(i)||2L2

||u(i)||2L2︸ ︷︷ ︸
unconstrained NO loss

− 2λdiverse

M(M − 1)

∑
m,k:m<k

||θm − θk||22︸ ︷︷ ︸
diversity regularization

, (4)

where θm and θk denote the last-layer weights correspond-
ing to m-th and k-th prediction heads, respectively, û(i)

m

denotes the prediction from m-th output head for the i-
th training example, and u(i) denotes the corresponding
ground truth. The first term in Equation (4) is the relative
L2 loss standard in NO training. We add the regularizing
second term to encourage diversity in the last-layer weights
corresponding to the different head. The hyperparameter
λdiverse controls the strength of the diversity regularization
relative to the prediction loss. A naive selection procedure
for λdiverse using only in-domain validation MSE selects
an unconstrained model with no diversity penalty. Instead,
we select the maximum regularization strength λdiverse that
achieves an in-domain validation MSE within 10% of the
identified best in-domain validation MSE. 10% is an arbi-
trary tolerance that denotes the % accuracy the practitioner
is willing to forego to achieve better OOD UQ. This pro-
cedure trades off in-domain prediction errors for higher
diversity that is useful for OOD UQ. See Appendix C.2
for a hyperparameter study on the diversity regularization
strength λdiverse; uncertainty metrics monotonically improve
with higher λdiverse. Appendix C.2 also includes ablations
with regularizations for ensemble NNs that directly diversify
the predictions (Bourel et al., 2020; Zhang et al., 2020).

4.2. OPERATOR-PROBCONSERV

We detail how to use uncertainty estimates for NOs, e.g., DI-
VERSENO, within the PROBCONSERV framework (Hansen
et al., 2023) to improve OOD performance and incorporate
physical constraints known to be satisfied by the PDEs we
consider.

The two-step procedure is given as:

1. Compute uncertainty estimates µ,Σ from the NO;
2. Use the update rule from PROBCONSERV, described

in Equation (6) below, to improve to the model.

Given the predictions µ and the covariance matrix Σ, PROB-
CONSERV solves the constrained least squares problem:

µ̃ = argmin
y

1

2
||y − µ||2Σ−1 s.t. Gy = b, (5)

where G denotes the constraint matrix and b denotes the
values of the constraints. For example, conservation of
mass in the 1-d heat equation with zero Dirichlet boundary
conditions is given by the linear constraint

∫
x
u(x, t)dx = 0

and G can take the form of a discretized integral. The
optimization in Equation (5) can be solved in closed form
with the following update:

µ̃ = µ− ΣGT (GΣGT )−1(Gµ− b), (6a)

Σ̃ = Σ− ΣGT (GΣGT )−1GΣ. (6b)

For the UQ methods for NOs considered here, Σ denotes a
diagonal matrix with the variance estimates on the diagonal.
The update can be viewed as an oblique projection of the
unconstrained predictions µ onto the constrained subspace,
while taking into account the variance (via Σ) in the pre-
dictions. When the uncertainty estimates are not uniform,
PROBCONSERV encourages higher corrections in regions
of higher variance, and it is important to have uncertainty
estimates that are correlated with the prediction errors.

In the original implementation of PROBCONSERV (Hansen
et al., 2023), the Attentive Neural Process (ANP) (Kim
et al., 2019) is used as an instantiation of the framework
in PROBCONSERV-ANP. There has yet to be an operator
model, which is typically more suitable for SciML problems,
used within PROBCONSERV. We show its effectiveness with
NO uncertainty estimates and its application to OOD tasks.

5. Empirical Results
In this section, we evaluate DIVERSENO against several
baselines for using UQ in PDE solving, with a specific aim
to answer the following questions:

1. Is diversity in the weights of the last layer of DI-
VERSENO enough to obtain good uncertainty esti-
mates? (See Section 5.1.)

2. What are the computational savings of DIVERSENO
compared to ensembling? (See Section 5.2.)

3. Does using error-correlated UQ in PROBCONSERV
help improve OOD prediction errors in PDE tasks?
(See Section 5.3.)

Uncertainty metrics. Several metrics have been used to
evaluate the goodness of uncertainty estimates, e.g., neg-
ative log-likelihood (NLL), root mean squared calibration
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error (RMSCE), sharpness and continuous ranked probabil-
ity score (CRPS) (Gneiting et al., 2007; Gneiting & Raftery,
2007; Kuleshov et al., 2018; Psaros et al., 2023). We use the
normalized Mean Rescaled Confidence Interval (n-MeRCI)
metric (Moukari et al., 2019), that evaluates how well the un-
certainty estimates are correlated with the prediction errors.
The n-MeRCI metric is given as:

n-MeRCI =
1
N

∑N
i=1 τσi − MAE

max(|ûi − ui|)− MAE
, (7)

where MAE denotes the mean absolute error and τ denotes
the 95th percentile of the ratios |ûi−ui|/σi. This percentile
of the ratios scales the uncertainty estimates so that the
measure is scale-independent and robust to outliers. Values
closer to zero correspond to better-correlated uncertainty es-
timates, whereas values closer to one or greater correspond
to uncorrelated/random estimates. See Appendix F.1 for the
MSE, NLL, RMSCE and CRPS metrics.

Baselines. We use the Fourier Neural Operator (FNO) (Li
et al., 2022a) as a base model and leave similar investi-
gations of other operators to future work. To provide un-
certainty estimates in PDE applications, we compare our
proposed UQ method, DIVERSENO1 with the following
four commonly-used baselines of approximate Bayesian
inference (Psaros et al., 2023): (i) BayesianNO (Magnani
et al., 2022), that uses the (last-layer) Laplace approxima-
tion over the MAP estimate to approximate the posterior;
(ii) VarianceNO (Lakshminarayanan et al., 2017), which
outputs the mean and variance and which is trained with
the negative log-likelihood; (iii) MC-DropoutNO (Gal &
Ghahramani, 2016), where dropout in the feed-forward lay-
ers is used as approximate variational inference; and (iv)
EnsembleNO (Lakshminarayanan et al., 2017), where we
train K randomly initialized FNO models (in our exper-
iments, K = 10) and compute the empirical mean and
variance of the predictions.

GPME Benchmarking Family of Equations. The Gen-
eralized Porous Medium Equation (GPME) is a family of
PDEs parameterized by a (potentially nonlinear) coefficient
k(u) (Maddix et al., 2018a;b). The GPME models fluid
flow through a porous medium, and it has additional applica-
tions in heat transfer, groundwater flow, and crystallization,
to name a few (Vázquez, 2007). It can be written in the
conservative form with flux F (u) = −k(u)∇u as:

ut −∇ · (k(u)∇u) = 0, x ∈ Ω, t ∈ [0, T ], (8)

where k(u) : Ω → R denotes the diffusion coefficient. We
consider three instances of the GPME on a 1-d domain

1The code is available at https://github.com/
amazon-science/operator-probconserv.
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Figure 4. Performance vs. OOD shift. n-MeRCI ↓ of the UQ
methods with increasing OOD shifts in the “easy,” “medium,” and
“hard” cases of the GPME. EnsembleNO and DIVERSENO consis-
tently achieve low n-MeRCI values, indicating higher correlation
between their uncertainty estimates and prediction errors.

Ω = [0, S]. By varying k(u), these correspond to increas-
ing levels of difficulty (Hansen et al., 2023): (i) an “easy”
case, with k(u) = k, the standard heat equation (linear,
constant coefficient, parabolic); (ii) a “medium” case, with
k(u) = um,m ≥ 1, the Porous Medium Equation (PME)
(nonlinear, degenerate parabolic); and (iii) a “hard” case,
with k(u) = 1u≥u∗ , u∗ > 0, the Stefan problem (nonlinear,
discontinuous, degenerate parabolic).

We aim to learn an operator that maps the constant parameter
c identifying the diffusion coefficient k(u)—constant k in
the heat equation, degree m in the PME, and u∗ in the Stefan
equation—to the solution u(·, T ) for some T > 0. Input to
the NO is a constant scalar field taking the value c for all
spatiotemporal points. Our training dataset consists of N =
400 input/output pairs {ϕ(i), u(i)}Ni=1, where ϕ(i)(x, t) :=
c(i) denotes a constant function identifying the diffusion
coefficient with value c(i) over the domain and u(i) denotes
the corresponding solutions at discrete times t ∈ [0, T ]. We
keep the initial and boundary conditions fixed for all the
examples of a particular PDE. During training, we sample
the constant parameter c(i) ∼ Htrain(c) and we evaluate
the trained neural operator on OOD shifts c(i) ∼ Htest(c),
where Htest(c) has no support overlap with Htrain(c). We
consider small, medium and large OOD shifts for each PDE
task based on the distance between Htrain(c) and Htest(c).
See Appendix D for details about the PDE test problems
and Appendix E for additional experimental settings.

5.1. Uncertainty estimates from DIVERSENO

In Section 3, we showed that EnsembleNO outputs bet-
ter uncertainty estimates OOD due to the diversity in the
predictions among each model in the ensemble. Here, we
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Figure 5. Cost-performance tradeoff. MSE ↓ and n-MeRCI ↓ vs.
the number of floating point operations (FLOPs) for EnsembleNO
and DIVERSENO with varying number of parameters on the PME
task with medium OOD shift, i.e., mtrain ∈ [2, 3],mtest ∈ [4, 5].

evaluate whether DIVERSENO can output good uncertainty
estimates due to the diversity enforced over the last layer
alone. Figure 4 shows the n-MeRCI metric for all UQ meth-
ods on increasing OOD shifts on the “easy”, ”medium” and
“hard” cases of GPME. DIVERSENO consistently outper-
forms BayesianNO, VarianceNO and MC-DropoutNO by
2× to 70× across all PDEs and OOD shifts, and is compara-
ble (sometimes better) to the more expensive EnsembleNO
that has diversity in weights of all layers (as seen in Fig-
ure 3). The n-MeRCI metric is generally close to zero for
both methods indicating that their uncertainty estimates are
well-correlated with the prediction errors and can be used to
detect OOD shifts. See Appendix F.1 for additional metrics,
solution profiles, uncertainty estimates and test problems,
e.g., non-constant input and 2-d Darcy flow.

5.2. Computational savings from DIVERSENO

Figure 5 shows the computational savings of DIVERSENO
compared to EnsembleNO on the PME task with medium
OOD shift, i.e., mtrain ∈ [2, 3],mtest ∈ [4, 5]. We plot the
MSE and n-MeRCI metric as a function of the number of
floating point operations (FLOPs) for different model sizes
(using the derivation of FLOPs for FNO by de Hoop et al.
(2022)). We see that DIVERSENO is significantly more
efficient across the various PDEs: for similar number of
FLOPs, DIVERSENO is 49% to 80% better in MSE and
comparable to EnsembleNO in the n-MeRCI metric. (See
Appendix F.2 for the cost performance curves as a function
of the number of parameters.)

5.3. OOD applications of UQ with PROBCONSERV

We investigate whether uncertainty estimates obtained from
the UQ methods can be used to improve OOD performance
and to apply probabilistic physics-based constraints. We use
PROBCONSERV (Hansen et al., 2023) to enforce a known
linear conservation constraint of the form

∫
x
u(x, t)dx =

b(t) corresponding to each of the PDEs considered. (See
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Figure 6. MSE Improvement Ratio for PROBCONSERV. The
MSE ratio before and after applying PROBCONSERV to the UQ
methods (≥ 1 indicates improvement) for increasing OOD shifts
in the “easy”, “medium” and “hard” cases of the GPME.

