DAcCO: Towards Application-Driven and Comprehensive Data Analysis via Code
Generation

Xueqing Wu' Rui Zheng? Jingzhen Sha'! Te-Lin Wu'! Hanyu Zhou' Mohan Tang! Kai-Wei Chang '
Nanyun Peng! Haoran Huang?

Abstract

Data analysis is a crucial analytical process to
generate in-depth studies and conclusive insights
to comprehensively answer a given user query
for tabular data. In this work, we aim to pro-
pose new resources and benchmarks to inspire
future research on this crucial yet challenging and
under-explored task. However, collecting data
analysis annotations curated by experts can be pro-
hibitively expensive. We propose to automatically
generate high-quality answer annotations leverag-
ing the code-generation capabilities of LLMs with
a multi-turn prompting technique. We construct
the DACO dataset, containing (1) 440 databases
(of tabular data) collected from real-world scenar-
i0s, (2) ~ 2k query-answer pairs that can serve
as weak supervision for model training, and (3) a
concentrated but high-quality test set with human
refined annotations that serves as our main evalu-
ation benchmark. We train a 6B supervised fine-
tuning (SFT) model on DACO dataset, and find
that the SFT model learns reasonable data analy-
sis capabilities. To further align the models with
human preference, we use reinforcement learning
to encourage generating analysis perceived by hu-
man as helpful, and design a set of dense rewards
to propagate the sparse human preference reward
to intermediate code generation steps. Our DACO-
RL algorithm is evaluated by human annotators
to produce more helpful answers than SFT model
in 57.72% cases, validating the effectiveness of
our proposed algorithm.

“Equal contribution 'University of California, Los Angeles
Fudan University *ByteDance AI Lab. Correspondence to: Hao-
ran Huang <huanghaoran@bytedance.com>.

The first Al for MATH Workshop at the 41°% International Confer-
ence on Machine Learning, Vienna, Austria. Copyright 2024 by
the author(s).

1. Introduction

Data analysis is the process of systematically applying sta-
tistical and/or logical reasoning to evaluate and compre-
hend data. Existing literature has investigated answering
queries about information given by structural data (e.g., ta-
bles) (Chen et al., 2021a; Nan et al., 2022; Lu et al., 2023).
However, they either focus on straightforward factual re-
trieval or short-form entity/arithmetic resolutions for specif-
ically given entities, while real-world data analysis can in-
volve more complex analytical processes.

Take the scenario in Figure 1 as an example: a user is in-
vestigating potential age discrimination of a shop. To
effectively answer queries such as this one, a chain of math-
ematical and logical reasoning and interacting with the data
is required. For instance, finding I is inferred from analyz-
ing age distribution within the membership data (‘member’
table), while finding and suggestion 2 are derived by com-
paring the participants’ ages during the happy hours (using
both ‘member’ and ‘happy_hour_member’ tables). These
rigorous quantitative analyses eventually conclude the oppo-
site to the user’s hypothesis. As valuable as the conclusive
suggestions such comprehensive analysis can bring, the ex-
tensive labor-efforts, hinted by these examples, can hinder
the efficiency of gaining intelligence from the data in a com-
petitive business environment. It is thus imperative to devise
a system that is able to automate the aforementioned data
analysis process.

To this end, we introduce a new dataset for this challenging
task, DACO, data analysis via code generation. DACO is
constructed from a set of diverse real-world databases asso-
ciated with curated user queries. In light of the previously
described labor-intensive challenge, we propose to leverage
LLMs with a multi-turn chained prompts to automatically
curate the analytical answers for each query. Specifically,
our designed framework employs the code generation ca-
pabilities of GPT-4 (OpenAl, 2023) for automating the sta-
tistical analysis, interleaved with its ability to interpret the
obtained quantitative results. The DACO dataset contains
440 databases and 1,942 associated user queries, which
can be used for both model fine-tuning and evaluation. To
provide a refined benchmarking resource, we curate a high-



DACO: Towards Application-Driven and Comprehensive Data Analysis via Code Generation

)

As a consumer rights advocate, | want to assess
if the coffee shop is promoting age discrimination.

Required skills: » Analytical reasoning

Ue

* Mathematical reasoning -« Strategic reasoning

Database: coffee shop

2
3

Breton, Robert
Campbell, Jessie

member
1 Ashby, Lazale 29 ..

67
34

Findings

1. The age distribution of the coffee shop's members is primarily within
the age range of 19-65... There are no clear evidence of
discriminatory behavior based on age.

2. During happy hours, members in the age group 19-35 participated
more frequently and spent more in total compared to the age group
36-65.

happy_hour happy_hour_member

20.9
2 1 4 3 20.92 2
3 10 7 9 4.9

Suggestions
@w! @- 1. It would be useful to evaluate any age-specific marketing strategies

. Encourage efforts to attract a more diverse age group of customers

or promotions employed by the coffee shop...

by offering more age-inclusive activities and events...

4

Figure 1: Task overview. Given a user query driven by an application scenario, a data analysis system should produce an answer
containing findings and suggestions based on the database. This requires the system to perform mathematical, logical and strategic
reasoning, which can be done through invoking external tools such as Python libraries. In this example, finding I is inferred from analyzing
age distribution within the membership data (‘member’ table) through mathematical reasoning and analytical reasoning. Finding 2 is
inferred by comparing the ages of the happy hours participants (using ‘member’ and ‘happy_-hour_member’ tables) through mathematical
reasoning, and suggestion 2 is further derived by relating the data to coffee shop business setting through strategic reasoning.

quality test set through comprehensive human annotations
on a subset of 100 samples. Detailed statistics are in Table
1.

Although LLM exhibit reasonable analytical capabilities
(and hence we are able to automatically curate the pre-
refined data), we empirically find that its generations of-
ten fall short of human expectations of what good analyses
should be (e.g., relevance to the queries, logical coherency,
and higher-level quantitative interpretations). To further
improve the generations by aligning the models with cor-
responding human preferences, we design a reinforcement
learning algorithm (DACO-RL) that leverages two newly
designed reward models (RM), i.e., contribution RM and
regularization RM, to efficiently provide denser feedback.
Concretely, the contribution RM heuristically provides bet-
ter learning signals for the intermediate code generation
steps (for more relevant quantitative analysis), while regu-
larization RM helps preventing reward hacking (Skalse et al.,
2022) of typical RLHF models (Casper et al., 2023). We test
our algorithm on a fine-tuned CodeGeeX-6B model (Zheng
et al., 2023a), where the win rate of 57.72% in human-
annotated pairwise comparison justifies its effectiveness on
learning to generate human preferred analyses.

In summary, our contributions are three folds: (1) We
explore the challenging task of data analysis, where we
construct the DACO dataset with our proposed multi-turn
prompting technique on a diverse set of real-world databases.
(2) We curate a human-refined evaluation set for benchmark-
ing models. (3) We design the DACO-RL algorithm to jointly
optimize code generation and answer generation towards
human alignment, which demonstrates a significant 57.72%

human evaluated win rate on the helpfulness metric.

2. The DACO Task and Dataset

As shown in Figure 1, the input to our task is a database D
and a query q, and the output answer a is formatted as two
lists of findings and suggestions respectively. In this work,
the database D should be a relational database containing
multiple named tables.

We construct our DACO dataset through four stages: (1)
database collection, (2) query collection, (3) automatic an-
notation collection, and (4) human refinement. The work-
flow is illustrated in Figure 2. Our final dataset contains the
training, development and test sets with annotations gener-
ated by GPT-4, along with a human-refined testing subset.
To distinguish the two test sets, we use Test* to represent
the automatically annotated set and Test? to represent the
human refined one. Statistics are shown in Table 1.

Database collection. We collect databases from two
sources: Spider (Yu et al., 2018) and Kaggle (https:
//www.kaggle.com/datasets). There are 157
databases collected from Spider, which originally come
from university databases, DatabaseAnswers and Wikipedia.
We additionally crawl and filter 5,830 databases from Kag-
gle. From this pool, we manually select a subset of 314
clean and interpretable databases to build our dataset. To
maintain the diversity of the resulting database set, 157 of
the databases are deliberately chosen near the long tail of its
topic distribution. For this, we employ BERTopic (Grooten-
dorst, 2022) to model the topic distribution, which produces
in total 160 topics. We take its least frequent 80 topics as


https://www.kaggle.com/datasets
https://www.kaggle.com/datasets

DACO: Towards Application-Driven and Comprehensive Data Analysis via Code Generation

Filter
Q.
Ve e
2K

Y

;

o|o

o —H—H

Databases
Generate Filter H
- 0O _ . ®
& —K ?
Queries
N
N Refine X
.0 .
M
Automatically Manually

generated refined
annotations annotations

Code-gen

—®

DACO dataset

Figure 2: Curation process of DACO dataset.

the long tail, which covers 26.79% of the total databases.

