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1 ADDITIONAL RESULTS

We include additional results for both Common and Original categories in each domain. Results for
Houses, Sports Photography, Animals, Art, and People from the original set are shown in fig. 1, and
from the common set in fig. 2.

Figure 1: Addtional Qualitative results demonstrate the effectiveness of multi-token textual inversion
in reconstructing original images across different domains, with more tokens enhancing the capture
of additional details. On the right, we demonstrate the editability test using the prompt ”Cat with S∗

m”
for m = 4.

Figure 2: Additional qualitative results show that multi-token textual inversion can effectively
reconstruct common images from various domains, with a single token often sufficing for high-
quality reconstruction. The editability test in the last row is illustrated using the prompt ”cat with
S∗
m”.
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2 SYNTHETIC FRAMEWORK

2.1 IMPLEMENTATION DETAILS

Datasets All images feature a white background and a number of geometric shapes in the foreground.
Each element in the image is defined by four features, and the entire set is the cross-product of all
features. The shapes are independently and uniformly located across the image. The image’s default
textual description is in the format ”big red full circle and small empty blue square” 1.

Utilizing this framework, we generate datasets comprising 100K images each. In every dataset, 10%
of the images are empty, while the rest contain a variable number of elements uniformly distributed
within the range [1, n], where n can be any natural number. In the following sections, we choose
either n = 4 or n = 6.

Models We train a separate Stable Diffusion model for each dataset, so that the only visual data
seen by the resulting model is the training dataset itself. Key decisions included (i) pretraining a
VAE (Encoder-Decoder) and a UNet (noise-cleaner) from scratch, and (ii) employing BERT as the
Text-Encoder, chosen over CLIP to avoid the broader visual context implications associated with
CLIP training.

Evaluation In order to facilitate automated and large-scale analysis of generations, which is
essential for the purposes outlined in Sec. 2 and 4.1, we fine-tuned a YOLOv8 model on the
synthetic datasets. This approach effectively addresses common issues, such as overlapping or
slightly deformed elements, providing a confidence measure for each detection. We set the confidence
threshold at 0.9, aligning with the requisite quality of the generated elements.

2.2 GENERALIZATION EXPERIMENTS ADDITIONAL DETAILS

Generalization target In assessing generalization, we leave out specific elements from the training
process, and ask for their generation after training. While these elements have not been witnessed by
the model, their properties have. For example, if a blue circle is omitted from training, the model
still witnesses circles and the color blue, only not in conjunction (Fig. 2(i), bottom). The degree of
generalization can be evaluated by the frequency of occurrence of the missing element within the
generated set, normalized by the total number of generated elements. We repeat this experiment with
a prompt asking for the specific missing element, and unconditionally with the empty prompt.

Text conditioning In evaluating each trained model, we assess the occurrence frequency of the
generated missing element across two sets, each comprising 1024 generated images. Initially, we gen-
erate images using an empty prompt (i.e., ” ”), thereby sampling from the unconditioned distribution
represented by the model. Subsequently, we generate images with a prompt precisely describing the
missing element (e.g., ”blue circle”), thereby sampling from the model’s text-conditioned distribution.
It is natural to anticipate that employing a specific textual prompt will increase the frequency of the
generated missing element.

Training data diversity As discussed in the experiments section (sec. 4 of the main paper), each
element within our dataset encompasses values of four dimensions: Size, Color, Texture, and Shape
Type. Our dataset’s diversity spectrum ranges from the least diverse, characterized by a span of two
shape types (square and circle) and two colors (red and blue), as demonstrated in fig.3 (left) of the
main paper, to the most diverse, which encompasses four dimensions - five shape types (square, circle,
triangle, hexagon, and star), three colors (red, green, and blue), two sizes (big and small), and two
textures (full and empty), thereby resulting in 60 unique elements (main paper, fig.3 right). Consistent
with prior research Zhao et al. (2018), we anticipate a positive correlation between diversity and
generalization.

1Based on empirical experiments, we have found this more effective than counting or grouping elements in
the prompt. Evidence for misalignment between the prompt and produced images has been shown in various
studies as well Chefer et al. (2023); Wang et al. (2023)
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Addressing Bias To mitigate potential bias arising from the model’s inclination towards certain
values within our element subspace, we enforce symmetry by averaging over a larger number of
experiments, each differing in its spanning set and missing elements. For instance, the leftmost
data points in fig.3 in the main paper, represent the averaged results of four identical 4-element
experiments conducted sequentially with (1) big full elements, (2) big empty elements, (3) small full
elements, and (4) small empty elements.