0.00 0.25 0.50 0.75 1.00
x

0.5

0.0

0.5

1.0

u(
x,

t)

True Predicted +ProbConserv

(a) BayesianNO +
PROBCONSERV

0.00 0.25 0.50 0.75 1.00
x

0.5

0.0

0.5

1.0

u(
x,

t)

True Predicted +ProbConserv

(b) DIVERSENO +
PROBCONSERV

Figure 7. Effect of PROBCONSERV update. Solution profiles
before and after applying PROBCONSERV over DIVERSENO and
BayesianNO on 1-d Stefan with small OOD shift. (a) PROBCON-
SERV is able to correct the dips in DIVERSENO’s solution as the
uncertainty estimates are high in those regions as well. (b) Un-
certainty estimates from BayesianNO are not correlated with the
errors and PROBCONSERV focuses on x = 0.4 where the solution
was already accurate instead of the dip at x = 0.9.

Section 4.2.) When applying PROBCONSERV, we use the
discretized form of the constraint Gu = b+ σGϵ, where ϵ
denotes a noise term that allows for a slack in the constraint
for practical considerations. We use σG = 10−9 in our
experiments. We report the conservation errors (CE) in Ap-
pendix F.3 and show that conservation is typically violated
OOD for the unconstrained NO methods (with CE ≈10−2

for the heat equation, ≈0.3 for PME and ≈0.4 for Stefan)
and PROBCONSERV enforces the known physical constraint
exactly for all UQ methods (i.e., with CE = 0).

Figure 6 shows the MSE ratio before and after applying
PROBCONSERV (larger than 1 indicates improvement) for
all 3 PDEs and OOD shifts. (See Appendix F.3 for the exact
metrics.) Similar to the original PROBCONSERV (Hansen
et al., 2023) work for in-domain problems, we also observe
differing behaviors of applying PROBCONSERV on “easy”
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to “hard” PDEs for OOD problems. In the “easy” heat
equation, PROBCONSERV improves OOD MSE for all the
UQ methods, even when the uncertainty estimates are un-
calibrated (e.g., for VarianceNO). DIVERSENO improves
the most with PROBCONSERV (1.4×) and subsequently
achieves the lowest MSE of all methods in every OOD
shift (1.8× to 5.5× better than baselines). For “medium”
and “hard” cases of GPME, the effect of PROBCONSERV
depends on the goodness of uncertainty estimates. For in-
stance, PROBCONSERV degrades the performance of Varian-
ceNO drastically (by 1300% and 31% for small OOD shifts
in the 2 PDEs) because of uncalibrated uncertainty esti-
mates. Figure 7a supports a similar finding for BayesianNO
in the “hard” Stefan case: PROBCONSERV is not able to cor-
rect the oscillation near the right boundary since the corre-
sponding uncertainty estimates are much lower. In contrast,
PROBCONSERV fixes these oscillations for DIVERSENO
(Figure 7b). These findings demonstrate the need for uncer-
tainty estimates that are correlated with prediction errors.
Finally, for large OOD shifts in the “medium”/“hard” PDEs,
prediction errors remain high for all methods (≈10−2) after
applying PROBCONSERV, indicating that global conserva-
tion constraint alone is not enough to solve these challenging
OOD tasks and additional (local) physical constraints may
be required. Overall, we show that with error-correlated
UQ from DIVERSENO, PROBCONSERV can be effective
against small to medium OOD shifts.

6. Conclusion
NOs have proven to be a successful class of data-driven
methods for efficiently approximating the solution to certain
PDE problems on in-domain tasks. In this work, we have
shown that, despite these promising initial successes, NOs
are not robust to OOD shifts in their inputs, in particular to
shifts in PDE parameters. We show that a computationally-
expensive ensemble of NOs provides a strong baseline for
good OOD uncertainty estimates; and, motivated by this,
we propose a simple scalable alternative, DIVERSENO, that
provides uncertainty estimates that are well-correlated with
prediction errors. We use these error-correlated uncertainty
estimates from DIVERSENO within the PROBCONSERV
framework (Hansen et al., 2023) to develop OPERATOR-
PROBCONSERV. We show that having UQ estimates that are
well-correlated with the error are critical for the success of
OPERATOR-PROBCONSERV in improving the OOD perfor-
mance. Our empirical results demonstrate that OPERATOR-
PROBCONSERV improves the accuracy of NOs across a
wide range of PDE problem settings, in particular in high-
error regions of the spatial domain. The improvements are
particularly prominent on problems with shocks and that
satisfy conservation laws. Future work includes extending
OPERATOR-PROBCONSERV to perform updates locally in
the areas with the highest error estimates and to further im-

prove and characterize the need for the well-correlated UQ
estimates with the error.
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A. Related Work
Numerical methods. PDEs are ubiquitous throughout science and engineering, where they are used to model the evolution
of various physical phenomena. These equations are typically solved for different values of PDE physical parameters, e.g.,
diffusivity in the heat equation, wavespeed in the advection equation, and the Reynolds number in Navier-Stokes equations.
Solving PDEs typically requires extensive numerical knowledge and computational effort. Traditional approaches to solve
PDEs (e.g., finite difference (LeVeque, 2007), finite volume (LeVeque, 2002) and finite element (Hughes, 2000) methods)
can be computationally expensive, as their accuracy is dependent on the level of discretization of the spatial and temporal
domains. Finer meshes are required to achieve high accuracy, resulting in increased computational costs. In addition, these
approaches require a full re-run from scratch whenever there are changes in PDE parameters, which may not be known a
priori.

SciML works on solving PDEs. To alleviate the drawbacks of numerical methods, recent works in scientific machine
learning (SciML) propose to use data-driven approaches to solve PDEs. These include so-called Physics-informed Neural
Networks (PINNs) (Raissi et al., 2019), NOs (Li et al., 2020a; 2022b; Lu et al., 2019; Gupta et al., 2021; Yin et al., 2022),
and reduced-order models for discovery (Brunton et al., 2016; Conti et al., 2023). By now, it has been shown that PINNs
have several fundamental challenges associated with its soft constraint approach. In particular, it solves a single instance of
the PDE with a fixed set of PDE parameters; is challenging to optimize for PDEs with large parameter values (Krishnapriyan
et al., 2021; Edwards, 2022); and may return trivial solutions (Leiteritz & Pflüger, 2021). On the other hand, NOs (Kovachki
et al., 2021; Li et al., 2020a) enjoy appealing properties of discretization invariance and universal approximation, while also
achieving low approximation errors on in-domain tasks. Being purely data-driven, they are not guaranteed to satisfy all the
physical properties of the solution. To address this, existing work has tried to incorporate different physical constraints via
regularization (Li et al., 2021), within the architecture (e.g., boundary constraints in Saad et al. (2023), invariance in Liu
et al. (2023), and PDE hard constraints in Négiar et al. (2023)) or via a projection to enforce conservation laws in Hansen
et al. (2023). Most of these methods do not address the OOD problem that can occur even after enforcing these constraints.
Subramanian et al. (2023) show that fine-tuning FNO models on OOD data is typically required to achieve reasonable
performance. In particular, for significant OOD shifts, few-shot transfer learning requires a large amount of fine-tuning
OOD data that may be unavailable for certain applications. Benitez et al. (2023) propose a variant of FNO specifically
designed to learn the wavespeed to solution mapping in the Helmholtz equation and show that it performs better OOD.

UQ for Neural Operators. Several Bayesian deep learning methods common for standard neural networks have been
shown to work well for NOs on in-domain PDE applications (Psaros et al., 2023; Zou et al., 2023). Commonly used
methodologies for approximate Bayesian inference, e.g., the Bayesian Neural Operator (Magnani et al., 2022), DeepEnsem-
bles (Lakshminarayanan et al., 2017), variational inference methods, e.g., Mean-field VI (Graves, 2011; Teye et al., 2018) or
MC-Dropout (Gal & Ghahramani, 2016) and MCMC approaches, e.g., Hamiltonian Monte Carlo, provide, at best, crude
approximations of the true posterior distribution in Equation (3) of this Bayesian model. For instance, DeepEnsembles
train the same architecture multiple times to obtain different models that maximize the posterior, i.e., different modes of
the posterior. In applications to weather forecasting, FourCastNet (Pathak et al., 2022) generates ensembles by perturbing
the initial condition with Gaussian noise. The Bayesian Neural Operator (Magnani et al., 2022) uses a last-layer Laplace
approximation of the posterior. Weber et al. (2024) propose to use a Laplace approximation of the posterior via the last
Fourier layer (instead of the last linear layer) to capture the global structure. Variational inference approaches approximate
the posterior with a density q(θ), and sample θj ∼ q(θ). MCMC methods construct a Markov chain that is asymptotically
guaranteed to sample from the true posterior. An alternate approach in Guo et al. (2023) uses a latent space representation
that is assumed to be aware of the confidence of the input data in relation to the region where the training data is located to
provide point-wise uncertainty estimates. Recently, Ma et al. (2024) have applied distribution-free conformal prediction
methods, which have been used for standard classification/regression tasks (Diquigiovanni et al., 2022; Angelopoulos et al.,
2023), to NOs in the function space to provide uncertainty estimates for all points. While these methods can provide good
in-domain uncertainty estimates, most of the scalable UQ methods are not robust to OOD shifts or have not been tested on
OOD problems.

Diversity in Ensembles. There are several works that study the importance of diversity in ensemble-based approaches.
Theisen et al. (2023) show that disagreement is key for an ensemble to be effective (with respect to accuracy). Wood et al.
(2023) study the role of diversity in reducing in-domain generalization error. Diversity measures directly diversify the
outputs from the different models in the ensemble, e.g., via minimizing the mutual information for classification tasks (Lee
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et al., 2022; Sinha et al., 2020; Rame & Cord, 2021), or the L2 distance between the outputs for regression tasks. A recent
work, DivDis (Lee et al., 2022) is the most related to our work in that it uses multiple prediction heads with diverse outputs to
improve OOD accuracy in classification tasks. In particular, DivDis minimizes the mutual information between the outputs
from different prediction heads when given OOD inputs (assumed to be known during training). This differs from our work
since in operator learning, diversifying outputs directly does not provide informative uncertainty estimates. In applications
to atmospheric forecasting, Lessig et al. (2023) propose AtmoRep, which is a Transformer-based foundation model that
outputs multiple predictions by optimizing a loss function consisting of a MSE loss summed over the prediction heads, a
Gaussian statistical loss and a variance regularization term that minimizes diversity across the prediction heads. In contrast,
we show that low diversity can lead to poor uncertainty estimates on out-of-domain tasks and propose a regularization to
maximize diversity in the weights of the prediction heads.

B. Advantages of Diversity in Ensembling on a Range of PDEs
In this section, we show that EnsembleNO performs well on a wide range of 1-d PDEs including the (degenerate) parabolic
GPME family and the linear advection hyperbolic conservation law. We then show the corresponding heatmaps of the
weights for each of the FNO models in the ensemble. This diversity is present in the ensemble across these PDEs and
various Fourier layers, which motivates our development in enforcing diversity in DIVERSENO.

B.1. Good Performance of Ensembling across Various PDEs and OOD Shifts

Figure 8 illustrates the strong performance of the ensemble compared to various UQ baselines across the GPME benchmark-
ing family of PDEs with increasing difficulty and increasing OOD shifts. Figure 8a shows that the MSE increases for all
methods as the problem difficulty and shift increases. Figure 8b shows that EnsembleNO performs significantly better than
the baselines with respect to the n-MeRCI metric with close to zero values, indicating that the uncertainty estimates are
well-correlated with the prediction error.
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Figure 8. MSE ↓ and n-MeRCI ↓ metrics for all UQ methods on GPME family of PDEs under small, medium and large OOD shifts. (a)
MSE increases for all methods with increasing OOD shift and increasing PDE difficulty. (b) EnsembleNO performs significantly better in
the n-MeRCI metric compared to other UQ baselines, with generally close to zero values, indicating that its uncertainty estimates are most
correlated with prediction errors.

