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Abstract
We present two new classes of algorithms for ef-
ficient field integration on graphs encoding point
clouds. The first class, SeparatorFactorization
(SF), leverages the bounded genus of point
cloud mesh graphs, while the second class,
RFDiffusion (RFD), uses popular ϵ-nearest-
neighbor graph representations for point clouds.
Both can be viewed as providing the function-
ality of Fast Multipole Methods (FMMs, Green-
gard & Rokhlin, 1987), which have had a tremen-
dous impact on efficient integration, but for non-
Euclidean spaces. We focus on geometries in-
duced by distributions of walk lengths between
points (e.g., shortest-path distance). We provide
an extensive theoretical analysis of our algorithms,
obtaining new results in structural graph theory as
a byproduct. We also perform exhaustive empiri-
cal evaluation, including on-surface interpolation
for rigid and deformable objects (particularly for
mesh-dynamics modeling), Wasserstein distance
computations for point clouds, and the Gromov-
Wasserstein variant.

1. Introduction & Related Work
Let us consider a weighted undirected graph G =
(V,E,W), where: V stands for the set of vertices/nodes, E
is the set of edges and W : E→ R+ encodes edge-weights.
We assume that a tensor-field F : V → Rd1×...×dl is de-
fined on V, where: d1, . . . , dl stand for tensor dimensions.
A kernel (similarity measure) K : V×V→ R on V is given.
In this paper, we are interested in efficiently computing the
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Figure 1. Visualization of the problem of integrating vector-field
F on the mesh-graph. Vector i(v) in the green-node v is defined as
a weighted sum of the vectors F(w) in all the nodes (red arrows)
with the coefficients K(w, v) given as K(w, v) = f(dist(w, v))
for a shortest-path-distance function dist between nodes of the
mesh-graph and some function f : R → R (with f(0) = 0). The
shortest-path-distance tree from v is marked in black.

expression i(v) for each v ∈ V, as defined below:

i(v) :=
∑
w∈V

K(w, v)F(w). (1)

The expression i(v) can be interpreted as an integration
of F on G with respect to measure K(·, v). As such, it
can also be thought of as a discrete approximation of the
F-field integration in the continuous non-Euclidean space,
discretely approximated by G. We refer to the process of
computing i(v) for every v ∈ V as graph-field integration
(GFI), see: Fig. 1. We write N = |V| for the size of V.

A naive, brute-force approach to computing all i(v) is to: (1)
calculate a kernel matrix K = [K(w, v)]w,v∈V ∈ RN×N

(pre-processing), (2) conduct d1 · . . . · dl matrix-vector
multiplications: Kvc1,...,cl (inference) for 0 ≤ ci < di,
where vc1,...,cl def

= F(·)[c1] . . . [cl] ∈ RN . Both steps are
computationally expensive: inference requires O(N2d1 ·
. . . ·dl) time; and pre-processing at leastO(N2) (in practice,
depending on kernel K, often at leastO(N3)). Therefore for
large N , this approach becomes computationally infeasible.

It is thus natural to ask the following: Can pre-processing
or inference be performed in sub-quadratic time for the
number of nodes of a graph?
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It is hopeless to provide a positive answer for an arbitrary
graph G and kernel K; however, methods for certain sub-
classes have been extensively studied over decades. Prob-
ably the most prominent example is the family of Fast
Multipole Methods (FMMs) (Greengard & Rokhlin, 1987;
Möller et al., 2019; Gimbutas & Rokhlin, 2003; Yokota
et al., 2016; Greengard et al., 2021; Cheng et al., 2006;
Liska & Colonius, 2014; Takahashi et al., 2020). FMMs
were originally developed for the N -body simulation prob-
lem (Ishiyama et al., 2022) in force-fields, where F might
encode mass/charge distribution over points, K defines cor-
responding potential-field decay over distances and i(v)
calculates coordinates of the resultant forces in all N points.
Since then, FMMs have been applied in a plethora of applica-
tions: (1) molecular/stellar dynamics, (2) interpolation with
radial basis functions, and (3) solving differential equations:
Poisson/Laplace (fluid dynamics, Barth, 1998), Maxwell’s
(electromagnetism, Darve & Have, 2004), Helmholtz (acous-
tic scattering problem, Gumerov & Duraiswami, 2021).

FMMs were developed for Euclidean spaces corresponding
to grid graphs G embedded in Rd and the specific class of
kernels K defined as functions of the dot-product similarity.
However, several applications in machine learning involv-
ing point cloud and mesh-graph data require integrating
more general graphs (defined on surfaces) approximating
non-Euclidean metrics. Examples include: (a) computing
Wasserstein distances between probabilistic distributions
defined on meshes (Solomon et al., 2015), and (b) interpo-
lation of the velocity fields given on meshes to model the
complex dynamics of objects (Han et al., 2022).

In this paper, we present two new algorithms for the
efficient (i.e., sub-quadratic in N ) graph-field integration
for graphs encoding point cloud data (where graph
weights correspond to distances betweeen points). The
first, SeparatorFactorization (SF), leverages bounded
genus of point cloud mesh graphs, while the second,
RFDiffusion (RFD), uses popular ϵ-nearest-neighbor
(ϵ-NN) graph representations for point clouds. Both
can be considered to provide the functionality of Fast
Multipole Methods but in non-Euclidean spaces. We
focus on geometries induced by distributions of walks’
lengths between points (e.g., shortest-path distance). We
provide an extensive theoretical analysis of the proposed
algorithms and, as a byproduct, present new results in
structural graph theory. We also perform exhaustive
empirical evaluation, including on-surface interpolation
for rigid and deformable objects (e.g., for mesh-dynamics
modeling), Wasserstein distance computations for point
clouds, including the Gromov-Wasserstein variant as
well as point cloud classification. Our code is avail-
able at https://github.com/topographers/
efficient_graph_algorithms.

To summarize, our main contributions are as follows:
1. We propose an O(N log2(N)) time complexity SF

algorithm for approximate graph field integration on
mesh-graphs, generalizing methods introduced by
Choromanski et al. (2022) (Sec. 2.2, 2.3). The al-
gorithm works for kernels of the form: Kf (w, v) =
f(dist(w, v)) for the shortest-path-distance function
dist and an arbitrary f : R→ R.

2. As a byproduct of methods developed for the SF algo-
rithm, we construct the first efficient exact graph field
integrator of O(N log2(N)) time complexity for un-
weighted graphs with bounded-length geodesic-cycles
(e.g., cycles such that some shortest path between
any two nodes of the cycle belongs to the cycle).
For the important special case: fλ(x) = exp(−λx),
we obtain additional computational gains resulting in
O(N log1.383(N)) time complexity (Sec. 2.2).

3. We comprehensively compare the SF algorithm with
alternative methods that approximate graph-induced
metrics using the powerful technique of low-distortion
trees (Bartal, 1996; Charikar et al., 1998; Fakcharoen-
phol et al., 2004; Abraham et al., 2008; Fellows et al.,
2008; Bartal et al., 2022) (Sec. 3 and Appendix B).

4. We propose an O(N) time complexity RFD algorithm
for approximate graph field integration on generalized
ϵ-NN graphs. By leveraging random-feature-based
embeddings, RFD decomposes ϵ-NN graphs into low-
rank dot-product graph space (Li & Chang, 2014)(Sec.
2.4). RFD works for graph diffusion kernels of the
form: [K(w, v)]w,v∈V = exp(λWG), where WG is
the weighted adjacency matrix of G, and exp encodes
matrix-exponentiation.

5. We comprehensively compare RFDiffusion with state-
of-the-art algorithms for fast computation of the ac-
tion of the exponentiated matrix (Al-Mohy & Higham,
2011; Musco et al., 2018).

The SF algorithm is a combinatorial method leveraging ge-
ometries defined by shortest path metrics in the form of the
kernel K(w, v) = f(dist(w, v)). In contrast, the RFD algo-
rithm is an algebraic approach utilizing geometries defined
in terms of the distribution of walks of different lengths
between the nodes, not only the shortest paths. The RFD
approach complements the SF algorithm, acting on the ϵ-
NN representation of the point cloud, which is a popular
alternative to mesh-graphs used by the SF algorithm.

Random feature (RF) map methods are well-known to be
an effective strategy to scale up kernel algorithms (Rahimi
& Recht, 2007; 2008; Avron et al., 2017). This makes
RFDiffusion the fastest method in our algorithmic portfo-
lio, particularly well-suited for TPU/GPU-powered com-
putations. However, it works for a specific (yet essential)
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kernel, whereas the SF algorithm leverages a general class
of shortest-path-induced kernels.

2. SeparatorFactorization and RFDiffusion
Defining geometries on graphs via walks. We start with
the following class of kernels KΛ : V × V → R defined
on the nodes of the graph G for the decreasing function
p : N→ R and a given hyper-parameter Λ > 0:

KΛ(w, v) =

∞∑
k=0

pΛ(k)nk, (2)

where nk is the number of walks of length k between w
and v. Taking pΛ(k) = Λk

k! , one reconstructs a version of
the so-called graph diffusion kernel (GDK). Using even a
simpler formula: pΛ(k) = Λk = exp(log(Λ)k) we obtain
another valid kernel related to the Leontief Inverse matrix
(Bartolucci et al., 2020; Smola & Kondor, 2003). Note
that the sum from the RHS of Eq. 2 starts de facto from
k = dist(w, v) since k ≥ dist(w, v). The first class of
kernels considered in this paper is obtained by taking the
latter formula for p(k) and its leading p-coefficient from
the sum in Eq. 2 (note that longer-walks are discounted as
providing weaker ties between vertices). Instead of defining
K(w, v) = exp(−λdist(w, v)) for λ = − log(Λ), we con-
sider its generalized version for an arbitrary f : R → R,

Kf (w, v) = f(dist(w, v)). (3)

Thus the kernel becomes an arbitrary (potentially learnable)
function of the shortest path distance. Such kernels are
intensively studied for mesh modeling, where dist(·, ·) ap-
proximates geodesic distances, see (Mory et al., 2009) and
(Solomon et al., 2015). In the latter work, that kernel is ulti-
mately replaced by a more computationally feasible variant
of the diffusion kernel, see Sec. 3.2.

We also provide an efficient GFI mechanism in the setting
where walks of all lengths are considered. Here we decide
to work with the aforementioned GDK:

[KΛ
GDK(w, v)]w,v∈V = exp(Λ ·WG), (4)

for the weighted adjacency matrix WG of G, where exp
denotes matrix exponentiation.

2.1. Tractability and Bounded Genus Graphs

We start with the tractability concept recently introduced by
Choromanski et al. (2022).

Definition 2.1 (tractable (G, f)-pairs). Let G be a family of
weighted undirected graphs and let f : R→ C be a function.
Denote K = [Kf (w, v)]w,v∈V. We say that (G, f) is T -
tractable if for any x ∈ R|V|, matrix-vector multiplication
Kx can be computed in time O(T ). If T = o(|V|2), then
we say that (G, f) is tractable.

In Table 1, we summarize previously known results on T -
tractable (G, f)-pairs, all from (Choromanski et al., 2022).

Table 1. Summary of the known (G, f)-tractability results (Choro-
manski et al., 2022). If not stated otherwise, considered graphs are
unweighted. Below, diam(G) stands for the diameter of G.

G f(z) T

weighted trees exp(az + b) for given a, b ∈ C |V|
unweighted trees arbitrary |V| log2(|V|)
unweighted trees arbitrary |V|diam(G)

d-dimensional grids arbitrary |V| log(|V|)

We immediately realize that (G, f)-tractability implies effi-
cient GFI for kernels Kf . The results for trees from Table 1
can be elegantly extended to trigonometric functions f (still
on trees) by using complex field C, see Appendix, Sec. A.1.