In total, DACO comprises 471 databases, each of which
contains on average 2.3 tables. To better visualize the ma-
Jjor topic distribution of this selected subset, we again use
BERTopic but group these databases into 10 topics. The
keywords for top 5 topics are shown in Figure 3. The lead-
ing topic (topic 1) is associated with business setting and
consists of 46.52% of the dataset. The remaining nine topics
exhibit a relatively even distribution, covering a broad range
of domains, including sports (topic 2), healthcare (topic 3),
weather (topic 4), and education (topic 5).

Query collection. We generate 10 queries for each database
by prompting ChatGPT to first assume the role of a database
stakeholder and then generate an application-driven query
based on the role. To ensure the quality of the query, we
perform a manual filtering to the machine generated queries.
Specifically, we remove queries that are not driven by real-
world applications or cannot be answered by the given refer-
ence database. We train a group of 6 annotators to perform
such a filtering process. As a result, there are about 42% of
the queries removed, where the removal agreement achieves
a 0.62 cohen kappa score.

After the aforementioned processes, we obtain in total 2,664
queries. We show the top 15 verbs and their top 3 direct
noun objectives in Figure 2. The queries demonstrate a
notable level of diversity. The most common type of queries
is to request analysis (such as “analyze data” and “identify
pattern”), followed by queries aiming to make decisions
(such as “determine strategy” and “make decision”).

Automatic annotation collection. As shown in the right
half of Figure 4, we design a pipeline that leverages the
code generation capability of LLMs to automate the answer

Train Dev Test? Test” | Total
#db 353 22 65 17 440
# queries | 1558 100 284 100 | 1942
Database size Med. Max Min
# tables 1 15 1
# columns 6 50
# rows 20 19,237 2
Answer size in Test” | Med. Max Min
# findings 5 8 3
# suggestions 5 8 3
# tokens 397 864 202

Table 1: Statistics of DACO dataset. Train, Dev and Test” sets
are automatically generated with GPT-4, while Test? is the human
refined subset. We report the size of each data split, the size of
input databases, and the size of output answers in human refined
test set (TestH).

annotation for our DACO dataset. Based on the database and
the query, we instruct the LLM to perform data analysis in
multiple turns. At each turn, the LLM will produce a python
code snippet and take its execution outputs as evidences to
reason over and support its follow-up interpretation. After
each turn, we prompt the model to decide whether the anal-
ysis is sufficiently comprehensive; if deemed sufficient, it
terminates the coding turns and produces the final answer.

With this pipeline, we instruct GPT-4 to automatically gen-
erate all the answer annotations to each query of our dataset,
for both the intermediate code and the final analysis answer-
ing the queries. To improve the quality of such automati-
cally constructed annotations, we additionally allow GPT-4
to correct its own mistakes when its generated code leads to
run-time or syntax error, where only the corrected codes are
kept. In total, we obtain 1.9k valid query-answer pairs, each
with roughly 3.3 intermediate coding steps.

Human refinement. The annotated analyses thus far have
been algorithmically generated, where their actual qual-
ity are to be further verified. We thus curate a human-
refined subset containing 100 densely human-annotated
query-answer pairs. For each query, we sample 3 differ-
ent analysis candidates using the previously described au-
tomated method (with GPT-4). We ask the annotators to
evaluate the quality of each machine generated bullet point
and categorize each point into one of bad, borderline, or
good (associated with scalar scores of 0, 1 and 2 respec-
tively, the higher the better) to each. The bullet points
deemed higher quality are then mixed (from the 3 candi-
date analyses) and refined (with a few manual textual edits)
into one final gold-analysis. In the refinement stage, the
annotators should first combine all bullet points ranked as
“good”, remove duplicate points, and reorder the points to
maintain a coherent flow. Suppose the number of bullet
points are lower than our pre-defined lowest threshold (3
bullet points per answer), the annotators should select bullet



DACO: Towards Application-Driven and Comprehensive Data Analysis via Code Generation

Topic Distribution

N
o

3]
o

Percentage (%)

1. 2 3 4 5 6 7 8 9 10
Topics

Keywords for Top 5 Topics

Topic 1: price, sales, customer, company

Topic 2: player, game, club, winners

Topic 3: world, health, life, expectancy

Tapic 4: weather, temperature, rainfall, forecasting

Topic 5: student, schoal, universities, education

Figure 3: Domain distribution of DACO databases. We display
the topic distribution and keywords for the leading 5 topics. Topics
are extracted from database titles using BERTopic. This demon-
strates the diverse domain coverage of DACO.

points ranked as “borderline” to augment the answer. we ask
a group of 3 internal members to perform refinement. The
agreement accuracy of the refinement process (candidate
point selection) is 0.83 and the Cohen’s Kappa is 0.67.

Evaluation. To evaluate the quality of generated data anal-
ysis, we use helpfulness as the main metric. Motivated by
literature in the data analysis field (Long & Long, 2009),
we define helpfulness as: (1) relevance to the query, (2)
effective and insightful data interpretation, and (3) diversity
in terms of analysis perspectives. We evaluate helpfulness
through pairwise comparison following common approach
(Ouyang et al., 2022; Wu et al., 2023; Zheng et al., 2023b).
Given two analyses generated by two different systems, the
annotator (either human or simulated by ChatGPT) selects
the more helpful one based on our defined criteria. The
winning rate of each system is reported as helpfulness score.
To obtain a comparable set of numbers for all models, we
report the winning rate of each model against Test” and
Test? annotations. The upper bound for this score would
be 50, as a score of 50 indicates that the model generations
are perceived as helpful as annotations.

3. DACO-RL

While DACO contains mostly algorithmic machine gen-
erated analyses, the machine generations without human
refinement cannot well align with human preferences (of
“good” analyses). Our human refinement process shows
that only 47.4% bullet points are “good” points perfectly
addressing user queries; the majority of 52.2% are evalu-
ated as “borderline” points that only partially aligns with

area trend

o,
S,
<, &
0, &,
! >
> o,
% %
car &%
pattern
Po,
pUIa"ity
performance
e ; allocation
iveness evaluat Unomlmlze schedule
effectiv ddErsta,,d St"ategy
/ / (P be
. ct @ 7 havi
inpa assess é‘\b' s, 0p - fre,,f;
@ =1 % Mpace
. 8 3 3
risk ¥ S 2. use
> 3 © )
o "make 2 2 Sty » iy,
«° Z ® . 3, SO
& Q e, s,
ESa p o 7
& X¢ 0,
s° 2 %
93 e %" 7
o ° o, (NN
o
rate @ gg _§ " % 39‘ _ data
§ - & 3
§ decision ¥ @ 3§ 3 ER
2 EC IS A © >
E X @ @ data
§ 9 g 32
i =8

Table 2: Distribution of DACO queries. We display the top 15
verbs and their top 3 direct noun objectives, demonstrating the
diversity of DACO queries.

human expectations; and the remaining 0.4% are considered
as “bad”.

We are therefore interested in investigating whether aligning
human preferences via an RLHF fashion could lead to better
machine generated analyses. We thus propose the DACO-RL
algorithm, which is illustrated in the left half of Figure 4.
Our end goal is to optimize the helpfulness of the analyzed
points, which is modelled with an answer RM R,,. In ad-
dition to this sparse reward signal, we use a heuristically
defined contribution RM R, to reward each intermediate
step, which is further regularized with a regularization RM
R, to prevent reward hacking. In the following sections,
we first explain the three reward models sequentially, and
eventually explain our whole RLHF pipeline.

Notations. We train a language model that interacts
with the python interpreter in a conversational man-
ner. Formally, the full dialogue is a list of messages
[h,c1,01, - ,Cm,0m, al, where h, c;, 0; and a stand for
human message, code, execution outputs and final answer
respectively. The dialogue starts with human message h
containing both query q and database meta-data. In the
later messages, code c¢; and final answer a are generated by
our model, while execution outputs o; are produced by the
python interpreter. To feed the dialogue into the language
model, we wrap each message between a begin-of-message
phrase (denoted as <BOM>) and the end-of-sentence to-
ken, and then concatenate all messages together. We use a
different <BOM> for each type of message. Thus, at each
turn of the conversation, the language model can decide
whether to generate code c or final answer a by generating



DACO: Towards Application-Driven and Comprehensive Data Analysis via Code Generation

DACO-RL

As a customer rights advocate, | want to assess if the coffee shop is promoting
age discrimination.