B.2. Diversity in the Heatmaps of the Ensemble

Figures 9-16 illustrate the diversity in each FNO model in the ensemble across a wide variety of PDEs with various levels of
difficulty and various Fourier layers. In each figure, (a) shows the heatmaps of the weights in the corresponding Fourier
layer across the channels and Fourier modes. This apparent diversity is reinforced in (b), which plots the coefficient of
variation, i.e., the (mean/std) across all the models in the ensemble across the channels and Fourier modes.
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Figure 9. First Fourier layer of FNO models trained on 1-d heat equation task with ktrain ∈ [1, 5].
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Figure 10. Last Fourier layer of FNO models trained on 1-d heat equation task with ktrain ∈ [1, 5].
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Figure 11. First Fourier layer of FNO models trained on 1-d PME task with mtrain ∈ [2, 3].
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Figure 12. Last Fourier layer of FNO models trained on 1-d PME task with mtrain ∈ [2, 3].
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Figure 13. First Fourier layer of FNO models trained on 1-d Stefan task with u∗,train ∈ [0.6, 0.65].
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Figure 14. Last Fourier layer of FNO models trained on 1-d Stefan task with u∗,train ∈ [0.6, 0.65].
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Figure 15. First Fourier layer of FNO models trained on 1-d linear advection task with βtrain ∈ [1, 2].
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Figure 16. Last Fourier layer of FNO models trained on 1-d linear advection task with βtrain ∈ [1, 2].

C. DIVERSENO Ablations
In our proposed DIVERSENO, we solve the following optimization problem in Equation (4) given as

θ̂ = argmin
θ

1

NM

N∑
i=1

M∑
m=1

||û(i)
m − u(i)||2L2

||u(i)||2L2︸ ︷︷ ︸
unconstrained NO loss

− 2λdiverse

M(M − 1)

∑
m,k:m<k

||θm − θk||22︸ ︷︷ ︸
diversity regularization

.

In this section, we first study the effect of the hyperparameter M , which denotes the number of prediction heads on the
accuracy. We then study the effect of various types of diversity regularizations.

C.1. Hyperparameter study on the number of prediction heads M

In this subsection, we perform a detailed hyperparameter study on the number of prediction heads M across various metrics.
We see that our choice of M = 10 generally gives the lowest MSE (Figure 17), n-MeRCI (Figure 18) and number of FLOPs
(Figure 19) for various FNO channel widths on in-domain and varying OOD tasks.
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Figure 17. Effect of M on MSE. The MSE metric as a function of the number of prediction heads M for various penultimate layer sizes.
The diversity regularization strength λdiverse is fixed at 10. Increasing the number of prediction heads increases MSE mildly likely due
to the fact that it is harder to train each of the prediction heads accurately to match the output. The MSE significantly decreases when
increasing the FNO channel width, which is expected as the shared parameters of the model increase.
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Figure 18. Effect of M on n-MeRCI. The n-MeRCI metric as a function of the the number of prediction heads M for various penultimate
layer sizes. The diversity regularization strength λdiverse is fixed at 10. The UQ estimates vary with the number of prediction heads. A
large value of M generally degrades the n-MeRCI metric given a fixed regularization strength because we cannot diversify all possible
pairs of prediction heads as it is computationally expensive.
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Figure 19. Effect of M on FLOPs. The number of FLOPs for one forward pass as a function of the number of prediction heads M for
various penultimate layer sizes. The diversity regularization strength λdiverse is fixed at 10. The number of FLOPs increases mildly with
the number of prediction heads.

C.2. Diversity Regularization Ablations

We test different regularizations in the second term of Equation (9) to enforce diversity in the last layer heads of DIVERSENO:
maximize the L2 loss between (a) the weights of each head (ours), (b) the OOD predictions of each head, and (c) the
gradients with respect to each head. For (b) and (c), we try two variants: the L2 between the respective quantities after
standardizing them to have mean 0 and variance 1, and without standardization. Note that (b) requires access to a set of
OOD inputs without corresponding target outputs. Figures 20-21 show that the proposed diversity measure results in best
MSE and n-MeRCI performance across all OOD shifts. Regularizations that directly diversify the outputs or gradients are
also sensitive to the regularization strength and require a careful trade-off between the prediction loss and regularization
penalty. Our proposed regularization is more robust to the diversity hyperparameter λdiverse, and monotonically improves the
performance for reasonable values of this regularization strength.

The MSE (Figure 22) and especially the n-MeRCI metric (Figure 23) monotonically improve (decrease) as a function of
λdiverse with larger values of this regularization strength ≈ 10 being favorable. These figures also show that without diversity
regularization, i.e., λdiverse = 0, there is a large gap in performance between DIVERSENO and EnsembleNO, which is closed
with larger λdiverse.
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Figure 20. MSE diversity regularization ablation. Effect of different diversity regularizations on MSE for small, medium, large OOD
shifts in the 1-d heat equation. Our proposed regularization of enforcing diversity over the weights of each head has the best performance
across various regularization strengths and OOD shifts.
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Figure 21. n-MeRCI diversity regularization ablation. Effect of different diversity regularizations on n-MeRCI for small, medium,
large OOD shifts in the 1-d heat equation. Our proposed regularization of enforcing diversity over the weights of each head has the best
performance across various regularization strengths and OOD shifts.
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Figure 22. Effect of λdiverse on MSE. Comparison of the MSE metric as a function of the diversity regularization strength λdiverse for
DIVERSENO to the MSE of the other baselines.
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Figure 23. Effect of λdiverse on n-MeRCI. Comparison of the n-MeRCI metric as a function of the diversity regularization strength λdiverse

for DIVERSENO to the n-MeRCI of the other baselines.

D. PDE Test Problems
In this section, we provide the details of the various test problems that we study, and the construction of both the training
and test OOD datasets. See Table 1 for a summary.
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Table 1. Shows the parameter ranges for training and different OOD tasks corresponding to the four tested PDEs. For each PDE, we train
the models on a range of parameter inputs (e.g., ktrain ∈ [1, 5] for heat equation) and test on increasing OOD shifts (e.g., ktest ∈ [5, 6] for a
small shift in heat equation).

PDE Task Parameter range

Heat Equation
Train k ∈ [1, 5]

ut −∇ · (k∇u) = 0
OOD small k ∈ [5, 6]
OOD medium k ∈ [6, 7]
OOD large k ∈ [7, 8]

Porous Medium Equation (PME)
Train m ∈ [2, 3]

ut −∇ · (um∇u) = 0
OOD small m ∈ [1, 2]
OOD medium m ∈ [4, 5]
OOD large m ∈ [5, 6]

Stefan Equation
Train u∗ ∈ [0.6, 0.65]

ut −∇ · (1u≥u∗∇u) = 0
OOD small u∗ ∈ [0.55, 0.6]
OOD medium u∗ ∈ [0.7, 0.75]
OOD large u∗ ∈ [0.5, 0.55]

Linear advection, constant input
Train β ∈ [1, 2]

ut + βux = 0
OOD small β ∈ [0.5, 1]
OOD medium β ∈ [2.5, 3]
OOD large β ∈ [3, 3.5]

Linear advection, non-constant input
Train a ∈ [0.45, 0.55]

ut + ux = 0,
OOD small a ∈ [0.4, 0.45]

u(x, 0) = 1x≤a

OOD medium a ∈ [0.6, 0.65]
OOD large a ∈ [0.35, 0.4]

2-d Darcy Flow
Train k ∈ [3, 4]

−∇ · (k∇u(x)) = 1
OOD small k ∈ [4, 4.5]
OOD medium k ∈ [4.5, 5]
OOD large k ∈ [5, 6]

D.1. Generalized Porous Medium Equation (GPME) Family

The Generalized Porous Medium Equation (GPME) is a family of PDEs parameterized by a (potentially nonlinear) coefficient
k(u) (Maddix et al., 2018a;b). The GPME models fluid flow through a porous medium, and it has additional applications in
heat transfer, groundwater flow, and crystallization, to name a few (Vázquez, 2007). It can be written in the conservative
form with flux F (u) = −k(u)∇u as:

ut −∇ · (k(u)∇u) = 0, x ∈ Ω, t ∈ [0, T ], (9)

where k(u) : Ω → R denotes the (potentially nonlinear) diffusion coefficient. We consider three instances of the GPME
with increasing levels of difficulty by varying k(u) (Hansen et al., 2023): (i) “easy” case with k(u) = k, the standard
heat equation (linear, constant coefficient parabolic and smooth); (ii) “medium” case with k(u) = um,m ≥ 1, the Porous
Medium Equation (PME) (nonlinear, degenerate parabolic); and (iii) “hard” case with k(u) = 1u≥u∗ , u∗ > 0, the Stefan
problem (nonlinear, degenerate parabolic with shock).

D.1.1. HEAT (DIFFUSION) EQUATION

Here, we consider the “easy” case of GPME in Equation (9) with a constant diffusion coefficient k(u) := k over a domain
Ω = [0, 2π] and T = 1. We solve the problem for initial conditions u(x, 0) = sin(x),∀x, and homogenous Dirichlet
boundary conditions u(0, t) = u(2π, t) = 0,∀t.
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The training dataset consists of N = 400 input/output pairs {ϕ(i), u(i)}Ni=1 where ϕ(i)(x, t) := k(i),∀x, denotes a constant
function over the domain representing the value of the diffusivity parameter and u(i) denotes the corresponding solutions at
times t ∈ [0, 1]. The ϕ(i) are passed as input to the models without any normalization applied. During training, we consider
the parameter k(i) ∼ Unif(1, 5), and evaluate the trained NO on small, medium and large OOD ranges for the diffusivity
parameter: ktest ∼ Unif(5, 6),Unif(6, 7),Unif(7, 8), respectively.

D.1.2. POROUS MEDIUM EQUATION (PME)

The Porous Medium Equation (PME) with k(u) = um,m ≥ 1 in Equation (9) represents a “medium” case of the GPME.
We solve the problem over the domain Ω = [0, 1] and T = 1 for initial conditions u(x, 0) = 0,∀x.

We train the NO to map from a constant function denoting the degree m that identifies k(u) to the corresponding solution
for all t ∈ [0, 1]. The training dataset consists of N = 400 input/output pairs {ϕ(i), u(i)}Ni=1 where ϕ(i)(x, t) := m(i),∀x,
is a constant function over the domain representing the degree and u(i) denotes the corresponding solutions at times
t ∈ [0, 1]. The ϕ(i) are passed as input to the models without any normalization applied. During training, we sample the
parameter m(i) ∼ Unif(2, 3), and evaluate the trained NO on small, medium and large OOD ranges for the degree: mtest ∼
Unif(1, 2),Unif(4, 5),Unif(5, 6), respectively. With increasing m, the solution becomes sharper and more challenging for
the learned operator.

D.1.3. STEFAN EQUATION

The Stefan equation represents a challenging case of the GPME family with a discontinuous and nonlinear diffusivity
coefficient k(u) = 1u≥u∗ , where u∗ is a parameter denoting the value at the shock position x∗(t), i.e., u(x∗(t), t) = u∗.
We solve the problem over the domain Ω = [0, 1] and T = 0.1 for initial conditions u(x, 0) = 0,∀x, and Dirichlet boundary
conditions u(0, t) = 1 , u(1, t) = 0,∀t.

We train the NO to map from a constant function denoting the parameter u∗ to the solution for all t ∈ [0, 0.1]. The
training dataset consists of N = 400 input/output pairs {ϕ(i), u(i)}Ni=1 where ϕ(i)(x, t) = u∗(i),∀x, denotes a constant
function over the domain representing the solution value at the shock and u(i) denotes the corresponding solutions at
times t ∈ [0, 0.1]. The ϕ(i) are passed as input to the models without any normalization applied. During training, we
sample the parameter u∗(i) ∼ Unif(0.6, 0.65), and evaluate the trained NO on small, medium and large OOD ranges:
u∗test ∼ Unif(0.55, 0.6),Unif(0.7, 0.75),Unif(0.5, 0.55), respectively.