In this section, we target mesh-graph representations of
point clouds that are not trees. But they are not completely
random. If the surface where the mesh graph lives does not
have too many “holes”, the mesh graph is very structured.
This property can be precisely quantified as a bounded genus.
The genus of a surface is the topologically invariant property
defined as the largest number of non-intersecting simple
closed curves that can be drawn on the surface without
separating it (Lozano-Durán & Borrell, 2016).
Theorem 2.2 (Gilbert et al., 1984). The set of vertices V
of graphs of genus ≤ g (i.e., embeddable with no edge-
crossings on the surface of genus g) can be efficiently (in
time O(|V|+g)) partitioned into three subsets: V1, V2 and
S such that: |V1|, |V2| ≥ |V|

3 , |S| = O(
√
(g + 1)|V|) and

furthermore there are no edges between V1 and V2 .

We call set S a balanced separator since it splits the vertices
of V into two “large” subsets (each of size ≥ c|V| for
some universal constant c; in our case c = 1

3 ). Balanced
separators are useful since they often enable using divide-
and-conquer strategies to solve problems on graphs. As we
show soon, this holds for the GFI problem.

2.2. Towards SeparatorFactorization: BCTW Graphs

Let us consider first an extreme case where bounded-size
balanced separators exist. A prominent class of graphs with
this property is a family of bounded connected treewidth
(BCTW) graphs. We next introduce the concept of treewidth
(tw), one of the most important graph parameters of modern
structural graph theory.
Definition 2.3 (tree-decomposition & treewidth). A tree-
decomposition of a given undirected graph G = (V,E)
is a tree T with nodes corresponding to subsets (bags)
X1, . . . , XL of V satisfying the following:

•
⋃L

i=1Xi = V,

• for every edge {u,w} ∈ E there exists a bag Xi such
that u,w ∈ Xi,
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• for any two Xi, Xj , the subset Xi ∩Xj is contained
in all nodes on the (unique) path from Xi to Xj .

The treewidth of G is the minimum over different tree-
decompositions of G of maxi=1,...,L |Xi| − 1.

We say that a family G of undirected and unweighted graphs
has bounded connected treewidth, if each G ∈ G has a tree-
decomposition, where all the bags are connected graphs of
bounded size. BCTW-graphs are extensions of trees. Every
tree is a BCTW graph, but BCTW graphs can contain cycles
(while trees cannot). It turns out that bags from the tree
decomposition are themselves separators.

Next, we show that sparse BCTW graphs admit fast GFI:

Theorem 2.4. If G is a family of bounded connected
treewidth sparse graphs (i.e., with |E| = O(|V|)) then
(G, f) is |V| log2(|V|)-tractable for any f : R→ C.

Interestingly, a family G has bounded connected treewidth
iff all the geodesic cycles of graphs G ∈ G have bounded
length (see Diestel & Müller, 2012). Thus, as a corollary,
we immediately get the following result:

Corollary 2.5. If G is a family of sparse graphs
with geodesic cycles of bounded length, then (G, f) is
|V| log2(|V|)-tractable for any function f : R→ C.

Below we provide a sketch of the proof of Theorem 2.4,
which also serves as pseudocode with a detailed explanation
of each step. The full proof is given in Appendix Sec. A.2.
This sketch will be sufficient to develop a “practical” version
of the method that can be applied to bounded genus mesh
graphs. We introduce extra notation for Y,Z ⊆ V:

iGZ(v)
def
=

∑
w∈Z

K(w, v)F(w),

iGZ(Y)
def
= {iGZ(y) : y ∈ Y}.

(5)

Proof sketch of Theorem 2.4:

S
…

Figure 2. Visualization of the proof-sketch of Theorem 2.4. Sub-
sets A and B are sliced based on the signature vectors ρx,y (differ-
ent shadows of yellow and green). Slices are further partitioned
based on the distance from the separator S (dotted red lines).

Step 1: Balanced separation & initial integration. We
start by finding a small (constant size) balanced separator
S = {s1, . . . , s|S|} splitting V into two “large” subsets:
A and B (|A|, |B| > cN for some universal constant c >

0). It turns out that this can be done in time O(N) (see:
Sec. A.2). We compute iGV(S) using Dijkstra’s algorithm
(O(N log(N)) time complexity) or its improved variant
(O(N log log(N)) time complexity; Thorup, 2003).

It suffices to compute iGV(A ∪ B). Note that for every v:

i(v) = iGA(v) + iGB (v) + iGS (v). (6)

Step 2: Computing iGS (A ∪ B). As before, this can be
done in time O(N log(N)) (or even O(N log log(N))).

Step 3: Computing iGA(A) and iGB (B). This can be done
by running the algorithm recursively on the sub-graphs
G[A], G[B] of G induced by A and B respectively (for
a rigorous proof, we actually need to run it for extended
versions of G[A] and G[B] since the shortest path between
two vertices in A/B can potentially use vertices /∈ A/B;
crucially, as we show in Sec. A.2, those extended versions
are obtained by adding only a constant number of extra
vertices; for the practical variant we apply the simplified
version though).

Step 4: Computing iGA(B) and iGB (A). We will show
how to compute the latter. The former can be calculated in
a completely analogous way.

Substep 4.1: A,B-slicing based on signature vectors.
For every vertex v ∈ A∪B, we define χv ∈ R|S| as χv[k] =
dist(v, sk) for k = 1, . . . , |S|. Write: χv = τv + ρv , where
τv[i] = mink∈S dist(v, k),∀i. We call vector ρv ∈ R|S|

the signature vector (sg-vect). The critical observation is
that not only does this vector have bounded dimensionality
(since S is of constant size), but a bounded number of dif-
ferent possible values of different dimensions, i.e., for every
i = 1, . . . , |S|:

0 ≤ ρv[i] ≤ |S| − 1. (7)

This is an immediate consequence of the fact that the separa-
tor is connected. This implies that there is only a finite (yet
super-exponentially large in |S| !) number of different signa-
ture vectors ρv. We partition A into subsets corresponding
to different signature vectors, called: ρ1,1, ρ1,2, . . . and sim-
ilarly, partition B into subsets corresponding to different
signature vectors: ρ2,1, ρ2,2, . . . (see Fig. 2).

Substep 4.2: Partitioning slices. Fix a subset Aρ1,l ⊆ A
corresponding to some ρ1,l and a subset Bρ2,t ⊆ B corre-
sponding to some ρ2,t. Note that for every v ∈ Aρ1,l and
w ∈ Bρ2,t the following holds:

dist(w, v) = τw[1] + τv[1] + min
k∈S

(ρ2,t[k] + ρ1,l[k]). (8)

Furthermore, the last element of the RHS above does not
depend on w and v, and dist(w, v) depends only on the
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distances of w and v from S. We thus partition subsets
Aρ1,l and Bρ2,t based on the value of τv[1] and τw[1] ac-
cordingly. To compute iGB2,t(Aρ1,l), it is thus sufficient
to compute a sequence: {iGB2,t(vi)} for i = 0, 1, . . . and
where vi is an arbitrary vertex of Aρ1,l with dist(vi,S) = i.
This can be done via a linear transformation encoded by
a Hankel matrix W as in the proof of Lemma 6.1 from
(Choromanski et al., 2022) using Fast Fourier Transform
(FFT) in time O(N log(N)). Furthermore, if fλ(x) =
exp(−λx), multiplication with W can be done in time
O(N). Putting together computations for all (constant) num-
ber of pairs: (Aρ1,l , Bρ2,t), we conclude that iGB(A) can be
computed in time O(N log(N)) (or even O(N log log(N))
for fλ(x) = exp(−λx)). Solving the corresponding time
complexity recursion, we obtain total pre-processing time
O(N log(N)) and inference time O(N log2(N)) (or even
O(N log1.38(N)) for fλ(x) = exp(−λx)). This completes
the proof sketch.

2.3. SeparatorFactorization

The SeparatorFactorization method is a straightforward
relaxation of the the algorithm presented above. The relax-
ation to make the approach practical (for approximate GFI)
is based on the following pillars:

1. Separator truncation. Replacing small S from Theo-
rem 2.2 (not necessarily of constant size) with its sub-
sampled constant-size subset S ′ (the other vertices of
S are distributed across A and B randomly). Balanced
separation is computed via the algorithmic version of
Theorem 2.2 (see Fig. 3 for an example).

2. Clustering signature vectors. Instead of partitioning
sets A and B based on sg-vects (their number is finite
yet super-exponentially large in |S ′|), the partitioning
is based on their hashed versions. We use a constant
number of hashes. Every hashing mechanism that can
be computed in time O(N log(N)) is acceptable, and
thus LSH methods can be applied (Shrivastava & Li,
2014). We found that in practice, initial partitioning
based on sg-vect (substep 4.1) can be avoided. Good
quality approximate GFI can be obtained by only one-
level partitioning of A and B (based on the distance
from S ′).

As in Sec. 2.2, this approach leads to O(N log(N)) pre-
processing time and O(N log2(N)) inference time. Fur-
thermore, for weighted graphs, all the distances are effec-
tively quantized (meaning natural numbers can approximate
them). Finally, we stop the recursive unroll when the subsets
A and B are small enough (when brute-force matrix-vector
multiplication for GFI is fast enough).

2.4. RFDiffusion

In contrast to SeparatorFactorization above, the
RFDiffusion algorithm leverages an ϵ-NN (Nearest

Figure 3. A sphinx mesh with 1.17M faces, its first-level balanced
separation obtained via SeparatorFactorization (with 685K
faces entirely in one class and 486K entirely in the second one)
and a visualization of the ϵ-NN graph leveraged by RFDiffusion.
The graph is different from the mesh graph; particularly in this
picture, it is not planar even though the mesh graph is.

Neighbor) representation of point clouds (see Fig. 3). This
representation is particularly convenient for the graph
diffusion kernel from Eq. 4 used by RFDiffusion.

RFDiffusion starts by producing a low-rank decomposition
of the weighted adjacency matrix WG of G, defined via a
set of vectors {ni : i ∈ V} ⊆ Rd and f : Rd → R:

WG(i, j) = f(ni − nj). (9)

The generalized ϵ-NN graphs are special instantiations of
such graphs, where f is defined as f(z) = h(∥z∥) for non-
increasing h with compact support, where vectors ni are
the points themselves and ∥ · ∥ is some norm (e.g. f(z) =
1[∥z∥ ≤ ϵ], as for the regular ϵ-NN graph).

Our goal is to rewrite: WG(i, j) ≈ ϕ(ni)
⊤ψ(nj) for maps

ϕ, ψ : Rd → Cm and m≪ N . Note that (for i2 = −1):

f(z) =

∫
Rd

exp(2πiω⊤z)τ(ω)dω

=

∫
Rd

exp(2πiω⊤z)
τ(ω)

p(ω)
p(ω)dω,

(10)

where τ : Rd → C is the Fourier Transform (FT) of f and p
is a pdf function corresponding to some probability distribu-
tion P ∈ Prob(Rd). Take ω1, . . . , ωm

iid∼ P . For v ∈ Rd,

define ρj = 2πiω⊤
j v and νi =

√
τ(ωi)
p(ωi)

. Then, using
Monte Carlo approximation, we can estimate: WG(i, j) ≈
ϕ(ni)

⊤ψ(nj) for ϕ = σ1, ψ = σ−1 and σc(v) =
1√
m

(
exp(2πciω⊤

1 v)ν1, . . . , exp(2πciω
⊤
mv)νm

)⊤
.

Note. Distribution P should 1) provide efficient sampling,
2) have easy-to-compute pdf, and 3) (ideally) provide low
estimation variance. Here we use (truncated) Gaussian.