LM (t=1):

Code interpreter:

Automatic measure: code 1
contributes to the final answer

1
more than code 2 1

Contribution
RM

I will now analyze the age distribution among members to see
if there are any anomalies or unusual patterns... count

member_table = db["member™]

print(age_stats)

Age statistics for members:
10.000000
|| mean  43.700000

std 11.518584
29.000000

RL

Code interpreter:

Policy ¢pqck that hacks
contribution RM

training

[N

age_stats = member_table["Age"].describe() :
print("Age statistics for members:") min
\ | will now examine if there are any age-related discrepancies

HH_ID Total_amount \

in happy hour participation and spending patterns... 0-18 0 0.00
/—/ happy_hour_table = db["happy_hour"] N 19-35 4 50.92

e e e — happy_hour_member_table = db["happy_hour_member"] 36-65 2 33.82
1 Code Code : z merged_data = pd.merge(happy_hour_member_table, 66+ 0 0.00
: generation < generation :_’ @ Regul;;;zation member_table, on="Member_ID")
1 from Gnack from ¢no—hack + | O NN
L ! LM (final answer):

Findings
[k — 1. The age distribution of the coffee shop's members is primarily within the age range of 19-65, with
: 8 H . ' 40% of members aged 19-35, 50% aged 36-65, and 10% aged 66 or older...
! Hman- =1 Answer RM Suggestions
| answer 1 > answer 2 ] suggestions " ) ) )
1 1 1. It would be useful to evaluate any age-specific marketing strategies or promotions employed by the
T ' coffee shop...

Figure 4: Overview of code generation pipeline (right) and our DACO-RL algorithm (left).
Code generation (right): At each turn, the model generates python code, execute the code with a code interpreter, and reads the execution

outputs. Eventually, it summarizes the results into a final answer.

DACO-RL (left): The answer RM evaluates the helpfulness of the final answer and is our end optimization goal. However, to provide
denser reward, we use a contribution RM to evaluate how much each generated code contribute to the final answer. The reward is provided
at the end of each generated code snippet. Contribution RM is vulnerable to reward hacking, which motivates us to propose regularization

RM to discourage reward hacking generations.

the corresponding <BOM>.

Answer RM. Our end goal is to optimize the helpfulness of
answer a, which is modelled by the answer RM R,,. Partic-
ularly, we model the helpfulness of each single bullet point
rather than the full answer. We collect pairwise comparison
data of bullet points from ChatGPT to train R,. Given a
pair of bullet points where one is preferred over the other,
R, is trained to assign a higher score to the preferred bullet
point. Given access to the full conversation, R, produces a
reward score at the end of each bullet point in the answer.

To encourage diversity, we additionally add a repetition
penalty. Given a list of findings [fi, - - , fr|, we encour-
age the i-th finding to be different from all previous find-
ings by imposing a penalty score as Z;;ll Sim(f;, £;),
where Sim(-, -) computes the similarity between two bullet
points.! This score is then subtracted from the reward score
from R,. The same procedure is applied to the suggestion
list.

Contribution RM. The answer RM described above is a
sparse reward signal that rewards only the answer a but
not intermediate coding steps c;. To provide denser reward
signal for optimizing c;, we aim to evaluate the helpfulness
of each coding step c;. However, annotating helpfulness
of intermediate steps is much more difficult. For one, the

'Sim(-,-) is computed as the cosine similarity of Sentence-
BERT (Reimers & Gurevych, 2019) embeddings. We use the
ALL-MINILM-L6-V2 model.

helpfulness of python code is more vague to define, and
the other, evaluating helpfulness requires coding expertise,
which makes it more expensive to collect human annota-
tions.

To measure the helpfulness of intermediate steps without
the huge expense required by human annotations, we heuris-
tically define the helpfulness as how much an intermediate
step contributes to the final answer. Concretely, we com-
pute the similarity Sim(a, 0;) between final answer and
code outputs to measure the helpfulness of c;. We use
Sim(a, 0;) to rank the helpfulness of different steps, and
use the comparison pairs between intermediate steps to train
the contribution RM R.. Given the conversation, R, pre-
dicts the contribution level of each c; as its reward score.
R, does not take the execution output o; into consideration
when scoring c;, which simplifies model implementation
and excludes spurious correlation the model may exploit
from the surface form of o;.

Regularization RM. The heuristically defined contribution
RM R. may not necessarily perfectly align with the true
helpfulness. This is due to a known reward misspecification
issue termed reward hacking (Skalse et al., 2022), where
the policy model achieves higher scores from the reward
model but its true reward decreases. We propose to regular-
ize such behavior with a regularization RM R,.. Given the
misspecified reward model, R, in our case, we first train an
RL model until its generations start to collapse to certain
patterns. These patterns typically receive high rewards from



DACO: Towards Application-Driven and Comprehensive Data Analysis via Code Generation

R, but do not align well with human expectation, and thus
are considered as reward hacking behaviors. We denoted
this RL model as 7p,ck. We use 7p,ck to produce generations
with typical reward hacking behaviors. These generations
are paired with generations without reward hacking behav-
iors, such as generations from supervised fine-tuning (SFT)
model or the pre-human refined answers generated from
GPT-4, to further train the regularization RM R,. As an
intuition, this means R,. will assign lower scores to typical
reward hacking behaviors.

RLHF. For our whole DACO-RL pipeline, we optimize the
language model against the mixture of all three aforemen-
tioned rewards, R,, R. and R,..

More specifically, we first train a multi-task reward model
denoted as R, . to jointly learn R, and R.. This guaran-
tees that the reward score distribution for R, and R, are
relatively close, so the reward signal for a and c; will not
overshadow each other. We train a separate model to learn
R,, and mix R, and R, into (Rc4q + w,R,) when
rewarding c;.? Here, w, is a hyper-parameter to balance the
variance of R., and R, tuned to maximize reward model
accuracy on development set. This guarantees the mixed
reward can both encourage high contribution and penalize
reward hacking.

We use proximal policy optimization (PPO) (Schulman et al.,
2017) as our learning algorithm. During training, PPO
jointly optimizes a value model V' (s) and a policy model
m(s). The objective of the policy model is to optimize the
generalized advantage estimation (Schulman et al., 2016)
At = Z?io(’yA)lét-‘rl’ where (St =7+ ’YV(St+1) — V(St)
for each time step t. When applied to text generation, the
generative language model is the policy model 7 and each
generated token is an action. In our multi-turn conversa-
tional setting, however, only part of the tokens in the di-
alogue are generated by language model (concretely, c;
and a). In other words, although the language model still
takes the full conversation as input, we only compute GAE
and gradients over the model generated subsequence, i.e.,
[c1, -, Cm,a].

4. Experiments

The goal of our experiments is to verify that (1) augment-
ing language model with code generation can benefit data
analysis, and (2) DACO-RL can further boost the answer
helpfulness. To this purpose, we perform the following
experiments:

Evaluated systems. We evaluate the code generation
pipeline with ChatGPT and GPT-4. With the answer annota-

*In practice, we find R, has a large non-zero mean value, so
we subtract it before weighted average.

tion generated by GPT-4, we further train a 6B CodeGeeX2-
6B (Zheng et al., 2023a) model through both SFT and
DAco-RL. For each of these models, we experiment with a
baseline counterpart that does not include code generation
and instead directly takes raw table content as input. We
additionally experiment with two models specifically pre-
trained on tabular data, TAPAS (Herzig et al., 2020) and
TAPEX (Liu et al., 2022). TAPAS is a BERT-style model
pre-trained to select relevant information from a table based
on user query. For our dataset, we first use TAPAS to select
relevant information and then use ChatGPT to interpret the
selected information. TAPEX is a pre-trained encoder-to-
decoder model. We fine-tune TAPEX with GPT-4-generated
annotations.

Evaluation. The main metric we use is pairwise compari-
son of helpfulness as in Section 2. We use both ChatGPT
and trained human annotators for the evaluation. We ad-
ditionally report BLEU score, entailment score, and help-
fulness evaluation for each individual bullet point. These
metrics cannot holistically measure the analysis helpfulness,
but can provide complementary insights for analyzing model
performance. For entailment, we use an off-the-shelf NLI
model to compute the probability that the model generation
is entailed by the annotation. For point-wise evaluation, we
ask the annotator to assign a score chosen from 0, 1 and 2
to each bullet point using the same standard as in human
refinement of test set. Our human annotation achieves high
agreement of 0.62 Cohen’s kappa for pairwise comparison
of helpfulness, and 0.65 Cohen’s kappa for point-wise help-
fulness evaluation.

4.1. Results

The main results are in Table 3. We have the following
observations:

Code generation significantly helps data analysis, espe-
cially for zero-shot LLMs. ChatGPT and GPT-4 both enjoy
a significant gain in most metrics, especially helpfulness,
when equipped with code generation. As in Table 5, human
evaluation further shows that GPT-4 with code generation
has a significant 66.41 win rate over GPT-4 w/o code gener-
ation. After SFT, code generation brings less significant im-
provements, because SFT w/o code generation can simulate
the behavior in GPT annotations and achieve competitive
helpfulness. However, its mathematical and logical reason-
ing are not supported by code generation, so it produces
more hallucination as reflected by the low entailment score
on Test!.