D.2. Hyperbolic Linear Advection Equation

The linear advection equation given by

ut + βux = 0, x ∈ [0, 1], t ∈ [0, 1],

describes the motion of a fluid advected by a constant velocity β > 0. We consider the following two tasks for the PDE.

Constant parameter to solution mapping. We solve the PDE for initial conditions u(x, 0) = 1x≤0.5,∀x ∈ [0, 1], and
Dirichlet boundary conditions u(0, t) = 1, u(1, t) = 0,∀t. The solution is a rightward moving shock (discontinuity) with
the speed defined by the parameter β (Hansen et al., 2023).

We train the NO to map from a constant function denoting the velocity parameter β to the solution for all t ∈ [0, 0.1].
The training dataset consists of N = 400 input/output pairs {ϕ(i), u(i)}Ni=1 where ϕ(i)(x, t) = β(i),∀x, denotes a constant
function over the domain representing the velocity and u(i) denotes the corresponding solutions at times t ∈ [0, 0.1]. During
training, we sample the parameter β(i) ∼ Unif(1, 2), and evaluate the trained NO on small, medium and large OOD ranges
for the β: βtest ∼ Unif(0.5, 1),Unif(2.5, 3),Unif(3, 3.5), respectively.

Non-constant initial condition to solution mapping. We solve the PDE for various initial conditions u(x, 0) =
1x≤a,∀x ∈ [0, 1], where a denotes the initial shock location. We use Dirichlet boundary conditions u(0, t) = 1, u(1, t) =
0,∀t, and a fixed speed β = 1.

We train the NO to map from the non-constant function denoting the initial condition, i.e., u(x, 0) to the solution for all
t ∈ [0, 0.1]. The training dataset consists of N = 400 input/output pairs {ϕ(i), u(i)}Ni=1 where ϕ(i)(x, t) = u(i)(x, 0),∀x,
denotes a constant function over the domain representing the velocity and u(i) denotes the corresponding solutions at times
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t ∈ [0, 0.1]. During training, we generate initial conditions using shock locations a(i) ∼ Unif(0.45, 0.55), and evaluate
the trained NO on small, medium and large OOD ranges for the a: atest ∼ Unif(0.4, 0.45),Unif(0.6, 0.65),Unif(0.35, 0.4),
respectively.

D.3. 2-d Elliptic Darcy Flow

We consider the steady state solution of the 2-d Darcy flow equation (linear, elliptic):

−∇ · (k∇u(x)) = f(x) , x ∈ [0, 1]2,

with Dirichlet boundary conditions u(x) = 0 for all x on the boundary, forcing function f(x) = 1, and permeability field
defined by the parameter k.

We train the NO to map from the constant scalar field over the 2-d domain denoting the permeability k of the surface to the
steady-state solution. The training dataset consists of N = 400 input/output pairs {ϕ(i), u(i)}Ni=1 where ϕ(i)(x) = k(i),∀x,
denotes a constant field over the domain representing the permeability and and u(i) denotes the corresponding solutions
representing the unknown pressure. During training, we sample the permeability parameter k(i) ∼ Unif(3, 4), and evaluate
the trained NO on small, medium and large OOD ranges for the k: ktest ∼ Unif(4, 4.5),Unif(4.5, 5),Unif(5, 6), respectively.

E. Detailed Experiment Settings
We use the standard optimization procedure for training FNO models (Li et al., 2020a). In particular, we use the Adam
optimizer with a weight decay. We optimize the objective, and learn over batches of a given batch size B (fixed to B = 20
in our experiments). We use a learning rate scheduler that halves the learning rate after every 50 epochs.

Table 2. Hyperparameters for the base FNO architecture and the UQ methods on top. (BayesianNO does not have additional hyperparame-
ters.)

Hyperparameter Values

Base FNO
Number of Fourier layers 4
Channel width {32, 64}
Number of Fourier modes 12
Batch size 20
Learning rate {10−4, 10−3, 10−2}

BayesianNO
N/A

MC-DropoutNO
Dropout probability {0.1, 0.25}
Number of dropout masks 10

EnsembleNO
Number of models 10

DIVERSENO
Number of heads M 10
Diversity regularization λdiverse {10−2, 10−1, 1, 101, 102}

Table 2 shows the hyperparameters for the base FNO architecture and the UQ methods used on top of it. For all methods
except DIVERSENO, in-domain MSE on validation data is used to select the best hyperparameter configuration. For
DIVERSENO, hyperparameter λdiverse controls the strength of the diversity regularization relative to the prediction loss.
We select the highest regularization strength λdiverse that also achieves in-domain validation MSE within 10% of the best
in-domain validation MSE. This procedure trades off in-domain prediction errors for higher diversity that is primarily useful
for OOD UQ.
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F. Additional Empirical Results across a Range of PDEs
In this section, we show the additional empirical results for each PDE on in-domain tasks and with various amounts of OOD
shifts ranging from small, medium to large.

F.1. Detailed Metric Results and Solution Profiles

In this subsection, we show the detailed metric results and solution profiles for the members of the (degenerate) parabolic
GPME and the linear advection hyperbolic conservation law. Tables 3-6 compare the performances of DIVERSENO to
the UQ baselines on various PDEs under the following metrics (Psaros et al., 2023): mean-squared error (MSE), negative
log-likelihood (NLL), normalized Mean Rescaled Confidence Interval (n-MeRCI) (Moukari et al., 2019), root mean squared
calibration error (RMSCE) and continuous ranked probability score (CRPS) (Gneiting & Raftery, 2007) across a wide
variety of PDEs with varying difficulties. The MSE measures the performance of the mean prediction. The NLL, n-MeRCI,
RMSCE and CRPS measure the quality of the uncertainty estimates. The RMSCE measures how well the uncertainty
estimates are calibrated and CRPS measures both sharpness and calibration. The n-MeRCI is of particular importance
since it measures the correlation of the uncertainty estimates with the prediction error. We see that EnsembleNO and our
DIVERSENO have the overall best performance across the various PDEs, especially in the n-MeRCI metric.

F.1.1. “EASY” HEAT EQUATION
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Figure 24. 1-d Heat equation, in-domain, ktrain, ktest ∈ [1, 5]. Uncertainty estimates from different UQ methods for in-domain values of
the input diffusivity coefficient k.

Figures 24-27 show the solution profiles for the “easy” smooth and parabolic heat equation with zero Dirichlet boundary
conditions for in-domain, small, medium and large OOD shifts, respectively, of the diffusivity parameter k. We see that
on this “easy” case, most methods are very accurate in-domain in Figure 24 and perform well in the small shift cases
in Figure 25. Errors in the BayesianNO, VarianceNO and MC-DropoutNO baselines start to form for medium shifts in
Figure 26 and grow in the large shift case in Figure 27. We see both EnsembleNO and DIVERSENO output good uncertainty
estimates (3 standard deviations) that contain the true solution within these error bounds. See corresponding metric results
in Table 3.
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Table 3. 1-d heat equation. MSE ↓, NLL ↓, n-MeRCI ↓, RMSCE ↓ and CRPS ↓ (mean and standard deviation over 5 seeds) metrics
for different UQ methods on the 1-d heat equation in-domain and with small, medium and large OOD shifts, where ktrain ∈ [1, 5]. Bold
indicates values within one standard deviation of the best mean.

In-domain, ktest ∈ [1, 5]
MSE ↓ NLL ↓ n-MeRCI ↓ RMSCE ↓ CRPS ↓

BayesianNO 1.5e-07 (4.9e-08) -1.3e+04 (2.1e+02) 0.13 ( 0.07) 0.19 ( 0.01) 2.2e-04 (2.8e-05)
VarianceNO 4.1e-07 (2.8e-07) -1.2e+04 (5.1e+02) 0.18 ( 0.10) 0.15 ( 0.02) 3.1e-04 (9.4e-05)
MC-DropoutNO 3.6e-06 (3.0e-07) -8.9e+03 (1.8e+02) 0.16 ( 0.07) 0.20 ( 0.00) 1.9e-03 (1.1e-04)
EnsembleNO 1.8e-07 (6.3e-08) -1.4e+04 (7.5e+02) 0.05 ( 0.02) 0.13 ( 0.01) 1.4e-04 (2.4e-05)
DIVERSENO 1.1e-07 (4.3e-08) -1.5e+04 (7.0e+01) 0.06 ( 0.02) 0.13 ( 0.00) 1.2e-04 (3.5e-06)

Small OOD shift, ktest ∈ [5, 6]
MSE ↓ NLL ↓ n-MeRCI ↓ RMSCE ↓ CRPS ↓

BayesianNO 2.5e-06 (8.6e-07) -8.5e+03 (1.4e+03) 0.86 ( 0.05) 0.38 ( 0.02) 8.9e-04 (1.9e-04)
VarianceNO 7.1e-06 (3.2e-06) 3.0e+04 (1.2e+04) 1.17 ( 0.11) 0.43 ( 0.02) 1.6e-03 (4.2e-04)
MC-DropoutNO 5.1e-06 (1.4e-06) -9.4e+03 (2.1e+02) 0.90 ( 0.04) 0.25 ( 0.01) 1.5e-03 (1.0e-04)
EnsembleNO 2.3e-06 (4.9e-07) -1.1e+04 (7.8e+02) 0.02 ( 0.02) 0.37 ( 0.02) 7.4e-04 (1.2e-04)
DIVERSENO 1.7e-06 (4.1e-07) -1.1e+04 (1.1e+02) 0.05 ( 0.03) 0.35 ( 0.01) 7.3e-04 (5.4e-05)

Medium OOD shift, ktest ∈ [6, 7]
MSE ↓ NLL ↓ n-MeRCI ↓ RMSCE ↓ CRPS ↓

BayesianNO 2.7e-05 (7.5e-06) 2.9e+04 (1.0e+04) 0.84 ( 0.05) 0.47 ( 0.01) 3.4e-03 (6.4e-04)
VarianceNO 8.0e-05 (2.9e-05) 9.0e+05 (2.2e+05) 1.40 ( 0.15) 0.49 ( 0.01) 5.8e-03 (1.4e-03)
MC-DropoutNO 3.9e-05 (1.7e-05) -7.5e+03 (2.6e+02) 0.90 ( 0.03) 0.37 ( 0.01) 3.4e-03 (6.0e-04)
EnsembleNO 2.4e-05 (3.8e-06) -8.1e+03 (9.0e+02) 0.03 ( 0.01) 0.38 ( 0.02) 2.5e-03 (3.1e-04)
DIVERSENO 1.9e-05 (3.4e-06) -8.0e+03 (1.0e+02) 0.02 ( 0.00) 0.36 ( 0.01) 2.6e-03 (1.1e-04)

Large OOD shift, ktest ∈ [7, 8]
MSE ↓ NLL ↓ n-MeRCI ↓ RMSCE ↓ CRPS ↓

BayesianNO 1.2e-04 (3.5e-05) 1.5e+05 (3.2e+04) 0.80 ( 0.06) 0.49 ( 0.01) 7.5e-03 (1.5e-03)
VarianceNO 3.7e-04 (1.3e-04) 9.0e+06 (3.0e+06) 1.70 ( 0.20) 0.50 ( 0.00) 1.3e-02 (2.9e-03)
MC-DropoutNO 1.7e-04 (8.0e-05) -3.0e+03 (1.2e+03) 0.86 ( 0.04) 0.44 ( 0.01) 7.6e-03 (1.7e-03)
EnsembleNO 1.1e-04 (1.6e-05) -6.6e+03 (9.2e+02) 0.03 ( 0.02) 0.37 ( 0.02) 5.3e-03 (5.9e-04)
DIVERSENO 8.8e-05 (1.0e-05) -6.3e+03 (1.7e+02) 0.03 ( 0.03) 0.36 ( 0.02) 5.8e-03 (8.7e-05)
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Figure 25. 1-d Heat equation, small OOD shift, ktrain ∈ [1, 5], ktest ∈ [5, 6]. Uncertainty estimates from different UQ methods under
small OOD shifts in the input diffusivity coefficient k.
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Figure 26. 1-d Heat equation, medium OOD shift, ktrain ∈ [1, 5], ktest ∈ [6, 7]. Uncertainty estimates from different UQ methods under
medium OOD shifts in the input diffusivity coefficient k.
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Figure 27. 1-d Heat equation, large OOD shift, ktrain ∈ [1, 5], ktest ∈ [7, 8]. Uncertainty estimates from different UQ methods under
large OOD shifts in the input diffusivity coefficient k.