We conclude that we can decompose WG(i, j) as
WG(i, j) = ABT , where the rows of A ∈ RN×m

and B ∈ RN×m are given as: {σ1(nj) : j ∈ V} and
{σ−1(nj) : j ∈ V} respectively. Now note that we have
the following:
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exp(Λ ·AB⊤) =

∞∑
i=0

1

i!
(ΛAB⊤)i

= I+

∞∑
i=0

1

(i+ 1)!
A(ΛB⊤A)i+1A−1

= I+A[exp(ΛB⊤A)− I](B⊤A)−1B⊤

(11)

We can thus approximate: exp(Λ ·WG)x for any vector
x ∈ RN (which leads to the GFI algorithm) as:

x+A([exp(ΛB⊤A)− I]((B⊤A)−1(B⊤x))), (12)

where brackets indicate the order of computations. We see
that this algorithm has: (a) pre-processing time linear in
N and cubic in the number of random features m, and (b)
inference stage linear in N and quadratic in m. Algorithm
RFDiffusion can be thought of as approximating the graph
given by Eq. 9 via random feature map-based smoothing
(in our applications with f given as a threshold function
and d = 3) and has an excellent property - its running time
is independent (Fig. 12 in Appendix E) of the number of
edges of the graph (that is never explicitly materialized).

It remains to compute function τ . Fortunately, this is easy
for several threshold functions f defining ϵ-NN graphs. For
instance, for f(z) = 1[∥z∥1 ≤ ϵ] and ξ ∈ Rd, we have:

τ(ξ) =

d∏
i=1

sin(2ϵξi)

ξi
, (13)

and for f(z) = 1[∥z∥2 ≤ ϵ], τ is the d-th order Bessel
function (Dattoli et al., 2004).

We quantify the quality of the estimation of the original
ϵ-NN graph with L1-norm via RFDiffusion (proof in Sec
A.3). Analogous results can be derived from other norms.
Lemma 2.6. Take the ϵ-NN point cloud graph in R3 with
respect to the L1-norm. For two given vertices v and w,
denote by MSE(Ŵ(v, w)) the mean squared error of the
RFDiffusion-based estimation of the true weight W(v, w)
between v and w (defined as: 1 if distL1

(v, w) ≤ ϵ and 0
otherwise). Let P be a Gaussian distribution truncated to
the L1-ball B(R) of radius R, used by RFD. Assume that v
and w are encoded by nv and nw. Then:

MSE(Ŵ(v, w)) ≤ 1

m

(
(2π)

3
2C(Γϵ(R))d − θ21

)
+ θ2, (14)

for θ1 = (f(z)+γ), θ2 = γ(2f(z)+γ), z = nv−nw, C =∫
B(R)

(2π)−
3
2 exp(−∥r∥2

2 )dr, Γϵ(R) =
∫ R

−R
sin2(ϵx)

x2 dx and

γ = −
∫
Rd\B(R)

cos(2πω⊤z)
∏d

i=1
sin(2ϵωi)

ωi
dω.

3. Experiments
To evaluate SF and RFD, we choose two broad applica-
tions: a) interpolation on meshes and b) Wasserstein dis-
tances and barycenters computation on point clouds. The
kernel matrices chosen for SF and RFD are K(i, j) :=

exp(−λdist(i, j)) and K := exp(λWG) respectively.
Moreover we demonstrate the effectiveness of RFD ker-
nel in various point cloud and graph classification tasks.

3.1. Interpolation on Meshes

In this section, we use our methods to predict the masked
properties of meshes. In particular, we compare the com-
putational efficiency of SF and RFD against baselines in
predicting vertex normals and nodes’ velocities in meshes.

Vertex normal prediction. In this setup, we predict the
field of normals in vertices from its masked variant. We
are given a set of nodes with vertex locations xi ∈ R3 and
vertex normals Fi ∈ R3 in a mesh G with vertex-set V.
In each mesh, we randomly select a subset V′ ⊆ V with
|V′| = 0.8|V| and mask out their vertex normals (set as
zero vectors). Our task is to predict the vertex normals of
each masked node i ∈ V′ computed as:

Fi =
∑

j∈V\V′

K(i, j)Fj ,

We perform a grid search on λ and other algorithm-specific
hyper-parameters for each mesh. We report the result with
the highest cosine similarity between predicted and ground
truth vertex normals, averaged over all the nodes.

We run tests on 120 meshes for 3D-printed objects with
a wide range of sizes from the Thingi10k (Zhou & Jacob-
son, 2016) dataset (see Sec. C for details). Fig. 4 re-
ports the pre-processing time, interpolation time, and cosine
similarity for algorithms on meshes with different sizes
|V|. In the first row, we compare SF with brute-force (BF)
(explicit kernel-matrix materialization followed by matrix-
vector multiplications) and low-distortion tree-based algo-
rithms such as Bartal trees (T-Bart-n; n is the number of
trees, Bartal, 1996) and FRT trees (T-FRT, Fakcharoenphol
et al., 2004) (see Appendix B for details). SF is the fastest in
pre-processing and accurately interpolates on large meshes
while BF, T-FRT, and T-Bart gradually run out of memory
or time (OOM/OOT).

In the second row of Fig. 4, we compare RFD with three
other algorithms for multiplications with matrix exponen-
tials, including Bader’s algorithm (Bader et al., 2019), Al-
Mohy’s algorithm (Al-Mohy & Higham, 2010), and Lanc-
zos method (Orecchia et al., 2012). As the mesh size in-
creases, the pre-processing time of Bader and Al-Mohy
grows quickly. The performance of the Lanczos algorithm
is positively correlated with hyper-parameter m, which con-
trols the number of Arnoldi iterations. Even though we
chose m to be relatively large (which affects the interpo-
lation time), its performance still drops quickly as mesh
size grows. In contrast, RFD scales well to large meshes.
For example, on the mesh with 1.5M nodes, RFD needs
only 29.7 seconds for the pre-processing and 5.7 seconds for
interpolation. Detailed ablation studies are given in Sec. E.1.
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Figure 4. First Row: Vertex normal prediction with SF and comparison with relevant low-distortion trees methods. Second Row: The
same task, but with RFD and the corresponding methods for multiplications with matrix exponentials. All methods except SF and RFD
either went out of memory (OOM) or ran out of time (OOT). The two algorithms maintain high accuracy even on large meshes.

Figure 5. Snapshots of meshes for the velocity prediction task com-
paring results of our GFI methods with ground truth (GT). In sev-
eral cases, predictions and ground truth are close enough that the
velocity vectors appear on top of each other.

Velocity prediction. We further evaluate our algorithms on
the deformable flag simple dataset from (Pfaff et al.,
2020). The largest mesh sizes from that dataset are of order
∼ 1.5k nodes; thus, one can, in principle, apply brute force

methods. Therefore this dataset was used only to provide a
vision-based validation of the techniques. Fig. 5 shows four
sample snapshots of the mesh. The vertex location xi ∈ R3

and velocity Fi ∈ R3 from each node ni in the snapshot
are used for interpolation. We randomly mask out 5% of the
nodes in each mesh and do a similar interpolation for vertex
normals. In the supplementary material, we provide videos
representing the dynamics of the deformable meshes and
their corresponding fields (ground truth and predicted).

3.2. Wasserstein Distances and Barycenters

Optimal transport (OT) has found many applications in
machine learning for its principled approach to compare
distributions (Cuturi, 2013). There has been considerable
work in extending OT problems to non-Euclidean domains

Table 2. Comparison of the total runtime and mean-squared error
(MSE) across several meshes for diffusion-based integration. Run-
times are reported in seconds. The lowest time for each mesh is
shown in bold. MSE is calculated w.r.t. the output of BF.

Mesh |V| Total Runtime MSE
BF RFD

Alien 5212 8.06 0.39 0.041
Duck 9862 45.36 1.10 0.002
Land 14738 147.64 2.17 0.017
Octocat 18944 302.84 3.36 0.027

Table 3. Setup as in Table 2, but for the SF algorithm.

Mesh |V| Total Runtime MSE
BF SF

Dice 4468 6.8 4.9 0.063
Duck 9862 39.2 19.4 0.002
Land 14738 90.7 38.9 0.015
bubblepot2 18633 113.2 48.3 0.081

like manifolds (Solomon et al., 2015) and graph-structured
data (Mémoli, 2011). Our proposed methods can be easily
integrated into several popular algorithms for computing
Wasserstein distances. Here, we show the computational
efficiency of our algorithms against well-known baselines.

Wasserstein barycenter. In this section, we consider the
OT problem of moving masses on a surface mesh, partic-
ularly the computation of Wasserstein barycenters. Since
the geodesic distance on a surface is intractable, we use
two approximations of this metric: 1) shortest-path distance
(used in SF calculations), and 2) distance coming from an
ϵ-NN graph approximating the surface (RFD ).

Wasserstein barycenter is a weighted average of probabil-
ity distributions. More formally, given input distributions

7
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)
Figure 6. Comparison of the Wasserstein Barycenter output. a-c, f-h: three input distributions; d,i: Wasserstein Barycenter output with
brute-force (BF); e: Wasserstein Barycenter output with RFD; j: Wasserstein Barycenter output with SF. The top row is for the mesh
duck and the second row is for the mesh Octocat-v1.
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Figure 7. Left 3 figures: Plots showing runtimes (in seconds) of GW and FGW vs our RFDiffusion injected counterparts. Right figure:
The relative error of our RFDiffusion injected GW variants. Except for the GW-proximal-RFD, all other variants are OOM after 9k
points. For the FGW experiments, random binary labels are generated for each node.

{µi}ki=1 and a set of weights α ∈ Rk
+, the Wasserstein

barycenter is the solution to the following problem (Agueh
& Carlier, 2011):

minimize
µ∈Prob(V)

k∑
i=1

αiW2
2

(
µ,µi

)
,

whereW2(·, ·) denotes the 2-Wasserstein distance.

Algorithm 2 outlined in (Solomon et al., 2015) is used for
the experiments in this subsection. We modify their al-
gorithm to directly materialize and plug in our appropriate
kernel matrix (which we refer to as the BF algorithm). More
details about the baselines are provided in Appendix D.1.2.
We give a detailed description of the adaptation of our Fast
Multiplication (FM) techniques to the entropic Wasserstein
distances (see Appendix D.1.1 and Algorithm 1). Our FM-
infused variants significantly speed up the runtime of the
baseline algorithm without losing accuracy (see Table 2
and 3.) Three different input probability distributions, en-
coded as vectors of length N = |V|, are chosen for all our
experiments. The barycenter output is also encoded as a
vector of length N . Given an estimator µ̂ and the ground
truth µ, we measure the quality of the estimator using the
mean squared error (MSE) given by 1

N

∑N
j=1

(
µ̂j − µj

)2
.

We visualize the Wasserstein barycenter generated by RFD
and SF with their corresponding ground truth (generated by
the baseline method) in Fig. 6. Note that the barycenters
generated by our integrators are similar to the ground truth.

Low-distortion trees do not scale to mesh sizes considered
here. We provide additional comparisons of our method
with (Solomon et al., 2015) in Appendix (Table 5). However,
we note that the results are not directly comparable as the
kernels employed by the authors are different from ours.

Gromov Wasserstein and Fused Gromov Wasserstein
distances. Gromov Wasserstein (GW ) discrepancy (resp.
Fused Gromov Wasserstein discrepancy (FGW )) is an ex-
tension of Wasserstein distances to graph-structured data
(resp. labeled graph-structured data) with widespread appli-
cations in a range of tasks including clustering, classification
and generation (Peyré et al., 2016; Mémoli, 2011; Demetci
et al., 2020; Mémoli & Sapiro, 2006; Vayer et al., 2018;
Titouan et al., 2019). Despite their widespread use, GW and
FGW discrepancies are very expensive to compute.