Our SFT model learns reasonable data analysis capa-
bilities. By simulating GPT-4 behaviors, SFT with code
generation achieves a reasonable helpfulness score and out-
performs the TAPEX baseline, but still falls short compared
to ChatGPT. We also evaluate the error rate (%) of generated



DACO: Towards Application-Driven and Comprehensive Data Analysis via Code Generation

Test™ Test™
Method #para. Code gen | Help. Entail. BLEU | Help. Entail. BLEU
TableQA | TAPAS 337M X 25.00 196 11.62 | 2450 3.67 9.73
Baselines | TAPEX 406M X 14.79 334 1460 | 6.00 3.50 13.81
ChatGPT  20Bf X 25.18 3.06 1322 | 18.50 207 1351
Prompt- GPT-4 175Bf X 30.81 3.35 1490 | 24.00 436 1371
based LLM | ChatGPT  20Bf v 35.74 274 1422 | 27.27 259 1451
GPT-4 175Bf v 52.00 459 17.77 | 41.88 326  17.54
Finetuned | SEL 6B X 21.51 230 1447 | 950 265 13.63
LIM SFT 6B v 20.95 215 14.88 | 11.54 447  14.60
DACO-RL 6B v 28.54 3.65 13.13 | 21.05 598 11.80

Table 3: Main results. We report helpfulness (Help.), entailment (Entail.), and BLEU on both automatically annotated test set (TestA)
and human curated test set (Test™). We also report the number of parameters (# para.) of each model. t: For ChatGPT and GPT-4, we

report the number of parameters based on our best estimation.

Answer Code
Help. Help.-SFT  Entail. BLEU | Info.-SFT #lines # API  Error
SFT 11.54 50.00 447  14.60 50.00  41.17 134 3.08
DACO-RL 21.05 58.49 598 11.80 57.86  39.66 145 275
w/o R, 18.75 51.92 3.21 13.17 52.56  32.54 120 3.84
w/o R., R, 8.79 40.00 3.13 11.46 44.57 14.30 108 391

Table 4: Ablation study of regularization RM (R,.) and contribution RM (R,.) in DACO-RL. We report helpfulness (Help.), entailment
(Entail.) and BLEU scores evaluated on Test” . We also compare the helpfulness of each model directly against SFT and report the win
rate (Help.-SFT). For evaluating code generation, we report the informativeness win rate over SFT generations (Info.-SFT), number of
code lines (# lines), number of different API (# API), and code error rate per step. Pair-wise comparison results are all obtained from

ChatGPT.
Pairwise comparison | Point-
Human  ChatGPT wise
GPT-4 code gen v.s. 66.41 70.07 1.45
GPT-4 w/o code gen 33.59 29.93 1.36
DAco-RL v.s. 57.72 58.49 1.42
SFT 42.28 41.51 1.30

Table 5: Human evaluation. We report human-rated and
ChatGPT-rated helpfulness pairwise comparison of two pairs of
models: GPT-4 with v.s. without code generation, and DACO-RL
v.s. SFT. We also report point-wise evaluation scores scaled into 0
~ 2 rated by human annotators.

code per step. Our SFT model has an error rate of 3.08%,
which is reasonable low, but still much higher than ChatGPT
(0.495%) and GPT-4 (0.491%).

DAcCO-RL significantly improves over SFT. As shown in
Table 3 and 4, DACO-RL significantly boosts the perfor-
mance. Despite the difference in model size, DACO-RL
outperforms ChatGPT w/o code generation on helpfulness
and entailment metrics. When matched in size, DACO-RL
significantly outperforms SFT by 7 points on helpfulness,
further demonstrating its benefits. Human evaluation demon-
strates a 57.72 win rate of DACO-RL over SFT as in Table 5.
Our qualitative analysis shows that DACO-RL better focuses
on user query, while SFT tends to display generic statistics
that are less relevant to user query. An example is shown in
Figure 5.

We further perform ablation study and report the results in
Table 4. To directly compare the ablation models against
SFT, we report the win rate of each model over SFT model.

Top 4 APIs Bottom 4 APIs
API Corr. | API Corr.
print 4424 | to_datetime -18.96
nlargest 20.06 | isnull -17.76
mean 14.56 | describe -12.02
sort_values  12.23 | merge -10.83

Table 6: APIs ranked by its correlation with contribution RM
scores. Higher correlation means that contribution RM assigns
higher scores to code snippets containing the API.

To evaluate the quality of code generation, we use ChatGPT
to compare the “informativeness” of generated code against
SFT, where informativeness refers to producing informative
and insightful code execution outputs while staying relevant
to the user query. We report a few additional statistics in-
cluding the number of code lines and the number of different
API calls. We observe that without our proposed two reward
models (DACO-RL w/o R, R,), using only answer RM sig-
nificantly hurts the model generation, leading to short and
less diverse code generation and thus less helpful final an-
swers. Contribution RM and regularization RM encourage
more diverse code generation and more helpful final answer
production.

Contribution RM favors API calls that extracts impor-
tant information from tabular data but is also vulnerable
to reward hacking. We report the Pearson correlation be-
tween API occurrence and contribution RM scores in Table
6. The functions rewarded most are related to extracting
significant features (nlargest, sort_values), aggre-
gating results (mean), and displaying specific information
(print). In contrast, the least rewarded functions involve



DACO: Towards Application-Driven and Comprehensive Data Analysis via Code Generation

displaying generic statistics (describe) and wrangling
data (merge, to_datetime, is_null) since they can-
not directly contribute to the user query. Examples of gen-
erated code and their contribution RM scores are shown
in Figure 6a and 6b. However, we notice the concerningly
high correlation between print function and contribution
RM scores, which indicates the RL policy may exploit the
correlation to hack reward. Figure 6¢ shows a typical reward
hacking case, where the model achieves a high contribution
RM score by printing. Our regularization RM learns to
discourage such behavior and helps fix the gap.

Evaluation on external test sets. To further analyze the
effectiveness of DACO-RL, we evaluate our SFT and DACO-
RL models on two external test sets: (1) data analysis bench-
mark InfiAgent-DA (Hu et al., 2024) (a concurrent work of
ours), and (2) free-form table question answering dataset Fe-
TaQA (Nan et al., 2022). We find that DACO-RL improves
the accuracy over SFT on InfiAgent-DA (14.61 v.s. 12.92),
especially over questions about summary statistics (14.86
v.s. 10.80) and correlation analysis (21.57 v.s. 14.86), which
aligns with our evaluation results on DACO-RL dataset.
On FeTaQA, DACO-RL retains similar performance (6.35
Rouge-L, 80.74 BERTScore) compared to SFT (6.39 Rouge-
L, 80.68 BERTScore) since DACO-RL is not specifically
trained to enhance information lookup capabilities.

5. Related Work

Table Analysis. Early work in table question answering (ta-
ble QA) targets simple questions that requires table lookup
and cell aggregations (Pasupat & Liang, 2015; Zhong et al.,
2017; Iyyer et al., 2017; Yu et al., 2018; Nan et al., 2022).
Later benchmarks further require free-form answer gener-
ation (Nan et al., 2022), multi-hop reasoning (Chen et al.,
2021a; 2020) and mathematical reasoning (Zhu et al., 2021;
Chen et al., 2021b; Lu et al., 2023). Despite the similar
formulation between our task and existing table QA work,
their focus are different: most existing table QA datasets
focus on obtaining specific information, our data analysis
queries can be complex and requires query decomposition
and reasoning. Some concurrent work further targets com-
prehensive table analysis such as correlation analysis and
causal reasoning (Nan et al., 2023; Hu et al., 2024; Liu et al.,
2024). The main difference between this work to the con-
current work is our focus on addressing application-driven
user queries.

Code Generation. Code generation benchmarks have been
proposed for general-purpose programming (Austin et al.,
2021; Hendrycks et al., 2021), math problems (Austin et al.,
2021), and data science scenario (Lai et al., 2022; Huang
et al., 2022). Similar to our work, some recent work allows
the language model to interact with a code execution envi-
ronment and receive execution outputs as feedback (Yang

et al., 2023; Wang et al., 2023). The most relevant work
is Cheng et al. (2023) that also addresses data analysis via
code generation. Given a data analysis query, they use GPT-
4 to first generate code and then provide an interpretation
of the execution results. While their analysis queries are
still relatively simple, this is an early exploration aiming at
automating data analysis.

RLHF. Reinforcement learning from human feedback
(RLHF) aims to optimize a language model against human
preference (Ouyang et al., 2022; Touvron et al., 2023; Bai
et al., 2022a;b; Ziegler et al., 2019; Wu et al., 2023). While
traditionally RLHF uses a holistic reward score for the entire
generation (Ziegler et al., 2019; Ouyang et al., 2022), recent
work shows that dense reward scores for the intermediate
reasoning steps are better learning signals (Lightman et al.,
2023; Wu et al., 2023). These work uses expensive human
annotation to collect annotations for the dense reward data.
Compared to human preference, heuristic rewards are more
accessible but may not align well with true reward. This
gap can lead to reward hacking (Skalse et al., 2022; Pan
et al., 2022). A common remedy is to use manually de-
signed heuristics to penalize behaviors that potentially harm
the true reward (Ouyang et al., 2022; Laidlaw et al., 2023).
In this work, we train the regularizatoin RM to discourage
reward hacking.