F.1.2. “MEDIUM” PME

Figures 28-31 show the solution profiles for the “medium” degenerate parabolic PME on an in-domain task and for small,
medium and large OOD shifts, respectively, of the power m in the monomial coefficient k(u) = um. The solution for
larger values of m ≥ 1 becomes sharper and more challenging. Figure 28 shows that all methods perform well on the
in-domain task with the exception of VarianceNO and MC-DropoutNO having small negative oscillations at the sharp corner
(degeneracy point), which separates the region with fluid to the left from the region without fluid to the right. Figure 29
shows the solutions on performing inference on an easier task where the values of m are smaller than those trained on and
the corresponding solution is smoother. We see in this easier case that all the methods perform reasonably well. There is left
boundary error with the growing in time left boundary condition with VarianceNO, which grows as the OOD shift increases
from medium in Figure 30 to large in Figure 31. The medium and large shift cases are particularly more challenging since
we train on smaller values of m and perform inference on the sharper cases with increased values m. As expected as the
problems becomes harder and more challenging for larger m (larger shifts), the uncertainty widens for EnsembleNO and
DIVERSENO. See corresponding metric results in Table 4.
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Table 4. 1-d PME. MSE ↓, NLL ↓, n-MeRCI ↓, RMSCE ↓ and CRPS ↓ (mean and standard deviation over 5 seeds) metrics for different
UQ methods on the 1-d PME in-domain and with small, medium and large OOD shifts, where mtrain ∈ [2, 3]. Bold indicates values within
one standard deviation of the best mean.

In-domain, mtest ∈ [2, 3]
MSE ↓ NLL ↓ n-MeRCI ↓ RMSCE ↓ CRPS ↓

BayesianNO 7.3e-07 (8.5e-08) -1.1e+04 (9.8e+01) 0.62 ( 0.08) 0.21 ( 0.00) 5.6e-04 (3.1e-05)
VarianceNO 8.3e-05 (1.8e-05) -9.4e+03 (7.6e+02) 0.55 ( 0.07) 0.16 ( 0.01) 2.4e-03 (5.9e-04)
MC-DropoutNO 3.2e-05 (1.2e-05) -6.7e+03 (7.5e+02) 0.40 ( 0.05) 0.22 ( 0.00) 4.2e-03 (2.4e-04)
EnsembleNO 5.3e-07 (1.8e-07) -1.3e+04 (4.7e+02) 0.18 ( 0.10) 0.18 ( 0.01) 3.4e-04 (7.4e-05)
DIVERSENO 1.8e-06 (2.1e-07) -1.1e+04 (3.3e+02) 0.21 ( 0.06) 0.20 ( 0.01) 6.0e-04 (5.3e-05)

Small OOD shift, mtest ∈ [1, 2]
MSE ↓ NLL ↓ n-MeRCI ↓ RMSCE ↓ CRPS ↓

BayesianNO 1.1e-03 (4.0e-04) 7.7e+05 (2.2e+05) 1.12 ( 0.07) 0.44 ( 0.02) 1.9e-02 (3.5e-03)
VarianceNO 4.0e-03 (2.4e-03) 2.6e+04 (8.8e+03) 0.26 ( 0.06) 0.43 ( 0.03) 3.6e-02 (1.2e-02)
MC-DropoutNO 2.1e-03 (6.0e-04) 1.6e+04 (8.6e+03) 1.18 ( 0.09) 0.36 ( 0.03) 2.5e-02 (4.3e-03)
EnsembleNO 1.2e-03 (2.5e-04) 1.2e+03 (1.8e+03) 0.14 ( 0.03) 0.46 ( 0.01) 1.8e-02 (2.7e-03)
DIVERSENO 1.1e-03 (3.7e-04) 7.8e+03 (6.7e+03) 0.21 ( 0.04) 0.42 ( 0.03) 1.7e-02 (3.8e-03)

Medium OOD shift, mtest ∈ [4, 5]
MSE ↓ NLL ↓ n-MeRCI ↓ RMSCE ↓ CRPS ↓

BayesianNO 1.0e-03 (3.2e-04) 1.6e+05 (4.1e+04) 0.73 ( 0.03) 0.47 ( 0.01) 2.1e-02 (3.1e-03)
VarianceNO 5.0e-03 (7.6e-04) 2.4e+07 (7.7e+06) 1.23 ( 0.34) 0.50 ( 0.00) 5.1e-02 (5.2e-03)
MC-DropoutNO 1.5e-03 (4.2e-04) 3.7e+03 (2.9e+03) 0.75 ( 0.02) 0.42 ( 0.03) 2.4e-02 (5.2e-03)
EnsembleNO 8.1e-04 (1.6e-04) -3.1e+03 (1.0e+03) 0.20 ( 0.03) 0.38 ( 0.01) 1.5e-02 (1.5e-03)
DIVERSENO 1.1e-03 (3.5e-04) -1.8e+03 (3.9e+03) 0.15 ( 0.03) 0.38 ( 0.02) 1.8e-02 (3.3e-03)

Large OOD shift, mtest ∈ [5, 6]
MSE ↓ NLL ↓ n-MeRCI ↓ RMSCE ↓ CRPS ↓

BayesianNO 6.1e-03 (1.9e-03) 8.0e+05 (2.1e+05) 0.69 ( 0.02) 0.49 ( 0.01) 5.4e-02 (8.7e-03)
VarianceNO 2.0e-02 (1.8e-03) 6.9e+08 (4.2e+08) 1.52 ( 0.46) 0.50 ( 0.00) 1.0e-01 (5.8e-03)
MC-DropoutNO 6.4e-03 (2.2e-03) 1.8e+04 (8.3e+03) 0.70 ( 0.02) 0.47 ( 0.03) 5.6e-02 (1.4e-02)
EnsembleNO 4.6e-03 (7.1e-04) 4.4e+02 (1.9e+03) 0.22 ( 0.02) 0.42 ( 0.02) 4.0e-02 (3.0e-03)
DIVERSENO 5.8e-03 (1.7e-03) 8.2e+02 (4.5e+03) 0.13 ( 0.05) 0.41 ( 0.02) 4.5e-02 (7.5e-03)
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Figure 28. 1-d PME, in-domain, mtrain,mtest ∈ [2, 3]. Uncertainty estimates from different UQ methods for in-domain values of the
power m in the coefficient k(u) = um.
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Figure 29. 1-d PME, small OOD shift, mtrain ∈ [2, 3],mtest ∈ [1, 2]. Uncertainty estimates from different UQ methods under small OOD
shifts in the power m in the coefficient k(u) = um.
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Figure 30. 1-d PME, medium OOD shift, mtrain ∈ [2, 3],mtest ∈ [4, 5]. Uncertainty estimates from different UQ methods under medium
OOD shifts in the power m in the coefficient k(u) = um.
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Figure 31. 1-d PME, large OOD shift, mtrain ∈ [2, 3],mtest ∈ [5, 6]. Uncertainty estimates from different UQ methods under large OOD
shifts in the power m in the coefficient k(u) = um.
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F.1.3. “HARD” STEFAN PROBLEM

Figures 32-35 show the solution profiles for the “hard” degenerate parabolic, discontinuous GPME, i.e., the Stefan equation,
on an in-domain task and for small, medium and large OOD shifts, respectively, of the coefficient u∗ in k(u) = 1u≥u∗

in Equation (9), where u∗ = u(x∗(t), t) denotes the solution value at the shock x∗(t). The parameter u∗ also has an
effect on the shock position, with smaller values of u∗ resulting in a faster shock speed. Figure 32 shows that the methods
are relatively accurate on the in-domain task with EnsembleNO and DIVERSENO exactly capturing the shock with tight
uncertainty bounds. The small Gibbs phenomenon at the shock position that occurs with EnsembleNO is damped with
DIVERSENO. VarianceNO has large uncertainty around the diffused shock. We see that even for small OOD shifts in
Figure 33 on this “hard” shock problem, several of the baseline methods suffer numerical artifacts of spurious oscillations,
being overly diffusive and having an incorrect shock speed, where the predicted shock position either lags or is ahead of the
true shock position, which worsens as the OOD shift increases in Figures 34-35. See corresponding metric results in Table 5.

Table 5. 1-d Stefan equation. MSE ↓, NLL ↓, n-MeRCI ↓, RMSCE ↓ and CRPS ↓ (mean and standard deviation over 5 seeds) metrics
for different UQ methods on the 1-d Stefan equation in-domain and with small, medium and large OOD shifts, where u∗train ∈ [0.6, 0.65].
Bold indicates values within one standard deviation of the best mean.

In-domain, u∗test ∈ [0.6, 0.65]
MSE ↓ NLL ↓ n-MeRCI ↓ RMSCE ↓ CRPS ↓

BayesianNO 3.9e-04 (9.6e-05) -4.8e+03 (2.6e+02) 0.32 ( 0.11) 0.23 ( 0.00) 9.3e-03 (1.1e-03)
VarianceNO 8.1e-03 (4.7e-04) -1.1e+04 (5.2e+02) 0.75 ( 0.07) 0.17 ( 0.02) 1.8e-02 (7.4e-04)
MC-DropoutNO 5.8e-04 (1.6e-04) -2.5e+03 (6.6e+02) 0.33 ( 0.13) 0.17 ( 0.01) 8.1e-03 (1.1e-03)
EnsembleNO 3.6e-04 (2.9e-05) -7.4e+03 (8.5e+02) 0.41 ( 0.23) 0.12 ( 0.01) 2.7e-03 (1.2e-04)
DIVERSENO 3.7e-04 (5.4e-05) 8.7e+03 (5.9e+03) 0.41 ( 0.26) 0.14 ( 0.01) 3.3e-03 (4.8e-04)

Small OOD shift, u∗test ∈ [0.55, 0.6]
MSE ↓ NLL ↓ n-MeRCI ↓ RMSCE ↓ CRPS ↓

BayesianNO 2.0e-02 (1.9e-02) 1.5e+03 (1.3e+03) 0.67 ( 0.15) 0.28 ( 0.01) 4.2e-02 (1.8e-02)
VarianceNO 2.3e-02 (1.6e-03) 7.0e+06 (3.5e+06) 0.97 ( 0.07) 0.40 ( 0.02) 4.3e-02 (1.7e-03)
MC-DropoutNO 9.6e-03 (3.6e-03) 2.4e+04 (8.7e+03) 0.78 ( 0.08) 0.31 ( 0.01) 4.1e-02 (4.4e-03)
EnsembleNO 8.1e-03 (3.4e-03) -5.2e+03 (3.3e+02) 0.14 ( 0.09) 0.32 ( 0.01) 2.5e-02 (3.6e-03)
DIVERSENO 1.4e-02 (2.3e-03) 1.2e+04 (5.5e+03) 0.14 ( 0.06) 0.38 ( 0.01) 3.7e-02 (3.3e-03)

Medium OOD shift, u∗test ∈ [0.7, 0.75]
MSE ↓ NLL ↓ n-MeRCI ↓ RMSCE ↓ CRPS ↓

BayesianNO 1.7e-02 (1.4e-02) 6.0e+03 (3.6e+03) 0.66 ( 0.10) 0.29 ( 0.02) 4.6e-02 (7.6e-03)
VarianceNO 3.2e-02 (1.3e-03) 1.9e+07 (8.4e+06) 0.83 ( 0.05) 0.40 ( 0.02) 5.2e-02 (1.4e-03)
MC-DropoutNO 2.9e-02 (1.3e-02) 2.2e+04 (9.8e+03) 0.56 ( 0.26) 0.36 ( 0.03) 6.4e-02 (1.0e-02)
EnsembleNO 8.0e-03 (1.4e-03) -4.3e+03 (1.5e+02) 0.07 ( 0.03) 0.33 ( 0.02) 3.3e-02 (3.3e-03)
DIVERSENO 1.1e-02 (3.6e-03) 2.0e+04 (3.8e+03) 0.14 ( 0.03) 0.37 ( 0.04) 4.1e-02 (6.8e-03)