The GW discrepancy can be calculated iteratively by the
conditional gradient method (Peyré et al., 2016), which we
refer to as GW-cg or the proximal point algorithm (Xu et al.,
2019), resp. GW-prox. A key component in solving this
OT problem by either method involves the computation of a
tensor product, which is expensive. Our fast GFI methods
can be used to estimate this tensor product efficiently (Ap-
pendix Algorithm 2), thus speeding up the runtime of the
entire algorithm. Moreover, we can also effectively estimate
the step size of the FGW iterations in a line search algo-
rithm (Appendix Algorithm 3). More details are presented
in Appendix D.2.
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Since this task is particularly challenging from the compu-
tational standpoint, we choose our fastest RFD algorithm.
Our methods (GW-RFD, FGW-RFD and GW-prox-RFD)
run consistently 2-4x faster than the baseline methods, with
only a small drop in accuracy in computing the associated
costs (Fig. 7). The plots shown are obtained by averag-
ing over 10 seeds and random 3-D distributions. For all
our experiments, m = 16 random features, ϵ = 0.3, and
the smoothing factor λ = −0.2 are chosen. For the base-
line experiments, we use the implementation from the POT
library (Flamary et al., 2021) for the GW-cg and FGW vari-
ants, and official implementation from (Xu et al., 2019) for
the GW-prox variant. Additional experiments (with ablation
studies on the hyperparameters) are in Sec. D.2.4 (resp. E.2).

3.3. Experiments on Point Cloud Classification

In this subsection, we demonstrate the effectiveness of the
RFD kernel for various point cloud classification tasks.

Topological Transformers. We present additional experi-
ments with results on Point Cloud Transformers (PCT) (Guo
et al., 2021). The entrance point for the RFDiffusion al-
gorithm is the topologically-modulated performized ver-
sion (Choromanski et al., 2021) of the regular PCT. The
topological modulation works by Hadamard-multiplying
regular attention matrix with the mask-matrix encoding
relative distances between the points in the 3D space to
directly impose structural priors while training the atten-
tion model. Performized PCT provides computational gains
for larger point clouds (N = 2048 points are used in our
experiments). Moreover, its topologically modulated ver-
sion can be executed in the favorable sub-quadratic time
only if the mask-matrix itself supports sub-quadratic matrix-
vector multiplication (Choromanski et al., 2022) without
the explicit materialization of the attention and the mask
matrices. RFDiffusion provides a low-rank decomposition
via its novel RF-mechanism and the observation in Sec.
3.4 ( (Choromanski et al., 2022)), can be used for time-
efficient training in our particular setting. We conduct our
experiments on the ShapeNet dataset (Wu et al., 2015). Per-
formized PCT with efficient RFDiffusion-driven masking
achieves 91.13% validation accuracy and linear time com-
plexity (due to the efficient integration algorithm with the
RFDiffusion). The brute-force variant runs out of memory
in training.

Point Cloud Classification. We have also conducted
point cloud classification experiments on ModelNet10 (Wu
et al., 2015) and Cubes (Hanocka et al., 2019), using our
RFDiffusion kernel method. The classification in this case
is conducted using the eigenvectors of the kernel matrix.
Note that, as described in (Nakatsukasa, 2019), low-rank
decomposition of the kernel matrix (provided directly by

the RFDiffusion method via the random feature map mech-
anism) can be used to compute efficiently eigenvectors and
the corresponding eigenvalues. For each dataset, we com-
pute the k smallest eigenvalues of the kernel matrix (k = 32
for ModelNet10 and k = 16 for Cubes). We pass these k
eigenvalues to a random forest classifier for downstream
classification. For all the experiments we use: ϵ = .1,
λ = −.1 and we sample 2048 points randomly for each
shape in ModelNet10.

The brute-force baseline version for the ModelNet10 and
Cubes explicitly constructs the epsilon-neighborhood graph,
directly conducting the eigendecomposition of its adjacency
matrix and exponentiating eigenvalues. Comparison with
this variant is the most accurate apple-to-apple comparison.
The baseline variant has time complexity O(N3) whereas
our method for obtaining the eigenvectors is of time com-
plexity O(N). Our results are summarized in Table 4. Our
method excels at these point cloud classification tasks, beat-
ing the brute-force baseline method by almost 25 points on
ModelNet10 and by 5 points on the Cubes. Our reported
numbers are comparable to earlier methods on ModelNet
(SPH and LFD achieving 79% (Wu et al., 2015)). Cubes is
a fairly challenging dataset and deep learning models like
PointNet achieves only 55% accuracy.

Table 4. Point cloud classification using RFD Kernel

Dataset # Graphs # Classes Baseline RFD

ModelNet10 3991/908 10 43.0 70.1
Cubes 3759/659 23 39.3 44.6

For additional experiments on graph classification, see Ap-
pendix F.

4. Conclusion
We have presented in this paper two algorithms,

SeparatorFactorization and RFDiffusion, for efficient
graph field integration based on the theory of balanced sepa-
rators and Fourier analysis. As a byproduct of the developed
techniques, we have obtained new results in structural graph
theory. Our extensive empirical studies support our theo-
retical findings (e.g., mesh dynamics modeling) involving
interpolation on meshes for rigid and deformable objects
and the computation of the Wasserstein distance between
distributions defined on meshes.

References
Abraham, I., Bartal, Y., and Neiman, O. Nearly tight low

stretch spanning trees. In 49th Annual IEEE Symposium
on Foundations of Computer Science, FOCS 2008, Oc-
tober 25-28, 2008, Philadelphia, PA, USA, pp. 781–790.
IEEE Computer Society, 2008.

9



Efficient Graph Field Integrators Meet Point Clouds

Agueh, M. and Carlier, G. Barycenters in the Wasserstein
space. SIAM Journal on Mathematical Analysis, 43(2):
904–924, 2011.

Al-Mohy, A. H. and Higham, N. J. A new scaling and
squaring algorithm for the matrix exponential. SIAM
Journal on Matrix Analysis and Applications, 31(3):970–
989, 2010.

Al-Mohy, A. H. and Higham, N. J. Computing the action of
the matrix exponential, with an application to exponential
integrators. SIAM J. Sci. Comput., 33(2):488–511, 2011.

Avron, H., Kapralov, M., Musco, C., Musco, C., Velingker,
A., and Zandieh, A. Random Fourier features for kernel
ridge regression: Approximation bounds and statistical
guarantees. In Proceedings of the 34th International
Conference on Machine Learning, ICML, 2017.

Bader, P., Blanes, S., and Casas, F. Computing the matrix
exponential with an optimized taylor polynomial approx-
imation. Mathematics, 7(12):1174, 2019.

Balcilar, M., Renton, G., Heroux, P., Gauzere, B., Adam, S.,
and Honeine, P. Bridging the gap between spectral and
spatial domains in graph neural networks, 2020.

Bartal, Y. Probabilistic approximation of metric spaces
and its algorithmic applications. In Proceedings of 37th
Conference on Foundations of Computer Science, pp. 184–
193. IEEE, 1996.

Bartal, Y., Fandina, O. N., and Neiman, O. Covering metric
spaces by few trees. J. Comput. Syst. Sci., 130:26–42,
2022.

Barth, T. J. Computational fluid dynamics, structural anal-
ysis and mesh partitioning techniques - introduction. In
Palma, J. M. L. M., Dongarra, J. J., and Hernández, V.
(eds.), Vector and Parallel Processing - VECPAR ’98,
Third International Conference, Porto, Portugal, June
21-23, 1998, Selected Papers and Invited Talks, volume
1573 of Lecture Notes in Computer Science, pp. 171–175.
Springer, 1998.

Bartolucci, S., Caccioli, F., Caravelli, F., and Vivo, P.
Inversion-free Leontief inverse: statistical regularities
in input-output analysis from partial information, 2020.
URL https://arxiv.org/abs/2009.06350.

Bodlaender, H. L., Drange, P. G., Dregi, M. S., Fomin,
F. V., Lokshtanov, D., and Pilipczuk, M. A ck n 5-
approximation algorithm for treewidth. SIAM J. Comput.,
45(2):317–378, 2016. doi: 10.1137/130947374. URL
https://doi.org/10.1137/130947374.

Charikar, M., Chekuri, C., Goel, A., Guha, S., and Plotkin,
S. A. Approximating a finite metric by a small number of
tree metrics. In 39th Annual Symposium on Foundations
of Computer Science, FOCS ’98, November 8-11, 1998,
Palo Alto, California, USA, pp. 379–388. IEEE Computer
Society, 1998.

Cheng, H., Crutchfield, W. Y., Gimbutas, Z., Greengard,
L., Ethridge, J. F., Huang, J., Rokhlin, V., Yarvin, N.,
and Zhao, J. A wideband fast multipole method for
the Helmholtz equation in three dimensions. J. Comput.
Phys., 216(1):300–325, 2006.

Choromanski, K., Lin, H., Chen, H., Zhang, T., Sehanobish,
A., Likhosherstov, V., Parker-Holder, J., Sarlós, T., Weller,
A., and Weingarten, T. From block-Toeplitz matrices
to differential equations on graphs: towards a general
theory for scalable masked transformers. In International
Conference on Machine Learning, ICML 2022, 17-23
July 2022, Baltimore, Maryland, USA, volume 162 of
Proceedings of Machine Learning Research, pp. 3962–
3983. PMLR, 2022.

Choromanski, K. M., Likhosherstov, V., Dohan, D., Song,
X., Gane, A., Sarlós, T., Hawkins, P., Davis, J. Q., Mo-
hiuddin, A., Kaiser, L., Belanger, D. B., Colwell, L. J.,
and Weller, A. Rethinking attention with performers. In
9th International Conference on Learning Representa-
tions, ICLR 2021, Virtual Event, Austria, May 3-7, 2021.
OpenReview.net, 2021.

Cuturi, M. Sinkhorn distances: Lightspeed computation
of optimal transport. In Proceedings of the 26th Inter-
national Conference on Neural Information Processing
Systems - Volume 2, NIPS’13, pp. 2292–2300, Red Hook,
NY, USA, 2013. Curran Associates Inc.

Cygan, M., Fomin, F. V., Kowalik, L., Lokshtanov, D.,
Marx, D., Pilipczuk, M., Pilipczuk, M., and Saurabh, S.
Parameterized Algorithms. Springer, 2015.

Darve, E. and Have, P. A fast multipole method for Maxwell
equations stable at all frequencies. Philos Trans A Math
Phys Eng Sci., 15:603–28, 2004. doi: 10.1098/rsta.2003.
1337.

Dattoli, G., Ricci, P. E., and Pacciani, P. Comments on
the theory of Bessel functions with more than one index.
Appl. Math. Comput., 150(3):603–610, 2004.

de Lara, N. and Pineau, E. A simple baseline algorithm for
graph classification. Relational Representation Learning
Workshop, NIPS 2018, 2018.

Demetci, P., Santorella, R., Sandstede, B., Noble, W. S.,
and Singh, R. Gromov-Wasserstein optimal transport to
align single-cell multi-omics data. bioRxiv, 2020. doi:
10.1101/2020.04.28.066787.

10

https://arxiv.org/abs/2009.06350
https://doi.org/10.1137/130947374


Efficient Graph Field Integrators Meet Point Clouds

Diestel, R. and Müller, M. Connected tree-width. CoRR,
abs/1211.7353, 2012.

Fakcharoenphol, J., Rao, S., and Talwar, K. A tight bound on
approximating arbitrary metrics by tree metrics. Journal
of Computer and System Sciences, 69(3):485–497, 2004.

Fellows, M. R., Fomin, F. V., Lokshtanov, D., Losievskaja,
E., Rosamond, F. A., and Saurabh, S. Parameterized low-
distortion embeddings - graph metrics into lines and trees.
CoRR, abs/0804.3028, 2008.

Flamary, R., Courty, N., Gramfort, A., Alaya, M. Z., Bois-
bunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras,
K., Fournier, N., Gautheron, L., Gayraud, N. T., Janati,
H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz,
A., Seguy, V., Sutherland, D. J., Tavenard, R., Tong, A.,
and Vayer, T. Pot: Python optimal transport. Journal of
Machine Learning Research, 22(78):1–8, 2021.

Gilbert, J. R., Hutchinson, J. P., and Tarjan, R. E. A separator
theorem for graphs of bounded genus. J. Algorithms, 5
(3):391–407, 1984.

Gimbutas, Z. and Rokhlin, V. A generalized fast multipole
method for nonoscillatory kernels. SIAM J. Sci. Comput.,
24(3):796–817, 2003.