6. Conclusion

In this work, we propose a novel and challenging data anal-
ysis task, which involves decomposing user query into mul-
tiple perspectives, grounding each perspective to the input
data and performing logical and mathematical reasoning.
To support this task, we build the DACO dataset containing
large-scale annotations automatically generated by GPT-4
and a small but high-quality test set with human curated
annotations. We employ LLM enhanced with code gener-
ation to this task and evaluate three models on our dataset:
zero-shot ChatGPT, zero-shot GPT-4 and a 6B SFT model.
While GPT-4 consistently performs the best, SFT achieves
reasonably good helpfulness with much less computation.
On top of the SFT model, we further proposed our DACO-
RL algorithm that significantly boosts the human evaluated
helpfulness.

References

Austin, J., Odena, A., Nye, M. 1., Bosma, M., Michalewski,
H., Dohan, D., Jiang, E., Cai, C. J., Terry, M., Le, Q. V.,
and Sutton, C. Program synthesis with large language
models. CoRR, abs/2108.07732, 2021. URL https:
//arxiv.org/abs/2108.07732.

Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., Das-
Sarma, N., Drain, D., Fort, S., Ganguli, D., Henighan,


https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2108.07732

DACO: Towards Application-Driven and Comprehensive Data Analysis via Code Generation

T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T.,
Showk, S. E., Elhage, N., Hatfield-Dodds, Z., Hernandez,
D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda,
N., Olsson, C., Amodei, D., Brown, T. B., Clark, J., Mc-
Candlish, S., Olah, C., Mann, B., and Kaplan, J. Train-
ing a helpful and harmless assistant with reinforcement
learning from human feedback. CoRR, abs/2204.05862,
2022a. doi: 10.48550/ARXIV.2204.05862. URL https:
//doi.org/10.48550/arXiv.2204.05862.

Bai, Y., Kadavath, S., Kundu, S., Askell, A., Kernion, J.,
Jones, A., Chen, A., Goldie, A., Mirhoseini, A., McKin-
non, C., Chen, C., Olsson, C., Olah, C., Hernandez, D.,
Drain, D., Ganguli, D., Li, D., Tran-Johnson, E., Perez,
E., Kerr, J., Mueller, J., Ladish, J., Landau, J., Ndousse,
K., Lukosiute, K., Lovitt, L., Sellitto, M., Elhage, N.,
Schiefer, N., Mercado, N., DasSarma, N., Lasenby, R.,
Larson, R., Ringer, S., Johnston, S., Kravec, S., Showk,
S. E., Fort, S., Lanham, T., Telleen-Lawton, T., Conerly,
T., Henighan, T., Hume, T., Bowman, S. R., Hatfield-
Dodds, Z., Mann, B., Amodei, D., Joseph, N., McCan-
dlish, S., Brown, T., and Kaplan, J. Constitutional Al:
harmlessness from Al feedback. CoRR, abs/2212.08073,
2022b. doi: 10.48550/ARXIV.2212.08073. URL https:
//doi.org/10.48550/arXiv.2212.08073.

Casper, S., Davies, X., Shi, C., Gilbert, T. K., Scheurer,
J., Rando, J., Freedman, R., Korbak, T., Lindner, D.,
Freire, P., Wang, T., Marks, S., Ségerie, C., Carroll,
M., Peng, A., Christoffersen, P. J. K., Damani, M.,
Slocum, S., Anwar, U., Siththaranjan, A., Nadeau, M.,
Michaud, E. J., Pfau, J., Krasheninnikov, D., Chen,
X., Langosco, L., Hase, P., Biyik, E., Dragan, A. D.,
Krueger, D., Sadigh, D., and Hadfield-Menell, D. Open
problems and fundamental limitations of reinforcement
learning from human feedback. CoRR, abs/2307.15217,
2023. doi: 10.48550/ARXIV.2307.15217. URL https:
//doi.org/10.48550/arXiv.2307.15217.

Chen, W., Zha, H., Chen, Z., Xiong, W., Wang,
H., and Wang, W. Y. HybridQA: A dataset of
multi-hop question answering over tabular and textual
data. In Findings of the Association for Computa-
tional Linguistics: EMNLP 2020, pp. 1026-1036, On-
line, November 2020. Association for Computational
Linguistics. doi: 10.18653/v1/2020.findings-emnlp.
91. URL https://aclanthology.org/2020.
findings—-emnlp.91.

Chen, W., Chang, M., Schlinger, E., Wang, W. Y., and
Cohen, W. W. Open question answering over tables
and text. In 9th International Conference on Learn-
ing Representations, ICLR 2021, Virtual Event, Austria,
May 3-7, 2021. OpenReview.net, 2021a. URL https:
//openreview.net/forum?id=MmCRswl11UY1.

Chen, Z., Chen, W., Smiley, C., Shah, S., Borova, I,
Langdon, D., Moussa, R., Beane, M., Huang, T.-H.,
Routledge, B., and Wang, W. Y. FinQA: A dataset
of numerical reasoning over financial data. In Pro-
ceedings of the 2021 Conference on Empirical Methods
in Natural Language Processing, pp. 3697-3711, On-
line and Punta Cana, Dominican Republic, November
2021b. Association for Computational Linguistics. doi:
10.18653/v1/2021.emnlp-main.300. URL https://
aclanthology.org/2021.emnlp-main.300.

Cheng, L., Li, X., and Bing, L. Is GPT-4 a good data ana-
lyst? CoRR, abs/2305.15038, 2023. doi: 10.48550/arXiv.
2305.15038. URL https://doi.org/10.48550/
arXiv.2305.15038.

Ehrlinger, L. and W68, W. A survey of data quality mea-
surement and monitoring tools. Frontiers in big data, 5:
850611, 2022.

Grootendorst, M.  Bertopic: Neural topic modeling
with a class-based tf-idf procedure. arXiv preprint
arXiv:2203.05794, 2022.

Hendrycks, D., Basart, S., Kadavath, S., Mazeika,
M., Arora, A., Guo, E., Burns, C., Puranik, S., He,
H., Song, D., and Steinhardt, J. Measuring coding
challenge competence with APPS. In Vanschoren,
J. and Yeung, S. (eds.), Proceedings of the Neural
Information Processing Systems Track on Datasets and
Benchmarks 1, NeurIPS Datasets and Benchmarks
2021, December 2021, virtual, 2021. URL https:
//datasets—-benchmarks—-proceedings.
neurips.cc/paper/2021/hash/

c24cd76elcedl366ad4bbe8ad9002a028-Abstract-round2.

html.

Herzig, J., Nowak, P. K., Miiller, T., Piccinno, F., and Eisen-
schlos, J. TaPas: Weakly supervised table parsing via
pre-training. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics, pp.
4320-4333, Online, July 2020. Association for Compu-
tational Linguistics. doi: 10.18653/v1/2020.acl-main.
398. URL https://aclanthology.org/2020.
acl-main.398.

Hu, X., Zhao, Z., Wei, S., Chai, Z., Wang, G., Wang, X., Su,
J., Xu, J., Zhu, M., Cheng, Y., et al. Infiagent-dabench:
Evaluating agents on data analysis tasks. arXiv preprint
arXiv:2401.05507, 2024.

Huang, J., Wang, C., Zhang, J., Yan, C., Cui, H., Inala, J. P,
Clement, C., and Duan, N. Execution-based evaluation
for data science code generation models. In Proceedings
of the Fourth Workshop on Data Science with Human-in-
the-Loop (Language Advances), pp. 28—-36, Abu Dhabi,


https://doi.org/10.48550/arXiv.2204.05862
https://doi.org/10.48550/arXiv.2204.05862
https://doi.org/10.48550/arXiv.2212.08073
https://doi.org/10.48550/arXiv.2212.08073
https://doi.org/10.48550/arXiv.2307.15217
https://doi.org/10.48550/arXiv.2307.15217
https://aclanthology.org/2020.findings-emnlp.91
https://aclanthology.org/2020.findings-emnlp.91
https://openreview.net/forum?id=MmCRswl1UYl
https://openreview.net/forum?id=MmCRswl1UYl
https://aclanthology.org/2021.emnlp-main.300
https://aclanthology.org/2021.emnlp-main.300
https://doi.org/10.48550/arXiv.2305.15038
https://doi.org/10.48550/arXiv.2305.15038
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/c24cd76e1ce41366a4bbe8a49b02a028-Abstract-round2.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/c24cd76e1ce41366a4bbe8a49b02a028-Abstract-round2.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/c24cd76e1ce41366a4bbe8a49b02a028-Abstract-round2.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/c24cd76e1ce41366a4bbe8a49b02a028-Abstract-round2.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/c24cd76e1ce41366a4bbe8a49b02a028-Abstract-round2.html
https://aclanthology.org/2020.acl-main.398
https://aclanthology.org/2020.acl-main.398

DACO: Towards Application-Driven and Comprehensive Data Analysis via Code Generation

United Arab Emirates (Hybrid), December 2022. Asso-
ciation for Computational Linguistics. URL https:
//aclanthology.org/2022.dash-1.5.