3 IN-DISTRIBUTION ASSESSMENT IN THE SYNTHETIC SETTING ABLATION
STUDY

In Section 4 of the main paper, we outline simplified criteria for in-distribution testing within a
synthetic setting vs a real-world setting, where we employ the concept of edibility as a metric. In
the synthetic domain, a crucial test for the model’s effectiveness lies in its ability to generate images
without merely copying the spatial placement of elements from the query image. To test this, we
provide the following ablation study, where we fixed the location of elements in common images
during the training phase. The rationale behind this methodology was to challenge the notion that
the model’s generation of elements in varied locations might still be indicative of overfitting and to
ensure that the model stays within the intended distribution bounds.

Given that our model operates on patches, it could be suggested that if the model recreates identical
elements in different locations, it might not be exhibiting true understanding but rather a form of
overfitting. To address this, we trained the model on images with a single fixed location, hypothesizing
that if the model were able to replicate these elements in the same fixed location, it would demonstrate
an awareness of element locations beyond mere memorization.

The results of the ablation study supported our premise: the elements from the common images
consistently appeared in the same spatial positioning as in the query image, providing evidence of
the model’s spatial awareness. This finding is vital as it suggests that the model’s generation of
elements in different locations is not an artifact of overfitting but rather an indication of its genuine
understanding of elements.

Qualitative illustrations from this study are presented in fig. 3, with the original query images on the
left and the single-token reconstructions generated using four distinct random seeds on the right.

Figure 3: Qualitative Illustrations of the Ablation Study. The original query images on the left and
their corresponding single-token reconstructions on the right, generated using four distinct random
seeds. These examples serve to validate the model’s capability to comprehend and maintain the fixed
spatial locations of elements as observed in the common images during training, demonstrating the
validity of our in-distribution test in the synthetic setting.
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4 SYNTHETIC IMAGES QUALITY ANALYSIS

As illustrated in fig. 4, we observed an expected relationship between training data diversity and
generated image quality. The quality of generated elements not present in the training set improves
with greater diversity. Additionally, we found that the generation quality was not impacted by the
type of conditioning, particularly in more diverse cases where unconditioned generation led to the
creation of missing elements.

“big blue full circle”

“big red full square”

“small red full square”

“small red empty square”
8

15

4

30 60

emptytextual emptytextual

Figure 4: Detailed set of generated samples showcasing the correlation between training data diversity
and generated images quality. Rows: All elements in a row are missing elements of the same class,
when appearing in generated images. Blocks: All elements in a block where generated from models
trained on data of the same diversity scale, ranging from 4 elements to 60. Sub-blocks: In the 30 and
60 blocks, the right-hand side sub-blocks represent the results of empty prompts, and the left-hand
side sub-blocks represent the results of ad-hoc textual prompts.

In addition, we provide sample generations from each of the experiments in this study in fig. 5.
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60 elements

30 elements

15 elements

8 elements

4 elements

small red full square
small blue full circle

big red full square
big blue full circle

small red full square
small blue full circle

big red empty square
big blue empty circle

small red full square
small blue full circle

big red full square
big blue full circle

small red full square
small blue full circle

big red full square
big blue full circle

big red full square

big blue full square

Number of
elements

Generated with 
empty prompt

Generated with 
prompt of 

missing elements

Missing elements
in training

Figure 5: A representative sample of generations made by the synthetic models. Each row contains
images generated by a different model. The models differ by the number of different element in
their training set, and the specific elements left out. The left columns contain generations with an
empty prompt, while the right columns contain images generated with a prompt describing one of the
elements missing in training.
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5 DISTINGUISHING BETWEEN POPULARITY OF IMAGES IN THE TRAINING
DATA AND UNORIGINALITY

As the common images in Section 4.2 of the main paper were collected from the web, one could argue
that they may be highly duplicated in the LAION database, which Stable Diffusion was trained on.
Consequently, the phenomenon of low-token reconstruction might result from the model memorizing
those specific images rather than recognizing the general concept.

To address this concern, we conducted an experiment using images of street cats, which are known
for their generic appearance and are familiar to the model, but were taken by the authors of this paper.
Thus, it is guaranteed that these images were not part of the training data.