Greengard, L. and Rokhlin, V. A fast algorithm for particle
simulations. Journal of Computational Physics, 73:325–
348, 1987.

Greengard, L., O’Neil, M., Rachh, M., and Vico, F. Fast
multipole methods for the evaluation of layer potentials
with locally-corrected quadratures. J. Comput. Phys. X,
10:100092, 2021.

Gumerov, N. A. and Duraiswami, R. Fast multipole ac-
celerated boundary element methods for room acoustics.
CoRR, abs/2103.16073, 2021.

Guo, M.-H., Cai, J.-X., Liu, Z.-N., Mu, T.-J., Martin, R. R.,
and Hu, S.-M. Pct: Point cloud transformer. Computa-
tional Visual Media, 7(2):187–199, Apr 2021. ISSN 2096-
0662. doi: 10.1007/s41095-021-0229-5. URL http://
dx.doi.org/10.1007/s41095-021-0229-5.

Han, X., Gao, H., Pfaff, T., Wang, J., and Liu, L. Predicting
physics in mesh-reduced space with temporal attention.
In The Tenth International Conference on Learning Repre-
sentations, ICLR 2022, Virtual Event, April 25-29, 2022.
OpenReview.net, 2022.

Hanocka, R., Hertz, A., Fish, N., Giryes, R., Fleishman,
S., and Cohen-Or, D. Meshcnn: A network with an
edge. ACM Trans. Graph., 38(4), jul 2019. ISSN 0730-
0301. doi: 10.1145/3306346.3322959. URL https:
//doi.org/10.1145/3306346.3322959.

Ishiyama, T., Yoshikawa, K., and Tanikawa, A. High per-
formance gravitational n-body simulations on supercom-
puter fugaku. In HPC Asia 2022: International Confer-
ence on High Performance Computing in Asia-Pacific
Region, Virtual Event, Japan, January 12 - 14, 2022, pp.
10–17. ACM, 2022.

Janati, H., Cuturi, M., and Gramfort, A. Debiased Sinkhorn
barycenters. In ICML 2020 - 37th International Con-
ference on Machine Learning, Vienna / Virtuel, Aus-
tria, July 2020. URL https://hal.science/
hal-03063875.

Li, B. and Chang, G. J. Dot product dimensions of graphs.
Discret. Appl. Math., 166:159–163, 2014.

Liska, S. and Colonius, T. A parallel fast multipole method
for elliptic difference equations. J. Comput. Phys., 278:
76–91, 2014.

Lozano-Durán, A. and Borrell, G. Algorithm 964: An effi-
cient algorithm to compute the genus of discrete surfaces
and applications to turbulent flows. ACM Trans. Math.
Softw., 42(4):34:1–34:19, 2016.

Mémoli, F. Gromov—Wasserstein distances and the metric
approach to object matching. Found. Comput. Math., 11
(4):417–487, aug 2011. ISSN 1615-3375.

Mémoli, F. and Sapiro, G. Computing with point cloud data.
In Krim, H. and Yezzi, A. (eds.), Statistics and Analysis
of Shapes, pp. 201–229, Boston, MA, 2006. Birkhäuser
Boston.
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Appendix: Efficient Graph Field Integrators Meet Point Clouds

Broader Impacts
Matrix-vector multiplication is a core component of all machine learning (ML) models. Thus there is a lot of interest in the
ML community to discover ways or use cases where the above operation can be done in an efficient manner. This problem of
fast matrix-vector multiplication also has tremendous applications in physical sciences, chemistry, and networking protocols.
A vast body of literature has proposed scenarios where this problem is applicable. Our work makes an important contribution
towards this direction by discovering new examples where such methods exist. We expect our work to benefit the ML
community and the broader scientific community. Our work is mostly theoretical in nature, therefore we do not foresee any
negative applications of our algorithms.

A. Theoretical Analysis
A.1. Warmup Results on (G, f)-tractability

We start with the following simple remark:
Remark A.1. Let G be a family of graphs and let F = {f1, . . . , f|F|} be a family of functions R → C. If (G, fi) is
T -tractable for i = 1, . . . , |F| then for any f : R→ C of the form: f(z) =

∑|F|
i=1 aifi(z), where a1, . . . , aF ∈ C, (G, f) is

(T · F)-tractable.

Furthermore, the following trivially holds:
Remark A.2. Let G be a family of graphs and let f : R → C be a function. If (G, f) is T -tractable then (G,Re(f)) and
(G, Im(f)) are T -tractable, where Re and Im stand for the real and imaginary part of f respectively.

The |V|-tractability of (T , f), where T is the family of trees and f(z) = exp(az+ b), proven in (Choromanski et al., 2022),
combined with the above remarks implies several results for specific important classes of functions f . In particular, the
following holds:

Corollary A.3. If T is the family of trees and f is given by a finite Fourier series of length L, then (T , f) is (V · L)-
tractable. Thus in particular: (T , f) is |V|-tractable for f(z) = A sin(ωz + ϕ) for A,ω, ϕ ∈ R. This remain true if
f(z) = A exp(−bz) sin(ωz + ϕ), where b ∈ R.

A.2. Proof of Theorem 2.4

Proof. Let G ∈ G and denote: N = |V(G)|. Without loss of generality, we can assume that G is connected. We start with
the following auxiliary lemma, where we introduce the key notion of graph separator:

Lemma A.4. The set of vertices V(G) of G can be partitioned in time O(N) into three pairwise disjoint sets: A,B,S
such that: δN ≤ |A|, |B| ≤ (1 − δ)N for some universal 0 < δ < 1 and |S| ≤ t + 1, where t = ctw(G) stands for the
connected treewidth of G. Furthermore, no edges exist between A and B and: the induced sub-graphs GA and GB of G
with sets of vertices A and B respectively both have connected treewidth at most ctw(G). Finally, the graph GS induced by
S is connected. We call set S a separator in G. Furthermore, the tree decomposition with connected bags and of treewidth t
can be found in time O(N), with S being one of the bags.

Proof. This follows directly from the algorithmic proof of the following theorem:

Theorem A.5 (Bodlaender et al., 2016). For a graph on N vertices with treewidth k, there is an algorithm that will return a
tree decomposition with width 5k + 4 in time 2O(k)N .

The bounded treewidth decomposition from the above theorem can be easily refined to the bounded connected treewidth
deecomposition. Note that the O(N) time-complexity algorithm for the bounded connected treewidth decomposition
immediately implies that its representation is of size O(N) (i.e. the corresponding tree has O(N) edges/vertices).

Since our graph admits a tree decomposition with connected bags, the above tree decomposition can also be constructed
to have this property. Now we can apply the algorithmic version of the proof of Lemma 7.19 from (Cygan et al., 2015),
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concluding that one of the bags of this tree decomposition is a balanced separator and can be found by searching the tree in
time O(N).

The base version of the lemma is provided below:

Lemma A.6. Assume that G is a graph of treewidth at most k. Then there exists a separator X in G of size at most k + 1
and such that each connected component of the graph obtained from G by deleting vertices from X and the incident edges
has at most 1

2 |V (G)| vertices.

Let us explain know how the algorithmic version of the proof works. From the proof of the Lemma A.6 it is clear that as
long as computing the sizes of the sets for all nodes of the tree (from the treewidth decomposition) can be done in O(N)
time, the balanced separator can be found in O(N) time (Vt in the Lemma refers to the union of all the bags in the nodes of
the tree rooted in t). However this can be done via a standard recursion algorithm. Consider a node t which is not a leaf and
its children: c1, c2, . . . Note that in order to compute the size of the union of the sets: Vc1 , Vc2 , . . ., all that we need is: (a)
the individual sizes of the sets: Vc1 , Vc2 , . . . (that can be stored in the individual nodes as we progress with the recursion)
(b) the number of children from the set {c1, c2, . . .} whose corresponding bags contain a given vertex x from the bag Bt

associated with t (for every x in Bt). This is true since sets Vc1 , Vc2 , . . . are not necessarily disjoint, but by the definition of
the treewidth, their intersections are subsets of Bt. Furthermore, if Vci intersects with Bt, then (again, directly from the
treewidth definition) this intersection is also a subset of the bag Bci corresponding to ci. All the computations from (b) can
be clearly done in time s×O(k2), where s is the number of children of t and k is an upper bound on the bag size. Since we
consider bounded connected treewidth graphs, time complexity reduces to O(s). By unrolling this recursion, we obtain the
algorithm of time complexity proportional to the number of edges of the tree from the treewidth decomposition which is
O(N) (see our discussion above). That completes the analysis.

We are ready to prove the Theorem. We will identify the set of vertices V(G) with the set {1, . . . , N}. Denote:

vi =

N∑
j=1

f(dist(i, j))xj (15)

For a subset S ⊆ {1, . . . , N}, we will also use the following notation:

vSi =
∑
j∈S

f(dist(i, j))xj (16)

Our goal is to compute vi for i = 1, . . . , N . Equipped with Lemma A.4, we find the decomposition of V(G) into A, B and
S in time O(N). We find the entire tree decomposition T from Lemma A.4. Our strategy is first to compute vi for all i ∈ S
and then to compute vi for all i ∈ A ∪ B.

1. Computation of vi for i ∈ S.
For every i ∈ S , we can simply run Dijkstra’s algorithm (or one of its improved variants mentioned in the main body) to find
shortest path trees and, consequently, compute quantities vi. This can clearly be done in timeO(|S|(N+M) log(M)), where
M is the number of edges of G. Since G is sparse, the total time complexity is O(N log(N)) (or even O(N log log(N)) if
the fastest algorithms for finding shortest paths in graphs with positive weights are applied, see: (Thorup, 2003)).

2. Computation of vi for i ∈ A ∪ B.
We will show how to compute vi for all i ∈ A. The calculations of vi for all i ∈ B will be completely analogous. Note first
that:

vi = vAi + vS∪B
i (17)

2.1 Computation of vAi for all i ∈ A. We first show how to compute vAi for all i ∈ A. Take a vertex j ∈ A. Denote
by Pi,j the shortest path from i to j in G. If Pi,j contains vertices from B then Pi,j needs to use some vertices from S
(since there are no edges between A and B). If that is the case, denote by x the first vertex from S on the path Pi,j as we
go from i to j and by y the last vertex from S on the path Pi,j as we go from i to j. Note that x ̸= y. Denote by Px,y the

15



Efficient Graph Field Integrators Meet Point Clouds

sub-path of the path Pi,j that starts at x and ends at y. Note that all the vertices of B that belong to Pi,j also belong to Px,y .
Furthermore, since Pi,j is the shortest path from i to j, Px,y is the shortest path from x to y.

Note that Px,y is of length at most |S| − 1, where |S| is the size of S. This is the case since there exists a path from x to y
using only vertices from S (since GS is connected). The number of edges mx,y of the path Px,y using at least one vertex
from B is at most t.

Denote: P = {Px,y : x, y ∈ S, x ̸= y}, where Px,y is the shortest path from x to y (if there are many such paths, choose
an arbitrary one). Note that the size of P satisfies: |P| ≤

(|S|
2

)
=

(
t+1
2

)
. Denote by B′ the subset of B consisting of the

vertices of B that belong to these paths from P that have length at most t. Note that the size of B′ satisfies: |B′| ≤ t
(
t+1
2

)
.

Furthermore, set B′ can be found in time O(|S|(N +M) log(M)) = O(N log(N)), simply by running Dijkstra algorithm
for every vertex: x ∈ S (again, as before, this time can be improved to N log log(N)).

Note that since G has bounded connected treewidth, a subset C ⊆ B of constant size can be found in O(N) time (using T )
such that: G[A∪ S ∪ B′ ∪ C] has bounded connected treewidth t. Denote: Aext = A∪ S ∪ B′ ∪ C. By the definition of B′,
for every i, j ∈ A at least one of the shortest paths between i and j lies entirely in the sub-graph of G induced by Aext.
Furthermore, the sub-graph GAext

induced by Aext has connected treewidth at most ctw(G). We then recursively compute
for each i ∈ A the following expression:

ṽi =
∑

j∈V(GAext )

f(distGAext
(i, j))xj , (18)

where distGAext
is the shortest path distance in graph GAext .