Large OOD shift, u∗test ∈ [0.5, 0.55]
MSE ↓ NLL ↓ n-MeRCI ↓ RMSCE ↓ CRPS ↓

BayesianNO 1.7e-01 (1.7e-01) 1.9e+04 (5.3e+03) 0.50 ( 0.25) 0.40 ( 0.03) 1.5e-01 (7.2e-02)
VarianceNO 3.4e-02 (1.8e-03) 2.7e+07 (1.4e+07) 0.99 ( 0.09) 0.45 ( 0.01) 6.6e-02 (1.7e-03)
MC-DropoutNO 4.4e-02 (3.1e-02) 7.3e+04 (1.2e+04) 0.54 ( 0.11) 0.42 ( 0.01) 1.1e-01 (1.5e-02)
EnsembleNO 4.6e-02 (1.9e-02) -2.2e+03 (3.9e+02) 0.37 ( 0.14) 0.36 ( 0.01) 8.2e-02 (1.0e-02)
DIVERSENO 8.9e-02 (5.1e-02) 2.1e+04 (6.8e+03) 0.24 ( 0.11) 0.43 ( 0.01) 1.3e-01 (2.9e-02)
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Figure 32. 1-d Stefan Equation, in-domain, u∗train, u∗test ∈ [0.6, 0.65]. Uncertainty estimates from different UQ methods for in-domain
values for the solution value at the shock u(t, x∗(t)) = u∗ for shock position x∗(t).
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Figure 33. 1-d Stefan Equation, small OOD shift, u∗train ∈ [0.6, 0.65], u∗test ∈ [0.55, 0.6]. Uncertainty estimates from different UQ
methods under small OOD shifts in the solution value at the shock u(t, x∗(t)) = u∗ for shock position x∗(t).

33



Using Uncertainty Quantification to Characterize and Improve Out-of-Domain Learning for PDEs

0.00 0.25 0.50 0.75 1.00
x

1.0

0.5

0.0

0.5

1.0

u(
x,

t)

True Predicted

(a) BayesianNO

0.00 0.25 0.50 0.75 1.00
x

1.0

0.5

0.0

0.5

1.0

u(
x,

t)

True Predicted

(b) VarianceNO

0.00 0.25 0.50 0.75 1.00
x

1.0

0.5

0.0

0.5

1.0

u(
x,

t)

True Predicted

(c) MC-DropoutNO

0.00 0.25 0.50 0.75 1.00
x

1.0

0.5

0.0

0.5

1.0

u(
x,

t)

True Predicted

(d) EnsembleNO

0.00 0.25 0.50 0.75 1.00
x

1.0

0.5

0.0

0.5

1.0

u(
x,

t)

True Predicted

(e) DIVERSENO

Figure 34. 1-d Stefan Equation, medium OOD shift, u∗train ∈ [0.6, 0.65], u∗ test ∈ [0.7, 0.75]. Uncertainty estimates from different UQ
methods under medium OOD shifts in the solution value at the shock u(x∗(t), t) = u∗ for shock position x∗(t).
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Figure 35. 1-d Stefan Equation, large OOD shift, u∗train ∈ [0.6, 0.65], u∗test ∈ [0.5, 0.55]. Uncertainty estimates from different UQ
methods under large OOD shifts in the solution value at the shock u(x∗(t), t) = u∗ for shock position x∗(t).
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F.1.4. HYPERBOLIC LINEAR ADVECTION EQUATION

We show results for the following two tasks: constant parameter input by varying the speed β and non-constant initial
condition input by varying the initial shock location a.

Constant parameter to solution mapping. Figures 36-39 show the solution profiles for the hyperbolic linear advection
equation conditions for an in-domain task, and for small, medium and large OOD shifts, respectively, of the velocity
parameter β > 0. The solution is a rightward moving shock, where β controls the shock speed. We see that in this difficult
shock case the baseline methods, e.g., BayesianNO, VarianceNO and MC-DropoutNO suffer from numerical artifacts of
artificial oscillations, being over-diffusive and lagging of the shock position. Only EnsembleNO and our DIVERSENO
accurately capture the shock location and have the largest uncertainty there. See corresponding metric results in Table 6.

Table 6. 1-d Linear Advection MSE ↓, NLL ↓, n-MeRCI ↓, RMSCE ↓ and CRPS ↓ (mean and standard deviation over 5 seeds) metrics for
different UQ methods on the 1-d linear advection equation in-domain and with small, medium and large OOD shifts, where βtrain ∈ [1, 2].
Bold indicates values within one standard deviation of the best mean.

In-domain, βtest ∈ [1, 2]
MSE ↓ NLL ↓ n-MeRCI ↓ RMSCE ↓ CRPS ↓

BayesianNO 2.0e-04 (3.6e-05) -5.7e+03 (1.6e+02) 0.59 ( 0.08) 0.23 ( 0.00) 6.2e-03 (6.2e-04)
VarianceNO 2.2e-02 (3.4e-02) -1.1e+04 (2.6e+03) 0.41 ( 0.18) 0.20 ( 0.03) 1.8e-02 (1.6e-02)
MC-DropoutNO 2.8e-04 (5.0e-05) -5.0e+03 (2.3e+02) 0.67 ( 0.15) 0.20 ( 0.00) 7.7e-03 (5.1e-04)
EnsembleNO 2.0e-04 (1.1e-05) -1.1e+04 (1.8e+02) 0.40 ( 0.06) 0.12 ( 0.00) 1.2e-03 (5.8e-05)
DIVERSENO 2.0e-04 (2.6e-05) -7.2e+03 (9.6e+02) 0.28 ( 0.08) 0.12 ( 0.01) 1.7e-03 (1.1e-04)

Out-of-domain, βtest ∈ [0.5, 1]
MSE ↓ NLL ↓ n-MeRCI ↓ RMSCE ↓ CRPS ↓

BayesianNO 6.8e-02 (1.6e-02) 1.7e+05 (9.3e+04) 0.77 ( 0.05) 0.27 ( 0.03) 1.1e-01 (2.7e-02)
VarianceNO 7.3e-02 (2.8e-02) 9.4e+07 (6.0e+07) 0.46 ( 0.20) 0.40 ( 0.03) 7.9e-02 (1.2e-02)
MC-DropoutNO 3.0e-02 (9.1e-03) 5.9e+04 (2.3e+04) 0.93 ( 0.03) 0.26 ( 0.03) 7.3e-02 (1.8e-02)
EnsembleNO 3.0e-02 (3.8e-03) -3.5e+03 (3.6e+02) 0.17 ( 0.03) 0.28 ( 0.02) 6.0e-02 (5.1e-03)
DIVERSENO 4.3e-02 (3.4e-02) 4.6e+04 (3.2e+04) 0.16 ( 0.06) 0.35 ( 0.03) 7.1e-02 (3.2e-02)

Out-of-domain, βtest ∈ [2.5, 3]
MSE ↓ NLL ↓ n-MeRCI ↓ RMSCE ↓ CRPS ↓

BayesianNO 6.4e-03 (1.7e-03) 4.6e+03 (3.7e+03) 0.76 ( 0.05) 0.41 ( 0.02) 3.7e-02 (4.1e-03)
VarianceNO 4.4e-02 (4.0e-02) 1.4e+07 (1.7e+07) 0.42 ( 0.30) 0.45 ( 0.03) 3.9e-02 (1.6e-02)
MC-DropoutNO 3.8e-03 (6.8e-04) 2.9e+03 (2.9e+03) 0.80 ( 0.05) 0.30 ( 0.01) 2.3e-02 (1.6e-03)
EnsembleNO 4.3e-03 (4.2e-04) -2.3e+03 (7.7e+02) 0.45 ( 0.04) 0.44 ( 0.01) 3.1e-02 (2.7e-03)
DIVERSENO 7.4e-03 (2.5e-03) 1.1e+04 (1.0e+04) 0.25 ( 0.15) 0.45 ( 0.03) 4.1e-02 (2.8e-03)

Out-of-domain, βtest ∈ [3, 3.5]
MSE ↓ NLL ↓ n-MeRCI ↓ RMSCE ↓ CRPS ↓

BayesianNO 1.5e-02 (3.4e-03) 1.5e+04 (6.7e+03) 0.71 ( 0.06) 0.46 ( 0.01) 7.4e-02 (8.5e-03)
VarianceNO 5.3e-02 (4.2e-02) 1.8e+08 (3.0e+08) 0.38 ( 0.26) 0.47 ( 0.02) 5.1e-02 (1.6e-02)
MC-DropoutNO 7.4e-03 (1.2e-03) 7.8e+03 (3.6e+03) 0.75 ( 0.04) 0.37 ( 0.02) 3.7e-02 (1.8e-03)
EnsembleNO 1.0e-02 (1.3e-03) 1.0e+03 (1.0e+03) 0.42 ( 0.10) 0.47 ( 0.00) 6.3e-02 (4.7e-03)
DIVERSENO 1.8e-02 (3.7e-03) 2.1e+04 (1.8e+04) 0.27 ( 0.17) 0.47 ( 0.03) 8.1e-02 (7.0e-03)
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Figure 36. 1-d Linear advection, in-domain, βtrain, βtest ∈ [1, 2]. Uncertainty estimates from different UQ methods for in-domain values
of the input velocity β coefficient.
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Figure 37. 1-d Linear advection, small OOD shift, βtrain ∈ [1, 2], βtest ∈ [0.5, 1]. Uncertainty estimates from different UQ methods
under small OOD shifts in the input velocity β coefficient.
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Figure 38. 1-d Linear advection, medium OOD shift, βtrain ∈ [1, 2], βtest ∈ [2.5, 3]. Uncertainty estimates from different UQ methods
under medium OOD shifts in the input velocity β coefficient.
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Figure 39. 1-d Linear advection, large OOD shift, βtrain ∈ [1, 2], βtest ∈ [3, 3.5]. Uncertainty estimates from different UQ methods
under large OOD shifts in the input velocity β coefficient.
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Non-constant initial condition to solution mapping. Here we test non-constant function input to the NO by varying the
initial condition through the initial shock location a. We see that every method gives good predictions in-domain (Figure 40)
and has low in-domain MSE (Table 7). Table 7 also shows that DIVERSENO performs best or second-best to EnsembleNO
in MSE, while being computationally cheaper. With respect to the n-MeRCI metric, Table 8 shows that DIVERSENO
performs around 1.2× to 1.5× better than EnsembleNO and 2.7× to 7.4× better than other baselines on OOD inputs.