Iyyer, M., Yih, W.-t., and Chang, M.-W. Search-based
neural structured learning for sequential question an-
swering. In Proceedings of the 55th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pp. 1821-1831, Vancouver,
Canada, July 2017. Association for Computational Lin-
guistics. doi: 10.18653/v1/P17-1167. URL https:
//aclanthology.org/P17-1167.

Lai, Y., Li, C., Wang, Y., Zhang, T., Zhong, R., Zettlemoyer,
L., Yih, S. W,, Fried, D., Wang, S. L., and Yu, T. DS-
1000: A natural and reliable benchmark for data science
code generation. CoRR, abs/2211.11501, 2022. doi: 10.
48550/arXiv.2211.11501. URL https://doi.org/
10.48550/arXiv.2211.11501.

Laidlaw, C., Singhal, S., and Dragan, A. Preventing reward
hacking with occupancy measure regularization. In ICML
Workshop on New Frontiers in Learning, Control, and
Dynamical Systems, 2023.

Lightman, H., Kosaraju, V., Burda, Y., Edwards, H.,
Baker, B., Lee, T., Leike, J., Schulman, J., Sutskever,
I, and Cobbe, K. Let’s verify step by step.
CoRR, abs/2305.20050, 2023. doi: 10.48550/arXiv.
2305.20050. URL https://doi.org/10.48550/
arXiv.2305.20050.

Liu, Q., Chen, B., Guo, J., Ziyadi, M., Lin, Z., Chen, W., and
Lou, J. TAPEX: table pre-training via learning a neural
SQL executor. In The Tenth International Conference
on Learning Representations, ICLR 2022, Virtual Event,
April 25-29, 2022. OpenReview.net, 2022. URL https:
//openreview.net/forum?id=050443AsCP.

Liu, X., Wu, Z., Wu, X., Lu, P,, Chang, K.-W., and Feng, Y.
Are llms capable of data-based statistical and causal rea-
soning? benchmarking advanced quantitative reasoning
with data, 2024.

Long, J. S. and Long, J. S. The workflow of data analysis
using Stata. Stata Press College Station, TX, 2009.

Lu, P, Qiu, L., Chang, K., Wu, Y. N., Zhu, S., Rajpurohit,
T., Clark, P., and Kalyan, A. Dynamic prompt learning
via policy gradient for semi-structured mathematical rea-
soning. In The Eleventh International Conference on
Learning Representations, ICLR 2023, Kigali, Rwanda,
May 1-5, 2023. OpenReview.net, 2023. URL https:
//openreview.net/pdf?id=DHyHRBwJUTN.

Nan, L., Hsieh, C., Mao, Z., Lin, X. V., Verma, N., Zhang,
R., Kryscinski, W., Schoelkopf, H., Kong, R., Tang, X.,

Mutuma, M., Rosand, B., Trindade, 1., Bandaru, R., Cun-
ningham, J., Xiong, C., Radev, D., and Radev, D. Fe-
TaQA: Free-form table question answering. Transactions
of the Association for Computational Linguistics, 10:35—
49, 2022. doi: 10.1162/tacl_.a_00446. URL https:
//aclanthology.org/2022.tacl—-1.3.

Nan, L., Zhang, E., Zou, W., Zhao, Y., Zhou, W., and Cohan,
A. On evaluating the integration of reasoning and action
in llm agents with database question answering. arXiv
preprint arXiv:2311.09721, 2023.

OpenAl. GPT-4 technical report. CoRR, abs/2303.08774,
2023. doi: 10.48550/ARXIV.2303.08774. URL https:
//doi.org/10.48550/arXiv.2303.08774.

Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright,
C. L., Mishkin, P., Zhang, C., Agarwal, S., Slama,
K., Ray, A., Schulman, J., Hilton, J., Kelton, F,
Miller, L., Simens, M., Askell, A., Welinder, P,
Christiano, P. F.,, Leike, J., and Lowe, R. Training
language models to follow instructions with human
feedback. In NeurIPS, 2022. URL http://papers.
nips.cc/paper_files/paper/2022/hash/

blefde53be364a73914£58805a001731-Abstract-Confere

html.

Pan, A., Bhatia, K., and Steinhardt, J. The effects of
reward misspecification: Mapping and mitigating mis-
aligned models. In The Tenth International Conference
on Learning Representations, ICLR 2022, Virtual Event,
April 25-29, 2022. OpenReview.net, 2022. URL https:
//openreview.net/forum?id=JYtwGwIL7ye.

Pasupat, P. and Liang, P. Compositional semantic parsing on
semi-structured tables. In Proceedings of the 53rd Annual
Meeting of the Association for Computational Linguis-
tics and the 7th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers), pp.
1470-1480, Beijing, China, July 2015. Association for
Computational Linguistics. doi: 10.3115/v1/P15-1142.
URL https://aclanthology.org/P15-1142.

Reimers, N. and Gurevych, I. Sentence-BERT: Sentence
embeddings using Siamese BERT-networks. In Pro-
ceedings of the 2019 Conference on Empirical Meth-
ods in Natural Language Processing and the 9th In-
ternational Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP), pp. 3982-3992, Hong Kong,
China, November 2019. Association for Computational
Linguistics. doi: 10.18653/v1/D19-1410. URL https:
//aclanthology.org/D19-1410.

Schulman, J., Moritz, P., Levine, S., Jordan, M. 1., and
Abbeel, P. High-dimensional continuous control using
generalized advantage estimation. In Bengio, Y. and Le-
Cun, Y. (eds.), 4th International Conference on Learning


https://aclanthology.org/2022.dash-1.5
https://aclanthology.org/2022.dash-1.5
https://aclanthology.org/P17-1167
https://aclanthology.org/P17-1167
https://doi.org/10.48550/arXiv.2211.11501
https://doi.org/10.48550/arXiv.2211.11501
https://doi.org/10.48550/arXiv.2305.20050
https://doi.org/10.48550/arXiv.2305.20050
https://openreview.net/forum?id=O50443AsCP
https://openreview.net/forum?id=O50443AsCP
https://openreview.net/pdf?id=DHyHRBwJUTN
https://openreview.net/pdf?id=DHyHRBwJUTN
https://aclanthology.org/2022.tacl-1.3
https://aclanthology.org/2022.tacl-1.3
https://doi.org/10.48550/arXiv.2303.08774
https://doi.org/10.48550/arXiv.2303.08774
http://papers.nips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html
https://openreview.net/forum?id=JYtwGwIL7ye
https://openreview.net/forum?id=JYtwGwIL7ye
https://aclanthology.org/P15-1142
https://aclanthology.org/D19-1410
https://aclanthology.org/D19-1410

DACO: Towards Application-Driven and Comprehensive Data Analysis via Code Generation

Representations, ICLR 2016, San Juan, Puerto Rico, May
2-4, 2016, Conference Track Proceedings, 2016. URL
http://arxiv.org/abs/1506.02438.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. Proximal policy optimization algorithms.

CoRR, abs/1707.06347, 2017. URL http://arxiv.

org/abs/1707.06347.

Skalse, J., Howe, N. H. R., Krasheninnikov, D., and
Krueger, D. Defining and characterizing reward hacking.
CoRR, abs/2209.13085, 2022. doi: 10.48550/ARXIV.
2209.13085. URL https://doi.org/10.48550/
arXiv.2209.13085.

Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi,
A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P.,
Bhosale, S., Bikel, D., Blecher, L., Canton-Ferrer, C.,
Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu,
J., Fu, W,, Fuller, B., Gao, C., Goswami, V., Goyal, N.,
Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas,
M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A.,
Koura, P. S., Lachaux, M., Lavril, T., Lee, J., Liskovich,
D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P.,
Molybog, 1., Nie, Y., Poulton, A., Reizenstein, J., Rungta,
R., Saladi, K., Schelten, A., Silva, R., Smith, E. M., Sub-
ramanian, R., Tan, X. E., Tang, B., Taylor, R., Williams,
A., Kuan, J. X., Xu, P, Yan, Z., Zarov, 1., Zhang, Y., Fan,
A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic,
R., Edunov, S., and Scialom, T. Llama 2: Open founda-
tion and fine-tuned chat models. CoRR, abs/2307.09288,
2023. doi: 10.48550/ARXIV.2307.09288. URL https:
//doi.org/10.48550/arXiv.2307.09288.