Note that we have: vi = ṽi − δi, where:

δi =
∑

j∈S∪B′∪C
f(distGAext

(j, i))xj (19)

All δi can be computed in time O(|S ∪B′ ∪C|(N +M) log(M)) = O(N log(N)), simply by running Dijkstra’s algorithms
for every vertex v ∈ S ∪B′ ∪C (as before, this can be improved to O(N log log(N)) time). That completes the computation
of vAi for every i ∈ A.

2.2 Computation of vS∪B
i for all i ∈ A. It remains to show how to compute vS∪B

i for every i ∈ A. To do that, we
introduce for every vertex v ∈ V(G) a vector χv ∈ R|S| defined as follows:

χv[k] = dist(v, k) (20)

for k = 1, . . . , |S|. In the above, we identify the set S with {1, . . . , |S|}. Note that the following is true for any i ∈ A,
j ∈ S ∪ B:

dist(i, j) = min
k∈S

(χi[k] + χj [k]) , (21)

since every path from i to j needs to use a vertex from S. The following is also true:

χv = τv + ρv, (22)

where: τv[i] = mink∈S dist(v, k),∀i and furthermore ρv is a vector satisfying for k = 1, . . . , |S|:

0 ≤ ρv[k] ≤ |S| − 1 = t (23)

The latter is true since the lengths of any two shortest paths from v to two vertices of S differ by at most |S| − 1 (because
GS is connected and thus there exists a path between any two vertices of GS of length at most |S| − 1). We call ρv the
signature of v with respect to S. The following holds:

dist(i, j) = τi[1] + τj [1] + min
k∈S

(ρi[k] + ρj [k]) (24)

Note that all the vectors ρi and τi for i ∈ V(G) can be computed in time O(|S|(N +M) log(M)) = O(N log(N)), by
running Dijkstra’s algorithm for every vertex v ∈ S (and again, we can improve this time complexity to O(N log log(N))).
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We then partition the setA into subsetsAρ (some of them potentially empty) indexed by the vectors ρ ∈ {0, 1, . . . , |S|−1}|S|:

Aρ = {i ∈ A : ρi = ρ} (25)

We define the partitioning of C = S ∪ B into subsets Cρ in the analogous way.

We will first compute v
Cρ2

i for every i ∈ Aρ1 for given ρ1, ρ2 ∈ {0, 1, . . . , |S| − 1}|S|. For fixed ρ1, ρ2 ∈ {0, 1, . . . , |S| −
1}|S|, we first show how to compute v

Cρ2

i for all i ∈ Aρ1 . We partition Aρ1 into subsets (some of them potentially empty):

Al
ρ1 = {i ∈ Aρ1 : τi[1] = l} (26)

for l = 0, 1, . . . , N − 1.

We define the partitioning of Cρ2 into subsets Clρ2 in the analogous way.

Note that for i ∈ Al1
ρ1 and j ∈ Cl2ρ2 the following is true:

dist(i, j) = l1 + l2 + g(ρ1, ρ2), (27)

where g(ρ1, ρ2) def
= mink∈S(ρ

1[k] + ρ2[k]). We observe that the quantity v
Cρ2

i is the same for every i ∈ Al1
ρ1 . Thus it

suffices to compute {vCρ2

i0
, . . . , v

Cρ2

iN−1
} for arbitrary representatives iu ∈ Au

ρ1 (without loss of generality, we will assume that

all sets Au
ρ1 for u = 0, . . . , N − 1 are nonempty). If we define vector w ∈ RN as: w[u] = v

Cρ2

iu
then we have: w = Wz,

where vector z ∈ RN is given as follows:
z[u] =

∑
v∈Cu

ρ2

xv (28)

and furthermore matrix W ∈ RN×N is given as:

W[l1, l2] = f(l1 + l2 + g(ρ1, ρ2)) (29)

Vector z can be easily computed in O(N) time. The key observation is that multiplication Wz can be conducted in
O(N log(N)) time (the matrix W does not need to be explicitly materialized) with the use of Fast Fourier Transform since
W is a Hankel matrix (constant along each anti-diagonal). Thus we conclude that we can compute v

Cρ2

i for all i ∈ Aρ1 in
O(N log(N)) time. If a kernel is defined as K(i, j) = exp(−λdist(i, j)), this becomes a very special Hankel matrix, where
each row is obtained from the previous one by multiplication with a fixed constant. It is easy to see that the multiplications
with such matrices W can be conducted in time O(N) (we thus save a log(N)-factor).

By applying this method to all pairs (ρ1, ρ2), we conclude that we can compute vS∪B
i for all i ∈ A in time O(|S||S|−1 ·

|S||S|−1N log(N)) = O(N log(N)). This can be improved to O(N) time if K(i, j) = exp(−λdist(i, j)) is being applied.

Combining step 1 with steps 2.1 and 2.2, we obtain a method for computing vi for every i ∈ A. The computations of vi for
every i ∈ B are conducted in a completely analogous way (where we borrow the notation from the above analysis but adapt
to this case, e.g., we replace B′ with A′).

3. Putting this all together – time complexity analysis.
To summarize, vi for all i ∈ V(G) can be computed in time:

T (N) = T (N1) + T (N2) +O(N log(N)), (30)

where: ρN ≤ N1, N2 ≤ (1− ρ)N + C for constants 0 < ρ < 1, C > 0. It is easy to see that the solution to this recursive
equation satisfies the following:

T (N) = O(N log2(N)) (31)

If the kernel being used is of the form: K(i, j) = exp(−λdist(i, j)), then the recursion for the total runtime is of the form:

T (N) = T (N1) + T (N2) +O(N log log(N)), (32)

which implies that: T = O(N log1.38(N)). That completes the entire proof.

Remark A.7. Note that the proof of the above result but for the family G of trees from (Choromanski et al., 2022) is a special
instantiation of the proof presented above.
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A.3. Proof of Lemma 2.6

Proof. Denote: f̃(z) =
∫
B(R)

exp(2πiω⊤z)τ(ω)dω for z = nv − nw. Note that in the efficient implementation of the
RFD-estimator (that neglects the imaginary part of the dot-product), we have:

Ŵ(v, w) =
1

m

m∑
i=1

Xi, (33)

where: Xi = cos(2πω⊤
i z)

τ(ωi)
p(ωi)

, τ is the Fourier Transform (FT) of the function 1[∥z∥1 ≤ ϵ] and p is the pdf of the
R-truncated Gaussian distribution (e.g. Gaussian distribution truncated to the L1-ball B(R) of radius R and centered at 0).
We clearly have: E[Ŵ(v, w)] = f̃(z). Furthermore, the following holds:

Var(Ŵ(v, w)) =
1

m2
·m ·Var(X1) =

1

m
Var(X1) (34)

Note that: p(ω) = 1

(2π)
3
2
exp(−∥ω∥2

2 ) · C−1. We have: Var(X1) = E[X2
1 ]− (f̃(z))2 and:

E[X2
1 ] =

∫
B(R)

cos2(2πω⊤z)τ2(ω)p−1(ω)dω ≤ (2π)
3
2C

∫
B(R)

sin2(2ϵω1)

ω2
1

· . . . · sin
2(2ϵωd)

ω2
d

·

exp(
ω2
1

2
) · . . . · exp(ω

2
d

2
)dω = (2π)

3
2CΓd

ϵ

(35)

We have leveraged the formula for the FT of the function 1[∥z∥1 ≤ ϵ] from the main body of the paper. Thus we have:

Var(Ŵ(v, w)) ≤ 1

m

(
(2π)

3
2C(Γϵ(R))

d − (f̃(z))2
)

(36)

We also have:

MSE(Ŵ(v, w)) ≤ Var(Ŵ(v, w)) + (f̃(z))2 − (f(z))2 = Var(Ŵ(v, w)) + (f̃(z)− f(z))(f̃(z) + f(z)) (37)

Plugging in the formula for f̃(z) and the variance, we complete the proof.

B. Graph Metric Approximation with Trees
Define distG(·, ·) to be a shortest path distance function on a graph G. Recall that when T is the family of trees and
f(z) = exp(az + b), then we can compute the GFI in time O(|V|) using dynamic programming (via single bottom-up and
single top-down traversal of the tree). In other words, (T , f) is |V|-tractable. Therefore, it is advantageous to consider
representing a graph by trees that preserve/approximate its metric.

Spanning tree. A naive tree approximating the weighted graph metric is the graph’s minimum spanning tree. The optimal
running time for finding a minimum spanning tree is O(|E| · α(|V|, |E|)) (Pettie & Ramachandran, 2002), where α is
incredibly slowly growing function.

Note that while it is cheap to build a spanning tree, the distortion of the shortest path distance of the original graph can
be considerable. For example, let G be an unweighted n-cycle and T be its minimum spanning tree. Then the distortion
between leaf nodes in the spanning tree is distT(u, v)/distG(u, v) = n− 1. However, if instead of a single tree, we can
embed our graph into a distribution over trees, then we can hope to get better expected distortion. In this specific example,
if we take a uniform distribution over n different spanning trees (each obtained by deleting an edge), then the expected
distance distortion becomes

ET [distT(u, v)/distG(u, v)] = 2(1− 1/n).

This brings us to another type of method based on embedding the arbitrary weighted graph metric into the distribution of
trees.
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Low-distortion trees. Building on the low diameter randomized decomposition, Bartal (1996) introduced an algorithm for
sampling random hierarchically well-separated trees with expected distortion factor O(log2 |V|). Assume that the diameter
of an input graph is O(poly(|V|)). Then for all u, v ∈ V, the expectation over random tree T of the distance distortion is

ET [distT(u, v)/ distG(u, v)] ∈
[
1, O(log2 |V|)

]
.

Time complexity to sample a single Bartal tree is O(log |V|(|E| + |V| log |V|)). Further, Fakcharoenphol et al. (2004)
improved an arbitrary metric space embedding into random trees by providing a constructive algorithm with optimal
distortion factor of Θ(log |V|), i.e.,

ET [distT(u, v)/distG(u, v)] ∈ [1, O(log |V|)] .

Note that this improvement comes at higher time complexity for sampling a tree. Unlike FRT trees (Fakcharoenphol et al.,
2004), during the low-diameter decomposition in the Bartal algorithm, the cluster center is always included in the cluster
itself. As a result, in the Bartal algorithm, we can consolidate the sub-trees recursively without introducing new vertices. In
contrast, the FRT algorithm defines a laminar family, which corresponds to a rooted tree with graph nodes at the leaves.

In our applications for fast graph field integration during preprocessing, we sample T1, . . . ,Tk trees independently from
one of the above distributions. Note that sampling can be done in parallel. For the inference, we compute

i(v) =
1

k

k∑
i=1

∑
w∈V

f(distTi
(w, v))F(w),

which takes O(k|V|). The integration on each tree can be carried out in parallel, reducing the inference time by a factor of k.

In Fig. 4, we set the number of trees in T-FRT (FRT trees) to 3 and implemented two variants of T-Bart (Bartal trees) with 3
and 20 trees, respectively.

C. Interpolation on Meshes
In this section, we present implementation details for Sec. 3.1. All experiments are run on a single computer with an

i9-12900k CPU and 96GB memory.

C.1. Vertex Normal Prediction.