0.00 0.25 0.50 0.75 1.00
x

0.0

0.5

1.0

u(
x,

t)

Input: Initial condition (t=0)

(a) Input

0.00 0.25 0.50 0.75 1.00
x

0.0

0.5

1.0

u(
x,

t)

True (t=0.1) Predicted (t=0.1)

(b) BayesianNO

0.00 0.25 0.50 0.75 1.00
x

0.0

0.5

1.0

u(
x,

t)

True (t=0.1) Predicted (t=0.1)

(c) MC-DropoutNO

0.00 0.25 0.50 0.75 1.00
x

0.0

0.5

1.0

u(
x,

t)

True (t=0.1) Predicted (t=0.1)

(d) EnsembleNO

0.00 0.25 0.50 0.75 1.00
x

0.0

0.5

1.0

u(
x,

t)

True (t=0.1) Predicted (t=0.1)

(e) DIVERSENO

Figure 40. 1-d Linear Advection (non-constant input), in-domain. Uncertainty estimates (3 standard deviations) from various UQ
methods in-domain where atrain ∈ [0.45, 0.55].
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Figure 41. 1-d Linear Advection (non-constant input), small OOD shift. Uncertainty estimates (3 standard deviations) from various
UQ methods with small OOD shift with atrain ∈ [0.45, 0.55] and atest ∈ [0.4, 0.45].
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Figure 42. 1-d Linear Advection (non-constant input), medium OOD shift. Uncertainty estimates (3 standard deviations) from various
UQ methods with medium OOD shift with atrain ∈ [0.45, 0.55] and atest ∈ [0.6, 0.65].
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Figure 43. 1-d Linear Advection (non-constant input), large OOD shift. Uncertainty estimates (3 standard deviations) from various
UQ methods with large OOD shift with atrain ∈ [0.45, 0.55] and atest ∈ [0.35, 0.4].

Figures 41 to 43 show the predictions of the various methods under small, medium and large OOD shifts. All methods
exhibit high errors near the shock location and at the boundary, particularly for medium (Figure 42) and large OOD shifts
(Figure 43). BayesianNO and MC-DropoutNO output very low uncertainty despite these high errors. In contrast, the UQ
from DIVERSENO is correlated with the error and is highest near the shock and the right boundary.

39



Using Uncertainty Quantification to Characterize and Improve Out-of-Domain Learning for PDEs

Table 7. 1-d Linear Advection (non-constant input). MSE ↓ (mean and standard deviation over 5 seeds) for different UQ methods on the
1-d linear advection equation in-domain and with small, medium and large OOD shifts. Input is a non-constant function u(x, 0) = 1x≤a

with atrain ∈ [0.45, 0.55]. Bold indicates values within one standard deviation of the best mean.

Models In-domain OOD-small OOD-medium OOD-large
atest ∈ [0.45, 0.55] atest ∈ [0.4, 0.45] atest ∈ [0.6, 0.65] atest ∈ [0.35, 0.4]

BayesianNO 1.3e-06 (1.2e-06) 3.3e-04 (6.3e-05) 4.9e-03 (1.4e-03) 2.3e-02 (3.2e-03)
MC-DropoutNO 2.7e-05 (5.2e-06) 4.2e-04 (6.6e-05) 2.9e-03 (5.4e-04) 2.9e-02 (4.9e-03)
EnsembleNO 7.5e-07 (6.5e-07) 3.1e-04 (5.0e-05) 4.3e-03 (9.1e-05) 2.2e-02 (1.5e-03)
DIVERSENO 1.5e-06 (1.1e-06) 3.4e-04 (9.6e-05) 2.7e-03 (7.6e-04) 2.8e-02 (5.5e-03)

Table 8. 1-d Linear Advection (non-constant input). n-MeRCI ↓ (mean and standard deviation over 5 seeds) for different UQ methods
on the 1-d linear advection equation in-domain and with small, medium and large OOD shifts. Input is a non-constant function
u(x, 0) = 1x≤a with atest ∈ [0.45, 0.55]. Bold indicates values within one standard deviation of the best mean.

Models In-domain OOD-small OOD-medium OOD-large
atest ∈ [0.45, 0.55] atest ∈ [0.4, 0.45] atest ∈ [0.6, 0.65] atest ∈ [0.35, 0.4]

BayesianNO 0.75 (0.39) 1.06 (0.01) 0.94 (0.20) 0.87 (0.18)
MC-DropoutNO 0.65 (0.19) 1.00 (0.01) 0.89 (0.18) 0.86 (0.18)
EnsembleNO 0.18 (0.07) 0.19 (0.03) 0.19 (0.05) 0.37 (0.11)
DIVERSENO 0.22 (0.15) 0.16 (0.02) 0.12 (0.07) 0.31 (0.10)

F.1.5. ELLIPTIC 2-D DARCY FLOW

Here we provide an elliptic, steady-state 2-d test case, i.e., Darcy Flow, where the solution u(x) denotes the unknown
pressure and k the constant permeability field. Table 9 shows the MSE metric for all methods in-domain and across different
OOD shifts. The in-domain MSE is ≈ 10−11 for all methods and increases by 104 for the largest OOD shift. (Table 9) also
shows that the OOD MSE of DIVERSENO is improved (≈ 1.2×) upon that of the competing baselines. With respect to the
meaningful n-MeRCI metric that measures error correlation with uncertainty estimates, Table 10 shows that EnsembleNO
and DIVERSENO perform ≈ 10× better than the other methods with DIVERSENO being more computationally efficient.
Similar trends hold for the CRPS metric in Table 11, where DIVERSENO and EnsembleNO outperform other baselines by
1.5×. These 2-d results are consistent with 1-d experiments.

Figure 44 illustrates the solution profile (left column), absolute error (middle column) and uncertainty plots (right column)
under a large OOD shift for our DIVERSENO model and the baselines. The absolute errors from all models except
VarianceNO are concentrated around the center of the domain where the pressure values in the solution profile are highest.
We see that the errors from DIVERSENO are slightly lower than that of the baselines. BayesianNO (Figure 44a) and
VarianceNO (Figure 44b) output uncertainty estimates spread uniformly over the domain. Uncertainty estimates from
MC-DropoutNO (Figure 44c) are highest near the boundary instead of the center region. Uncertainty estimates from
DIVERSENO (Figure 44e) are highest around the center, correlating better with the error.
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Figure 44. 2-d Darcy Flow, large OOD shift. Solution profiles (left column), absolute error (middle column) and uncertainty estimates
(right column) from different UQ methods under a large OOD shift (ktrain ∈ [3, 4] and ktest ∈ [5, 6]).
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Table 9. 2-d Darcy Flow. MSE ↓ for different UQ methods on the 2-d Darcy Flow equation in-domain and with small, medium and large
OOD shifts, where ktrain ∈ [3, 4]. Bold indicates the best mean.

Models In-domain OOD-small OOD-medium OOD-large
ktest ∈ [3, 4] ktest ∈ [4, 4.5] ktest ∈ [4.5, 5] ktest ∈ [5, 6]

BayesianNO 4.3e-11 4.6e-09 5.6e-08 4.2e-07
VarianceNO 7.7e-12 7.4e-10 2.9e-08 1.0e-06
MC-DropoutNO 1.2e-09 4.7e-09 5.4e-08 4.4e-07
EnsembleNO 3.9e-11 4.2e-09 5.0e-08 3.4e-07
DIVERSENO 3.9e-11 3.8e-09 4.4e-08 2.9e-07

Table 10. 2-d Darcy Flow. n-MeRCI ↓ for different UQ methods on the 2-d Darcy Flow equation in-domain and with small, medium and
large OOD shifts, where ktrain ∈ [3, 4]. Bold indicates the best mean.

Models In-domain OOD-small OOD-medium OOD-large
ktest ∈ [3, 4] ktest ∈ [4, 4.5] ktest ∈ [4.5, 5] ktest ∈ [5, 6]

BayesianNO 0.47 0.79 0.83 0.71
VarianceNO 0.28 0.78 0.87 0.78
MC-DropoutNO 0.24 0.86 0.88 0.75
EnsembleNO 0.11 0.03 0.13 0.26
DIVERSENO 0.05 0.06 0.07 0.24

Table 11. 2-d Darcy Flow. CRPS ↓ for different UQ methods on the 2-d Darcy Flow equation in-domain and with small, medium and
large OOD shifts, where ktrain ∈ [3, 4]. Bold indicates the best mean.

Models In-domain OOD-small OOD-medium OOD-large
ktest ∈ [3, 4] ktest ∈ [4, 4.5] ktest ∈ [4.5, 5] ktest ∈ [5, 6]

BayesianNO 0.034 1.89 5.17 10.36
VarianceNO 0.430 1.59 8.43 30.70
MC-DropoutNO 0.031 1.70 5.02 10.68
EnsembleNO 0.033 1.27 4.05 7.40
DIVERSENO 0.035 1.28 4.01 7.19

F.2. Cost performance curves

Here we show the the cost performance curves as a function of the number parameters. We see in Figure 45 that it has similar
trends to the cost performance curves as a function of the floating point operations (FLOPS) in Figure 5. DIVERSENO has
lower MSE and n-MeRCI values for the same number of parameters as EnsembleNO and hence is more computationally
efficient on both the heat equation and PME.
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Figure 45. Cost-performance tradeoff. MSE ↓ and n-MeRCI ↓ vs number of parameters for EnsembleNO and DIVERSENO with varying
number of parameters. for (a-b) 1-d Heat equation, medium OOD shift, i.e., ktrain ∈ [1, 5], ktest ∈ [6, 7] and (c-d) 1-d PME, medium OOD
shift, i.e., mtrain ∈ [2, 3],mtest ∈ [4, 5].

F.3. Effect of PROBCONSERV update

In this section, we report the solution profiles and metrics, which compare the effect of using the various UQ estimates
for NOs within the PROBCONSERV framework. Tables 12-14 show that the conservation error (CE) after applying
PROBCONSERV is 0, and that the CE for the unconstrained models can be quite large, especially on the harder tasks. The
results on the “easy” heat equation task in Figure 46 and corresponding Table 12 show that PROBCONSERV improves
the MSE for all the UQ methods. The results on the “harder” problems in Figure 47 and corresponding Table 13 for the
PME and Figure 48 and corresponding Table 14 for the Stefan equation show the impact of good uncertainty estimates as
input to PROBCONSERV. We see that PROBCONSERV improves the solution profiles and MSE for the methods except for
VarianceNO, whose UQ estimate is not well-correlated with the error.

Table 12. Effect of PROBCONSERV update, 1-d heat equation. MSE ↓, Conservation Error (CE) (should be zero) and n-MeRCI ↓
(mean and standard deviation over 5 seeds) for different UQ methods with and without PROBCONSERV evaluated on 1-d heat equation
with small, medium and large OOD shifts, where ktrain ∈ [1, 5]. Bold indicates values within one standard deviation of the best mean.

Small OOD shift, ktest ∈ [5, 6]

MSE ↓ CE (should be zero) n-MeRCI ↓
Standard + PROBCONSERV Standard + PROBCONSERV Standard + PROBCONSERV

BayesianNO 2.5e-06 (8.6e-07) 2.3e-06 (8.5e-07) 0.01 ( 0.00) 0.00 ( 0.00) 0.86 ( 0.05) 0.86 ( 0.05)
VarianceNO 7.1e-06 (3.2e-06) 5.5e-06 (1.2e-06) 0.01 ( 0.01) 0.00 ( 0.00) 1.17 ( 0.11) 1.17 ( 0.12)
MC-DropoutNO 5.1e-06 (1.4e-06) 4.9e-06 (1.5e-06) 0.01 ( 0.00) 0.00 ( 0.00) 0.90 ( 0.04) 0.91 ( 0.05)
EnsembleNO 2.3e-06 (4.9e-07) 2.2e-06 (5.2e-07) 0.00 ( 0.00) 0.00 ( 0.00) 0.02 ( 0.02) 0.02 ( 0.01)
DIVERSENO 1.7e-06 (4.1e-07) 1.2e-06 (9.2e-07) 0.01 ( 0.01) 0.00 ( 0.00) 0.05 ( 0.03) 0.05 ( 0.03)

Medium OOD shift, ktest ∈ [6, 7]

MSE ↓ CE (should be zero) n-MeRCI ↓
Standard + PROBCONSERV Standard + PROBCONSERV Standard + PROBCONSERV