We used a set of 15 images captured specifically for this experiment and applied our method as
described in section 3 of the main paper. We found that the average DreamSim distance for all images
with a single-token reconstruction was 0.42, consistent with the results for single-token reconstruction
of common images in Section 5 of the main paper. Examples of single-token reconstructions for
these images are provided in fig. 6. The full set of images will be made publicly available.

Figure 6: The top row shows the images taken by the authors, which were not part of the training data,
ensuring no prior exposure to the model. The bottom row presents the reconstructions generated using
a single token, demonstrating that generic concepts can be effectively reconstructed with minimal
tokens, and this is not a result of memorization.

6 QUANTIFYING ORIGINALITY USING TEXTUAL INVERSION: ADDITIONAL
IMPLEMENTATION DETAILS

This section provides detailed information on the implementation of the models described in Section
4 of the main paper.

6.1 SYNTHETIC EXPERIMENTS

Stable Diffusion Pre-Training Details Our T2I model training involved two stages. First, we
trained a VAE for 8 epochs with an effective batch size of 32 and a learning rate of 10−5. Next, we
trained a UNet for 15 epochs using the trained VAE and a pre-trained BERT model, with an effective
batch size of 64 and a learning rate of 6.4× 10−5.

We evaluated our method’s originality assessment in a controlled environment by synthesizing a
custom dataset with specified features: Type: [circle, square, triangle, hexagon, star], Color: [red,
green, blue], Size: [big], Texture: [full]. The dataset was structured as follows:

• Common: 30% of the images contain the pair (circle, square) in varying colors.

• Rare: 0.1% contain the pair (circle, triangle) in varying colors.

• Unseen: The pair (square, triangle) does not appear in any images.
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The remaining images may contain up to 4 elements, with no more than one from the set [circle,
square, triangle]. We consider the frequent pair (circle, square) as generic, with multiple variations
in each image’s element positions. Our method quantifies originality based on this stable diffusion
model, using a total of 100K instances for training.

Multi-Tokens Textual Inversion Training Details In the synthetic setup, we trained our multi-
token textual inversion variant with token lengths ranging from 1 to 5. The training used a batch size
of 20, a learning rate of 0.0005, and 2000 steps. We found that 50 denoising inference steps produced
cleaner results.

6.2 PRETRAINED STABLE DIFFUSION EXPERIMENTS

Reconstruction Measurement We measure the similarity between original and reconstructed
images using the DreamSim distance. DreamSim is built upon an ensemble of different models;
for our use case, we used the DreamSim distance, which includes all models. At evaluation time
we generate for each image 20 images using the prompt "a photo of S∗

m" and average the
dreamsim score.

Training Prompt Templates Similar to the original Textual Inversion method, we used object text
templates for all experiments except the art domain, following the approach in [reference]. For the
art domain, we used a custom list generated by GPT4 and manually curated. The full list of text
templates includes:

• ”a detailed image of the artwork titled S∗
m”

• ”a high-resolution photo of the artwork S∗
m”

• ”a close-up view of the artwork known as S∗
m”

• ”a digital representation of the art piece S∗
m”

• ”the famous artwork S∗
m”

• ”a full view of the art piece titled S∗
m”

• ”an artistic interpretation of S∗
m”

• ”a gallery display of the artwork S∗
m”

• ”a photographic capture of the art S∗
m”

• ”the artwork S∗
min full detail”

• ”a visual study of the artwork S∗
m”

• ”the complete artwork known as S∗
m”

• ”an exhibition view of S∗
m”

• ”a curated image of the artwork S∗
m”

• ”a detailed scan of S∗
m”

• ”an artistic rendering of S∗
m”

• ”a high-quality image of the artwork S∗
m”

• ”the full artwork titled S∗
m”

• ”a museum display of S∗
m”

• ”an archival photograph of the artwork S∗
m”

7 DREAMSIM DISTANCE METRIC

In section 3 of the main paper, we describe our method for measuring originality, which includes mea-
suring the distance between the query image and the reconstructed image. DreamSim is an advanced
perceptual image similarity metric with STOA performances that offers a more comprehensive and
human-aligned approach to evaluating image similarity compared to traditional methods like the
Fréchet Inception Distance (FID).

7
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DreamSim is designed to bridge the gap between low-level image metrics (such as LPIPS, PSNR,
and SSIM) and high-level semantic judgments (such as those made by models like CLIP). Traditional
metrics often fall short in capturing mid-level differences in image layout, object pose, and semantic
content, which are crucial for aligning with human visual perception.