In the vertex normal prediction task in Sec. 3.1, we choose 120 meshes for 3D-printed objects with a wide range of size
from the Thingi10k (Zhou & Jacobson, 2016) dataset with the following File IDs:

[60246, 85580, 40179, 964933, 1624039, 91657, 79183, 82407, 91658, 40172, 65414, 90431,

74449, 73464, 230349, 40171, 61193, 77938, 375276, 39463, 110793, 368622, 37326, 42435,

1514901, 65282, 116878, 550964, 409624, 101902, 73410, 87602, 255172, 98480, 57140,

285606, 96123, 203289, 87601, 409629, 37384, 57084, 136024, 202267, 101619, 72896, 103538,

90064, 53159, 127243, 293452, 78671, 75667, 285610, 80597, 90736, 75651, 1220293, 126660,

75654, 75657, 111240, 75665, 75652, 68706, 123472, 88855, 470464, 444375, 208741, 80908,

73877, 495918, 1215157, 85758, 80516, 101582, 75496, 441708, 796150, 257881, 68381,

294160, 265473, 762595, 461110, 461111, 38554, 762594, 79353, 81589, 95444, 762586,

762610, 762607, 1335002, 274379, 437375, 59333, 551074, 550810, 93130, 372053, 372059,

133078, 178340, 133079, 133568, 331105, 80650, 47984, 551021, 308214, 372057, 59197,

1717685, 439142, 372058, 376252, 372114]

For each method listed in Fig. 5, we do a grid-search over its hyper-parameter(s) for each mesh and report the pre-processing
time and interpolation time associated with the hyper-parameter(s) that give(s) us the best cosine similarity.

D. Wasserstein Distances and Barycenters
The Wasserstein metric has received a lot of attention in the machine learning community, especially for its principled way
of comparing distributions on a metric space X (Villani, 2003). It is a distance function between probability measures
defined on X , while strongly reflecting the metric of the underlying space. In spite of their broad use, Wasserstein distances
are computationally expensive.
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D.1. Wasserstein Barycenters on Meshes

To alleviate this computational bottleneck, convolutional Wasserstein distance is proposed as an entropic regularized
Wasserstein distance over geometric domains by leveraging the heat kernel as the proxy for the geodesic distance over the
manifold.

The heat kernel matrix H can be seen as a generalization of a Gaussian kernel on a manifold by Varadhan’s formula (Solomon
et al., 2015). Moreover, the geodesic distance function dist(i, j) on a surface mesh can be approximated by the Euclidean
distance on an ϵ-nearest-neighbor graph (when ϵ is suitably chosen). Note that, unlike the Gaussian kernel, the heat kernel
can be efficiently computed.

In our work, we approximate the geodesic distance on a surface mesh by (1) shortest-path distance (used in SF calculations),
and 2) distance coming from an ϵ-NN graph approximating the surface (RFD).

D.1.1. EFFICIENT COMPUTATION OF WASSERSTEIN BARYCENTER

One of the key steps for the computation of Wasserstein distance is the action H on a given vector x. Solomon et al.
(2015) use a pre-factorized decomposition of H to do the above matrix-vector multiplication efficiently without actually
materializing H.

Similar to their method, we never materialize our kernel matrices K explicitly, i.e. we only need to know how to apply K to
vectors. Here FM can either be SeparationFactorization (SF) or the RFDiffusion algorithm (RFD) and for clarity, we use the
subscript for the matrix K to specify that we are approximating the (right) action of the matrix K.

We define ⊗ as the Hadamard product (also known as the element-wise product) and ⊘ as the element-wise division.

Algorithm 1 Fast Computation of Wasserstein Barycenter

Inputs: probability distributions
{
µi

}k

i=1
, area weights a⃗ ∈ RN

+ ,maxIter ∈ N, α ∈ Rk
+

Output: Wasserstein barycenter µ ∈ Prob(V)
Initialize: v1, . . . ,vk ← 1⃗,w1, . . . ,wk ← 1⃗,µ← 1⃗.
for j ≤ maxIter

for i = 1, . . . , k
1. wi ← µi ⊘

(
FMK(⃗a⊗ vi)

)
2. di ← vi ⊗

(
FMK(⃗a⊗wi)

)
3. µ← µ⊗ (di)αi

for i = 1, . . . , k
4. vi ← vi ⊗ µ⊘ di

return µ

D.1.2. DETAILS ON BASELINES

For the BF in separation integration, we first compute the pairwise shortest path distances for all vertices, using vertices
and edges in the input mesh. We then compute the element-wise exponential K with Kij := exp(−λdist(i, j)) for all i, j.

For the BF in diffusion integration, we use the vertex embeddings of the input mesh and create a graph G with edges between
nodes i and j if ∥ni − nj∥1 ≤ ϵ. After creating the set of edges, we compute the matrix exponential K = exp(λWG) with
(WG)ij := ∥ni − nj∥1 · 1[∥ni − nj∥1 ≤ ϵ].

In steps 1 and 2 in the algorithm 1, both the baseline variants explicitly perform Kx, the matrix-vector multiplication.

D.1.3. DETAILS ON HYPER-PARAMETERS

For diffusion integration, we fix parameters ϵ = 0.01 and λ = 0.5, and the number of random features is 30. For separation
integration, we choose λ = 0.2, unit-size = 0.1, threshold = 2000 (the maximum size of the graph, measured in the number
of vertices, for which the integrator is conducted in a brute-force manner).

For computations of the Wasserstein barycenters, the input vector a⃗ contains area weights for vertices. The area weights
are proportional to the sum of triangle areas adjacent to each vertex in a triangle mesh (Solomon et al., 2015). We set the
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number of input distributions k = 3 and α = 1⃗
k = 1⃗

3 . For each mesh, we generate three different input distributions µi,
each with mass concentrated in vertices surrounding a distinct center vertex.

The experiments performed for Wasserstein barycenter are conducted on an 8-CPU core Ubuntu virtual machine on Google
Cloud Compute.

D.1.4. ADDITIONAL EXPERIMENTS

In Table 5, we include comparisons of RFD with an additional baseline (Solomon et al., 2015). Even though there are
similarities between our work and the above mentioned autors, we would like to point the following key differences : (1)
Solomon et al. (2015) does not consider an ϵ-graph and (2) uses the heat kernel which is constructed using mesh Laplacian
instead of our matrix exponential of the weighted adjacency matrix.

Moreover, we note that the kernel employed in our SF experiments can be seen as a generalization of the Laplace kernel on
the manifold, and thus not directly comparable to the heat kernel.

Table 5. Comparison of the total runtime and mean-squared error (MSE) across several meshes for diffusion-based integration. Slmn is
the integrator from (Solomon et al., 2015). Runtimes are reported in seconds. The lowest time for each mesh is shown in bold. MSE is
calculated w.r.t. the output of brute force (BF).

Mesh |V| Total Runtime MSE

BF Slmn RFD Slmn RFD

Alien 5212 8.06 0.57 0.39 0.042 0.041
Duck 9862 45.36 1.94 1.10 0.002 0.002
Land 14738 147.64 4.17 2.17 0.023 0.017
Octocat 18944 302.84 6.74 3.36 0.022 0.027

D.2. Gromov Wasserstein Distance

The optimal transport (OT) problem associated with Gromov-Wasserstein (GW) discrepancy (Peyré et al., 2016), which
extends the Gromov-Wasserstein distance (Mémoli, 2011), has emerged as an effective transportation distance between
structured data, alleviating the incomparability issue between different structures by aligning the intra-relational geometries.
The GW discrepancy problem can be solved iteratively by conditional gradient method (Peyré et al., 2016) and the proximal
point algorithm (Xu et al., 2019). GW distance is isometric, meaning the unchanged similarity under rotation, translation,
and permutation and is thus related to graph matching problem, encoding structural information to compare graphs, and has
also been successfully adopted in image recognition (Peyré et al., 2016), alignment of large single-cell datasets (Demetci
et al., 2020), and point-cloud data alignment (Mémoli & Sapiro, 2006). However, despite its broad use, the Gromov
Wasserstein distance is computationally expensive as it scales as O(n2m2) where n,m are the numbers of source and target
nodes respectively.

D.2.1. (FUSED) GROMOV WASSERSTEIN DISCREPANCY

Formally, the Gromov-Wasserstein discrepancy between two measured similarity matrices (C,p) ∈ Rn×n × Σn and
(D,q) ∈ Rm×m × Σm is defined as :

GW(C,D,p,q) = min
T∈Cp,q

∑
i,j,k,l

ℓ(Ci,k,Dj,l)Ti,jTk,l

= min
T∈Cp,q

⟨L(C,D,T),T⟩
(38)

where C and D are matrices representing either similarities or distances between nodes within the graph, Ai,j is the ijth
entry of the matrix A, ℓ is the loss function applied elementwise on the matrices. The common choices of the loss function
are Euclidean distance, i.e. ℓ(x, y) := (x− y)2 or KL-divergence, i.e. ℓ(x, y) := x log x

y − x+ y, p ∈ Rn
+ (resp. q ∈ Rm

+ ),∑
pi = 1 (resp.

∑
qi = 1), is the probability simplex of histograms with n (resp. m) bins, and T is the coupling matrix
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between the two spaces on which the similarity matrices are defined, i.e.

Cp,q = {T ∈ Rn×m
+ | T1m = p,T⊤1n = q} (39)

Define, L(C,D,T) := [Lk,l] ∈ Rn×m and Lk,l :=
∑

i,j ℓ(Ci,k,Dj,l)Ti,j and ⟨·, ·⟩ is the inner product of matrices. For
the rest of the section, we use the Euclidean distance ℓ as our loss function.

Following the work of (Vayer et al., 2018), the concept of GW discrepancy can be extended to an OT discrepancy on graphs
called Fused Gromov Wasserstein (FGW) that take into account both the node features of the graphs as well as their structure
matrices. FGW can be written as follows:

FGWα(C,D,M,p,q) = min
T∈Cp,q

∑
i,j,k,l

((1− α)M+

αℓ(Ci,k,Dj,l))Ti,jTk,l

(40)

where M is the distance matrix encoding differences between the nodes of the 2 graphs and α is the convex combination
between the distance matrices.

D.2.2. ESTIMATING THE ACTION OF HADAMARD SQUARE OF MATRICES ON VECTORS

To compute (Fused) Gromov-Wasserstein discrepancies, one needs to compute C⊙2p, where C⊙2 is the element-wise
square (Hadamard square) of a cost matrix C and a vector p. This is given by the following formula :

C⊙2p = diag
(
CDpC

⊤) (41)

where diag(M) is the diagonal of M and Dp is the matrix formed by p as its diagonal.

However, for all our fast variants, we never materialize the matrix C explicitly. Thus to estimate the above action, we can
make 2 calls to our Fast Multiplication method (FM) via the following :

C⊙2p ∼ diag(FMC(FMC(Dp)
⊤)) (42)

Here FM can either be SeparationFactorization (SF) or the RFDiffusion algorithm (RFD), and for clarity, we use the
subscript for the matrix C to specify that we are approximating the (right) action of the matrix C.

D.2.3. ALGORITHM TO PUT IT ALL TOGETHER

To calculate the OT (for Gromov-Wasserstein and Fused Gromov Wasserstein), the loss matrix L(C,D,T) needs to be
computed, which is one of the most expensive steps, as it involves a tensor-matrix multiplication. Indeed if the source graph
has n nodes and the target graph has m nodes, this operation has a time complexity of O(n2m2). However, when the loss
function ℓ can be written as ℓ(a, b) = f1(a) + f2(b) − h1(a)h2(b) for functions (f1, f2, h1, h2), the loss matrix can be
calculated as (Peyré et al., 2016)

L(C,D,T) = f1(C)p1⊤
m + 1nq

⊤f2(D)− h1(C)Th2(D)⊤ (43)

where the functions (f1, f2, h1, h2) are applied elementwise. In this case, the time complexity reduces to O(n2m+m2n).
Moreover if ℓ is the Euclidean loss function, then f1(x) = f2(x) = x2 and h1(x) = x, h2(x) = 2x.

Our Fast Multiplication methods (FM) can be used to efficiently estimate the above tensor product given by equation 43 via
the algorithm 2 thus leading to computation gains in computing GW (resp. FGW ) discrepancies. In the above algorithm,
the implicit representation of a matrix M can be given as an array of 3-D coordinates and hyperparameters that are specific
to the chosen FM algorithm.