Wang, X., Wang, Z., Liu, J., Chen, Y., Yuan, L., Peng, H.,
and Ji, H. Mint: Evaluating Ilms in multi-turn interaction
with tools and language feedback, 2023.

Wu, Z., Hu, Y., Shi, W., Dziri, N., Suhr, A., Ammanabrolu,
P., Smith, N. A., Ostendorf, M., and Hajishirzi, H. Fine-
grained human feedback gives better rewards for language
model training. CoRR, abs/2306.01693, 2023. doi: 10.
48550/arXiv.2306.01693. URL https://doi.org/
10.48550/arXiv.2306.01693.

Yang, J., Prabhakar, A., Narasimhan, K., and Yao, S. Inter-
code: Standardizing and benchmarking interactive cod-
ing with execution feedback. CoRR, abs/2306.14898,
2023. doi: 10.48550/arXiv.2306.14898. URL https:
//doi.org/10.48550/arXiv.2306.14898.

Yu, T., Zhang, R., Yang, K., Yasunaga, M., Wang, D.,
Li, Z., Ma, J., Li, L., Yao, Q., Roman, S., Zhang, Z.,
and Radev, D. Spider: A large-scale human-labeled
dataset for complex and cross-domain semantic pars-
ing and text-to-SQL task. In Proceedings of the 2018
Conference on Empirical Methods in Natural Language

11

Processing, pp. 3911-3921, Brussels, Belgium, October-
November 2018. Association for Computational Lin-
guistics. doi: 10.18653/v1/D18-1425. URL https:
//aclanthology.org/D18-1425.

Zheng, Q., Xia, X., Zou, X., Dong, Y., Wang, S., Xue, Y.,
Wang, Z., Shen, L., Wang, A., Li, Y., Su, T., Yang, Z.,
and Tang, J. Codegeex: A pre-trained model for code
generation with multilingual evaluations on humaneval-
X. CoRR, abs/2303.17568, 2023a. doi: 10.48550/arXiv.
2303.17568. URL https://doi.org/10.48550/
arxXiv.2303.17568.

Zheng, R., Dou, S., Gao, S., Hua, Y., Shen, W., Wang, B.,
Liu, Y., Jin, S., Liu, Q., Zhou, Y., et al. Secrets of rlhf
in large language models part i: Ppo. arXiv preprint
arXiv:2307.04964, 2023b.

Zhong, V., Xiong, C., and Socher, R. Seq2sql: Generat-
ing structured queries from natural language using rein-
forcement learning. CoRR, abs/1709.00103, 2017. URL
http://arxiv.org/abs/1709.00103.

Zhu, F., Lei, W.,, Huang, Y., Wang, C., Zhang, S., Lv, J.,
Feng, F., and Chua, T.-S. TAT-QA: A question answering
benchmark on a hybrid of tabular and textual content in
finance. In Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the 11th
International Joint Conference on Natural Language Pro-
cessing (Volume 1: Long Papers), pp. 3277-3287, Online,
August 2021. Association for Computational Linguis-
tics. doi: 10.18653/v1/2021.acl-long.254. URL https:
//aclanthology.org/2021.acl-long.254.

Ziegler, D. M., Stiennon, N., Wu, J., Brown, T. B., Radford,
A., Amodei, D., Christiano, P. F., and Irving, G. Fine-
tuning language models from human preferences. CoRR,
abs/1909.08593, 2019. URL http://arxiv.org/
abs/1909.08593.

Appendix
A. Additional Analysis of DACO Dataset

We perform additional analysis to verify the quality of our
DAco dataset. We assess data quality based on comprehen-
siveness and agreement among annotators, which are two of
the most commonly considered factors (Ehrlinger & W68,
2022).

We first measure the overlap between input queries to
verify the diversity of automatically generated input queries.
We compute the overlap among multiple queries over the
same database using cosine similarity of Sentence-BERT
embeddings. We use the ALL-MINILM-L6-v2 model. We


http://arxiv.org/abs/1506.02438
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347
https://doi.org/10.48550/arXiv.2209.13085
https://doi.org/10.48550/arXiv.2209.13085
https://doi.org/10.48550/arXiv.2307.09288
https://doi.org/10.48550/arXiv.2307.09288
https://doi.org/10.48550/arXiv.2306.01693
https://doi.org/10.48550/arXiv.2306.01693
https://doi.org/10.48550/arXiv.2306.14898
https://doi.org/10.48550/arXiv.2306.14898
https://aclanthology.org/D18-1425
https://aclanthology.org/D18-1425
https://doi.org/10.48550/arXiv.2303.17568
https://doi.org/10.48550/arXiv.2303.17568
http://arxiv.org/abs/1709.00103
https://aclanthology.org/2021.acl-long.254
https://aclanthology.org/2021.acl-long.254
http://arxiv.org/abs/1909.08593
http://arxiv.org/abs/1909.08593

DACO: Towards Application-Driven and Comprehensive Data Analysis via Code Generation

find that 46% pairs of generated queries have large differ-
ence. A small portion (2%) are repetitive with high simi-
larity; since the percentage is small, it should not seriously
affect the dataset quality. Details and qualitative examples
are shown in Table 8.

SFT RL
learning rate le-5 2e-6
gradient accumulation 4 4
total steps 600 200
A - 1.0
v - 1.0

Table 7: Hyperparameters.

We further evaluate the comprehensiveness of input
queries, i.e. how many data columns are covered by the
analysis. We apply heuristic rules to measure . On average,
each analysis covers 71% data columns in the corresponding
database. Among all data columns, 90% are covered by at
least one data point. This verifies that our dataset achieves
good coverage of the database columns.

Regarding agreement among annotators, as mentioned in
the main content, the machine-generated queries are filtered
by human annotators with a 0.62 Cohen’s kappa score, and
our manual refinement of the test set also achieves a substan-
tial 0.67 Cohen’s kappa score. These also verify the quality
of our DACO dataset.

B. Implementation Details

For zero-shot API-based systems including ChatGPT and
GPT-4, we evaluate two settings, directly reading the table
content, and using code generation. For the former setting,
we linearize the table content into text representation as
model input. Due to token limit, we feed the first 20 rows as
input, which covers the full content of 93% tables. For the
code generation setting, we employ the pipeline described
in Figure 4. When the generated code causes a syntax or
runtime error, we re-sample the model until the generated
code can be executed. We allow up to 5 resamplings for each
turn. We use the gpt—-3.5-turbo-16k-0613 API for
ChatGPT and gpt-4-32k API for GPT-4. We limit the
number of total coding turns maximally at 9. For annotation
generation where GPT-4 self-correction is allowed, we limit
the number of self-correction within 2 for each turn and 4
for the whole session.

For finetuned models including DACO-RL and SFT, we use
CodeGeeX2-6B (Zheng et al., 2023a) as the base model. We
first train the SFT model using GPT-4 annotations, and then
train our DACO-RL model on top of the SFT model. When
training R, . and R,., we initialize the model from the SFT
model. When training our DACO-RL model, we initialize

12

the value model V' from R,,., and initialize the policy
model 7 from the SFT model. In inference, we use nucleus
decoding with p = 0.9 and temperature = 1.0. Similarly, we
allow up to 5 resamplings when the generated code causes
an error. The SFT model is trained with 8 A100 GPU for
about 4 hours. The DACO-RL model is trained with 8 A100
GPU for about 18 hours. Detailed hyper-parameters are in
Table 7. The only hyper-parameter we tune is A for DACO-
RL. We experiment with 0.8, 0.9 and 1.0 and discover that
1.0 works the best.

For experiments on external test sets, we directly evalute
the trained SFT and DACO-RL model on InfiAgent-DA (Hu
et al., 2024) and FeTaQA (Nan et al., 2022) test sets. For
InfiAgent-DA, following the original paper, we add a refor-
matting step to reformat the generated data analysis report
into the key-value format. We use ChatGPT to perform
reformatting with a simplified prompt without in-context
examples.

C. Qualitative Examples

We show final answers generated by SFT and DACO-RL
in Figure 5. DACO-RL better focuses on user query, while
SFT tends to display generic statistics that are less relevant
to user query.

We show examples of code generations in Figure 6. We
also report their reward scores from contribution RM and
regularization RM.

D. GPT Prompts

Here we show the prompts we use for ChatGPT and GPT-
4. Prompt for query generation is in Table 9. Prompt for
helpfulness annotation collection is Table 10. Prompts for
helpfulness and informativeness evaluation are Table 11 and
12.