BayesianNO 2.7e-05 (7.5e-06) 2.6e-05 (7.7e-06) 0.02 ( 0.01) 0.00 ( 0.00) 0.84 ( 0.05) 0.84 ( 0.05)
VarianceNO 8.0e-05 (2.9e-05) 6.7e-05 (1.3e-05) 0.04 ( 0.03) 0.00 ( 0.00) 1.40 ( 0.15) 1.41 ( 0.16)
MC-DropoutNO 3.9e-05 (1.7e-05) 3.7e-05 (1.8e-05) 0.03 ( 0.01) 0.00 ( 0.00) 0.90 ( 0.03) 0.90 ( 0.04)
EnsembleNO 2.4e-05 (3.8e-06) 2.4e-05 (4.1e-06) 0.01 ( 0.00) 0.00 ( 0.00) 0.03 ( 0.01) 0.03 ( 0.02)
DIVERSENO 1.9e-05 (3.4e-06) 1.3e-05 (1.1e-05) 0.05 ( 0.03) 0.00 ( 0.00) 0.02 ( 0.00) 0.08 ( 0.08)

Large OOD shift, ktest ∈ [7, 8]
MSE ↓ CE (should be zero) n-MeRCI ↓

Standard + PROBCONSERV Standard + PROBCONSERV Standard + PROBCONSERV

BayesianNO 1.2e-04 (3.5e-05) 1.2e-04 (3.6e-05) 0.04 ( 0.02) 0.00 ( 0.00) 0.80 ( 0.06) 0.80 ( 0.06)
VarianceNO 3.7e-04 (1.3e-04) 3.2e-04 (7.3e-05) 0.08 ( 0.07) 0.01 ( 0.01) 1.70 ( 0.20) 1.69 ( 0.21)
MC-DropoutNO 1.7e-04 (8.0e-05) 1.6e-04 (8.3e-05) 0.06 ( 0.02) 0.00 ( 0.00) 0.86 ( 0.04) 0.86 ( 0.04)
EnsembleNO 1.1e-04 (1.6e-05) 1.1e-04 (1.6e-05) 0.01 ( 0.00) 0.00 ( 0.00) 0.03 ( 0.02) 0.03 ( 0.01)
DIVERSENO 8.8e-05 (1.0e-05) 5.8e-05 (5.1e-05) 0.10 ( 0.06) 0.00 ( 0.00) 0.03 ( 0.03) 0.12 ( 0.11)
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Figure 46. 1-d Heat equation, medium OOD shift, ktrain ∈ [1, 5], ktest ∈ [6, 7]. Uncertainty estimates from different UQ methods under
medium OOD shifts in the input diffusivity coefficient with adding PROBCONSERV onto the uncertainty estimates. PROBCONSERV

improves the OOD predictions for all UQ estimates on this “easy” task.
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Figure 47. 1-d PME equation, small OOD shift, mtrain ∈ [2, 3],mtest ∈ [1, 2]. Uncertainty estimates from different UQ methods
under small OOD shifts in the power m in the coefficient k(u) = um with adding PROBCONSERV onto the uncertainty estimates.
PROBCONSERV improves the OOD predictions for all methods except for VarianceNO whose UQ estimate is not well-correlated with the
error.
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Figure 48. 1-d Stefan Equation, small OOD shift, u∗train ∈ [0.6, 0.65], u∗test ∈ [0.55, 0.6]. Solution profiles after applying PROBCON-
SERV over different UQ methods under small OOD shifts in the solution value at the shock u(t, x∗(t)) = u∗ for shock position x∗(t).
PROBCONSERV improves the OOD prediction with DIVERSENO whose UQ estimate is well-correlated with the error and damps the
artificial oscillations.
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Table 13. Effect of PROBCONSERV update, 1-d PME. MSE ↓, Conservation Error (CE) (should be zero) and n-MeRCI ↓ (mean and
standard deviation over 5 seeds) for different UQ methods with and without PROBCONSERV evaluated on 1-d PME with small, medium
and large OOD shifts, where mtrain ∈ [2, 3]. Bold indicates values within one standard deviation of the best mean.

Small OOD shift, mtest ∈ [1, 2]

MSE ↓ CE (should be zero) n-MeRCI ↓
Standard + PROBCONSERV Standard + PROBCONSERV Standard + PROBCONSERV

BayesianNO 1.1e-03 (4.0e-04) 3.8e-04 (1.4e-04) 0.38 ( 0.07) 0.02 ( 0.00) 1.12 ( 0.07) 1.13 ( 0.07)
VarianceNO 4.0e-03 (2.4e-03) 8.6e-03 (4.3e-03) 0.75 ( 0.27) 0.00 ( 0.00) 0.26 ( 0.06) 0.22 ( 0.05)
MC-DropoutNO 2.1e-03 (6.0e-04) 8.6e-04 (2.1e-04) 0.52 ( 0.10) 0.00 ( 0.00) 1.18 ( 0.09) 1.17 ( 0.09)
EnsembleNO 1.2e-03 (2.5e-04) 1.7e-04 (1.1e-04) 0.40 ( 0.06) 0.00 ( 0.00) 0.14 ( 0.03) 0.08 ( 0.06)
DIVERSENO 1.1e-03 (3.7e-04) 3.9e-04 (6.6e-05) 0.37 ( 0.09) 0.00 ( 0.00) 0.21 ( 0.04) 0.20 ( 0.04)

Medium OOD shift, mtest ∈ [4, 5]

MSE ↓ CE (should be zero) n-MeRCI ↓
Standard + PROBCONSERV Standard + PROBCONSERV Standard + PROBCONSERV

BayesianNO 1.0e-03 (3.2e-04) 7.8e-04 (1.9e-04) 0.31 ( 0.08) 0.00 ( 0.00) 0.73 ( 0.03) 0.73 ( 0.03)
VarianceNO 5.0e-03 (7.6e-04) 7.0e-02 (1.0e-02) 0.90 ( 0.14) 0.01 ( 0.01) 1.23 ( 0.34) 1.25 ( 0.31)
MC-DropoutNO 1.5e-03 (4.2e-04) 1.1e-03 (3.6e-04) 0.35 ( 0.12) 0.00 ( 0.00) 0.75 ( 0.02) 0.74 ( 0.02)
EnsembleNO 8.1e-04 (1.6e-04) 5.3e-04 (8.1e-05) 0.27 ( 0.03) 0.00 ( 0.00) 0.20 ( 0.03) 0.14 ( 0.07)
DIVERSENO 1.1e-03 (3.5e-04) 9.9e-04 (6.2e-04) 0.32 ( 0.06) 0.00 ( 0.00) 0.15 ( 0.03) 0.09 ( 0.06)

Large OOD shift, mtest ∈ [5, 6]

MSE ↓ CE (should be zero) n-MeRCI ↓
Standard + PROBCONSERV Standard + PROBCONSERV Standard + PROBCONSERV

BayesianNO 6.1e-03 (1.9e-03) 4.7e-03 (1.3e-03) 0.83 ( 0.19) 0.01 ( 0.00) 0.69 ( 0.02) 0.69 ( 0.02)
VarianceNO 2.0e-02 (1.8e-03) 3.3e-01 (8.5e-02) 1.87 ( 0.18) 0.07 ( 0.06) 1.52 ( 0.46) 1.55 ( 0.45)
MC-DropoutNO 6.4e-03 (2.2e-03) 3.5e-03 (1.4e-03) 0.81 ( 0.24) 0.00 ( 0.00) 0.70 ( 0.02) 0.66 ( 0.03)
EnsembleNO 4.6e-03 (7.1e-04) 2.5e-03 (5.2e-04) 0.71 ( 0.05) 0.00 ( 0.00) 0.22 ( 0.02) 0.15 ( 0.06)
DIVERSENO 5.8e-03 (1.7e-03) 4.4e-03 (2.6e-03) 0.82 ( 0.15) 0.00 ( 0.00) 0.13 ( 0.05) 0.06 ( 0.03)
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Table 14. Effect of PROBCONSERV update, 1-d Stefan. MSE ↓, Conservation Error (CE) (should be zero) and n-MeRCI ↓ (mean and
standard deviation over 5 seeds) for different UQ methods with and without PROBCONSERV evaluated on the 1-d Stefan equation with
small, medium and large OOD shifts, where u∗train ∈ [0.6, 0.65]. Bold indicates values within one standard deviation of the best mean.

Small OOD shift, u∗test ∈ [0.55, 0.6]

MSE ↓ CE (should be zero) n-MeRCI ↓
Standard + PROBCONSERV Standard + PROBCONSERV Standard + PROBCONSERV

BayesianNO 2.0e-02 (1.9e-02) 1.4e-02 (8.5e-03) 0.37 ( 0.23) 0.00 ( 0.00) 0.67 ( 0.15) 0.66 ( 0.17)
VarianceNO 2.3e-02 (1.6e-03) 3.0e-02 (3.6e-03) 1.08 ( 0.06) 0.00 ( 0.00) 0.97 ( 0.07) 0.95 ( 0.03)
MC-DropoutNO 9.6e-03 (3.6e-03) 9.5e-03 (3.2e-03) 0.51 ( 0.21) 0.00 ( 0.00) 0.78 ( 0.08) 0.77 ( 0.08)
EnsembleNO 8.1e-03 (3.4e-03) 9.1e-03 (2.9e-03) 0.20 ( 0.03) 0.00 ( 0.00) 0.14 ( 0.09) 0.23 ( 0.06)
DIVERSENO 1.4e-02 (2.3e-03) 1.1e-02 (9.2e-04) 0.27 ( 0.05) 0.00 ( 0.00) 0.14 ( 0.06) 0.11 ( 0.07)

Medium OOD shift, u∗test ∈ [0.7, 0.75]

MSE ↓ CE (should be zero) n-MeRCI ↓
Standard + PROBCONSERV Standard + PROBCONSERV Standard + PROBCONSERV

BayesianNO 1.7e-02 (1.4e-02) 1.3e-02 (3.8e-03) 0.55 ( 0.19) 0.00 ( 0.00) 0.66 ( 0.10) 0.66 ( 0.10)
VarianceNO 3.2e-02 (1.3e-03) 4.1e-02 (5.3e-03) 1.14 ( 0.05) 0.00 ( 0.00) 0.83 ( 0.05) 0.84 ( 0.04)
MC-DropoutNO 2.9e-02 (1.3e-02) 1.8e-02 (1.1e-02) 1.01 ( 0.32) 0.00 ( 0.00) 0.56 ( 0.26) 0.57 ( 0.25)
EnsembleNO 8.0e-03 (1.4e-03) 7.1e-03 (5.6e-04) 0.52 ( 0.08) 0.00 ( 0.00) 0.07 ( 0.03) 0.24 ( 0.11)
DIVERSENO 1.1e-02 (3.6e-03) 9.5e-03 (1.8e-03) 0.59 ( 0.19) 0.00 ( 0.00) 0.14 ( 0.03) 0.12 ( 0.03)

Large OOD shift, u∗test ∈ [0.5, 0.55]

MSE ↓ CE (should be zero) n-MeRCI ↓
Standard + PROBCONSERV Standard + PROBCONSERV Standard + PROBCONSERV

BayesianNO 1.7e-01 (1.7e-01) 7.7e-02 (4.7e-02) 1.34 ( 0.94) 0.00 ( 0.00) 0.50 ( 0.25) 0.48 ( 0.27)
VarianceNO 3.4e-02 (1.8e-03) 7.9e-02 (8.8e-03) 1.72 ( 0.07) 0.00 ( 0.00) 0.99 ( 0.09) 0.97 ( 0.05)
MC-DropoutNO 4.4e-02 (3.1e-02) 4.0e-02 (2.7e-02) 1.27 ( 0.41) 0.00 ( 0.00) 0.54 ( 0.11) 0.44 ( 0.06)
EnsembleNO 4.6e-02 (1.9e-02) 4.7e-02 (1.5e-02) 0.61 ( 0.13) 0.00 ( 0.00) 0.37 ( 0.14) 0.33 ( 0.13)
DIVERSENO 8.9e-02 (5.1e-02) 6.4e-02 (2.6e-02) 0.90 ( 0.39) 0.00 ( 0.00) 0.24 ( 0.11) 0.21 ( 0.11)
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