Our contributions go further than providing fast accurate computation of the tensor products but also a fast computation of
the line search algorithm (Algorithm 2 as presented in (Titouan et al., 2019)). The line search algorithm provides an optimal
step size for the FGW iterations.

We now provide a brief description of how our novel FM methods can be injected into the line search algorithm for the
conjugate gradient. The line search algorithm at a FGW iteration takes in the structure matrices of the source and target
graphs (which in our case will be implicit representations of such matrices), transport cost G, dG which is the difference
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Algorithm 2 Fast Computation of Tensor Products

Input: T and IC, ID {IM := implicit representation of the cost matrix M}
Output: L(IC, ID,T)
1. Estimate v1 := f1(C)p by Equation 42

Compute w1 = v11
⊤

2. Estimate v2 := f2(D)q by Equation 42 {Using the fact that D is symmetric}
Compute w2 = 1v⊤

2

3. Estimate h1(C)Th2(D)⊤ by
w3 := (FMD(FMC(T)⊤))⊤

return w1 +w2 − 2w3

Algorithm 3 Fast Computation of Line-search for CG

1: Input: IC, ID, α,G, dG,M,
2: Output: Optimal Step Size τ
3: Estimate cC,D by Step 1 and 2 of algorithm 2.
4: Estimate a1 := CdGD by FMD(FMC(dG)⊤)⊤ {since D is symmetric}.
5: Compute a := −2α⟨a1, dG⟩.
6: Estimate b1 := CGD by FMD(FMC(G)⊤)⊤

7: Compute b := ⟨(1− α)M+ αcC,D, dG⟩ − 2α(⟨a1,G⟩+ ⟨b1, dG⟩)
8: Compute c := cost(G)
9: if a > 0 then

10: τ ← min(1,max(0, −b
2a ))

11: else
12: if a+ b < 0 then
13: τ ← 1
14: else
15: τ ← 0
16: end if
17: end if

between the optimal map found by linearization in the FGW algorithm and G, and M, a matrix measuring the differences
between nodes features of source and target graphs. Define cC,D := f1(C)p1⊤

m + 1nq
⊤f2(D). Finally, the algorithm

needs a cost function that combines the transportation cost coming from the node features and the graph structures which
is applied to G. This cost function crucially relies on the tensor product computation (Equation 43) and our Algorithm 2
provides a fast efficient computation of this cost function as well.

Note that employing a low-rank decomposition of the cost matrices to speed up the computation of GW has also been
studied in (Scetbon et al., 2021). However, our work differs from their work in certain key aspects. The choice of our
kernel matrices and the method of factorization of the cost matrix differs from the above work. Moreover, we do not design
our methods with GW computations in mind but a flexible mechanism that can be injected into various GW computations
including entropic-GW (similar to Algorithm 2 proposed in (Scetbon et al., 2021)).

D.2.4. GROMOV WASSERSTEIN BARYCENTERS

Recall, that given graphs G1, · · · , GN , where Gi := {Ci,pi} comes equipped with a cost matrix Ci between its nodes
and a probability simplex defined on its nodes, the Wasserstein barycenter can be defined as the minimizer of the functional

F [ν] =

n∑
i=1

wi GW((C̄,Ci, p̄, p̄i) (44)

where wi are some fixed positive weights and
∑
wi = 1, Ḡ := {C̄, p̄} is the predefined barycenter graph with a fixed

number of nodes. One can similarly define a Fused GW barycenter as well.

As an application of our methods, we interpolate between a bunny (1887 vertices) and a torus (1949 vertices). We center
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the meshes around (0, 0, 0) and scale the coordinates such that |x|, |y|, |z| ≤ 1. We then run a fast Sinkhorn barycenter
algorithm (Janati et al., 2020) to get a configuration of intermediate shapes in 3D space. A sampling algorithm (Voxel Grid
Filter) is then used to reduce the density of the generated point clouds to 1445, 1450, and 1425 points respectively. We then
try to solve for the edges of these intermediate point clouds. Our method as well as the baseline GW-cg algorithm produce

Figure 8. Interpolation between a bunny and a torus. Barycenters are computed using, Top row: GW-cg, Bottom row : GW-cg-RFD

decent meshes and tries to preserve the consistency of the manifold mesh throughout the interpolation (Figure 8). For the
barycenter experiment, we use m = 16 random features, λ = −.15, and ϵ = .13.

All experiments on GW and its variants are conducted on a Google Colab.

E. Ablation Studies
In this section, we present detailed ablation studies for our experiments.

E.1. Ablation Studies for Vertex Normal Prediction Experiments

RFDiffusion. There are three hyper-parameters in our RFDiffusion algorithm, which are the number of random features m,
epsilon ϵ, and lambda λ. The number of random features determines the accuracy of our approximation of the weighted
adjacency matrix WG. The epsilon hyper-parameter controls the sparsity level of the ϵ-NN graph. The lambda hyper-
parameter controls the ”steepness” of our kernel. We can make the following conclusions based on the observations from
Fig. 9. Firstly, increasing the number of random features usually gives us a better estimation of the weighted adjacency
matrix WG, which leads to higher cosine similarity. Secondly, a densely connected graph (large epsilon) coupled with a
steeper kernel function (lambda with large absolute value) leads to better performance.

SF. There are two hyper-parameters in our SF algorithm, which are: unit-size (determining the quantization mechanism:
all the shortest path lengths are considered modulo unit-size) and threshold (specifying the maximum size of the graph,
measured in the number of vertices, for which the GFI is conducted in a brute-force manner). Fig. 10 shows pre-processing
time, interpolation time, and cosine similarity under different values of the unit-size hyper-parameter. The results are
reported with the threshold set as half of the number of vertices in the mesh. We can observe from the plots that a small value
for unit-size provides a better estimation of the shortest-path distance without incurring significant changes in pre-processing
and interpolation time. Fig. 11 shows the ablation of different thresholds while keeping the unit-size hyper-parameter the
same (0.01). There is a trade-off between accuracy (measured by cosine similarity) and interpolation time. In the main body
of our paper, we set the unit-size to 0.01 and the threshold to 0.5.
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Figure 9. Ablations study for RFDs on the vertex normal prediction task.
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Figure 10. Ablation study for the unit-size hyper-parameter in SF algorithm for vertex normal prediction task.
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Figure 11. Ablation study for the threshold hyper-parameter in SF algorithm for vertex normal prediction task.

E.2. Ablation Studies for Gromov Wasserstein experiments

The ϵ parameter in our RFDiffusion effectively controls the sparsity of our source and the target graphs. We find that our
runtimes for GW distance via the conditional gradient algorithm remain mostly stable while that of the baseline algorithm
grows with the density of the graph. However, runtime for GW-distance computed via the proximal point algorithm is fairly
stable (Xu et al., 2019). Surprisingly, the runtime for the FGW distance is also stable. We hypothesize that it is because even
though the source or target graphs are sparse, we need to materialize a dense cross-feature distance matrix between the node
features of the source and target nodes. In these cases, the runtimes for our RFDiffusion-integrated GW (with conditional
gradient algorithm) and FGW are also stable and inconsistently lower than the baseline methods. The middle figure 12
shows the relative error as the function of ϵ. As ϵ increases, for a fixed value of λ, the action of the matrix that we are trying
to estimate will have a larger norm, and thus the relative error grows in accordance to Lemma 2.6. However, for meshes
rescaled in a unit box, the ϵ tends to be smaller in practice.

We also see similar behavior with λ, i.e., smaller values of |λ| tend to produce better results. This phenomenon is predicted
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by Lemma 2.6. However, if λ gets too close to 0, the structure matrices approach an identity matrix, leading to information
loss. This causes instabilities in the convergence of the algorithm.

All the experiments are run on random 3D distributions with 3000 points, and the results are averaged over 10 runs.

Figure 12. Ablation study over the λ and ϵ parameters for the GW variants. Left: The runtime for the baseline GW-cg method increases
as the input graph gets denser while our runtimes remain mostly constant. Middle and right: Plots show relative error as a function of ϵ
and λ respectively. The relative error increases if the graphs get “dense” or the kernel becomes too “steep.”

E.3. Ablation Studies on Wasserstein Barycenter Experiments

In Table 7, we provide ablation results for the λ hyper-parameter in RFD algorithm for the Wasserstein barycenter task.
Experiments are conducted on the mesh duck. We show that the MSE increases with λ, which is in line with the observation
in Section E.2. The runtime is nearly unchanged for different values of λ. We normalize the coordinates of the vertices and
choose the epsilon parameter to be 0.01, making the computation meaningful. Larger epsilon values will cause the graph to
be too dense, and smaller epsilon values will create an epsilon graph with almost no edges.

In Table 6, we provide ablation results for the unit-size hyperparameter in the SF algorithm. We show that the MSE slowly
increases with unit-size, and the runtime is nearly unchanged for different values of unit-size.

Table 6. Ablation study for the unit-size parameter in SF for Wasserstein
barycenter task.

unit-size MSE Total time (secs)

0.1 2.1× 10−3 19.4
0.5 2.1× 10−3 19.1
1.0 2.1× 10−3 18.9
5.0 2.7× 10−3 18.8
10.0 3.1× 10−3 19.1

Table 7. Ablation study for the λ parameter in RFD for
Wasserstein barycenter task.

λ MSE Total time (secs)

0.1 2× 10−4 1.1
0.3 1.1× 10−3 1.1
0.5 2.1× 10−3 1.0
0.7 2.7× 10−3 1.1
0.9 3.3× 10−3 1.1

F. Graph Classification Experiments using the RFD Kernel
We extract our RFD kernel and use it for various graph classification tasks. More specifically, we compute the top k

eigenvalues for the approximated kenel matrix and pass it to a random forest classifier for classification. Note that, as
described in (Nakatsukasa, 2019), low-rank decomposition of the kernel matrix (provided directly by the RFDiffusion
method via the random feature map mechanism) can be used to compute efficiently eigenvectors and the corresponding
eigenvalues.

However, most of the benchmark datasets for graph classification are molecular datasets (Morris et al., 2020). Our
methods are originally developed for meshes and point clouds where we excel (see section 3.3) hence we do not consider
molecular graphs in the main paper. The node features of these molecular graphs are extremely coarse and thus the
epsilon-neighborhood graph constructed using these features performs poorly in downstream graph classification tasks.
We apply our RFDiffusion kernel on the sets of points, considering the node features as vectors in a d-dimensional space.
The RFD kernel produces a smoothened version of the epsilon-neighborhood graph, giving good results even when the
baseline applying explicitly the epsilon-neighborhood graph does not. This is the case since random features replace the
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Table 8. Graph Classification using RFD Kernel

Dataset # Graphs Avg. # Nodes Avg. # Edges VH RW WL-SP FB RFD (ours)

MUTAG 188 17.93 19.79 69.1 81.4 81.4 84.7 71.0
ENZYMES 600 32.63 62.14 20.0 16.7 27.3 29.0 27.0
PROTEINS 1113 39.06 72.82 71.1 69.5 72.1 70.0 75.0

NCI1 4110 29.87 32.3 55.7 TIMEOUT 60.8 62.9 61.0
DD 1178 284.32 715.66 74.8 OOM 76.0 - 73.0

PTC-MR 344 14.29 14.69 57.1 54.4 54.5 55.6 61.0

combinatorial object (a graph with edges and no-edges) with its “fuzzy” version, where all the nodes are connected by edges
(that are not explicitly reconstructed though) but the weights corresponding to non-edges in the original graph are close to
zero with high probability.

We compare our algorithm with four baselines : Vertex Histogram (VH), Random Walk (RW), Weisfeiler-Lehman shortest
path kernel (WL-SP) (Nikolentzos et al., 2022) and Feature based method (FB) (de Lara & Pineau, 2018). Our method
compares favorably with these methods and is also competitive with various kernel methods reported in (de Lara & Pineau,
2018; Balcilar et al., 2020; Nikolentzos et al., 2022; Seenappa et al., 2019). The results along with statistics about the
datasets are summarized in Table 8.
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