DACO: Towards Application-Driven and Comprehensive Data Analysis via Code Generation

% | Example
Large difference . -
Lo 46 | As a weather forecaster, I want to study the correlation between weather conditions and
(similarity<0.5) .
bike rentals. v.s.
As a tourist attraction planner, I want to evaluate the bike-sharing program’s impact on
tourism and visitor satisfaction.
Similarity = 0.42
Medium difference . . . -
S 52 | As afarmer, [ want to determine the suitable fruit varieties to grow on my farm. v.s.
(0.5<similarity<0.8)
As a fruit exporter, I want to identify the fruits that meet export standards and have a longer
shelf life.
Similarity = 0.69
Repetitive .
o 2 | Asaconsultant for honey market, I want to study the honey production trend to recommend
(similarity>0.8) . . .
business strategies for my clients.  v.s.
As a curious analyst, I want to study the production trend to understand the US honey
industry.
Similarity = 0.85

Table 8: Cosine similarity and qualitative examples of pairs of input queries.

As a game developer, | want to balance the stats of different Pokemon to ensure fair gameplay.

SFT DACO-RL
Findings Findings

1. There are 8 attributes (height, weight, hp, attack, defense, sp
atk, sp def, speed) in the dataset that have strong positive or
negative correlations, indicating that certain attributes are
related.

2. The pairs of attributes with strong positive or negative
correlations are as follows:

- height and weight (correlation: 0.65)
- hp and attack (correlation: 0.45)
- hp and defense (correlation: 0.44)
- hp and speed (correlation: 0.34)
3. The pairs of attributes with strong negative correlation include:
- sp atk and defense (correlation: -0.6)
- sp def and speed (correlation: -0.5)

Suggestions

1. For balance purposes, you could consider assigning a higher
weight to taller Pokemon and a higher percentage of the total
weight for Pokemon, as height and weight are strongly
correlated with each other.

2. To ensure that the gameplay remains diverse and fair, you
should also assign appropriate attack, defense, sp atk, sp def,
and speed values to the Pokemon, taking into consideration
their correlations with the other attributes.

3. Since the Pokemon attributes are strongly correlated, consider
implementing a more complex system that takes advantage of
this relationship, such as a network or genetic algorithm-based

approach to balance the attributes of diverse Pokemon species.

1.

2.

3.

The majority of Pokemon are Water (38.13%), followed by
Normal (24.72%) and Grass (13.82%).

Fire, Psychic, and Steel types are relatively less frequentin the
dataset.

Types with high positive correlations with main stats (HP,
attack, defense, and speed) include Water, Normal, and Grass
types, while types with high negative correlations include Fire,
Psychic, and Steel types.

Suggestions

1.

Consider balancing the game around the most common types
(Water, Normal, and Grass) to make the gameplay more
diverse and interesting for different types of strategies.

Since types with high positive correlations have higher HPs,
attacks, and speeds, it may be beneficial to focus on the
Pokemon with those stats to balance the game accordingly.
Monitor the performance of high-positive correlation types
(Water, Normal, and Grass) to ensure their representation in
the game doesn't lead to an imbalance in terms of stats or
gameplay strategy.

Monitor the performance of high-negative correlation types
(Fire, Psychic, and Steel) to ensure their representation in the
game isn't detrimental due to a potential imbalance in game
mechanics.

Figure 5: Case study.

13




DACO: Towards Application-Driven and Comprehensive Data Analysis via Code Generation

| will examine the relationships from the correlation matrix, including the most attended concerts and the conductor's experience, as well as the
orchestras with the highest official ratings and their conductors.

# Get the top 3 most attended concerts
3, "Attendance"

# Get conductor names and age with most attended concerts
"Name", "Age", "Year_of_Work", "Attendance" "Attendance",

ascending=False

print("Top 3 Conductors with Most Attended Concerts:"
print
print

# Get top 3 orchestras with the highest official ratings
3, "Official_ratings_(millions)"

# Get conductor names and orchestras with the highest official ratings
"Orchestra”, "Name", "Age", "Year_of_Work",
"Official_ratings_(millions)" "Official_ratings_(millions)", ascending=False

print("Top 3 Orchestras with Highest Official Ratings and Their Conductors:”
print
print

Contribution RM: 5.05 Regularization RM: 5.15 Two RMs combined: 5.10

(a) A good case that receives high scores from both contribution RM and regularization RM.

Next, | will join the tables 'Order_Deliveries', 'Actual_Orders', 'Products’, and 'Customers' to create a single DataFrame with the necessary
information to analyze the most popular products across delivery routes.

# Join tables
"Order_Deliveries"
"Actual_oOrders™
"Products”
"Customers"

# Merge tables

5 , on="actual_order_id"
5 , left_on="actual_order_id", right_on="product_id"
5 , left_on="driver_employee_id", right_on="customer_id"
# Display a sample of 5 rows
print
Contribution RM: -2.63 Regularization RM: 6.59 Two RMs combined: 1.98

(b) A bad case that receives low score from contribution RM and high score from regularization RM.

Based on the analysis, provide a conclusion summarizing the findings and suggesting possible reasons for the high resettlement rates in the
top 5 countries.

print("Conclusion:"

print("The average resettlement rate in the top 5 countries is 593.8%, which is quite high compared to the
average resettlement rate of 553.8% in the entire dataset.”

print("This is due to the high resettlement rates in the top 5 countries, which may be due to the following
reasons:"

print("1. The top 5 countries have a higher population, which may indicate a higher demand for migration.”
print("2. The top 5 countries have specialized in Industry or Commerce, which might require a high number of
workers to be migrated.”

print("3. The top 5 countries have a significant history of migration, which may indicate a diverse population
and a need for migration.”

Contribution RM: 8.35 Regularization RM: -5.87 Two RMs combined: 1.24

(c) A reward hacking case that receives high score from contribution RM and low score from regularization RM.

Figure 6: Qualitative examples of code generations, and their scores assigned by reward models.

14



DACO: Towards Application-Driven and Comprehensive Data Analysis via Code Generation

I have a database of [database title]. I am a stakeholder and I am analyzing the database to make a decision. Who am I and what
decision might it be? List 10 possibilities in a numbered list.

Each point should introduce who I am and briefly explain my intention in this format: As a/the [who I am], I want to [explain my
intention]

Examples:

Based on the extracurricular activities database:

1. As the dean of student affairs, I want to decide on extracurricular activities to promote or cut
2. As the department head, I want to decide on faculty advisor assignments

3. As the school administrator, I want to review and revise faculty activity engagement

Based on a diabetes database:

1. As a healthcare policy maker, I want to decide on healthcare resource allocation
2. As a NIH official, I want to decide on medical research funding

3. As a health insurance actuary, I want to improve health insurance pricing strategy
4. As a health provider, I want to decide on patient care and treatment

Based on an allergy database:

1. As a catering manager, [ want to plan meal options

2. As the school principal, I want to plan allergy awareness programs

3. As an administrator in the Student Affairs or Housing department, I want to decide on housing assignments
4. As the school administrator, I want to improve campus emergency preparedness

5. As the school principal, I want to develop policies for allergy accommodations

Based on a Home Equity Line of Credit (HELOC) product database, you can:
1. As the credit risk manager, I want to modify the credit underwriting policy

The database is as follows:
Database " [title]" has [x] tables. Table names are: [aaa], [bbb], [ccc]

Table " [caption] has [x] rows and [y] columns. Column are:
* [column name] ", example values: [value 1], [value 2], [value 3], [value 4], [value 5]

Table 9: Prompt for query collection.

I have a database of [database title]. As a [stakeholder role], I want to [describe intention].

Given below two findings/conclusions, which one is more helpful to my analysis?
* [answer bullet point 1]
* [answer bullet point 2]

Your response should be in the following format:
* Reasoning: <explain your reasoning here>
* Answer: <repeat the more helpful finding here>

Table 10: Prompt for helpfulness annotation collection.

15



DACO: Towards Application-Driven and Comprehensive Data Analysis via Code Generation

I have a database of [database title]. As a [stakeholder role], I want to [describe intention].

I have hired two data analysts to perform the analysis, and they gave me two different reports (listed below). Each report consists
of two lists, one for findings and one for suggestions. Which one is more helpful to my analysis? When evaluating helpfulness,
you should consider the following three rubrics in decreasing priority: (1) relevance to my analysis goal; (2) insightfulness; and (3)
diversity of perspectives, especially for suggestions.

Your response should be in the following format. Note: <answer> should be either Report-1 or Report-2

* Answer: <answer>

* Reasoning: <explain your reasoning here>

The reports are as follows:

# Report-1

[report 1]

# Report-2

[report 2]

Table 11: Prompt for helpfulness evaluation.

I have a database of [database title]. As a [stakeholder role], I want to [describe intention]. Below are the intermediate steps of their
analysis. Which analysis is more informative? The more informative analysis should produce execution results that stick relevant to
my analysis goal and bring more insights to my analysis.

Your response should be in the following format. Note: <answer> should be either Analysis-1 or Analysis-2

* Answer: <answer>

* Reasoning: <explain your reasoning here>

The reports are as follows:

# Analysis-1

[analysis 1]

# Analysis-2

[analysis 2]

Table 12: Prompt for informativeness evaluation.

16