DreamSim leverages embeddings from several pre-trained models, including CLIP Radford et al.
(2021), OpenCLIP Ilharco et al. (2021), and DINO Caron et al. (2021). These embeddings are fine-
tuned using human perceptual judgments on a dataset of synthetic images created by text-to-image
models. The fine-tuning process involves learning from around 20,000 image triplets, where human
annotators have determined which images are more similar.

The formulation of DreamSim can be summarized as follows:

• Concatenation and Fine-tuning: The embeddings are concatenated and fine-tuned on
human perceptual judgments: Econcat = concat(ECLIP, EOpenCLIP, EDINO), EDreamSim =
fine-tune(Econcat, human judgments) Where, (ECLIP, EOpenCLIP, EDINO) are the embedding
functions of the respective models.

• Cosine Similarity: The perceptual distance D between two images I1 and I2 is computed as
the cosine distance between their embeddings:

D(I1, I2) = 1− EDreamSim(I1) · EDreamSim(I2)

∥EDreamSim(I1)∥∥EDreamSim(I2)∥

Advantages over Traditional Metrics

• Human Alignment: DreamSim is trained on human judgments, making its similarity assess-
ments more aligned with how humans perceive visual similarity.

• Comprehensive Feature Capture: By using embeddings from multiple models, DreamSim
captures a wide range of visual features, from low-level textures to high-level semantic
content.

• Generalization: Despite being trained on synthetic data, DreamSim generalizes well to
real images, making it versatile for various applications, including image retrieval and
reconstruction tasks.

IMPACT STATEMENT

This paper presents work whose goal is to advance the field of generative models by introducing
a framework for quantifying originality in text-to-image diffusion models. The potential broader
impact of this work includes the following:

Ethical Aspects Our research addresses the challenge of quantifying originality, which has signifi-
cant implications for copyright laws and the protection of creative works. By providing a methodology
to assess the originality of generated images, we aim to contribute to a fairer and more transparent
use of generative models in creative industries. This could help mitigate legal disputes related to
copyright infringement and ensure that the rights of original content creators are respected.

Future Societal Consequences The ability to quantify originality in generated images could en-
hance the deployment of generative models in various fields, including art, design, and entertainment,
by fostering trust and accountability. It can also encourage the development of new creative tools that
assist artists in generating unique content while respecting intellectual property rights.

Overall, we believe that our contributions to the understanding of originality and creativity in
generative models will have a positive societal impact by promoting ethical use and fostering
innovation.
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Armand Joulin. Emerging properties in self-supervised vision transformers. In Proceedings of the
IEEE/CVF international conference on computer vision, pp. 9650–9660, 2021.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Hila Chefer, Yuval Alaluf, Yael Vinker, Lior Wolf, and Daniel Cohen-Or. Attend-and-excite:
Attention-based semantic guidance for text-to-image diffusion models. ACM Transactions on
Graphics (TOG), 42(4):1–10, 2023.

Gabriel Ilharco, Mitchell Wortsman, Ross Wightman, Cade Gordon, Nicholas Carlini, Rohan Taori,
Achal Dave, Vaishaal Shankar, Hongseok Namkoong, John Miller, Hannaneh Hajishirzi, Ali
Farhadi, and Ludwig Schmidt. OpenCLIP. Zenodo, July 2021. doi: 10.5281/zenodo.5143773.
URL https://doi.org/10.5281/zenodo.5143773. If you use this software, please
cite it as below.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748–8763. PMLR, 2021.

Luozhou Wang, Guibao Shen, Yijun Li, and Ying-cong Chen. Decompose and realign: Tackling
condition misalignment in text-to-image diffusion models. arXiv preprint arXiv:2306.14408, 2023.

Shengjia Zhao, Hongyu Ren, Arianna Yuan, Jiaming Song, Noah Goodman, and Stefano Ermon.
Bias and generalization in deep generative models: An empirical study. Advances in Neural
Information Processing Systems, 31, 2018.

9

https://doi.org/10.5281/zenodo.5143773

	Additional Results
	Synthetic Framework
	Implementation Details
	Generalization Experiments Additional Details

	In-Distribution Assessment in the Synthetic Setting Ablation Study
	Synthetic Images Quality Analysis
	Distinguishing Between Popularity of images in the training data and Unoriginality
	Quantifying Originality using Textual Inversion: Additional Implementation Details
	Synthetic Experiments
	Pretrained Stable Diffusion Experiments

	DreamSim Distance Metric

